UIC

UNIVERSITY OFThe Effects of Virtual Reality Environments on Physiological Stress:ILLINOIS CHICAGOA Platform Comparison Between Room-Scale Displays and Desktop Computers

Honors College

Farah Kamleh Electronic Visualization Laboratory; Department of Computer Science

Introduction

Background

 Existing studies have reported that forest therapy utilizing sensory stimuli increases the activity of the parasympathetic nervous system and decreases the activity of the sympathetic nervous system.

Purpose

- To observe the effects of guided scenic meditation in a virtual reality environment on physiological stress.
- To perform a platform comparison by deploying the same meditative experience and testing its effectiveness using a room-scale display and a desktop computer.

Significance

- Rather than using a headset, the study uses a room-scale display — the CAVE2 Hybrid-Reality Environment — to test the effects of virtual reality environments on stress reduction.
- The platform comparison intends to showcase that, if proven effective, the product is accessible, as desktop computers are far more affordable (\$400 - \$1000) and widely available relative to room-scale displays (\$1 million+).

Methods

After the development of a 3D model of a forest environment in the game engine Unity, ten participants were asked to engage with a guided scenic meditation application using both a desktop computer and a room-scale display. During both sessions, hosted a week apart from one another, they were asked to do the following:

- 1. Complete a survey about subjectively perceived stress using Likert scales.
- Engage with the Unity-built guided scenic meditation application simulating the sights, sounds, and smells of a forest.
- 3. Measure their heart rate before and after engagement using a Fitbit.
- 4. Measure their blood pressure before and after engagement using a blood pressure monitor.
- 5. Provide suggestions for the application.

reducing stress for CAVE2 and Desktop.

Fig 11, and 12, Pie

charts showcasing

whether participants

would use application in

their everyday for both

platforms

Conclusion

- The participants experienced a decrease in heart rate after engaging with the application on both platforms.
- A decrease in diastolic blood pressure is observed among 60% of the participants for the CAVE2 and 80% for the desktop.
- The subjectively perceived moods and stress levels of the participants improved after engaging with the application.
- All participants concluded, from their experience, that the application is effective in reducing stress, majority of which would like use it in their everyday.

Acknowledgements

Assistance and Support

- Dr. Georgeta-Elisabeta Marai served as the supervisor of the research project, providing vital guidance in approach and revision.
- Ph.D. candidate Arthur Nishimoto assisted in all CAVE2-related inquiries.
- Ten students at the University of Illinois at Chicago served as participants in the user studies, assisting in the data-collection portion of the project.

Funding

- This research project was awarded a Spring 2023 Honors College Undergraduate Research Grant.
- Additional funding was provided by the Electronic Visualization Laboratory, NSF-CNS-1828265, and NSF-CDS&E-1854815.

References

- Febretti, A., Nishimoto, A., ... Plepys, D. (2013). CAVE2: a hybrid reality environment for immersive simulation and information analysis. SPIE Proceedings.
- Hong, S., ... Park, B. (2019). The Effects of Watching a Virtual Reality (VR) Forest Video on Stress Reduction in Adults. *Journal of People, Plants, and Environment, 22*(3), 309-319.
- 3. Kamińska, D., ... Anbarjafari, G. (2020). Stress Reduction Using Bilateral Stimulation in Virtual Reality. *IEEE Access*, 8, 200351-200366.