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SUMMARY

Support vector regression (SVR) is particularly beneficial when the outcome and predictors are nonlinearly
related. However, when many covariates are available, the method’s flexibility can lead to overfitting and
an overall loss in predictive accuracy. To overcome this drawback, we develop a feature selection method
for SVR based on a genetic algorithm that iteratively searches across potential subsets of covariates to
find those that yield the best performance according to a user-defined fitness function. We evaluate the
performance of our feature selection method for SVR, comparing it to alternate methods including LASSO
and random forest, in a simulation study. We find that our method yields higher predictive accuracy than
SVR without feature selection. Our method outperforms LASSO when the relationship between covariates
and outcome is nonlinear. Random forest performs equivalently to our method in some scenarios, but more
poorly when covariates are correlated. We apply our method to predict donor kidney function 1 year after
transplant using data from the United Network for Organ Sharing national registry.
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2 S. B. MCKEARNAN AND OTHERS

1. Introduction

Machine learning methods including popular methods such as neural networks, support vector machines,
and ensemble methods are powerful and flexible tools for prediction. A âŁœflexibleâŁž model can more
closely adapt to the shape of the data it is supplied with, yielding accurate predictions; however, allowing for
too much flexibility in a model can lead to overfitting, in which the model fits too closely to the exact data it
is trained on and thus loses accuracy in its application to outside contexts. This problem is particularly likely
to occur when many patient characteristics or features are used, for example, in clinical risk prediction
settings. To counteract overfitting, improve predictive performance, and increase the interpretability of
results, the number of patient features used in the model can be narrowed down via feature selection.
However, traditional feature selection techniques designed for regression problems, such as LASSO, do
not always generalize to more complex machine learning methods. In this article, we propose a feature
selection technique for support vector regression (SVR) (Drucker and others, 1997), a machine learning
technique for predicting continuous outcomes that derives from the popular support vector machine (SVM)
method for classification. In a clinical setting, it is important to predict outcomes accurately, while not
requiring a number of predictors that would be unreasonable to collect. In a retrospective study, researchers
may also be interested in using feature selection to identify key relationships between predictors and the
outcome of interest. We first develop our method in a general context to demonstrate its viability and
accuracy, then we apply it to a national registry of kidney transplant donors to predict kidney function
following transplant.

SVR utilizes a kernel for flexibility and computational efficiency. The use of a nonlinear kernel makes
SVR most advantageous when the functional relationship between predictors and outcome is nonlinear,
especially because the nonlinear relationship does not need to be prespecified for accurate predictions as
they would be for linear regression. Penalized methods for feature selection limit the choice in kernel to
finite dimensional transformations and are thus insufficient. While most feature selection methods for SVM
have primarily focused on classification without adaptation to SVR, some are able to be easily adapted and
others have been proposed for SVR. For example, kernel iterative feature extraction (known as KNIFE),
which includes a penalty term on weighted features within a kernel, and kernel-penalized SVM (KP-SVM)
have been shown to be successful feature selection methods in the classification setting (Allen, 2013;
Maldonado and others, 2011). Recursive feature elimination (RFE) has been demonstrated to correctly
select features for various kernel problems, including SVR specifically (Dasgupta and others, 2019;
Dasgupta and Huang, 2020). Other proposed methods for conducting feature selection in the regression
case require prespecification of the number of features to select for the model (Yang and Ong, 2011) or
increase the tuning required with added SVR hyperparameters (Maldonado and Weber, 2010).

Our approach to SVR feature selection involves a genetic algorithm, an optimization technique modeled
after evolutionary processes. With the genetic algorithm, candidate sets of selected variables are “bred"
together and passed on over subsequent generations, with “strongest" (i.e., most relevant) set of potential
covariates retained for each generation. Genetic recombination operators such as crossover and mutation
are applied to maintain some diversity in each generation (Goldberg and Holland, 1988; Leardi and others,
1992; Yang and Honavar, 1998). Genetic algorithms have been used in combination with support vector
machines for classification problems in areas such as brain MRI classification, blood cell recognition, and
microarray-based tumor classification (Kharrat and others, 2010; Osowski and others, 2009; Peng and
others, 2003; Li and others, 2005). Various methods have jointly used both SVR and the genetic algorithm,
most commonly to optimize the parameters of the SVR model (Liu and others, 2013; Saravanan and
Sailakshmi, 2015; Wu and others, 2009). We are not aware of any prior work that tackles the problem of
SVR feature selection using the genetic algorithm.

In this article, we briefly review the basics of SVR and genetic algorithms and describe our proposed
method for using the genetic algorithm to perform feature selection for SVR. We compare it to other
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Feature selection for support vector regression 3

methods for feature selection in a simulation study and illustrate the proposed method in an application
to a national registry of kidney transplant donors.

2. Methods

2.1. Support vector regression

SVR is an extension of the support vector machine method for classification which constructs an opti-
mal separating hyperplane between classes (Cortes and Vapnik, 1995). We will briefly review the SVR
methodology; Smola and Scholkopf (2004) provide a more detailed explanation.

Consider data features Xi in the space X ∈ R
L along with continuous outcome Yi for individuals

i = 1, . . . , n. One of the advantages of the SVR algorithm is its ability to capture nonlinear relationships.
This is implemented in the algorithm by preprocessing the input data Xi with a transformation to some
new feature space. We can write this transformation as the function �(x) : X �→ H, where H is a
high-dimensional, possibly infinite-dimensional, reproducing kernel Hilbert space. Define the function to
approximate the relationship between Yi and X i in the feature space as an inner product between a weight
vector w and the transformed predictors �(x) as

f (x) = 〈w, �(x)〉H + b. (2.1)

Then, the SVR problem consists of optimizing

min
w,b

[
1

2
‖w‖2

H + C
n∑

i=1

(ξi + ξ ∗
i )

]
(2.2)

where C is a positive-valued constant regularization parameter and ξi, ξ ∗
i are slack variables constraining

the margin of error. Instead of applying the same loss function as for a support vector machine, we use an
ε-insensitive loss function Drucker and others (1997) defined as

L(y, f (x))ε =
{

0 if |yi − f (xi))| < ε

|yi − f (xi)| − ε otherwise
. (2.3)

This loss function allows for some errors by treating errors that are small enough, as defined by ε,
simply as zero, while measuring the loss of larger errors by their magnitude. Minimizing Equation 2.2
under this loss function corresponds to the following constraints on the optimization:

f (xi) − yi ≤ ε + ξi

yi − f (xi) ≤ ε + ξ ∗
i

ξi, ξ ∗
i ≥ 0, ∀i = 1, . . . , n.

(2.4)

Note that we can avoid direct computation and specification of the transformation �(X) by applying a
kernel function, defined as the inner product k(x, x′) = 〈�(x), �(x′)〉H. Because we have defined H as a
reproducing kernel Hilbert space, we must select a kernel that meets the Mercer conditions, which includes
commonly used kernels such as the Gaussian radial basis function. In an alternate formulation of the SVR
optimization problem known as the “Lagrangian dual formulation," the problem can be rewritten such that
the transformation �(x) is only involved via dot products. This formulation allows for the computational
use of a kernel function instead; because the transformation �(x) is typically high-dimensional or infinite-
dimensional in order to capture the nonlinearity of the function, it would be computationally intensive
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4 S. B. MCKEARNAN AND OTHERS

to directly compute, and a kernel function is more feasible. A quadratic programming algorithm is then
applied to solve the dual formulation optimization problem. In our simulations and data application, we
apply a radial basis function kernel to account for lack of prior knowledge about the relationships between
the data and outcome, rather than assuming a linear or quadratic relationship (two other commonly used
kernels). This kernel is defined as k(x, x′) = exp(−γ ||x − x′||2). γ is an additional parameter introduced
in the selected kernel function and is jointly tuned via grid search across potential values with the cost
parameter C.

Many common approaches to feature selection involve adding a L1 penalty term to the loss function and
inducing sparsity (Tibshirani, 1996; Zou, 2006; Han and others, 2015). While this could be applied to the
SVR model with a linear kernel, it is not applicable in general. Many of SVR’s strengths are derived from
its handling of nonlinear data using alternative kernels; thus, a feature selection technique that is applicable
for any kernel choice is preferred. Descent-based methods are not easily applicable for this question, as
we cannot define the changes in the SVR model based on the inclusion or exclusion of a certain covariate
when it is optimized in the dual formulation, which we seek to use for its kernel properties.

2.2. Genetic algorithms and feature selection

The genetic algorithm is a general-purpose optimization technique designed to model biological evolu-
tionary practices in which only the fittest individuals reproduce and pass on their genetic information to
the following generation, leading to stronger individuals as generations pass. Genetic operators such as
mutation and crossover are used to increase diversity of genetic information across generations. Genetic
algorithms are well-suited to problems where the objective function implies a complex solution space that
cannot be easily traversed by descent-based methods. The genetic algorithm is a flexible technique and has
been utilized in many fields of study for a wide range of problems, including but not limited to clustering
analyses, multiobjective optimization, and multiprocessor scheduling (Maulik and Bandyopadhyay, 2000;
Horn and others, 1994; Hou and others, 1994).

The first step of the genetic algorithm consists of defining a procedure for encoding the objects to
be optimized as binary strings, for example, 011010100. Each string represents a “chromosome," that
is, a distinct object, and each binary component is referred to as a “gene." The population is initialized
with a number of such chromosomes via random generation. Individuals are then “bred" over multiple
generations using various genetic operators such as recombination and mutation. The potential solutions
as represented by the chromosomes are evaluated at each generation according to the objective (fitness)
function; the “fittest" offspring are retained at each generation. The algorithm ends after a given number of
generations or when there is no more diversity in the population of potential solutions. The final solution
has the best performance, as determined by the fitness function, among the last generation of chromosomes.

Though not originally designed for feature selection, when the genetic algorithm is adapted to fea-
ture selection, the encoding process is straightforward; the binary components of each chromosome are
indicators of whether each potential covariate is included or excluded in the statistical model.

The various genetic operators applied are elitism, selection, crossover, and mutation. The generations
of chromosomes following the initialization are created via elitism, in which the top-performing portion is
automatically advanced to the next generation, and selection, in which some chromosomes are selected to
form the “reproducing population." Different selection schemes can be applied. In linear-rank selection,
chromosomes are selected with replacement for the reproducing population with probability linearly
assigned based on rank of performance according to the designated fitness function. In roulette wheel
selection, chromosomes are selected with probability proportionate to the value of their fitness function.
Blickle and Thiele (1995) describe several other selection schemes.

Crossover is applied to the reproducing population of chromosomes, with the intent to create diversity
in the possible solutions for the next generation. The reproducing population chromosomes are randomly
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Feature selection for support vector regression 5

Fig. 1. Flowchart detailing the feature selection method for SVR using the genetic algorithm.

matched to form pairs referred to as “parents". Information is swapped, that is, crossover is applied, between
the two individuals with a fixed crossover probability. For pairs undergoing crossover, information is
swapped between the two parents to form two new chromosomes referred to as “offspring," which replace
the parents in the new population. For pairs not undergoing crossover, parent chromosomes are treated
as the offspring. A variety of crossover methods can be applied. In single-point crossover, modeled after
traditional biological crossover between chromosomes, a randomly selected gene is chosen within the
chromosome as the changeover point; then, each offspring receives the genetic material from one parent
prior to that point and the other parent after that point. In uniform crossover, information is exchanged at
the gene level rather than dividing the chromosome into two segments (Syswerda, 1989). Each gene is
exchanged between the two parents with a fixed probability. Additional genetic diversity is then induced
via mutation. Each gene within each chromosome is randomly modified by simply changing the indicator
of whether or not the particular variable is included in analysis; mutation of a particular gene is performed
with a fixed probability that is typically small. Following the iterative application of these genetic operators
and the assessment of chromosomes under the fitness function, the final solution indicates a set of covariates
to be included for analysis in the prediction method.

2.3. Feature selection for SVR model

Unlike other methods such as generalized linear models, SVR does not have an obvious way to organize
and explore the model space. Applying the genetic algorithm can therefore add functionality not otherwise
available. Our feature selection technique for the SVR model based on the genetic algorithm is displayed
graphically in Figure 1 and can be described by the following steps:

(1) For features X ∈ R
L, define a chromosome Cjk composed of L genes gjkl ∈ {0, 1}, where each entry

gjkl indicates whether or not covariate l is selected for inclusion in the model. For k = 1, . . . , K
chromosomes, initialize the first generation, j = 1, of K chromosomes via random generation.
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6 S. B. MCKEARNAN AND OTHERS

(2) Tune the SVR hyper-parameters cost and γ by grid search, using the training data set with all
features.

(3) Evaluate each chromosome Cjk under a fitness function f (Cjk) designed to evaluate the model given
the selected features indicated by the gjkl entries of the chromosome.
i. Subset training and test data sets to selected features by Cjk .

ii. Fit SVR model to subsetted training data using optimal hyper-parameters as found in Step 2.
iii. Apply SVR model to test dataset and calculate f (Cjk).

(4) Generate the reproducing population of chromosomes for the following generation.
i. Elitism: Automatically include the top-performing chromosomes as evaluated by the fitness

function in the following generation. Include the top K ∗ pE chromosomes, where pE is the
proportion of elitism.

ii. Selection: Select K ∗ (1 − pE) high-performing chromosomes for inclusion in the reproducing
population, using linear-rank selection. Exclude the K ∗ pE chromosomes from Step 4ii from the
selection process.

(5) Apply genetic operators to the K ∗ (1 − pE) chromosomes generated in step 4ii to form the next
generation.
i. Crossover: Randomly pair the reproducing population chromosomes to form K ∗(1−pE)/2 pairs

referred to as “parents.” Apply uniform crossover between the two individuals with probability
pC .

ii. Mutation: Randomly modify a small number of gjkl to induce genetic variation. Change the
indicator of each 0/1 gjkl in each chromosome in the new population with probability pM .

(6) Repeat steps 3–5 for j = 1, . . . , N iterations, leading to a final generation of chromosomes. Select
covariates for inclusion in the model per the chromosome with the best performance according to
the fitness function f , denoted CN∗.

Elitism proportion for use in selection was set to pE = 0.05, a commonly used value. Linear-rank
selection was chosen as the selection schematic, in order to maintain diversity in potential solutions in
the case that fitness function values vary in magnitude. We applied uniform crossover with a crossover
probability pC = 0.5, to eliminate possible dependence on the order in which the variables are coded in the
chromosome stemming from single-point crossover. Mutation probability was set to pM = 0.1. Mutation
probability is often kept small; the goal is to induce some additional genetic diversity, not completely
change the potential solutions.

A population size of K = 200 was chosen and the algorithm was repeated for N = 200 generations.
The genetic algorithm utilizes a fitness function at each iteration to evaluate the performance of each
individual. We compared versions of the genetic algorithm implementing mean squared prediction error
(MSPE) and Bayesian information criterion (BIC) as fitness functions. Separate training and test data sets
were used to calculate the value of the fitness function within the iteration of the genetic algorithm.

3. Simulation study

3.1. Simulation methods

We assessed the performance of our feature selection method for SVR with a set of simulations. Since our
proposed method combines feature selection (via the genetic algorithm) with flexible regression modeling,
we designed our simulation study to investigate the impact of both these elements on prediction accuracy
under a wide variety of scenarios. To isolate the effects of feature selection, we compared our method to an
SVR without selection. To isolate the effects of the regression modeling, we combined genetic algorithm
feature selection with a linear regression model, denoted LR. We compared our method to the RFE
method for SVR, using a change-point analysis to determine the stopping point for feature elimination.
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Feature selection for support vector regression 7

We also considered alternative prediction approaches such as LASSO-based variable selection with a
linear regression model, as well as a random forest. Average percentage of simulations in which at least
one related covariate is selected, average number of related covariates included, average percentage of
simulations in which at least one unrelated covariate is selected, average number of additional unrelated
covariates included, and average mean squared prediction error (MSPE) are reported to assess the selection
of variables and model performance. Performance of the selected set of predictors was evaluated using
a separately generated test data set. Five hundred simulations were performed for each scenario. The
following different data generating scenarios were considered.

For scenario 1, uncorrelated normal random covariates were generated with underlying associated
quadratic terms associated with the outcome. Covariates X C = (X1, . . . , Xp) were generated independently
from a normal distribution with mean zero, variance one. Quadratic terms were added to the design matrix
X = [X 2

1 X 2
2 . . . X 2

πp X1 X2 . . . Xp], where π ∈ [0, 1] was varied across scenarios to change the proportion
of covariates related to the outcome. We let zi be the ith row of X ; the outcome Y was generated as
Yi = β ′zi + εi with εi ∼ Normal(0, 1). We set β = (β1, β2, β3), where β1 and β2 are vectors each of
length p ∗ π corresponding to the quadratic and linear predictors associated with the outcome and β3

is a vector of length p ∗ (1 − π) set to be zero in all scenarios. The values of β1 and β2 were varied
across simulations to adjust the amount of relative weight of the quadratic term and its related linear
term on the outcome respectively, for the following scenarios: positive values of β1 only, indicating that
the relationship between covariates and outcome is purely quadratic; positive values of both β1 and β2,
but with greater values for one of the two, shifting from a more quadratic to a more linear relationship;
positive values of β2 only, indicating that the relationship is only linear. Following the data generation in
this manner, only covariates X C were supplied to the prediction methods in order to assess how well the
methods would capture the quadratic effects in their predictions and how often the associated main effect
terms would be selected via the feature selection processes.

For scenario 2, uncorrelated normal random covariates were generated with underlying associated
interaction terms associated with the outcome. Covariates X C = (X1, . . . , Xp) were generated indepen-
dently from a normal distribution with mean zero, variance one. As in scenario 1, we let zi be the ith row
of X and the outcome Y was generated as Yi = β ′zi + εi with εi ∼ Normal(0, 1). Pairwise interaction
terms were added to the design matrix for all covariates with corresponding main effect terms, such that
X = [X1X2 X1X3 . . . Xπp−1Xπp X1 X2 . . . Xp]. We set β = (β1, β2, β3), where β1 is a vector of length

(
πp
2

)
corresponding to the interaction terms, β2 is a vector of length p∗π corresponding to the linear terms, and
β3 is a vector of length p ∗ (1 − π) set to zero. As with the quadratic data generation scenario, interaction
terms were not supplied to the methods for use in feature selection or prediction.

For scenario 3, correlated multivariate normal data was generated with varying levels of association
with the outcome. The N × p design matrix X was formed by partitioning into equal-sized blocks of
correlated covariates. Each block was generated from a multivariate normal distribution with mean zero
and first order autoregressive correlation structure with ρ = 0.5. Given zi the ith row of X , the outcome
Y was generated as Yi = β ′zi + εi with εi ∼ Normal(0, 1). The value of β was defined to match the block
design of the covariates in two different ways: one such that the main effect terms were correlated with
irrelevant terms but uncorrelated with each other, and one such that the main effect terms were correlated
with each other but not with irrelevant terms. Technical details of the settings for each scenario, including
values of β, are presented in Section 1 of the Supplementary Material available at Biostatistics online.

3.2. Simulation results

In scenario 1, we assessed the performance of our method in the presence of underlying quadratic relation-
ships between the outcome and covariates, while only providing the corresponding linear covariates to the
model. Results are displayed in Figures 2 and 3. Tables displaying the full results are presented in Section 2
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8 S. B. MCKEARNAN AND OTHERS

Fig. 2. Results of simulation 1 setting with 50 total covariates X, 5 of them truly associated with the outcome Y. Trend
in average MSPE and number of variables selected by various prediction methods as the amount of true variation in
Y due to X stemming from the quadratic covariates is increased. Random forest method is not displayed for number
of variables due to lack of feature selection.

Fig. 3. Results of simulation 1 setting with 300 total covariates X, 15 of them truly associated with the outcome
Y. Trend in average MSPE and number of variables selected by various prediction methods as the amount of true
variation in Y due to X stemming from the quadratic covariates is increased. Random forest method is not displayed
for number of variables due to lack of feature selection.

of the Supplementary Material available at Biostatistics online. Our feature selection method for SVR
selected all of the relevant covariates in both the 50 and 300 covariate scenarios, where the proportion of
relevant covariates π is equal to 0.1 and 0.05, respectively, regardless of the level of quadratic relationship.
On average, the BIC fitness function in the genetic algorithm yielded the selection of fewer extraneous,
unrelated variables than the use of the MSE fitness function, in all scenarios. In addition, the accuracy
of predictions from our method, as measured by MSPE, was lower in all scenarios than that of the SVR
model implemented without any feature selection. While the LASSO method selected the correct variables
when the relationship was primarily linear, it did not do so when the relationship shifted to quadratic.
The same pattern was seen for the genetic algorithm feature selection method applied to linear regression
models. The random forest method maintained roughly the same accuracy of predictions no matter the
level of quadratic relationship between outcome and predictors; additionally, no feature selection was
implemented with the random forest. The RFE method performed similarly to random forest in the 50
covariate scenario, however, it does include feature selection and it correctly selected predictors. In the
300 covariate scenario, random forest outperformed our method in terms of MSPE when the relationship
between outcome and predictors was mostly quadratic but still maintained a linear component. In all other
cases, our method performed better. While RFE and the GA applied to linear regression selected some of

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxab022/6366338 by U

niversity Library, U
niversity of Illinois at C

hicago user on 10 February 2022

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab022#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab022#supplementary-data


Feature selection for support vector regression 9

Table 1. Results of simulation 2 setting with 50 total covariates X, 5 of them truly associated
with the outcome Y, and 10 pairwise underlying interaction effects not supplied to the model for
selection or prediction. Columns represent the proportion of simulations in which at least one of
the relevant covariates is selected, the number of relevant covariates selected on average (out of 5),
the proportion of simulations in which at least one unassociated covariate is selected, the number
of unassociated covariates selected on average, and a scaled MSPE described in the footnote.

Feature % Selection Avg # % Other Avg # Avg % variation
selection Model fit relevant (1+) relevant Var Var (1+) additional Var unexplained by Pred.†

GA: MSE LR 100 5 100 16.12 55.36
GA: BIC LR 100 5 6.0 0.07 53.26
GA: MSE SVR 100 5 95.2 4.30 24.31
GA: BIC SVR 100 5 27.4 0.30 22.06
RFE SVR 100 5 100 3 22.76
LASSO LR 100 5 0.6 0.12 53.26
None RF 100 5 100 45.0 27.47
None SVR 100 5 100 45.0 51.22

Bold values refer to our method developed in the paper and are highlighted for reference.
†Column displays average across simulation iterations of the proportion of true variation in Y due to X that is left
unexplained by the prediction. For example, in the case where the total variance in Y is 2, where half is due to the error term
and half is due to the covariates X, a MSPE of 1.05 would be reported as 5% in this column. Of the explainable variance 1,
the model misses 5%.

the correct predictors in the 300 covariate scenario, the proportion declined as the relationship between
outcome and predictors became more quadratic.

In scenario 2, we assessed the performance of our method when there are true interactive effects between
covariates, while only providing the corresponding linear covariates to the model. Results are displayed
in Table 1. In this scenario with 50 covariates, when 10 underlying interactive terms were not supplied
to the prediction method but 5 related linear terms were, our method for SVR with either the MSE or
BIC fitness function used in the genetic algorithm and RFE with SVR yielded the lowest MSPEs. While
the random forest method predictions were nearly as accurate, the linear model (using either LASSO or
the genetic algorithm for feature selection) and the SVR model without any feature selection left over
twice as much of the variance due to X unexplained on average. In addition, our method with the BIC
fitness function used in the genetic algorithm selected the fewest extraneous variables for inclusion in
the model. The genetic algorithm using BIC in combination with linear regression and LASSO methods
also picked up very minimal extraneous variables. All methods correctly included the covariates that were
truly associated with the outcome.

In scenario 3, we compared the performance of our method to competing methods when the covariates
are correlated. Results are displayed in Tables 2 and 3. Fifty covariates were used in this scenario, comprised
of equal-sized correlated blocks of 10 covariates. We applied two different implementations of correlated
data: one in which truly related covariates were correlated with extraneous variables and one in which
truly related covariates were correlated with each other. In both cases, all methods correctly selected the
relevant variables for inclusion in the model. Similar trends in both the accuracy of the predictions and
the variables selected were seen in both cases. The implementation of our feature selection method for
SVR yielded a sizable decrease in MSPE compared to SVR without any feature selection. However, in
this scenario, LASSO and the linear regression with a genetic algorithm and BIC fitness function methods
yielded both the lowest MSPEs and the fewest amounts of extraneous variables selected for inclusion in
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10 S. B. MCKEARNAN AND OTHERS

Table 2. Results of simulation 3 setting with 50 total covariates X, 5 of them truly associated with
the outcome Y, and each correlated to 9 variables unrelated to the outcome with AR-1 correlation
structure.

Feature % Selection Avg # % Other Avg # Avg % variation
selection Model fit relevant (1+) relevant Var Var (1+) additional Var unexplained by Pred.†

GA: MSE LR 100 5 100 15.2 2.96
GA: BIC LR 100 5 7.8 0.08 1.62
GA: MSE SVR 100 5 100 12.39 3.87
GA: BIC SVR 100 5 15.0 0.16 2.53
RFE SVR 100 5 100 3 15.63
LASSO LR 100 5 100 0.12 1.6
None RF 100 5 100 45.0 14.55
None SVR 100 5 100 45.0 7.17

Bold values refer to our method developed in the paper and are highlighted for reference.
†Column displays average across simulation iterations of the proportion of true variation in Y due to X that is left
unexplained by the prediction. For example, in the case where the total variance in Y is 2, where half is due to the error term
and half is due to the covariates X, a MSPE of 1.05 would be reported as 5% in this column. Of the explainable variance 1,
the model misses 5%.

Table 3. Results of simulation 3 setting with 50 total covariates X, 10 of them truly associated with
the outcome Y and correlated with each other with AR-1 block correlation structure.

Feature % Selection Avg # % Other Avg # Avg % variation
selection Model fit relevant (1+) relevant Var Var (1+) additional Var unexplained by Pred.†

GA: MSE LR 100 10 100 13.47 3.23
GA: BIC LR 100 10 0 0 2.07
GA: MSE SVR 100 10 100 11.30 3.57
GA: BIC SVR 100 10 0.6 0.01 2.39
RFE SVR 100 7.99 0 0 31.38
LASSO LR 100 10 0.02 2.0 1.96
None RF 100 10 100 40.0 21.97
None SVR 100 10 100 40.0 7.31

Bold values refer to our method developed in the paper and are highlighted for reference.
†Column displays average across simulation iterations of the proportion of true variation in Y due to X that is left
unexplained by the prediction. For example, in the case where the total variance in Y is 2, where half is due to the error term
and half is due to the covariates X, a MSPE of 1.05 would be reported as 5% in this column. Of the explainable variance 1,
the model misses 5%.

the model. As seen in the previous scenarios, the use of the BIC fitness function in the genetic algorithm
as opposed to the MSE fitness function led to far fewer additional variables being selected. In addition,
the random forest and RFE methods yielded predictions less accurate than any other method.

In the Supplementary Material available at Biostatistics online, we present additional simulation results
for alternative signal-to-noise ratios and an alternate choice in kernel for SVR. The overall trends in the
results presented here are similar to those seen in the lower signal-to-noise ratio scenario presented in the
Supplementary Material available at Biostatistics online.
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Table 4. Performance results of GA-SVR method and comparison
methods applied to predict eGFR for living transplant kidney
donors at 1 year post-transplant.

Feature Selection Model Fit No. Var. Selected MSPE

GA: MSE LR 15 112.6
GA: BIC LR 1 118.5
GA: MSE SVR 13 110.3
GA: BIC SVR 1 114.2
RFE SVR 5 120.1
LASSO LR 2 114.5
None RF 32 104.1
None SVR 32 122.6

Bold values refer to our method developed in the paper and are highlighted for
reference.

4. Application to data

Patients in need of a kidney transplant can benefit greatly from a living donor transplant. While some
evidence has shown minimal long-term consequences of kidney donation, other evidence has shown an
increased risk of end-stage renal disease among donors (Ibrahim and others, 2009). We aim to further
investigate the impact of kidney donation on the donor’s renal function post-transplant and identify factors
that could indicate a donor is at additional risk for future complications. Data for this analysis were collected
from January 2015 to December 2019 from the United Network for Organ Sharing national registry. We
focus our analysis on patients aged 18 or older who donated kidneys for living donor transplant.

A total of 21 121 patients are included in the analysis, and 32 covariates are available regarding donor
demographics, quality of the transplanted organ, and donor health. Missing covariate data were imputed
using Multivariate Imputation by Chained Equations (MICE). Descriptive characteristics and imputation
details are presented in Section 4 of the Supplementary Material available at Biostatistics online. We
consider the outcome estimated glomerular filtration rate (eGFR) 1 year post-transplant; eGFR is a measure
of kidney function based on the patient’s creatinine, age, and gender. We evaluate performance of the
methods by splitting the data into separate training, evaluation (for use in evaluating the genetic algorithm
fitness function), and test data sets. We use 60% of the data for training data, 20% for evaluation data, and
20% for testing data.

Results of the application of our method and comparative methods to predict eGFR at 1 year following
kidney transplant are displayed in Table 4. We find that using our feature selection method for SVR with
an MSE fitness function yields a lower mean squared prediction error (MSPE) than all tested alternatives
except random forest, most significantly improving performance over SVR without any feature selection.

The genetic algorithm with a BIC fitness function heavily penalizes the number of variables selected
in this application, selecting only one variable, pre-transplant eGFR, to be included in the model for
both linear regression or SVR. The genetic algorithm with a MSE fitness function selects 15 variables
for inclusion in the linear regression and 13 variables for inclusion in the SVR model, though there is
some variation in the variables selected. In addition to the donor’s pre-transplant eGFR, both methods
select donor blood type, education history, race, and BMI. RFE used with SVR selects similar variables:
pre-transplant eGFR, race, blood type, and BMI.

These results are not inconsistent with the results of the simulation studies we performed, in which
our methods had lower MSPE than SVR without feature selection in all scenarios examined. Some
improvement in MSPE was seen in our method when using the MSE fitness function, which allowed
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for more variables to be included in a richer model. In methods with fewer variables selected, the same
few were seen in common, indicating consistency across the methods in identifying predictive variables
of post-transplant eGFR. In addition, these results illustrate the impact of different fitness criterion. In
this example, because of the strong relationship between one specific predictor and the outcome, the BIC
fitness function selects only the one key predictor and misses additional predictors that are beneficial to
the model. This contrasts to our simulation results, in which relevant predictors had equal impact and
the results generally showed a lower MSPE for the BIC fitness criterion than the MSE fitness criterion.
Analysts applying our method should be mindful of the structure of their own data when choosing the
fitness criterion.

5. Discussion

The biggest gain offered by SVR compared to more traditional statistical methods is its well-handling of
nonlinear data without the need to prespecify transformed or interaction terms; however, the same structure
of SVR that yields this benefit impedes the development of typical feature selection methods. To overcome
this disadvantage, we developed a genetic algorithm based approach that allows for ease of continued use
of SVR’s various kernel functions. The computation of nonlinear SVR does not directly depend on the
dimensionality of the data, but rather the number of samples; while some may take this to mean that SVR is
inherently resistant to typical problems of dimensionality, we have not found that to be the case. Our GA-
SVR feature selection method yields better predictive accuracy than SVR without feature selection in all
simulation experiments examined as well as in our data application, indicating otherwise. Random forest,
an alternative machine learning technique also popular for its predictive accuracy, performs comparably to
our method in many settings of our simulation setting, though not out-performing it. Notably, our method
out-performs random forest most significantly in the case of correlated predictors. This is also a scenario
in which the LASSO method is known to have poor performance and indicates a situation in which use
of our method may be most advantageous. In addition, we found that our method yielded considerable
improvement in predictive accuracy over LASSO when covariates had quadratic or interactive effects.

As with all uses of SVR, proper tuning of parameters and choice in kernel function are necessary
steps for good performance. Choice in kernel is discussed extensively in existing literature. We conducted
a sensitivity analysis for our simulation study using a linear kernel instead of a radial basis kernel for
SVR; results are presented in Section 5 of the Supplementary Material available at Biostatistics online.
As expected, our method with a linear kernel performed well when the data generating mechanism was
linear, and poorly when it was not. Given that the use of the radial basis kernel when the data generation
was linear was comparable to alternate methods, we suggest using the radial basis kernel in cases when
the data generation is either unknown or known to be nonlinear. A further examination of additional
alternate kernels may be of interest. Alternative methods for tuning of parameters have been developed; it
may be of interest in the future to examine their impact in conjunction with our feature selection method.
Computational effort for our method is not insurmountable especially with the implementation of stopping
criteria; however, due to the iterative nature of the genetic algorithm, if computational speed is a major
concern an alternative such as random forest may be preferable.A further examination of alternative fitness
functions used in the genetic algorithm and their impact on feature selection is also warranted.

6. Software

R code is available on GitHub at https://github.com/smckearnan/ga-svr.

Supplementary material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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