
REAL-TIME 3D HEAD POSITION TRACKER SYSTEM WITH STEREO

CAMERAS USING A FACE RECOGNITION NEURAL NETWORK

BY

JAVIER IGNACIO GIRADO
B. Electronics Engineering, ITBA University, Buenos Aires, Argentina, 1982
M. Electronics Engineering, ITBA University, Buenos Aires, Argentina 1984

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2004

Chicago, Illinois

ACKNOWLEDGMENTS

I arrived at UIC in the winter of 1996, more than seven years ago. I had a lot to learn: how

to find my way around a new school, a new city, a new country, a new culture and how to do

computer science research. Those first years were very difficult for me and honestly I would not

have made it if it were not for my old friends and the new ones I made at the laboratory and my

colleagues. There are too many to list them all, so let me juts mention a few examples.

I would like to thank my thesis committee (Thomas DeFanti, Daniel Sandin, Andrew

Johnson, Jason Leigh and Joel Mambretti) for their unwavering support and assistance. They

provided guidance in several areas that helped me accomplish my research goals and were very

encouraging throughout the process. I would especially like to thank my thesis advisor Daniel

Sandin for laying the foundation of this work and his continuous encouragement and feedback. He

has been a constant source of great ideas and useful guidelines during my Thesis’ program. Thanks

to Professor J. Ben-Arie for teaching me about science and computer vision. Thanks to Andy

Johnson and Jason Leigh for keeping me in track, and expand my vision of sci-fi and anime.

I would also like to recognize Maxine Brown and Laura Wolf who have provided me very

helpful technical tips for organizing and writing several research documents, papers and this

dissertation.

Most at all, I would want to express my sincere gratitude to my friends, Laura Wolf, Brenda

Lopez-Silva and Cristian Luciano for their help, both personally and professionally.

JIG

 iii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION...1
1.1. BACKGROUND...1
1.2. MOTIVATION...1
1.3. THE GOAL ...2
1.4. ARTIFICIAL NEURAL NETWORKS ...3
1.5. THE CHALLENGE OF FACE DETECTION AND RECOGNITION...3
1.6. AN IMAGE-BASED APPROACH USING NEURAL NETWORKS ..5
1.7. EVALUATION ...8

2. BACKGROUND..17
2.1. INTRODUCTION...17
2.2. BACKGROUND IN VR ...17

2.2.1. BRIEF INTRODUCTION OF VIRTUAL REALITY AND ITS DEVICES ..17
2.2.2. THE NEED AND IMPORTANCE OF TRACKER SYSTEMS IN VR..18

2.3. BACKGROUND IN COMMERCIAL VR TRACKER DEVICES ...19
2.3.1. TRACKER SYSTEMS USED IN VR ENVIRONMENT ..19
2.3.2. DISADVANTAGES IN TRACKER SYSTEMS USED IN VR ENVIRONMENT23
2.3.3. REAL SPECIFICATION OF TRACKER SYSTEMS USED IN VR ENVIRONMENT24
2.3.4. ADVANTAGES IN TRACKER SYSTEMS USED IN VR ENVIRONMENT.....................................26

3. PROPOSING NEW TRACKER SYSTEM...27
3.1. INTRODUCTION...27

3.1.1. A WORD OF TRACKER LATENCY (OR LAG) ...27
3.1.2. WHAT IS A REAL-TIME SYSTEM?...29

3.2. DEFINING THE NEW TRACKER SYSTEMS SPECIFICATIONS..30
3.3. SPECIFYING THE HARDWARE AND THE ENVIRONMENT..32
3.4. THEORETICAL TRACKER SPECIFICAIONS USING VARRIERTM AUTOSTEREOSCOPIC DISPLAY AS A

VR ENVIRONMENT ..36

4. DATA PREPARATION...41
4.1. INTRODUCTION...41
4.2. PREPROCESSING FOR BRIGHTNESS AND CONTRAST ..41

4.2.1. STANDARD APPROACHES ...41
4.2.2. THESIS APPROACH: GLOBAL EQUALIZATION IN A CONTROLLED ENVIRONMENT..........44
4.2.3. THESIS APPROACH: GLOBAL PREPROCESSING USING SHADING CORRECTION................46

4.3. CAMERA CALIBRATION ..51

5. HEAD TRACKER...53
5.1. INTRODUCTION...53
5.2. OVERVIEW OF TRACKING ALGORITHM ...53
TRAINING..71

5.2.1. METHODOLOGY DESCRIPTION...71

iv

TABLE OF CONTENTS (continued)

CHAPTER PAGE

5.2.2. ALGORITHM DESCRIPTION ..73
5.3. EVALUATION ...77

5.3.1. METHODOLOGY..77
5.3.2. TRACKER SYSTEM ERROR IN RECOGNIZER ONLY MODE..78
5.3.3. TRACKER SYSTEM ERROR IN DETECTOR ONLY MODE..79
5.3.4. TRACKER PERFORMANCE RATE ...81
5.3.5. FRAME RATE..82
5.3.6. TRACKING LATENCY..83
5.3.7. STATIC JITTER AND DRIFT...85
5.3.8. DYNAMIC JITTER...85
5.3.9. STATIC PRECISION ..86
5.3.10. RESOLUTION..87

6. REAL-TIME CAMERA-BASED FACE DETECTION USING A MODIFIED LAMSTAR
NEURAL NETWORK SYSTEM..89

6.1. INTRODUCTION...89
6.2. ORIGINAL FACE DETECTOR DESCRIPTION..90
6.3. BACKGROUND...91
6.4. SYSTEM OVERVIEW ..93
6.5. THE KOHONEN SELF-ORGANIZING-MAP..93
6.6. SOM MODULES: DESCRIPTION, INPUT AND TRAINING...95
6.7. TRAINING/STORAGE PHASE ...98
6.8. DETECTION/RETRIEVAL PHASE...99
6.9. METHODOLOGY .. 100
6.10. IMPLEMENTATION DETAILS ... 104
6.11. CONCLUSIONS AND FUTURE RESEARCH ... 105

7. CONCLUSION AND FUTURE WORK... 108
7.1. CONCLUSIONS .. 108
7.2. FUTURE WORK... 109

CITED LITERATURE... 112

VITA... 116

 v

LIST OF TABLES

TABLE PAGE

Table 1.1: Overview of the results from the system described in this thesis as a face recognizer and
detector using video-images. ..10

Table 1.2: Overview of the results from the system described in this thesis as a 3D head tracker....11

Table 1.3: Overview of hardware and software used in this thesis. ...12

Table 2.1: Main characteristics of Commercial Tracker System used in VR ..21

Table 3.1: Comparison of current specification of some of the best commercial tracker including the
ones we are using at our laboratory and the proposed camera-based tracker system.30

Table 3.2: I extract the best specs and propose the new tracker based on these.31

Table 5.1: Tracker error as a detector using 150 faces. ..81

Table 5.2: Tracker error as detector using one face..81

Table 5.3: Maximum deviation per training session ...86

Table 5.4: Static precision. Measured vs. 3D head position Tracker ouput. ...87

 vi

LIST OF FIGURES

FIGURE PAGE

Figure 1.1: Schematic diagram of the main steps of the 3D head tracking developed in this thesis...13

Figure 1.2: EVL’s VarrierTM Autostereo Virtual Environment turned off (left) and turned on with a
user (right). ..14

Figure 1.3: EVL’s VarrierTM Autostereo Virtual Environment with a 3D scene running (left), and
detail of the 3D camera based tracker system (thesis) with its infrared illuminators. Below the stereo
camera gear is the InterSense IS-900 Precision Motion Tracker I use for comparison (left and right).
..14

Figure 1.4: Next generation of EVL’s VarrierTM Autostereo Virtual Environment. Bigger is Better! 15

Figure 1.5: Detail of the tracker system Graphic User Interface (GUI), running and tracking.15

Figure 1.6: Detail of the tracker system Configuration GUI...16

Figure 2.1: Hand-tracker system attached to a wand and a head-tracker system attached to a stereo-
glasses. ...19

Figure 3.1: Global latency and its local latencies component parts..29

Figure 3.2: Different ImmersaDesk’s view ..33

Figure 3.3: Different ImmersaDesk’s views...33

Figure 3.4: ImmersaDesk top and side measures and proposed camera setting and user-volume.34

Figure 3.5: Schematic of top and side view of VarrierTM display with the new camera-based tracker
system. ...37

Figure 3.6: Field-of-view and resolution calculations. Top view. ...37

Figure 4.1: Extract the best fit illumination function from the sub-window, invert it and subtract it
from the sub-window. Then, perform histogram equalization. ..44

Figure 4.2: Left and right grey-level images after averaging ..49

Figure 4.3: 3D view of the left and right images after the averaging ...50

Figure 4.4: Left and right correction pattern ...50

vii

LIST OF FIGURES (continued)

FIGURE PAGE

Figure 4.5: Left image with faces but without correction ..51

Figure 4.6: Left image after correction and modifying the constant...51

Figure 4.7: Calibrated and un-calibrated cameras. ..52

Figure 5.1: Overview of the tracker system basic steps ...68

Figure 5.2: Dummy head during training (left). During tracking, a user already been trained and
recognized, and the dummy (right). ..69

Figure 5.3: Detail of 2D confidence map during recognition and tracking. ..69

Figure 5.4: Example of Tracking NN internal weights. Each weight is represented by a face_width by
face_height vector. As you can see, face details are almost lost and the face becomes more like a blob.
..69

Figure 5.5: Detail of 3D confidence map during recognition. ...70

Figure 5.6: Detail of 3D confidence map during tracking..70

Figure 5.7: Snapshot of video images recorded to evaluate the tracker system78

Figure 5.8: Snapshot of a sequence of training video images..78

Figure 5.9: Latency measurement...84

Figure 6.1: The attempted tracker system ..91

Figure 6.2: Kohonen Self-Organize-Map (SOM) network ..94

Figure 6.3: Simplified LAMSTAR diagram including the relationship between SOM models, SOM
output layer and C-links ..96

Figure 6.4: Flow diagram of the face training/storage and detection/retrieval................................... 100

Figure 6.5: Flow diagram of the pre-processing stage... 102

Figure 6.6: Snapshot of the face detector system including the relationship between SOM models104

 viii

LIST OF ABBREVIATIONS

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

AGAVE Access Grid Augmented/Autostereo Virtual Environment

ANN Artificial Neural Networks

AVI Audio Video Interleaved

CCD Charge-Coupled Device

CMOS Complementary Metal Oxide Semiconductor

CNS Central Nervous System

CPU Central Processing Unit

EVL Electronic Visualization Laboratory

fps frames per second

GUI Graphic User Interface

HMD Head Mounted Display

IEEE Institute of Electrical and Electronics Engineers

IR Infrared

LAMSTAR LArge Scale Memory STorage And Retrieval

LCD Liquid Crystal Display

NCC Normalize Cross-Correlation

NN Neural Networks

OS Operating System

PC Personal Computer

RF Radio Frequency

ix

LIST OF ABBREVIATIONS (continued)

SAD Sum of Absolute Differences

SGI Silicon Graphics, Inc.

SIMD Single Instruction Multiple Data

SOM Self-Organizing-Map

SSD Sum of Squared Differences

SSE Streaming SIMD Extensions

TCP/IP Transmission Control Protocol/Internet Protocol

UIC University of Illinois at Chicago

VR Virtual Reality

WTA Winner-Take-All

ZISC Zero Instruction Set Computing

µP Microprocessor

 x

SUMMARY

Creating credible virtual reality (VR) computer-generated worlds requires constant updating

of the images in all displays to have the correct perspective for the user. To achieve this, the

computer must know the exact position and orientation of the user's head. Examples of current

techniques for addressing head tracking include magnetic and acousto-inertial trackers, both

requiring the user to wear clumsy head-mounted sensors with transmitters and/or wires.

This thesis describes a two-camera, video-based, tetherless 3D head position tracker system

specifically targeted for both autostereoscopic displays and projection-based virtual reality systems.

The user does not need to wear any sensors or markers.

The head position technique is implemented using Artificial Neural Networks (ANN),

allowing the detection and recognition of upright, tilted, frontal and non-frontal faces in the midst of

visually cluttered environments. In developing a video-based object detector using machine learning,

three main sub-problems arise: first, images of objects such as faces vary considerably with lighting,

occlusion, pose, facial expression, and identity. Second, the system has to deal with all the variations

in distinguishing objects (faces) from non-objects (non-faces). Third, the system has to recognize a

target face from other possible faces so it can identify the correct user to track.

This thesis introduces some solutions to problems in the face detection/recognition domain.

For example, it discusses several Neural Networks (NN) per left and right channel, one for

recognition, one for detection and one for tracking; real-time NN face and background training (a

novel solution which allows new users to spend only two minutes training before being able to use

the system); infrared (IR) illumination (to further reduce image dependency cause by room lighting

variation) and global image equalization (in place of current trend of local equalization); algorithms

highly tuned for the Intel Pentium IV vector processor; and a prediction module to achieve faster

xi

SUMMARY (continued)

frame rates once a face is been recognized. The goal is to reach real-time tracking, in our case 30

frames per second (fps), at 640 by 480 video-image resolution. The system has been evaluated on an

ongoing autostereoscopic VarrierTM display project achieving 30 frames per second (fps) at 320x240

video-image resolution and 90% tracking position rate. In addition, this dissertation also includes a

previous novel work in face detection using LArge Scale Memory STorage And Retrieval

(LAMSTAR) neural network from which the current 3D tracker system is derived.

 xii

1

1. INTRODUCTION

1.1. Background

The Electronic Visualization Laboratory (EVL) is one of several research groups working on

producing PC-driven, projection-based virtual reality (VR) displays. The use of high-end systems, such as

EVL’s CAVE® and ImmersaDesk are well established in application areas such as computational science,

automotive engineering and chemical exploration. The next-generation of VR displays, both tiled LCD

displays and projection-based, aim to eliminate encumbrances on the user. The trend is towards higher

resolution displays where the user is not required to wear special glasses to view stereoscopic scenes.

Analogously, the trend for interaction with these displays is towards lightweight and tetherless input-devices.

EVL and its collaborators are exploring the use of other modalities (such as vision, speech and

gesture) as human-computer interfaces for this new generation of VR systems. Gesture recognition can

come from either tracking the user’s movements or processing them using video camera input. Gaze

direction, or eye tracking, using camera input is also possible. Audio support can be used for voice

recognition and generation, as well as used in conjunction with recording tele-immersive sessions. Used

together, these systems enable tetherless tracking and unencumbered hand movements for improved

interaction and collaboration within the virtual scene.

1.2. Motivation

The main objective behind this thesis is to replace current technologies used in commercial tracker

systems. Beside their advantage, all of them have one disadvantage in common: sensors or markers (usually

small pieces of reflective material) have to be attached to the objects to be tracked. Some of the sensors are

heavy and/or bulky and/or need wires to connect them to the tracker system (receiver). If a wireless

transmitter is provided to send data from the sensors to the system, still the tracker user has to carry it

(including the batteries).

2

In case of markers, some tracker systems need a room in which the object being tracked has to be

very well (controlled) illuminated in order for the markers to reflect the light. Therefore this tracker system

is not suitable for projection-based virtual reality environment in which a dark or low-light room condition

is desirable; otherwise the projection over the screen cannot be seen properly. On other systems the camera

provides an infrared light and the marker will reflect it back to the camera and get its position, but still the

user has to wear those markers.

As a conclusion, having to ‘wear’ something (sensor, markers, wires, etc.) is always an inconvenience

so the motivation is to build a complete sensor-free or marker-free tracker system.

To perform this, the new system will rely only on two cameras in front of the object to be tracked

(in this case the face). The system will have comparable features and characteristics to the system it tries to

replace plus the sensor-free advantage. Some other possible advantages such as multiple face tracking, face

recognition, hand detection, etc. will be mentioned at the conclusion of this proposal.

1.3. The Goal

My goal is to show that the face recognition, detection and tracking problem can be solved

efficiently and accurately using image-based approach implemented with Artificial Neural Networks (ANN),

also achieving real-time operation. Specifically, I will demonstrate how to recognize, detect and track

upright, tilted, and non-frontal faces in cluttered grayscale video images at 30 fps and 320x240 pixel

resolution using multiple neural networks (NN), arbitration among some of them and a simple prediction

scheme. I will also show that the NN can be trained to achieve all these goals in a very short period of time

(less than two minutes) making the tracker system very convenient for real-time operation.

3

1.4. Artificial Neural Networks

Artificial Neural Networks (ANN) are biologically inspired systems, which in very gross manner

perform functions analogous to the most elementary functions of the biological Central Nervous System

(CNS). Thus, ANN has a number of properties and characteristic of the CNS, such as:

• Learning from experience.

• Generalizing from previous examples to new ones.

• Recognition of complex patterns.

• Nonlinear analysis of multidimensional data.

The characteristics mentioned above result from ANN's internal structure, not from clever

programming. These characteristics make ANN very useful tools for a variety of problems that conventional

computers (and traditional 'step by step instruction' based programs) do poorly, if at all. To this class of

problems we can include all areas of pattern recognition, identification and classification.

Object detection and recognition is an important and fundamental problem in computer vision and

there have been many attempts to address it. ANN is just one of them.

This thesis is about a complete head tracker system, but in order to track a head a face has to be

recognized and detected first. Therefore this thesis implements the object matching of image-based models

(a face to be recognized) to video images (camera input) using neural networks (NN), and evaluates this

approach in the face recognition, detection and tracking domain.

1.5. The Challenge of Face Detection and Recognition

Object detection and recognition is the problem of determining whether or not a window or part of

an image belongs to the set of images of an object (recognition) or object classes (detection) of interest.

4

Thus, anything that increases the complexity of the decision boundary for the set of images of the object

will increase the difficulty of the problem, and possibly increase the number of errors the system will make.

Suppose we want to detect or recognize faces that are tilted in the image plane, in addition to

upright faces. Adding tilted faces into the set of images we want to detect or recognize increases the set’s

variability, and may increase the complexity of the boundary of the set. Such complexity makes the detection

problem harder. Besides adding new images to the set of images of the object, there are more sources of

variability to be considered in the face detection/recognition problem which will be difficult to include

ahead in the set, for example:

• Pose. The images of a face vary due to the relative camera-face pose (frontal, 45 degree, profile,

upside down), and some facial features such as an eye or the nose may become partially or

wholly occluded.

• Presence or absence of structural components. Facial features such as beards, mustaches,

and glasses may or may not be present and there is a great deal of variability among these

components including shape, color, and size.

• Facial expression. The appearance of faces are directly affected by a person's facial expression

• Occlusion. Faces may be partially occluded by other objects. In an image with a group of

people, some faces may partially occlude other faces.

• Image orientation. Face images directly vary for different rotations about the camera's optical

axis.

• Imaging conditions. When the image is formed, factors such as lighting (spectra, source

distribution and intensity) and camera characteristics (sensor response, lenses) affect the

appearance of a face, for example color skin and shadows.

5

• Image Scale and Size. Face size accounts for the variability of face features and affect also

face detection/recognition approaches which involve training by fixed size face databases

(described later). Certain face detection/recognition methods are not size invariant therefore to

detect/recognize faces in any size a proper preprocessing has to be applied

• Background, cluttered scenes or complex background. In realistic application scenarios a

face could occur in a complex background and in many different poses and positions.

Recognition systems that are based on standard face images are likely to mistake some areas of

the background as a face. This has to be considered and in order to rectify this problem, more

algorithms and processing have to be applied.

1.6. An Image-Based Approach using Neural Networks

The face recognition, detection and tracker system in this thesis are based on the following steps:

1. Training. Use of machine learning approach, specifically an artificial neural network, requires

training examples. To reduce the amount of variability in the positive training examples, only the

face in all possible poses (frontal, tilted, upright, downright, rotation, etc.) to be recognized,

detected and tracked has to be input during the training process. If I have to do it manually with

any new user the system has to track, it will defy the real-timeness I want to achieve due to the

time it requires to manually extract the face in each pose from the background and input this

information during the training process. To avoid this, I devised a methodology and

corresponding algorithm to automatically train the NN with any new user’s face, in all poses, and

in a very short time. This per user training data can also be saved and easily recovered or loaded

any time this person wants to use the system again in order to be tracked. To minimize the

problem of mistakenly recognizing or detecting an area of the background as a face, the tracker

system also automatically trains on the current background. I define the ‘current background’ as

6

the scenery view by the stereo-cameras when no people are in front of them and the tracker

system is already running.

2. Preprocessing. To further reduce variation caused by lighting or camera differences most

image-based approaches in detection and/or recognition first extract a window or sub-image

area from the whole image and perform some kind of image preprocessing called ‘image

normalization’ before is fed into the recognition/detection system. Standard algorithms, such as

histogram equalization to improve the overall brightness and contrast in the images, lighting

compensation algorithms that use knowledge of the structure of faces to perform lighting

correction, etc., are very common preprocessing techniques [1, 2]. Unfortunately all these

approaches impose a certain undesirable load to the CPU since I have to apply them for every

window extracted from the video image. Real-time operation is one of the main goals in my

thesis, so I have to use a different approach in order to normalize the input image without using

too much CPU. Since this head tracker is a fixed part of a VR system, a controlled illumination

environment is feasible. Using Infrared (IR) illuminators and IR filters in front of the camera

lenses make the system mostly independent of room lighting and solve part of the variance

problem. To further reduce this variation (mostly some fall-off in the cameras field-of-view

corners), I only apply a global normalization to the whole video image (not each window). In

this controlled environment I also compare both approaches (global vs. local normalization)

and obtain not very conclusive results from the recognition/detection/tracking performance

rate, but the global approach use much less CPU helping me to achieve faster tracking frame

rates. And another very important advantage using IR is that I have to deal with only gray level

images which means less bandwidth utilization between camera and system (higher camera

frame rates), faster processing (one byte per pixel comparing to three bytes per pixel) and no

skin color variation dependency (greatly affected by different room source-type lights).

7

3. Image Resizing. During training only the user’s face in several poses is input as examples. But

the size of the face remains constant during the whole process. This means that, although in all

poses, the NN are been trained only with a specific face’ size. In my thesis this size is the

‘minimum face’ size the tracker system is able to recognize, detect and track per user which

establish a depth constrain because the farther the face is from the camera, the smaller it

becomes. At runtime, I do not know the precise facial feature locations, and so I cannot use

them to locate potential face candidates. Instead, I have to first perform an exhaustive search

over all locations in the video image, then scale down the image (sub-sample) and repeat the

process until I find all possible candidates locations. Currently, this is the technique I am using

to recognize, detect, and track faces that are closer to the camera and therefore larger than the

face’ size the NN is been trained with. Clearly, this is a major bottleneck and CPU load and an

improvement over this exhaustive search has to be developed.

4. Recognition, Detection and Tracking. After the video image is normalized in lighting (step 2)

and then searched in its original size and several scale-down size (sub-sampled, step 3), all

potential faces are examined to determine whether it is background or they are or not the

specific user’s face (the once the system is been trained on). Once the user face is recognized

and located the system switches to a faster detection and tracking mode and in the next video

image frames the face is searched only in a specific image sub-region. This sub-region is

continuously determined by a prediction module based on head position of previous frames.

5. Arbitration. Since the tracker system uses two cameras (left and right) to determine the 3D head

position, two different set of four (Recognition, Detection, Tracking and Background) NN are

individually trained and used. Each NN learns different things from the training data, and makes

different mistakes. During the recognition process each NN returns a ‘confidence number’ which

represent the likelihood of the user’s face. These numbers have to be above certain minimum

recognition confidence threshold, but at the end the tracker system decides between left and right

8

NN, whoever has the better confidence number. After this decision, the system switches to the

left or right NN (whichever had the better confidence) to continue detecting and tracking the user’s

head. This allows the system to increase the tracking frame rate. If during detection and tracking

the confidence number drop below an specified detection (not recognition) threshold, the tracker

system re-initialize itself again and re-start in recognition mode until it finds the correct user

again.

6. 3D Head Position. The stereo cameras are identical and the coordinate systems of both

cameras are perfectly aligned, differing only in the location of their origins. Therefore the z or

depth coordinates axe is aligned (non-verged geometry), and the baseline (distance between

cameras’ optical center) is aligned to the cameras x coordinate axis. This camera’s geometry

constraint is called epipolar constraint and after determining the user’s head position in the left (or

right) video image it allows me to use of a standard image-based technique called block–matching

to find the head in the right (or left) image using the same height position (y coordinate) of the

left (or right) head. Then, once we have the left and right head position we can obtain the 3D

coordinates through simple triangulation. In general this is referring as solving the stereo-

correspondence problem.

Together these steps attempt to account for the source of variability described in the previous

section and at the same time reach the target frame rate considered real-time for VR applications. These

steps are illustrated schematically by Figure 1.1.

1.7. Evaluation

This thesis provides a theoretical and practical analysis of the accuracy, resolution in x and y axes for

specifics depths (z axis), speed (tracking frame rate, lag and delays) and tracking stability of the algorithm

developed. The thesis is been tested using EVL’s VarrierTM Autostereo Virtual Environment (Figure 1.2

and Figure 1.3), a high-resolution autostereoscopic display consisting of tiled LCD displays driven by a PC

9

cluster and fitted with this tracker system to track user’s head position without the use of head mounted or

hand held tracking devices. During several demos and an open house hosted for the IEEE VR 2004

conference at the Electronic Visualization Laboratory (EVL), University of Illinois at Chicago (UIC), March

29, 2004, more than a hundred persons used the tracker system and were able to view stereoscopic scenes

without wearing any special glasses or using any tracking sensor. Each new user who wanted to experience

the VarrierTM display was trained in less than two minutes and immediately recognized and tracked by

system, even when the room was full of people (cluttered background with faces the system should not

recognize and track) looking at the same VarrierTM display the new user was operating.

There is one very important issue in evaluating this thesis. My goal is to replace current technology

in 3D head trackers with my system, so the performance has to be evaluated against current tracker systems

in terms of accuracy, precision, resolution, tracking range and rate. It is not the main purpose of this work to

develop state of the art face recognition and detection systems. And there is yet another problem:

comparison with several other neural network based face detection and recognition systems will be difficult

to perform because this tracker has to work (recognize, detect and track) with not only upright frontal faces

where most of the research is focus, but tilted and rotated (non-frontal) faces. Although there are a few

other detectors and recognizers (NN based) designed to handle tilted and non-frontal face, they have not

been evaluated on large public datasets and/or they are not suitable for real time tracking (no published data

on training time and/or detection/recognition speed, latency, etc.), so again performance comparison will

not be possible. Good surveys, including rotational invariant face detectors, can be found in [3-6].

In the simple domain of upright and frontal faces, this current system has lower performance in

terms of recognition, detection and false-positive rates compare to the best numbers gathered from the

surveys [3-6]. My previous face detector research based on a modified LAMSTAR NN (Chapter 6) has

comparable performance in this domain, but to reach real-time tracking using a NN approach (and also very

10

fast training) I have to simplify and re-design the NN architecture, trading-off performance in

recognition, detection and false-positive rates vs. performance in tracking.

This work runs on a standard Personal Computer (PC) and only needs a pair of stereo-cameras,

making it a very cost-effective tetherless solution comparing to commercial tether head tracker system. It is

capable of tracking a person’s head at 320 by 240 video image resolution (left and right) at 30 fps. The 30

fps is an actual limitation of the stereo-camera gear and the system had been tested with pre-record video

inputs reaching tracking frame rates of 100fps at the same resolution. Overviews of the results are given in

Table 1.1 and Table 1.2, whereas Table 1.3 summarizes the hardware and software platform utilized during

this thesis. At the end of Chapter 5 (section 5.3, Head Tracker Evaluation) I will explain in more detail

each term and how they are obtained.

Table 1.1: Overview of the results from the system described in this thesis as a face recognizer and detector
using video-images.

System Test Set Tracker Error
(wrong face or non-face)

Frame Rate at
Image Resolution

Recognizer(*) 30 video images, faces in all poses
(1 or 150 faces) (*)

3.3% - 0% (after re-trained)
(for only one face)

16% - 6.6% (after re-trained)

(more than one face)

9.2 fps
@

320x240

Detector(*) 30 video images, faces in all poses

(1 or 150 faces)(*)

Face always detected (100%)
but with

3 – 5 false positives
(for only one face)

4% - 2% (after re-trained)

but with
55 – 74 false positives

(more than one face)

30 fps
@

320x240

(*) See section 5.3 for better explanation and description of terms.

11

Table 1.2: Overview of the results from the system described in this thesis as a 3D head tracker.

Tracker Performance rate(*) After properly recognizing a user (84%-93.4%) it is able to track this user at
100% tracking rate (with prediction).

Tracking Frame Rate(*) 30 fps (camera video input)/100 fps (pre-recorded video input) (with
prediction)

Recognition Frame Rate(*) 9.2 fps

Video Image Resolution 320 (Width) by 240 (Height)

Training time (new user) Under 2 minutes

Type of Prediction Always on. Predict next area of the input image to search for the face/head
to speed up the tracker frame rate. It does not predict next head position to
lower the latency or lag.

Input (movement) sensor Zoran ZR31112PLC (color) CMOS image sensor

Input Protocol/Interface IEEE 1394a (FireWire)

Output Protocol/Interface UDP/IP over 100MBits/sec. Ethernet output port.

Tracking Latency(*) 82.5 ms ± 10 ms during an hour average. Measure between video image
acquisition (stereo camera gear) and output of the 3D position data from
the NN algorithms (see Figure 3.1).

Static Jitter and Drift(*) ± 2 mm in x, y coordinates and ± 3 mm in z.

Dynamic Jitter(*) From ± 2 mm (best case) to ± 16 mm (worst case) (depends on the
training).

Static Precision(*) ± 1 cm across the following volume:
±40 cm in x, ±40 cm in y and ±20 cm in z.
Sampled every 10 cm.

Resolution(*) 4 mm ± 2 mm in x and y, and 3 mm ± 4 mm in z,
across the following volume: ±40 cm in x, ±40 cm in y and ±20 cm in z.
Sampled every 10 cm.

(*) See section 5.3 for better explanation and description of terms.

12

Table 1.3: Overview of hardware and software used in this thesis.

PC Oerating System: Microsoft Windows XP Professional, v2002, Service Pack 1a
µP: Intel® Pentium IV @ 3.4 GHz (Prescott), 1MB L2-Cache, 200 MHz FSB
Memory: dual DDR400, 2x256 MB (512 MB) @ CL 2.0-tRCD 2-tRP 2-tRAS 6

Stereo Camera Gear Brand and Model: Videre Design MEGA-D (STH-MD1-C), 30 cm baseline,

Infrared internal block filter removed
Image Sensor: Zoran ZR32112, CMOS, native resolution 1288x1032 (1.3
Megapixels)
Interface: IEEE 1394a @ 400Mbps
Library and Drivers: v3.2f

Lenses Focal Length: 16 mm

Infrared Filter: Proline B+W 092 (89B) Dark Red 20-40 X, 650 nm low pass filter

Tools, Compilers and
Libraries

Intel® Integrated Performance Primitive (IPP) library v4 for Windows
Intel® C++ Class and Intrinsic Libraries for SIMD Operations
Intel® C++ Compiler v8
Intel® VTune™ Performance Analyzer 7.1
All libraries, classes and tools are optimizing for Pentium 4 and Xeon™
processor.

13

RI
G

H
T

IE
E

E
 1

39
4a

IE
E

E
 1

39
4a

LE
FT

LE
FT

 o
r R

IG
H

T

O
FF

LI
N

E
 T

RA
IN

IN
G

O
N

LI
N

E
 –

 F
IR

ST
 T

IM
E

 –
 F

IR
ST

 F
RA

M
E

 -
IN

IT
IA

LI
Z

A
TI

O
N

O
N

LI
N

E
 –

 R
U

N
N

IN
G

 –
 C

O
N

TI
N

U
O

U
S

TR
A

CK
IN

G

Figure 1.1: Schematic diagram of the main steps of the 3D head tracking developed in this thesis.

14

Figure 1.2: EVL’s VarrierTM Autostereo Virtual Environment turned off (left) and turned on with a user
(right).

Figure 1.3: EVL’s VarrierTM Autostereo Virtual Environment with a 3D scene running (left), and detail of
the 3D camera based tracker system (thesis) with its infrared illuminators. Below the stereo camera gear is
the InterSense IS-900 Precision Motion Tracker I use for comparison (left and right).

15

Figure 1.4: Next generation of EVL’s VarrierTM Autostereo Virtual Environment. Bigger is Better!

Figure 1.5: Detail of the tracker system Graphic User Interface (GUI), running and tracking.

16

Figure 1.6: Detail of the tracker system Configuration GUI.

17

2. BACKGROUND

2.1. Introduction

Since the thesis is a complete head-tracker system based on cameras and using neural network

algorithms, it would be a good approach to divide the background or previous works in several areas:

• Background in Virtual Reality (VR)

• Background in Commercial VR Tracker Devices

To understand the thesis objectives is important to have a brief introduction on VR and its related

devices. Background in current position-tracker devices use in VR, specifically our laboratory, will help to

specify the new tracking system in order to compete with these current technologies.

2.2. Background in VR

2.2.1. Brief Introduction of Virtual Reality and its Devices

Virtual reality (VR) is the science of illusion - a computer fabrication of a world. VR may best be

defined as the wide-field presentation of computer-generated, multi-sensory information that tracks a user in

real time. Well-known modes of virtual reality includes head-mounted displays (HMD) and binocular omni-

oriented monitor (BOOM) displays [7]. In addition to these, the Electronic Visualization Laboratory (EVL)

at the University of Illinois at Chicago introduced other modes: a room constructed of large screens on

which the graphics are projected onto the three walls and the floor (CAVE® [8, 9]), and a drafting table

format VR display (I-Desk [10] and PARIS [11]. These devices are called projection-based VR displays

because they display 3D images on video projection screens or monitors.

The CAVE®, I-Desk and PARIS display stereo images. They present an image to each eye in order

for the VR user to perceive depth information (one of the depth cues from the real word is given by stereo

vision or binocular disparity). The computer sequentially generates two images, one for the left and one for

18

the right eye, and the user wears wireless Liquid Crystal Display (LCD) Shutter Glasses which alternately

block and pass each image. An infrared signal - similar to the signal used for TV remotes - synchronizes the

glasses to the computer images, so that the right image is shown when the right lens is transparent and the

left image is shown when the left lens is transparent. Infrared emitters are placed so that wherever the user

looks the glasses are always fully functional.

More information about VR in general and these devices in particular can be found at EVL web site

(www.evl.uic.edu) and in [12].

Currently, our laboratory is researching a more exciting VR device called VarrierTM [13, 14] whose

goal is to develop a head-tracked, stereo virtual reality system utilizing plasma or LCD panels. It is an

autostereoscopic display based on barrier-strip technology whose objective is ultimately to provide stereo

imagery for VR that can be viewed without requiring the use of special glasses.

2.2.2. The Need and Importance of Tracker Systems in VR

Creating the computer-generated world around the subject (VR environment) means updating all

3D images in all displays and at the same time presenting the right perspective of these images to the VR

user. The computer must know not only the exact position of the subject with respect to this world, but also

where the subject is looking at (subject’s point of view). This is to present him or her with the right

perspective of this newly created VR environment. In other words, the position of the eyeballs must be

known so that the correct viewer-centered perspective can be calculated.

Therefore, to perform this task the VR systems must have a tracking device (a sensor) that tracks the

position in space of the eyeballs. Usually some part of the head is tracked and the position of the eyeballs is

inferred from there. To be more specific, a sensor is attached to the stereo-glasses and the position of the

eyeballs is inferred from the position of the glasses (Figure 2.1). Generally speaking these are called ‘head-

tracking devices’.

19

Once the eyes’ position is tracked, the VR environment can be update accordingly to present the

right perspective to the subject. A second sensor, attached to a wand, tracks the hand’s movements allowing

the user to interact with the virtual environment, for example, to pick up virtual objects (Figure 2.1).

Sometimes it is necessary to track the subject’s body parts, for example hands, arms, legs, etc., to map its

positions and movements and represents them as an ‘avatar’ [15] (a generated computer graphics

representation of a person) into the VR environment. The tracking data is used with avatars in networked

applications, so that a collaborator in a Virtual Environments can see each other's position and interpret

each other's gestures.

At this point, it becomes evident why tracking systems are increasingly important and a key factor in

VR systems.

Figure 2.1: Hand-tracker system attached to a wand and a head-tracker system attached to a stereo-glasses.

2.3. Background in Commercial VR Tracker Devices

2.3.1. Tracker Systems Used in VR Environment

Magnetic trackers (tracker systems which use electromagnetic pulses and electromagnetic sensors)

are generally used in VR, especially at EVL. They all have inherent advantages and disadvantages of devices

that in general were not designed for the IDesk or CAVE®. They were designed for other applications like

20

short distance tracking of pilot’s head in cockpit, motion capture for video applications, augmented

reality, etc. Recently, some other tracking methods like a hybrid acousto-inertial have also been tested and

used with better results, but still have some drawbacks. A brief survey of some of the most common

commercial tracker systems used in VR environment (Table 2.1) will follow in order to extract among them

their best features (like resolution, accuracy, stability, sampling rate, etc.) and summarize their advantages

and disadvantages.

21

Table 2.1: Main characteristics of Commercial Tracker System used in VR

Company

Model Tracking
Method

Resolution
(static)

Accuracy
(static)

Sampling
Rate

Interface Comments

Ascension
Technology
Corporation

Flock of
Birds®

Pulse DC
Magnetic field

0.5mm@30.5cm
0.1°@30.5cm

1.8mm RMS
0.5° RMS

Up to 144
samples/sec

RS232@115K - Each sensor
provides 6DOF
- Stand-alone system
- Insensitive to
occlusion
- IR wireless option

Ascension

Technology
Corporation

pcBIRD® Pulse DC
Magnetic field

0.5mm@30.5cm
0.1°@30.5cm

1.8mm RMS
0.5° RMS

Up to 144
samples/sec.

ISA-Bus - Each sensor
provides 6DOF
- Needs a PC system
- Insensitive to
occlusion
- IR wireless option

Ascension

Technology
Corporation

SpacePad® Pulse DC
Magnetic field

N/A N/A 120/sec. for
one sensor

60/sec. for two
sensors

ISA-Bus - Low cost solution
- Each sensor
provides 6DOF
- Needs a PC system
- Insensitive to
occlusion

Ascension

Technology
Corporation

MotionStar® Pulse DC
Magnetic field

0.76cm RMS
0.1° RMS
at 1.52m

0.25cm RMS

0.2° RMS
at 3.05m

0.76cm RMS
0.5° RMS
at 1.52m

1.5cm RMS
1.0° RMS
at 3.05m

Up to 144
samples/sec.

RS232@115K
Ethernet

- Each sensor
provides 6DOF
- Sand-alone system
- Insensitive to
occlusion
- IR wireless option

InterSense Inc. IS-900 Acoustic

(ultrasonic) and
Inertial

1.5mm RMS
0.05° RMS

Stability of
4mm RMS
0.4° RMS

180
samples/sec.

RS232@115K
Ethernet

- Each station (NOT
sensor) provides
6DOF
- Wireless only for
position information
- Stand-alone system
- Sensitive to
occlusion

Polhemus STAR*TRAK® AC

Electromagnetic
field

N/A 2.54cm
2.0°

120
samples/sec.

RS232@115K
Ethernet

- Each sensor
provides 6DOF
- Sand-alone system
- Insensitive to
occlusion
- 2.4 GHz RF
wireless option

Polhemus FASTRACK AC

Electromagnetic
field

N/A 2.54cm
2.0°

120
samples/sec.

RS232@115K
Ethernet

- Each sensor
provides 6DOF
- Sand-alone system
- Insensitive to
occlusion
- 2.4 GHz RF
wireless option

http://www.ascension-tech.com/products/PCBird/pcbird.htm
mailto:0.5mm@30.5cm
http://www.ascension-tech.com/products/spacepad/spacepad.htm
http://www.ascension-tech.com/products/Motionstar/motionstar.htm
http://www.isense.com/products/prec/is900/index.htm
http://www.polhemus.com/ftrakds.htm

22

2.3.2.

23

Disadvantages in Tracker Systems Used in VR environment

Commonly all current commercial trackers used in VR environments have these main disadvantages:

Sensors. Need to attach sensors on objects to be tracked. Depending on the type of tracker

system (brand, model, method, etc.) those sensors can be bulky and heavy and inconvenient to wear. In

today’s head-trackers configuration the head-sensor is attached to the frame of the active-stereo glasses or

shutter glasses (see Figure 2.1). These glasses are heavy and bulky and can support easily the sensor. But

new screen technologies, which have been developed for more than a decade, are beginning to show up in

the market and they are also reaching the demanding screen sizes currently used in projection-based VR.

Stereoscopic displays will allow VR users to wear passive-stereo glasses (polarized glasses) in order to

perceive depth information and Autostereoscopic [13, 14, 16] will let VR users experience depth without

any special glass (auto-stereo). A comprehensive explanation about these topics can be found at “SPIE

Proceedings of Stereoscopic Displays and Virtual Reality Systems I to VIII”.

With these new screen technologies, in the near future VR users will not find a place in his or her

head to easily attach the head-sensor as before. Consequently, the user will be force to wear a special frame

to attach it.

Wires. Sensors have to transmit their data to the tracker system. As a result, they need wires to

connect them to the tracker receiver or main system (Figure 2.1). Some companies provide tracker systems

with optional infrared devices to receive those sensor data in order to avoid hanging cables. To perceive

depth information in our projection-based VR displays, the VR user must wear shutter glasses which use

infra-red (IR) signals to synchronizes them with the computer generated projected images. The IR signals

use by the transmitter could interfere with the IR signal from glasses, therefore using it in this environment

is not possible. Other tracker systems can provide a radio frequency (RF) transmitter in place of an IR

24

transmitter in order to send sensors data to the main system, but still the tracker user has to carry it

including the batteries which is also a disadvantage.

For pure electromagnetic tracker systems (most common type in projection-based VR

environments) there are some additional disadvantages:

Magnetic materials. There are sensitive to conductive and magnetic materials [17] meaning that it

may has to be recalibrated any time the environment changes. These, among other things, may cause the

need to recalibrate the tracker system: adding or modifying any metal-made structure close to the VR

system; adding or moving close to the sensor any device that can emit electromagnetic signals (monitors,

computers, etc.); moving the VR system (in the case of the InmersaDesk2, a portable VR system, this

happens any time it is moved or shipped to someplace else); moving or modifying the tracker

electromagnetic pulse transmitter (antenna). In reality and based on the laboratory experience, magnetic

trackers have to be recalibrated periodically and sometimes without any clear reason.

Calibration. Need to be re-calibrated more than once, especially when magnetic and

conductive materials are moved around.

2.3.3. Real Specification of Tracker Systems used in VR environment

Calibration. To some extent, calibration can be used to correct tracker distortions but none of the

calibration methods are likely to be optimal. Study of the noise and repeatability imply limits on calibration

success. As an example, for the Polhemus Isotrack when the tracking is greater than 1.27mts from the source,

the tracking signal is so noisy that no useful calibration can be expected [18].

In general, while calibration can reduce tracker error significantly, it can only do it to about 10 times

the short-term stability (jitter) standard deviation [19]

25

Accuracy and Precision. In general, the systematic errors introduce biases in the computed

range values and thus determine the accuracy of the range estimation method, while the random errors

limit the precision of the method.

Tracker systems exhibit substantial delay and increased non-linear inaccuracy with distance

from the transmitter [18, 20], meaning that the accuracy of the system decreases markedly as the distance

from the sensor to the transmitter increases. Static distortion in the position signal affects the accuracy.

For the Polhemus Isotrack electromagnetic 3D tracker the distortion is significant and very noisy at

distances greater than 1.5mts and is very sensitive to location [18]. While these results have been found for a

particular tracker, they can be generalized to any position tracker in 3D space based on electromagnetic

fields. Inside this distance, repeatability implies a limit to within 2.54 cm to 5.08 cm for separation of around

76.2 cm in calibration accuracy.

As a rule of thumb the smaller error a magnetic tracker can get after calibration will be about 10

times the jitter standard deviation [19].

All tracker systems are affected from random errors (they experience jitter); as a result, true precision

cannot be determined leaving company specification as the only source of theoretical precision.

Short-term stability or jitter. For the Flock of Birds® with the extended range transmitter,

transmitter-to-sensor separation of less then 500 mm led to saturation of the sensor inputs so a reading

could not be taken in this region. The jitter was generally less than 0.5 mm and 0.05° for separation of 5-10

mts, and then rose to about 2 mm and 0.15° at 15 mts. As with the FASTRACK, the jitter appears to be a

function of the square of the source-sensor separation because of the falloff of the magnetic field with

distance [19].

26

Latency or Lag. Interactivity is an essential feature of virtual reality systems. Experience has

indicated that lag or system end-to-end latency is one of the most important problems limiting the

interactivity of virtual reality systems and therefore its quality. Other technological problems, such as tracker

inaccuracy and display resolution, do not seem to impact user performance as profoundly as latency [21].

The system end-to-end latency is the time difference between a user input to a system and the

display of the system’s response to that input. The end-to-end latency is composed of tracker delay,

communication delay, application host delay, image generation delay and display system delay [21]. Currently

measurement of system latency on the InterSense IS-900 gives an average of 58.5ms[22]. Based on

laboratory measurements the Flock of Birds® system latency is worse.

2.3.4. Advantages in Tracker Systems used in VR environment

Despite their lack of accuracy, jitter, etc. and calibration problems, these types of trackers are

popular because they are robust, place little constrain on user motion, and in the case of magnetic and

inertial trackers, are insensitive to occlusion (needs for a clear line-of-sight).

27

3. PROPOSING NEW TRACKER SYSTEM

3.1. Introduction

It is impossible for the research community to measure and get the real specifications and

performance of all available commercial tracker systems and models in the market used in VR. Not all

parameters (like dynamic distortion in position data, error orientation, long term stability or drift, etc.) have been

thoroughly researched, measured, and published with a useful conclusion (like how to calibrate it in order to

avoid or diminish these problems). Some of these parameters are part of the specification post by the

companies that develop and sell these tracker systems, but it has been proved (see section 2.3.3

Calibration and Jitter) that companies’ specifications sometimes differ widely from the real ones.

This chapter will specify the new tracker system based on the following four sources:

1. Laboratory experience or ‘How good in terms of specifications and features this new system

must be in order to replace the old one in this environment’

2. Research publications on this matter.

3. Considering the best spec. number among currently commercial tracker systems.

4. Since this is a camera-based tracker, the specified resolution will depend entirely on the camera

characteristics and the VR environment in which the system is going to run.

3.1.1. A word of Tracker Latency (or Lag)

It is the delay between the actual physical movement of the tracked object and the output of its new

position/orientation data at the host computer/application. Obviously VR users want the least possible

latency because it has a profound effect in the quality of the experience of VR systems (see section 2.3.3

Latency).

28

Tracker companies often don’t specify their system’s latency, and if they do, it is not clear what

kind of latencies the companies are specifying. The user has to test the equipment, even with multiple

configurations, in order to measure and optimize the tracker delay [22].

Also as shown in Figure 3.1, the total or “end-to-end” latency we want to minimize along the

pathway is composed from several local ones whose numbers depend on multiple factors not entirely

related to the tracker system design. For example for the same type of serial port (RS-232) interface, the

connection between the tracker system and type of host (UNIX/SGI or MS-Windows/PC) can have some

influence [22] in this latency, and of course the type of interface and their speed or bandwidth, drivers,

programs, etc. associate with them can affect it. Most of the research in this subject measure these end-to-

end latencies [22, 23] so we can ‘guess’ the local ones.

To narrow this problem I will only specify (and later measure) the latency of the tracker system

(TrL, see Figure 3.1) between the video image acquisition (stereo camera gear) and the output of the 3D

position data from the NN algorithms. Given the actual technology and speed of current PCs I am

assuming that the latency between the NN output and the tracker PC output port is negligible.

29

Figure 3.1: Global latency and its local latencies component parts

3.1.2. What is a Real-Time System?

Laplante and Stoyenko [24] stated that “The time between the presentation of a set of inputs and the

appearance of all associated outputs is called the response time. A real-time system is one that must satisfy

explicit bounded response-time constraints or deadline satisfaction to avoid failure”. For example, in image and

neural networks processing involving screen update for viewing and tracking continuous motion, the

minimum constraint must be in the order of 33ms (assuming a 30Hz refresh rate display, 1/30Hz=33ms).

But, timely deadline satisfaction is not the only constraint that head and gaze trackers have to fulfill to be

considered real-time systems; latency or lag constraints, another deadline, should also be a vital part of this

definition.

As a conclusion, a real-time tracker system is one whose logical correctness is based on the

correctness of the output (accuracy and precision), timeliness (response time must be less than screen

update or frame rate) and latency (delays below certain threshold).

30

3.2. Defining the New Tracker Systems Specifications

With all this in mind, what follows (Table 3.1 and Table 3.2) is a comparison of commercial

trackers against the proposed head tracker system. I made tentative specifications and features of the new

system in order to try to replace the existing ones. Currently, the laboratory is using the InterSense IS-900

motion tracker for the VarrierTM display, so I will consider its specs as an important reference.

Table 3.1: Comparison of current specification of some of the best commercial tracker including the ones
we are using at our laboratory and the proposed camera-based tracker system.

 Very Good Magnetic Inertial Acoustic Camera-based Camera-based Camera-based Camera-based Camera-based
 OK InterSense with Commercial Commercial Commercial Proposed

 Worst Flock of Bird IS-900 VET (**)
Markers Seeing Machine TYZX ARTtrack1 Tracking System

Object Tracking Yes Yes Yes Yes Yes Yes Yes

Face Tracking No No No Yes Yes Yes Yes

3D Head Position/Orientation Yes Yes Yes Yes No Yes Yes

Tetherless No No Yes Yes Yes Yes Yes

Markerless Yes Yes No Yes Yes No Yes

Insensitive to Occlusion Yes Yes No No No No No

Calibration More than Once More than Once Once Once Once? Once Once

Difficult Medium Medium Easy (No Info) Easy Easy

Operation Range (Min-Max) N/A to 10' N/A to 10' Best N/A to 3.2' 6' to 30' N/A to 30' 3' to 5'

Accuracy Position 1.8mm RMS (<1m) N/A N/A 1mm N/A 1mm RMS 5mm (worst)

Accuracy Orientation 0.5º RMS (<1m) N/A N/A 1º N/A 0.5º N/A

Position Resolution 0.5mm@30.5cm 1.5mm RMS N/A N/A 0.2" to 5.6" 0.2mm 1cm (worst)

Angular Resolution 0.1º@30.5cm 0.05º RMS N/A N/A N/A 0.12º N/A

Long Term Stability Pos. N/A 4mm RMS N/A N/A N/A N/A 0

Long Term Stability Ang. N/A 0.2º(P/R),0.4º(Y) RMS N/A N/A N/A N/A N/A

Jitter N/A N/A N/A N/A N/A 0.03mm N/A

Latency 60ms 10ms N/A 30ms N/A < 40ms 80ms

Frame Rate (best) 144Hz 180Hz >30Hz 60Hz 30Hz 60Hz 30Hz

Special Hardware Yes Yes Yes No Yes Yes No(*)

Interface Ethernet/Serial Ethernet/Serial Ethernet/Serial Ethernet/Serial Ethernet/Serial Ethernet Ethernet

(*) We are currently using a special stereo camera gear from Videre Design but any pair of cameras that can be syncronized to grab frames at the same time could be use here.

(**) This is motion tracker the laboratory is currently using for the Varrier auto-stereoscopic display.

31

Table 3.2: I extract the best specs and propose the new tracker based on these.

Specification BestMeasured
or Specified

Propose Comments

Latency 50ms (tracker
only)/60ms

(End-to-End)(1)

See Figure 3.1

80ms
(Tracker only)
See Figure 3.1

(1) Since the paper from He D. [22] measure end-to-end latency,
we can obtain the tracker latency subtracting from it the
transmission and host application latencies (see Figure 3.1). I am
estimating this number to be 10ms (very conservative), therefore
my thesis has to have a latency of 50ms (60-10=50) if I want it to
compete against this tracker (InterSense IS-900). But, as it will be
explained later, due to cameras + frame grabber + input
interfaces delays, a more realistic tracker latency of 80ms is
proposed.

Sampling Rate 180 Hz 30 Hz min. A minimum quality need it to experience VR impose to these
systems with at least a screen refresh rate of 30 Hz for each eye
(projection-based VR) or 30 Hz for both eyes (autostereoscopic-
based VR). This means the tracker has to have a valid output of at
least at 30 or 60 fps in order to keep pace with screen updates.
Unfortunately five years ago when I began my thesis I only found
30 fps stereo camera gears.

Position’s
Precision

(or Resolution)

1.5 mm RMS(2)

Maximum of
2 mm ± jitter
across tracking

range, which will
be defined later.

This number is critical because is related directly to the cameras
resolution, therefore to camera cost.
Important: as will see next, using video cameras imply that the
precision is not constant across the tracking range.

(2) Best value taken from InterSense IS-900. Flock of Birds from
Ascension Technology claimed more precision but at a closer
distance and based on research publications, the error increases as
the distance from the source increases.

Jitter
(short-term

stability)

0.5 mm(3) 2 mm Jitter depends mainly on camera Signal to Noise ratio (S/N). In
general jittering is produced by camera noise (especially on low
light conditions), internal electronics (if an analog camera is used,
the digital-to-analog converter would be critical) and other
factors. The propose system can reduce it to certain degree using
proper algorithms, pre-filtering (like applying convolution),
quantization, sub-sampling, etc. but at the end would be a trade-
off with the system precision. Better cameras have better S/N
but they are more expensive. As we will se later, NN based
tracker add a certain amount of jittering depending on the
training.

(3) Best value taken from [19] using the Flock of Birds tracker
system.

Accuracy 2.54 cm to 5.08
cm(4)

1 cm The accuracy will depend mostly on the camera calibration.

(4) Best value taken from S. Bryson [18] using different a
magnetic tracker (Isotrack).

Drift
(long-term
stability)

N/A 0 After cameras calibration and if they stay in the same position,
orientation, illumination and room conditions they should not
experienced any drift.

32

3.3. Specifying the Hardware and the Environment

Introduction. During the development of this thesis those previously proposed specifications have

to be valid in VR environments where this new tracker system will be intended to be used. The laboratory

developed and currently uses several VR devices (CAVE, ImmersaDesk, VarrierTM, etc.). Since this thesis is

stereo camera-based, several tracker specs like depth range, precision or resolution and accuracy, etc. will be

entirely correlated not only with the camera specifications (image sensor resolution, cameras’ baseline,

cameras’ combine field-of-view, focal length, lenses, etc.) but also with the location of the stereo camera

gear with respect to the user in this VR environment (see Figure 3.4 and Figure 3.5).

History. The ideal logical steps would be to define the VR environment in which the new tracker

would run, determine the space-volume the VR user would move, and from there specify the cameras which

should maintain the previously specified tracker resolution across this user-volume.

Unfortunately, this is not what happened. Five years ago I was not really sure in which VR device

my thesis will be used, but I needed to begin researching and developing the NN algorithms to test the

viability of my ideas. What I want was a test bed. So I assumed the tracker system will be running in the

ImmersaDesk (Figure 3.2 and Figure 3.3), determined the volume in which the user has to be tracked

(Figure 3.4) and calculate the required stereo camera gear specs to meet the tracker specifications. Then,

purchase it.

Using this gear I spent the following years developing and testing a real-time NN based face

detector concluding than in fact ANN can be use successfully use for this purpose (Chapter 6 and my SPIE

paper [25]). But, by the time I finished this stage of my thesis a new more exciting VR device was developed

at EVL, the VarrierTM autostereoscopic display (Figure 1.2 and Figure 1.3), and of course it was the logical

choice to use it as a final test bed. Since the whole VR environment changed and the stereo camera gear was

now in a different location, to cover the user space-volume I had to recalculate the new camera lenses

33

specification. This gave me a new head-tracker resolution specs (Figure 3.5). In Chapter 5 evaluated the

head tracker system to obtain real resolution and compared against the theoretical ones.

Figure 3.2: Different ImmersaDesk’s view

Figure 3.3: Different ImmersaDesk’s views

34

Figure 3.4: ImmersaDesk top and side measures and proposed camera setting and user-volume.

Two cameras vs. one camera. Research into monocular 3D head position tracking reveals that

while it is theoretically possible to make 3D measurements of head-pose from a single viewpoint, the

practical issues of finite image resolution and processing power place tight restrictions on the precision and

accuracy of potential techniques [26, 27]. In using two cameras or view-points I could concentrate more into

the NN algorithms for monocular face recognition, detection, and tracking, and at the end use standard

computer vision proven techniques like image stereo correspondence to extract the 3D head position.

Commercial vs. custom made stereo gear. If I decided to use two separate equal cameras with

external synchronization (to grab video frames at the same time) this would give me the greatest varieties of

models and brands (camera specifications) to choose from and have more confidence in reaching the proposed

head-tracker specs. But, then I would have to assemble myself the stereo gear and also perform the ext. sync

by hardware of software, and beside, all I wanted was a hardware test bed to test the NN algorithms. Using

my assumption that this system will be use with the ImmersaDesk, I found a company who sells a stereo

camera gear that meets the necessary specs to fulfill the proposed tracker specifications.

Latency. On last word related to the cameras. Before acquiring a stereo camera gear or any camera,

there is no way I can predict the latency or lag that its internal hardware (image sensor read-out, buffers,

35

etc.) and interface will introduce. I have to test it. The actual latency will be measure in the Chapter 5.

Certain camera interfaces can be faster than others. For example, they can have buffered image sensors

(more latency) or un-buffered image sensors (less latency). During this thesis I was and am more concerned

about other specs like image resolution, frame rates, field-of-view, signal-to-noise ratio, etc.; aspects more

related to the camera imagery than its lag. Once I get these numbers right, meaning, I achieve the required

new tracker precision, accuracy, jitter, sampling rate and drift, I am almost sure the next generation of stereo

camera gears will have faster frame rates at the same video image resolution, faster interfaces, lower noise

and lower latencies.

Platform (Operating System and Hardware). I spent quite a while researching which platform

would be the best for implementing this thesis. Most of my NN processing algorithms are based on vector

operations (vector product, sum or subtraction of vectors, etc.). Since real-time tracking is one the main

goals, I wanted to decide which hardware platform would be best suited for this task, not only from their

vector processing capabilities point of view but also by their predicted processing power in the next five

years in which I was hoping to end my thesis. This will allows me to begin implementing the tracker not

worrying at the beginning about the speed performance.

This is not the place to explain the pros and cons of each reviewed platform so I am only going to

mention the most important ones I researched and examined (but not limited too):

• General purpose microprocessor (µP) such as Intel Pentium and its Streaming SIMD Extensions

(SSE) instruction set and Apple Power Mac G4 and its Velocity vector processing engine (Motorola’s

AltiVec instruction set).

• Embedded vision Intel Pentium-based processor systems from Coreco Imaging, Matrox and Pentek.

• General Digital Signal Processor (DSP) like Texas Instruments TMS320C62x and TMS320C67x

and single-chip multiprocessor Texas Instruments TMS320C8x.

36

• Specialized DSP such as A436TM Parallel Video DSP Chip from Oxford Micro Devices, Inc.,

TriMedia TM1300 from Philips, MAP-CA from Equator Technology, Inc., VT-5162 Vector Processor

from Valley Technologies, Inc.,

• Pipeline processing technology from Datacube.

• Zero Instruction Set Computing or ZISC technology. Neural Network on Silicon originally

developed by IBM.

• Field Programmable Gate-Array (FPGA) based image-processing system like the Real-Time

Stereo Vision on the Programmable and Re-configurable Tool Set (PARTS) [28] and FPGA based

boards using FPGA from Xilinx Corporation.

Although general and specialized DSPs, special hardware and embedded vision systems were more

appealing for this project than general purpose µP, their predicted speed (instruction per seconds) and

memory bandwidth in years to come were not. So due to this and other factors like learning curve, presence

in the market (for example, the TMS320C8x became obsolete), support, etc., I decided to implement my

thesis using an Intel platform.

3.4. Theoretical tracker specificaions using VarrierTM autostereoscopic display as a VR
environment

As it was stated before, the VarrierTM display is the current thesis’ test bed, so what follows is the

theoretical calculation of some of the new tracker specifications, area of racking coverage, etc., based on the

chosen stereo camera gear specs and the volume range the VR user can move with respect to the cameras.

37

Figure 3.5: Schematic of top and side view of VarrierTM display with the new camera-based tracker system.

Figure 3.6: Field-of-view and resolution calculations. Top view.

 From Figure 3.6, ZR32112 Zoran camera image sensor specifications, current camera lenses and

using trigonometry we can obtain the Horizontal Field-Of-View (HFOV) and Vertical Field-Of-View

(VFOV) using the following formulas:

38

HFOV = 2 • Arctg(((Sensor Element Size • Sensor Horizontal Resolution) / 2) / Focal Length)

HFOV = 2 • Arctg((0.0075 mm • 1288) / 2) / 16 mm) ≈ 34º

VFOV = 2 • Arctg(((Sensor Element Size • Sensor Vertical Resolution) / 2) / Focal Length)

VFOV = 2 • Arctg((0.0075 mm • 1032) / 2) / 16 mm) ≈ 27º

The lens’ focal length f of 16 mm was chosen so the combined field-of-view originates far from the

predetermined ‘sweet spot’ of 150 cm (see side view Sweet Spot SS, SS’, Dmin and D’min in Figure 3.5). This

allows the user to lean over and still be in the cameras combined view. Remember that using stereopsis (3D

or binocular vision) to extract depth information requires that the object must be seen by the two cameras at

the same time. Using the baseline (distance between the cameras) of the stereo gear I already bought, it tilted

down angle of α (see side view in Figure 3.5 and top view in Figure 3.6) and trigonometry we can obtain:

D’min = (Baseline / 2) / tg(HFOV / 2) = (30 / 2 cm) / tg(34º / 2) ≈ 50 cm

Dmin = (Baseline / 2) / tg(HFOV / 2) • cos(α) = (30 / 2 cm) / tg(34º / 2) • cos(13º) ≈ 48.7 cm

d’min = dmin / cos(α) =100 cm / cos(13º) = 102.6 cm

d’ss = dss / cos(α) =150 cm / cos(13º) ≈ 154 cm

d’max = dmax / cos(α) =200 cm / cos(13º) = 205.2 cm

Xmin = tg(HFOV / 2) • d’min = tg(34º / 2) • 102.6 cm = 31.37 cm

Xss = tg(HFOV / 2) • d’ss = tg(34º / 2) • 154.0 cm = 47.1 cm

Xmax = tg(HFOV / 2) • d’max = tg(34º / 2) • 205.2 cm = 62.74 cm

Ymin = tg(VFOV / 2) • d’min • cos(α) = tg(27º / 2) • 102.6 cm • cos(13º) = 24 cm

Yss = tg(VFOV / 2) • d’ss • cos(α) = tg(27º / 2) • 154.0 cm • cos(13º) = 36 cm

Ymax = tg(VFOV / 2) • d’max • cos(α) = tg(27º / 2) • 205.2 cm • cos(13º) = 48 cm

As was stated before in section 1.6 and Figure 1.1 the system after recognizing a face uses only one

camera to perform the head tracking. Once it obtain the 2D (x and y) face position, it look for the face in

the other camera using the same y coordinates (same epipolar line) to perform the stereo-correspondence and

39

extract the 3D head position. Having this in mind and using similar triangles (Figure 3.6) we define the

horizontal resolution ∆x at a certain distance d’ as the ratio between X(d’) and actual number of horizontal

pixels (current image sensor width resolution):

∆x = X(d’) / (Num. of Horizontal pixels)

X(d’) = (Sensor Element Size • Sensor Horizontal Resolution • d’) / Focal Length

X(d’) = (0.0075 mm • 1288 • d’) / 16 mm = 0.60375 • d’

Although the ZR32112 Zoran camera image sensor can reach 1288 by 1032 (width x height) pixel

resolution, a limitation of the stereo camera gear is that it has to run at 320 x 240 pixel resolution in order to

achieve 30 fps, possibly due to a limitation of it IEEE 1394a interface.

Since the movement area, center at d’ss = 154 cm, determine that the user can move from d’min =

102.6 cm to d’max = 205.2 cm, we have the following horizontal resolutions:

∆xmin = 0.60375 • d’min / 320 = 0.00188671875 • 102.6 cm ≈ 0.2 cm

∆xss = 0.60375 • d’ss / 320 = 0.00188671875 • 154 cm ≈ 0.3 cm (Sweet Spot horizontal resolution)

∆xmax = 0.60375 • d’max / 320 = 0.00188671875 • 205.2 cm ≈ 0.4 cm

Analogue, we can use the same formulas to obtain the vertical resolution ∆y but since the stereo camera

gear is tilted down α degrees with respect of the currently used VarrierTM display coordinate system (see

Figure 3.5), all formulas are affected by a cos(α) factor:

∆y = (Y(d’) • cos(α)) / (Num. of Vertical pixels)

Y(d’) = (Sensor Element Size • Sensor Vertical Resolution • d’) / Focal Length

Y(d’) = (0.0075 mm • 1032 • d’) / 16 mm = 0.48375 • d’

Since d’ = d / cos(α) => d’ • cos(α) = d, so substituting

∆ymin = 0.48375 • dmin / 240 = 0.002015650 • 100 cm ≈ 0.2 cm

40

∆yss = 0.48375 • dss / 240 = 0.002015650 • 150 cm ≈ 0.3 cm (Sweet Spot vertical resolution)

∆ymax = 0.48375 • dmax / 240 = 0.002015650 • 200 cm ≈ 0.4 cm

41

4. DATA PREPARATION

4.1. Introduction

This thesis utilizes an image-based approach to face recognition, detection and tracking, and a

statistical model (an artificial neural network or ANN) to represent each face or a face in each pose. An

image-based face recognizer and detector determine whether or not a given sub-window of an image

belongs to a set of images of faces (detection) or a set of poses of one particular face (recognition). The

variability in the images of the faces due to, for example, variation of the illumination, camera

characteristics, etc., may increase the complexity of the decision boundary to distinguish faces from non-

faces (detection) or a particular face from other faces and non-faces (recognition). The following sections

present techniques to reduce the amount of variability in face images. We first explain current local

techniques to deal with this problem including their advantage and disadvantages. Then, we propose to run

this Tracker System in a controlled environment, explain the steps to do this and depart from current

techniques by proposing a novel global preprocessing which provides similar benefits but allows the system

to achieve faster frame rates.

4.2. Preprocessing for brightness and contrast

Apart from the intrinsic differences among face poses and between faces (which will be taken care

of during the training process in the next chapter) there are other major sources of variation: camera

characteristics and lighting conditions, which can result in brightly or poorly lit images, and/or images with

poor contrast.

4.2.1. Standard approaches

Here is where I depart from traditional image preprocessing methods applied for neural network

face detection and recognition [1, 29-32]. During training and runtime these well established preprocessing

techniques attempt to equalize intensity values (to compensate for any brightness differences over the face)

42

across the ellipse inside the sub-window where the tracker system is looking for a face (see sub-window

and inside ellipse in Figure 1.5). The motivation is to have robustness to variations in the lighting

conditions. However, there are limits to what ‘dumb’ corrections can accomplish with no knowledge of the

structure of the faces or light sources. And no matter how intelligently we want to correct for lighting

variations, it is never perfect [1]. In some cases while the overall intensity can be roughly normalized, the

brightness across the face is not improved due to bright spots introduced into the image, sometimes

probably because of specular reflections. And in other cases since some lighting models do not incorporate

shadows, the shadows cast by the nose or brow will cause problems.

To explain graphically how this ‘per sub-window’ equalization methods works, I implemented a

simple approach which was also been used in [31, 32]. I fit a function which varies linearly across the sub-

window to the intensity values in an elliptical region inside the sub-window (see Figure 4.1). Pixels outside

the ellipse represent the background, so these intensity values are ignored in computing the lighting

variation across the face. If the intensity of a pixel x, y is I(x, y), then I want to fit this linear model

parameterized by a, b, c to the image:

[x y 1] • [a b c]T = I(x, y)

The choice of this particular model is somewhat arbitrary. It is useful to be able to represent

brightness differences across the image, so a non-constant model is useful. The variation is limited to linear

function to keep the number of parameters low and allow them to be fit quickly. Collecting together the

contributions for all pixels in the elliptical sub-window gives an over-constrained matrix equation, which is

solved by the pseudo-inverse method. This linear function will approximate the overall brightness of each

part of the sub-window and can be subtracted from it to compensate for the variety of lighting conditions

(see Figure 4.1).

43

Next, histogram equalization (see Chapter 4 in [33]) is performed, which non-linearly maps the

intensity values to expand the range of intensities in the sub-window. Again, the histogram is computed for

pixels inside the ellipse (Figure 1.5). This will try to compensate for differences in camera inputs gains, as

well as will improve contrast in some cases (Figure 4.1). I first compute the intensity histogram of the pixels

inside the ellipse, where each intensity level is given its own bin. This histogram is then converted to a

cumulative histogram [33], in which the values at each bin says how many pixels have intensities less than or

equal to the intensity of the bin. The goal is to produce a flat histogram, that is, an image in which each

pixel’s intensity occurs an equal number of times. The cumulative histogram of such an image will have that

property that the number of pixels with intensity less or equal to a given intensity is proportional to that

intensity. In practice, it is impossible to get a perfectly flat histogram (for example, the input image

might have a constant intensity), so the results is only an approximately flat intensity histogram.

Another common approach in image preprocessing is to apply the histogram equalization to the

whole image, hoping that it will reduce the variability somewhat and without the background pixels having

too much effect on the appearance of the face in the foreground.

Before I decided to tackle the problem in a different way (see next section) to obtain the best

possible normalized image or sub-window, I tried to apply locally (to a sub-window) and globally (to the

whole image) several different kinds of histogram equalizations. Among these were Histogram

Normalization, Cumulative Histogram, Contrast Limited Adaptive Histogram Equalization by Karel

Zuiderveld [34], sometimes even including automatic thresholding for discarding pixels with a high

probability of belonging to the background and maintaining the foreground (face) pixels.

The results were mixed. In my attempts to equalize intensity values shiny bright spots would

sometimes appear in the image (caused may be by specular reflection, another light source pointing to the

camera, etc.) and disrupt the process of proper equalization. The resulting post-processed image, especially

44

the objects of interest (faces), end up with too much contrast or too ‘flat’ (no contrast) lowering the

recognition, detection and tracker performance’s rate.

Figure 4.1: Extract the best fit illumination function from the sub-window, invert it and subtract it from the
sub-window. Then, perform histogram equalization.

4.2.2. Thesis approach: Global Equalization in a Controlled Environment

Considering one of my particular thesis goals, real-time tracking, there is another point against these

well established preprocessing methods: locally or ‘per sub-window’ intensity and histogram equalization

takes valuable CPU processing time since the system has to repeat this process at each pixel position in

which it has to check for a face.

Global or whole image intensity and histogram equalization preprocessing is faster because it is

performed only one time, but usually achieves worse results than local preprocessing. This is because

including all background pixels (non-face or faces the system is not analyzing) sometimes has too large an

effect on foreground pixels (sub-window in which the system is looking for a face).

45

An ideal situation, at least from the room illumination point of view, would be to have a constant

ambient light source, that is, light that exists everywhere without a particular source. Ambient light is a non

directional light, having equal intensity everywhere, and does not produce highlights or shadows (it fills in

the shadowed areas of a scene). Of course it would be impossible to obtain this ‘ideal illumination’ in real

life.

With the following assumptions most of these preprocessing problems can be minimized:

Stereo camera gear. Suppose we already have an ideal ambient light. Since the same set of cameras

(brand and model) is already fixed in position relative to the user, once their aperture and focusing controls

are adjusted for the current environment, the image contrast, brightness and focus the tracker system attain

from the stereo gear should be the same during its training as for during the tracking. The aperture regulates

the amount of light that enters the camera and the focus maximizes the clarity or distinctness of the video

image.

In order to avoid any variation in certain camera parameters, the camera automatic gain control and

gamma correction are disabled, and their shutter speed is adjusted for the current illumination. Once the

cameras are set, they should remain constant during training, tracking and for the current environment.

But even so, camera factors can not be ruled out. Some camera problems such as lens ‘vignetting’ or

'illumination falloff' (gradual darkening of the image towards the corners), distortion, image sensor pixel to

pixel gain and offset variance, contribute to the difference in video images between training and tracking.

This is because during training the user sits in a fixed position and moves his or her head (to train the

tracker system), but during tracking the user can be in any part of the camera’s field-of-view.

Infrared (IR) light illuminators. Several factors related to current room illumination can

drastically affect the system performance in recognition, detection, and tracking. Additional factors are

46

significant changes in room lights between the neural network training and subsequence head tracking,

room lights casting strong shadows across the scene (in the camera’s field of view) including across any face,

direct lights might cause specular reflections on faces, etc. To avoid having to deal with all these factors, my

co-advisor (Daniel Sandin) suggested that I use IR illumination which proved to be a very clever way to be

independent of room’s lighting.

As a consequence of this idea, I first removed from the stereo camera gear the internal filters which

are use to block IR light (most image sensors, including fortunately the Zoran ZR32112PLC, are very

sensitive to IR). Second, I added IR low-pass band filters (650 nm) to each camera lens in order to sense

only IR wavelengths. And last, I bought several IR light emitters (800 nm) and installed them on top of the

stereo gear (Figure 1.3).

Using several IR multi-emitters pointing to slightly different locations to disperse their lights the

resulting image still presents some illumination falloff (darkening of the image corners) but at least this is

constant during training and tracking sessions.

4.2.3. Thesis Approach: Global Preprocessing Using Shading Correction

Virtually all imaging systems produce shading. By this we mean that if the physical input image is

constant (let us say we cover the camera field-of-view with a white material), then the digital version of the

image will not be constant. The source of the shading might be outside the camera, such as in non-uniform

scene illumination, dirt and dust on glass (lens) surfaces, lens anomalies and distortion (optical vignetting,

etc.), or the result of the camera itself where the CMOS or CCD image sensor (and internal electronics) gain

and offset might vary from pixel to pixel. With this assumption the model for shading would be:

c[x, y] = gain[x, y] • a[x, y] + offset[x, y]

47

where a[x, y] is the digital image that would have been recorded if there were no shading in the

object a, that is a[x, y] = constant, and c[x, y] is the resulting image due to the camera shading (Total shading).

If we consider the illumination I[x, y], it usually interacts in a multiplicative with the object a[x, y] to

produce the image b[x, y]:

b[x, y] = I[x, y] • a[x, y]

with the object a representing various imaging modalities such as:

[,]

[,] reflectance model

[,] 10 absorption model
[,] fluorescence model

OD x y

r x y
a x y

c x y

−

⎧
⎪= ⎨
⎪
⎩

where at position [x, y], r[x, y] is the reflectance, OD[x, y] is the optical density, and c[x, y] is the

concentration of fluorescent material. Parenthetically, we note that the fluorescence model only holds low

concentration. The camera may then contribute for gain and offset terms, so that Total shading c[x, y] is:

c[x, y] = gain[x, y] • I[x, y] • a[x, y] + offset[x, y]

In general we assume that I[x, y] is slowly varying compared to a[x, y].

Estimate of shading. We distinguish between two cases for the determination of a[x, y] starting

from c[x,y]. In both cases we intend to estimate the shading terms {gain[x, y] • I[x, y]} and {offset[x, y]}. While

in the first case called ‘a posteriori estimate’ we can assume that we have only the recorded image c[x, y] with

which to work, in the thesis (second) case we assume that we can record two, additional, calibration images.

This second method is called ‘a priori estimate’ and is the preferred method for shading estimation.

48

A priori estimate. Given the nature of this tracker it is possible to record test (calibration) images

through the camera system. And unless someone tampers with the stereo camera gear or IR illuminators, we

need to do this only one time.

The most appropriate techniques for the removal of shading effects is to record two images,

BLACK[x, y] and WHITE[x, y]. The BLACK image is generating by covering the lens leading to b[x, y] = 0

which in turn leads to:

BLACK[x, y] = offset[x, y]

The WHITE image is generated by using a[x, y] = 1 which gives:

WHITE[x, y] = gain[x, y] • I[x, y] + offset[x, y]

The correction then becomes:

â[x, y] = constant • (c[x, y] - BLACK[x, y]) / (WHITE[x, y] - BLACK[x, y])

The constant term is chosen to produce the desired dynamic range. WHITE also can be any gray-level

less than 1 (255 in our case since our cameras use one byte per pixel) but greater than 0. It will only affect

the dynamic range and can be compensated with the constant.

Methodology and results. We use a board big enough to completely cover the cameras’ field-of-

view at the sweet spot tracker position. We employ and hang gray matte (diffuse reflectance) paper because the

surface reflection of the human skin takes place at the epidermis surface and it is approximately 5% independent

of the lighting wavelength and independent of the human race [35]. The rest of the incident light (95%)

enters the skin where it is absorbed and scattered within the two skin layers. A matte material has similar

reflectance properties.

49

To obtain the WHITE[x, y] we run the system, pass each video frame through a median filter (to

remove possible salt and pepper impulse noise, see Chapter 4 of [33]), average 512 frames (to reduce noise)

and then record the resulting left/right images (Figure 4.2). Using VTK APIs I managed to view the same

images in 3D (Figure 4.3), where the grey-level becomes the Z-axis (height). Here we can see in more detail

some of the camera image sensors problems represented as holes.

Then, we cover the camera lenses and run perform the same algorithm to get BLACK[x, y] (not

shown because it is really black).

Using the shading correction formula, we obtain â[x, y] for c[x, y] = constant. We can see the

correction pattern in Figure 4.4.

In Figure 4.5 we can see the system running with two faces but before applying the shading

correction. Then, after applying the shading correction (Figure 4.6), we can see how effective this method

is in compensating for any illumination and/or camera anomaly. The resulting post-processed images are a

little bit dark so I compensate with the constant (Figure 4.6).

Figure 4.2: Left and right grey-level images after averaging

50

Figure 4.3: 3D view of the left and right images after the averaging

Figure 4.4: Left and right correction pattern

51

Figure 4.5: Left image with faces but without correction

Figure 4.6: Left image after correction and modifying the constant

4.3. Camera Calibration

For good stereo processing, the two images must be aligned correctly with respect to each other.

The process of aligning images is called calibration. Generally speaking, there are two parts to calibration:

internal calibration, dealing with the properties of the individual cameras and especially lens distortion; and

external calibration, the spatial relationship of the cameras to each other. Both internal and external

calibrations are performed by an automatic calibration procedure described in section 4 of the Smallv-3.2pfd

manual that comes with the Videre Design MEGA-D stereo camera gear. The procedure needs to be

performed when lenses are changed, or the cameras are moved with respect to each other.

52

From the internal and external parameters, the calibration procedure computes an image warp for

rectifying the left and right images. In stereo rectification, the images are effectively rotated about their

centers of projection to establish the ideal stereo setup: two cameras with parallel optical axes and horizontal

epipolar lines. Having the epipolar lines horizontal is crucial for correspondence finding in stereo, as stereo

looks for matches along horizontal scanlines. Without calibration, it is impossible for the stereo algorithms

to find good matches.

Calibration parameters, along with other information about the stereo device settings, are stored in a

parameter file that ends with the suffix “.ini”. Parameter files are loaded automatically when the Tracker

System start.

See an example of calibrated and un-calibrated cameras (stereo gear) in Figure 4.7.

Figure 4.7: Calibrated and un-calibrated cameras.

53

5. HEAD TRACKER

5.1. Introduction

In this chapter I will present a neural network (NN) based algorithm to recognize, detect and track

frontal and non-frontal views of a face in gray-scale images. After pre-processing (Chapter 4), the algorithm

works by applying one or more neural networks directly to portions of the input stereo video images, and

arbitrating their results. One left/right set of NN is trained individually to output the presence or absence of

a specific face (recognizer). Another left/right set is trained to detect similar faces to this specific face (detector),

and the last set is only trained to determine the presence or absence of a head (tracker).

During the recognition stage we use the arbitration between left and right NN, and heuristics to

clean up the results and to improve the accuracy of the recognizer. After the face is recognized, the system

switches into detection and tracking mode. At the end of the process, a simple but very fast stereo

correspondence using a block-matching technique is used to obtain the 3D head position.

I will also explain the algorithm for performing a very fast training, more suitable for our VR

environment, which will allow any new user to start using the tracker system in less than two minutes.

At the end of this chapter, I will evaluate the system during real time tracking and present its results.

5.2. Overview of tracking algorithm

The algorithm is composed of twelve basic steps (Figure 5.1): (1) Acquisition, (2) Shading

correction (preprocessing), (3) Size reduction (sub-sampling), (4) Scanning; (5) Left and right recognitions;

(6) Background test; (7) Arbitration; (8) Left or right detection; (9) Left or right tracking; (10) Prediction; (11)

Stereo matching or correspondence (obtain 3D head position); and (12) Smoothing filter for the 3D output

position.

(1) Acquisition. Process of grabbing left and right video frame.

54

(2) Shading correction. (Covered in Chapter 4).

(3) Size reduction. All neural networks receive a face_width by face_height pixel sub-window (region) of the

image as an input, and then output a confidence number between 0% (maximum confidence) and 100%

(minimum confidence). The reason why 0% represents the maximum confidence, and 100% the minimum, is

because I use vector subtractions to compare input images against stored images inside the NN. As a

result, similar images output confidence values close to zero, and dissimilar images greater than zero.

During tracking, the face_width by face_height pixel region will be the minimum face-size that the system will

be capable of tracking (face_width will be the face width in pixels and face_height will be its height). We will

explain how the system will determine the face_width and face_height numbers (face-size) in the Training

section.

To recognize, detect and track the face anywhere in the video input, the NN is applied at several

locations in the image (see Scanning section below). To track the same face larger than the sub-window

size the input image is repeatedly reduced (in size by sub-sampling) and the NN is again applied at each

resulting image. This will allow the system to be size-invariant. To determine the optimal scale-down factor I

use the following methodology:

− First, training the tracker system with a ‘dummy’. The dummy is positioned at the ‘sweet spot’.

− With the dummy in the original position, running the tracker and adjusting the threshold until

the system begins recognizing the dummy. The algorithm was temporary modified to avoid

switching to detection and tracking mode after the dummy is recognized.

− Moving the dummy forward until the system stop recognizing it. The closer to the cameras, the

larger the size of its face (compare to the original face_width by face_height pixel size).

− In this position, trying different scale-down factor until the system begin to recognize again the

dummy.

55

− Repeating the process until the dummy reaches the required minimum tracking distance.

− Record the number of sub-sampling we have to perform and each scale-down factors.

I repeat this process three times and average the results. The scale-down factors vs. distances from

the camera are not linear (constant). Between a little bit farther than the ‘sweet spot’, at 160 cm, and the

minimum distance of 102.6 cm, I obtained two scale factors of 1.25 and 1.31 after averaging the procedure

three times. To simplify the algorithm and be in the safe side, I decided to use the minimum denominator

(most conservative number). The scale down factor for this project is established in a constant = 1.2 and the

number of time I have to perform the sub-sampling can be obtained from the following deduction:

In Figure 3.6 we see that the ‘sweet spot’ distance is 154 cm and the minimum distance is 102.6 cm,

therefore 154/1.2 = 128.3 cm, 128.3/1.2 = 107 cm, and 107/1.2 = 90 cm.

107 cm is close enough to 102.6 cm. and each time the system has to sub-sample the image it takes

valuable CPU time. Therefore, I decided to scale the image down only twice.

(4) Scanning. When the tracker system starts, it automatically enters in recognition mode and stays in this

way until the user’s face is been recognized. For optimal performance during this mode, the Recognizing

NN should test every pixel in the image (not including the borders) to look for the face. But given the

nature of NN this test requires a lot of processing power and, as a result, it is very inefficient. NN are

slightly invariant to position, meaning that if a face is recognized at the [x, y] position, chances are that

the NN still will output a similar confidence number and recognize the face at [x+1, y+1].

Analyzing further showed that training the system with a face_width by face_height face size makes the

Recognizing NN to have a global maximum confidence at [xface, yface] face position and local minima at

[xface+face_width/2, yface+face_height/2]. A detailed analysis of this behavior showed that the confidence as a

function of the face position around the global maximum is almost monotonically decreasing from xface to

56

xface+face_width/2 and from yface to yface+face_height/2. I mentioned ‘almost’ because there are ripples in the

function, possible due to noise or internal NN behavior (see Figure 5.5 and Figure 5.6). With this in mind,

I developed the following efficient algorithm for recognition, lightly based on a computer vision region

growing (seed) technique:

1. Given the width and height of the face, initialize the following variables and the algorithm:

1.1. x_offset = face_width/10 and y_offset = face_height/10

1.2. x_step = 3 • x_offset and y_step = 3 • y_offset

1.3. Initialize a stack which will hold pixel coordinate numbers (position stack).

1.4. Initialize max_confidence with the lowest possible confidence.

1.5. Begin scanning for a face at pixel coordinates x = face_width/2 and y = face_height/2.

2. Repeat:

2.1. Check if this [x, y] pixel coordinate has already been tested for a face: otherwise continue

with next step, but if it has been tested, advance to the next pixel x = x + x_offset. If we

reach the end of the row (minus border face_width/2), go to y = y + y_offset and x = face_width

and continue from there. If we scanned all columns (minus border face_height/2) go to next

block (3) to check for local maxima.

2.2. Extract an image sub-window of size face_width and face_height around this center pixel.

2.3. Run the Recognizing NN with this sub-image and obtain the confidence = confidence output.

2.4. Mark (flag) this [x, y] position as been tested to avoid testing the same location twice and

wasting valuable time.

2.5. If the confidence is equal or greater than the recognition threshold, save it in save_confidence =

confidence and follow next steps, otherwise go to (2.1) and continue scanning for the tracker

user’s face.

2.6. Save this [x, y] location in the position stack (push(x, y)).

57

2.7. If save_confidence is greater than max_confidence, update max_confidence with save_confidence

(max_confidence = save_confidence) and mark this position as a local maxima. In later

comparisons, will use this max_confidence value as a new recognition threshold. The idea behind

this is always to go up-hill.

2.8. Repeat until the position stack is empty.

2.8.1. Get the last ‘pushed’ location from the position stack (pop(x, y))

2.8.2. For each 8-neighbors from the pushed position [x, y] that are located at a distance (in

pixels) of x_offset and y_offset, do the following:

2.8.2.1. If this [x, y] pixel coordinate has already been tested for a face, go to test the

next neighbor pixel (go to 2.8.2), otherwise continue with next step.

2.8.2.2. Run steps 2.2, 2.3 and 2.4 (run recognizer at this position and flag this

location).

2.8.2.3. If the confidence is equal or greater than the save_confidence, continue with next

step, otherwise go to (2.8.2) and continue testing another neighbor.

2.8.2.4. Save this [x, y] location in the position stack (push(x, y)).

2.8.2.5. Update save_confidence with this new confidence (to guarantee going up-hill).

2.8.2.6. Repeat 2.7 (compare against max_confidence, update it and mark or not as a

local maxima.

3. If there is not any local maxima, exit the algorithm and return ‘face not found’. Otherwise repeat

for all local maxima that have been found (look for global maximum):

3.1. Get the [x, y] position of the local maxima.

3.2. From +x_offset to –x_offset and +y_offset to –y_offset, determine pixel by pixel the confidence at

all locations around this [x, y] position (steps 2.2 and 2.3).

3.3. If any of this confidence is equal or greater than max_confidence, update max_confidence with this

new confidence value and update face_position with this new location.

58

4. Finish the algorithm: return (output) ‘face was found’, face_position and max_confidence.

Once the face has been recognized, the tracker system predicts the position of the area (predicted

sub-window, see Figure 5.1 and Prediction below) in which the face might be (in the next frame), and then

switch to ‘detection’ mode. In this mode, scanning and testing the image pixels to continue detecting and

tracking the face is rather simple. As it was stated before, this is because there must be only one confidence’s

global maximum:

1. Only in the predicted image region, scan pixels every face_width/10 in x, and face_height/10 in y

coordinates. Disregard scanning in the face_width/2 and face_height/2 borders.

1.1. Extract an image sub-window of size face_width and face_height around each scanned pixel

and feed the Detecting NN with this sub-image (similar to face recognition steps 2.2 and 2.3).

1.2. If the Detecting NN output a confidence greater than the threshold detection, save the confidence in a

position array (confidence[x, y] = output from Detecting NN at position [x, y].

1.3. When the scan of the sub-windows is finished, look for confidence’s global maximum number in

each element of this confidence array. Returns this global maximum to the next block.

2. Switch to head tracking mode (change the Detecting NN with the Tracking NN). The Detecting NN

proved to be sensitive to user’s face pose and sometimes it jumps around the head center

causing problems to the VR application (jittering). To smooth out this position we implemented

this more general NN.

2.1. With the Tracking NN in place, fine tune the position of the Detecting NN looking this time

pixel by pixel around the position we got from the previous steps. The area is small: from -

face_width/10 to +face_width/10 and from -face_height/10 to +face_height/10. Meaning testing

around the global maximum to determine the absolute maximum.

3. Return this position to the system for further processing (Prediction and Stereo Matching).

59

The resulting algorithm is graphically explained in Figure 5.2 and Figure 5.3. Here the system is

tracking my face with a face_width of 48 pixels and a face_height of 80 pixels already determined during the

training. In the same scene there is also a dummy face (my friends say that she is my girlfriend, isn’t it sad?

☺). The display panel at the bottom shows in real-time a 2D color map in which oranges represent higher

confidences and the white dot is the head position been determined by the tracker system. We can also observe

in this case that during recognition the system tests at every 3•face_width/10≈15 and 3•face_height/10=24

pixels, but if there is a neighbor with higher confidence, the algorithm tests up-hill every face_width/10≈5 and

face_height/10=8 pixels. Once the algorithm determines all local maxima, it tests at every pixel (this can be

seen as little orange rectangles) to determine the global maxima. During detection and tracking (left of Figure

5.3.) the algorithm tests only in the predicted sub-window, testing every x=5 and y=8 pixels and looking for

the global maxima Then it checks every pixel (from -5 to +5 in x and from -8 to +8 in y) around the global

maximum to determine the absolute maximum (and therefore head position).

(5) Left and right recognitions. Each Recognizing NN (as Detecting and Tracking NN) is a Self-Organizing-

Map (SOM) neural network. Each internal weight SOM is a face_width by face_height sub-window image

but arranged in a one dimensional (1D) vector, in stead of two dimensional (2D). In general any vector

inside any NN is a 2D image stored as 1D face_width by face_height array. Each vector is representative of

a class of faces, more specifically a particularly average view of the face to be recognized. Currently, the

Recognizing NN is composed of 256 face_width by face_height 1D vectors. A thorough explanation of SOM

NN and how to train them is given in Chapter 6.

In this step, each left and right Recognizing NN is simply fed with the input pixels (in a form of a 1D

vector) inside the ellipse bounded by the face-size sub-window (MxN). Each NN outputs a confidence number

which represents, in percentage, the closest distance between the 1D input vector characterized by this

image region and one of the 256 1D vectors stored inside the NN. This is called ‘Winner-Takes-All’ (WTA)

60

philosophy in the SOM jargon. Only one neuron (vector) is selected as output when the input vector is

compared against all SOM vectors (neurons).

SOM NN uses the dot product between input vector and stored vector as the metric to determine

who the winner is. The dot product is normalized, therefore equal vectors or closer (co-linear) ones output

‘1’ or close to ‘1’.

In this thesis I departure from this well established method to determine the WTA because is too

slow when you have to compare a lot of vectors (256 face_width by face_height vectors per each sub-window).

As a metric of preference to determine the winner (closer), I decided to use the Sum of Absolute Difference

(SAD) which will be explained in more detail in the Stereo Matching step. Therefore, the confidence is the

SAD between the input sub-window vector and the winning SOM vector. Zero means equal vectors and the

greater the number is the different the vectors are, and lower is the confidence. Both left and right output

confidences go to the Background test and then to the Arbitration stage.

(6) Background test. Sometimes it happens that even though with the well trained NN the tracker system

misunderstands some parts of the background scene for the face to track and tracks only there. This is

called false positive. We will see, during the Training section, that I am not teaching the NN for a non-

face (background) case despite all suggested research using NN for face detection and recognition ([1]

and [3-6]).

Current research suggests that a large number of non-face images are needed to train a face detector

or recognition, because the variety of non-face images is much greater than the variety of face images. For

example, one large class of images which do not contain any faces could be pictures of scenery, such as a

tree, a mountain, and a building. Collecting a “representative” set of non-faces is difficult to do. Practically,

any image can serve as a non-face example (the space of non-faces images is much larger than the space of

face images). The statistical approach of machine learning suggests that we should train the NN on precisely

61

the same distribution of images that will see at runtime. A representative set of scenery images could

contains millions of windows, and training would be very difficult.

Since we are running the tracker system in an in-door controlled environment, the background is

already established and it does not change very often (for instance, it does not have trees, mountains or

cars). Our background is not ‘dynamic’. Therefore, I devised a simpler solution which similar results (low

false positives). Whenever the tracker user thinks that the background has been changed, he or she can

command the system to take a ‘snapshot’ of the background (this means no person should be in the

cameras’ field-of-view during this moment).

For the background test, the algorithm uses the same input face_width by face_height sub-window

which it was fed into the Recognizing NN (only pixels inside the bounded ellipse) as a 1D vector. If the

Recognizing NN recognizes a face (the confidence number is greater than a certain threshold), we save the

position and confidence number. We extract a face_width by face_height sub-window from the snapshot at the

exact same location and use only the pixels inside the bounded ellipse to convert it to a 1D vector. Then,

using SAD we compare both vectors (input sub-window and snapshot sub-window). This comparison is

similar to the Left and right recognition. Note that both 1D vectors are comparables because they are of

the same size. If the confidencerecognizer > confidencebackground, the input region is indeed a face. Otherwise,

(confidencerecognizer < confidencebackground) the input region belongs to the background.

(7) Arbitration. We use the arbitration of left and right Recognizing NNs and heuristics to clean up the

results and improve the accuracy of the recognition. For the following frames, the criterion is to choose

the left/right Detecting and Tracking NN based which has the greater Recognizing NN confidence number. A

much better solution would be to have several left and right Recognizing NNs in parallel and arbitrate

among them. This would give us a greater recognition performance. But after some experiments, I

found that even having one more Recognizing NN per channel (a total of four NN in parallel) dropped

62

the recognition frame rate to less than 1 fps. Even worse, it increased the training from two minutes

to almost four. So I decide to compromise with the above mentioned solution. May be incoming faster

PCs in the near future will allow to implement and test multiple Recognizing NNs per channel.

If both Recognizing NN confidence numbers are less than the threshold, the system will not switch to

detection mode and will continue to try to recognize the user’s face that it has been trained with.

(8) Left or right detection. Currently composed of 64 face_width by face_height 1D vectors, each vector

represents different average views of the face. Once the arbitration stage determines which left or right

NN has the best confidence number (and also above the threshold), the tracker goes to detection mode.

During the following left or right video image frames, the system will try to detect a face only in a

predicted left or right image region (sub-window). The Detecting NN confidence output is compared against

a different detection threshold. Having two different thresholds, one for recognition and one for detection,

allows the user to fine tune the tracking performance (see GUI Figure 1.6).

(9) Left or right tracking. Currently composed of 8 face_width by face_height 1D vectors, each vector

represents different average views of the face. In this particular case, there are only few vectors trying to

represent the 512 training input vectors (see Training). Therefore, after the process of training, each

vector becomes a head blob instead of a detailed face view (see Figure 5.4).

With the position already determined by the Detecting NN, the tracker switches to head tracking

mode (change the Detecting NN with the Tracking NN) and scans again around that last position. The

Detecting NN is sensitive to user face-pose. For example, sometimes the user looks down or tilt his or her

head a little bit, and the 3D head position jumps around the head center causing problems to the VR

application (jittering). To smooth out this 3D position we implemented this more general NN. Without

implementing this NN, the Smoothing Filter (final stage) needs more samples to successfully smooth out

the 3D output position. Unfortunately this increases the latency more than the proposed 100ms.

63

(10) Prediction. Both left or right Recognizing NN (after arbitration) and Detecting NN send their

position to this module. Thus, during the next video frame, the tracker will only look in a predicted

position and sub-window size. The current work does not predict any 3D head position (which of

course might decrease the tracker latency). This issue is open for future work.

 To predict the coordinates of where to look next, I implement a simple gradient algorithm. I use the

current position vector [xcurrent , ycurrent]T and the previous one [xprevious , yprevious]T to obtain a prediction vector

(direction and magnitude) subtracting current minus previous vectors:

[xprediction , yprediction]T = [xcurrent , ycurrent]T - [xprevious , yprevious]T, therefore the next predicted position will be

[xnext , ynext]T = [xcurrent , ycurrent]T + [xprediction , yprediction]T

During the next video image frames, the size of the area in which the system will look into is fixed at

2•face_width by 2•face_height.

(11) Stereo matching. The Tracking NN determines the 2D position in one of the (left/right) video

images. Then we have to use some stereo correspondence algorithm to get the 3D position using the

remaining video image without using too many CPU cycles. Otherwise all the tuning, compromises and

trade-off needed to reach real-time tracking will be lost in this critical and CPU intensive section.

Given a perfectly calibrated non-verge stereo camera gear (binocular geometry constraint or epipolar

constraint) the z position is determined by the following triangulation formula [33]:

z = b • f / d

where b is the baseline or distance in x direction between the left/right camera axis (see Figure 3.5

and Figure 3.6), f is the focal length and d is the disparity or distance between points of a conjugate pair

when the two images are superimposed.

64

Correspondence methods attempt to match pixels in one image with corresponding pixels in the

other image. For simplicity, we refer to constrains on a small number of pixels of interest as local constrains as

opposite as global constrains which involves the entire image or scan-lines. Local methods can be very

efficient, but they are sensitive to locally ambiguous regions in images. Fortunately, given the way I designed

and used the tracker system, neither occlusion regions nor uniform texture are likely to happen very often

during the tracking. In case of region with uniform texture, using the whole face to perform the matching

almost guarantees a very good stereo correspondence. In case of region occlusion, the NN are pretty robust

to this problem. It is still able to track even with 1/3 of the face covered. Moreover, since the occlusion is

likely to happen in both cameras’ field-of-view, the face images will not be difficult to match.

 Among the fastest of these local methods is the block matching methods. They seek to estimate

disparity at a point in one image by comparing a small region about that point (the template) with a series of

small regions extracted from the other image (the search region). The epipolar constraint reduces the search

to one dimension. Three classes of metrics are commonly used for block matching: correlation, intensity

differences, and rank metrics.

1 1 2 2
,

2
1 1 2

,

((,)) ((,))
Normalize Cross-Correlation (NCC)

((,)) ((,))
u v

u v

I u v I I u d v I

I u v I I u d v I

− ⋅ + −
=

− ⋅ + − 2
2

∑

∑
 (5.1)

Normalize cross-correlation (NCC) (see equation (5.1)) is the standard statistical method for

determining similarity. Its normalization, both in the mean and the variance, makes it relatively insensitive to

radiometric gain and bias. I implemented this but it proves to be too slow (CPU intensive) for real-time

tracking.

2
1 2

,

Sum of Squared Differences (SSD) ((,) (,))
u v

I u v I u d v= − +∑ (5.2)

65

2

1 1 2 2
2

, 1 1 2 2
, ,

((,)) ((,))Normailized SSD
((,)) ((,))u v

u v u v

I u v I I u d v I
I u v I I u d v I

⎛ ⎞
⎜ ⎟− + −

= −⎜ ⎟
− + −⎜ ⎟

⎝ ⎠

∑
∑ ∑ 2

 (5.3)

I also tried the sum of squared differences (SSD, see(5.2) and (5.3)) metrics which are

computationally simpler than cross-correlation, and it can be normalized as well. But still, it degraded the

tracker performance too much. The results were a little worse than NCC.

Finally, reading [36] which has a very good overview of these metrics, I found an intensity difference

metric (SAD or Sum of Absolute Differences), which was perfect for my application. Even more, it can be

specifically tuned for the Intel Pentium IV family processors (one of the reason I choose this platform)

because it has an assembler instruction (Streaming Single Instruction Multiple Date Extensions 2) which

subtracts sixteen bytes at a time and perform the sum of their absolute values. It is a key factor in my thesis

which allows me to reach the real-time goal (most of the block matching and NN algorithms are

implemented in macro-assembler or intrinsic). I am using SAD not only in the stereo correspondence

algorithm but also as a metric to compare input image vectors against each NN weights ‘class-face’ vectors

and determine who the winner is. Remember that each NN is a SOM NN with the WTA philosophy.

Sum of Absolute Differences (SAD). Consider a template of k•l pixels with k rows and l columns.

IL(i,j) is the intensity values of pixel (i,j) in the template in the left image. IR(i,j) is the intensity values of pixel

(i,j) in the template in the right image. If we are working with gray-level images, then the SAD of these

templates is calculated in the following way:

66

1... 1...

1... 1...

1... 1...

SAD ((,)) ((,)

(,)
 is average intensity of left template and

*
(,)

 is average intensity of right template
*

L L R R
i k j l

L
i k j l

L

R
i k j l

R

I i j A I i j A

I i j
A

k l
I i j

A
k l

= =

= =

= =

= − − −

=

=

∑ ∑

∑ ∑

∑ ∑

(5.4)

AL and AR are used to normalize the templates. Normalization reduces the effect of shadows

resulting from different positions of the two cameras or from uneven lighting in the field-of-view but it slow

down in the overall performance because it involves converting the bytes per pixel (unsigned characters) to

float in order to perform the division.

Using the shading correction global preprocessing already explained in Chapter 4 I was able to

obtain similar results without having to perform this normalization process.

SAD = 0 if both template are the same. The values increase as the matching become worse. The

highest possible value is (k•l•255) where intensity ranges from 0 to 255. So SAD values ranges from 0 to

(k•l•255). This range can be transformed into a range from 0% (best) to 100% (worse) by dividing it by

(k•l•255) and multiplying by 100.

Of course, the stereo cameras have to be calibrated in order to extract valid results from the block

matching (see section 4.3 Camera Calibration).

(12) Smoothing Filter. The last step is to smooth out the 3D position without adding too much latency.

As it was explained before in section Left or right tracking, we could not apply the smoothing filter

alone (without the Tracking NN) because in order to lower the jittering, I had to sample too many 3D

positions (more than ten) before passing the information to the VR application. This increases the

67

latency to 150 ms which is not acceptable. The problem is that the tracker is not stable enough

without the filter.

After I added the Tracking NN things improved, but still I observed some small jittering or sudden

jumps around the head center. So I combined the Tracking NN with a small 3D position smoothing filter. I

tried several 1D filters [33] like Gaussian, Averaging and Median. Finally the best compromise was a median

filter using only four samples (four 3D previous positions).

68

Min. Size
Max. Head

(1) Acquisition (LEFT) (4) Scanning for a head at each sub-sampled size (LEFT)

(2) Shading Correction (LEFT)

(3)
 su

b-s
am

pli
ng

Extracted face

Scan all image

Scan

(5) Recognizer NN
(RIGHT)

N x M x 256 vectors

M x N extracted sub-window

(5) Recognizer NN
(LEFT)

N x M x 256 vectors

(9) Detector NN
(LEFT or RIGHT)

N x M x 64 vectors

(10) Tracker NN
(LEFT or RIGHT)

N x M x 8 vectors

Above
Detection

Threshold?

Scan predicted sub-window

2 M x 2 N predicted sub-window

(7) Arbitration

Above
Recognition
Threshold?

(8) Predict next
area to scan

Output position of a
2 N x 2 M sub-window

(11) Perform
area stereo matching

with RIGHT or LEFT
Output 3D head position

RIGHT
confidence

LEFT
confidence

LEFT or RIGHT NN

No

Start

LEFT or RIGHT confidence

Yes

No

Output

RIGHT
sub-window

(12) 3D position
Smoothing Filter

Output Smooth 3D head
position

Above
Recognition
Threshold?

No

(6) Belong to
Background?

(6) Belong to
Background?

Figure 5.1: Overview of the tracker system basic steps

69

Figure 5.2: Dummy head during training (left). During tracking, a user already been trained and recognized,
and the dummy (right).

Figure 5.3: Detail of 2D confidence map during recognition and tracking.

Figure 5.4: Example of Tracking NN internal weights. Each weight is represented by a face_width by
face_height vector. As you can see, face details are almost lost and the face becomes more like a blob.

70

Figure 5.5: Detail of 3D confidence map during recognition.

Figure 5.6: Detail of 3D confidence map during tracking.

71

Training

To recognize or detect (and therefore track) any object (a face in our case) all neural networks have

first to know the object to be recognized or detected. This means that we have to use a ‘learning’ algorithm

to teach the NN how to do it [3-6]. Face detection and recognition also provide interesting challenges to the

underlying pattern classification and learning techniques. When a raw or filtered image is considered as input

to a pattern classifier, the dimension of the feature space is extremely large (i.e., the number of pixels in

normalized training images). The face-class (recognition) or classes of face (detection), and non-face images

are decidedly characterized by multimodal distribution functions and effective decision boundaries are likely

to be nonlinear in the image space. To be effective (taking an acceptable amount of time), either classifier

must be able to extrapolate from a modest number of training samples (which is proven to be difficult), or

must be efficient enough when dealing with a very large number of these high-dimensional training samples.

This means that we must present to the NN sufficient views of the face to extrapolate all possible

poses of the face from the views, and then be able to recognize them. And here resides the big challenges:

how do I automatically teach the NN without knowing a priori what a face is? And how do I do it in real-

time so anybody can use the system without having to spend a lengthily training time before starting to be

tracked? During the following section I will describe this issue, which I consider it is my real-contribution to

the field. Most of the research in the area [3-6] consider the training as an off-line process, with a lot of

human intervention. They don’t usually report the time it takes them to perform the training, which based

on the description of their methodology, seems to be very time consuming.

5.2.1. Methodology description

We ask the user to be tracked to sit down slightly behind the ‘sweet spot’ in front of the cameras,

because the size of the face we get in the stereo video images will be the minimum face size the tracker

system will be able to recognize, detect and track. It does not matter if he or she is in the exact center of the

coordinate system. As it was explained during Overview of tracking algorithm (5.2), the system will

72

perform several image re-sizing preprocesses to consider a larger face when he or she leans over (get

closer to the cameras) when is using the tracker.

The user is then recorded taking slowly runs through a series of subtle head poses (chin left/right,

chin up/down, tilting left/right) over the course of 512 frames or 17 seconds (512 at 30 fps => 512/30 =

17 sec.). This process allows the system to accommodate for the natural changes in the user’s face

orientations (views) while using the virtual reality system. It is also desirable to slightly move forward (lean

over) and backward so the NN can be trained with a little variability in depth and be more robust for

changes in the z coordinate of the head position. Remember (section 5.2) that we are scaling-down the

images using a factor of 1.2. Therefore, any intermediate size (not the sub-sampling) has to be taken into

account by the NN. The user can slowly move his o her body (and head) to each side as long the face is

maintained in the combined cameras’ field-of-view.

Once the recording is finished, the tracker system automatically presents the first left and right

stereo frames superimposed with a left/right ellipses bounded by a box (Figure 5.2). Using the GUI

(Figure 1.5) the user has to manually move each ellipse to the center of each face and then adjust their

minor (x) and major (y) axis to approximately fit an oval. This is the only necessary human intervention that

takes only a few seconds to do. Once the user finishes this task, the width and height of the bounding box

will become the width and height of the face, and therefore, this will be the minimum user’s face-size that the

system will be able to track. On other words, this is the maximum depth (z coordinate) of the head position.

After this calibration, the user has to initiate the training process, which will take approximately two

minutes to finish. The system saves not only the recorded video but also the training parameters (SOM

internal weight vectors) in a form of video images (Audio Video Interleaved or AVI file) so we can visually

check the already trained vectors. The user can recover and load these parameters at anytime later. The

system will not need to be re-trained to track the user, unless there has been a change in the environment

73

(camera calibration, illumination adjustment, etc.). After this process, the system is all set to start tracking

the user.

5.2.2. Algorithm description

The main goal is to automatically extract all face poses from the image sequence and train the NN

with only these images in a reasonable amount of time (< 2 minutes).

I implemented two approaches in parallel: an elliptical head tracker as well as what I called ‘an

incremental NN training’. For the latter, I create a temporary training NN. As it was explained before (see

section 5.2 above) I use the Sum of Absolute Difference (SAD) metric when I have to compare each input

vector (image sub-window) against each weight vector in this training NN.

The reason why I could not use only ellipse-based trackers to extract the face image is because after

I have implemented several different algorithms of this kind [37, 38] and [39, 40] I found all of them jitter

around the face center (given the presence of only one face on the scene). Unfortunately, research papers

never post this stability parameter. Given the nature of these algorithms, their instability is quite

understandable because they use a grid of pixels to determine either the tangent or the Hough Transforms

which decrease the center resolution. For this project, I finally choose a head detector based on Ellipse

Hough Transform [37, 38], slower than [39, 40] but definitively more stable to compute the head-position.

For each individual left and right NN (they are trained independently):

1. Initialization:

1.1. The system uses a 512 video frames for training, so we initialize a 2D training array (we call it training

NN) of 512 rows (weight vectors) and face_size columns, where face_size has width (face_width) and

height (face_height). This is the size of the sub-window with the ellipse inside which was determined

above (read Methodology description).

74

1.2. Given any [xcenter,ycenter] center coordinate, initialize the Ellipse Hough Transform function to look

for the ellipse maxima in the range of xcenter ± (face_width + 8 pixels) and ycenter ± (face_height + 8 pixels).

1.3. When the system begins to train with the first recorded frame (when the user is supposed to be

looking straight to the cameras), the ellipse and bounding box around the face has already been set

and positioned at its [xcenter,ycenter] face center. We run a Hough Transform based elliptical head tracker

[37, 38] around this center, searching for the maximum Ellipse Hough Transform in the range of

xcenter ± face_width/2 and ycenter ± face_height/2, and then adjusting the old center with the new one.

Given the search range of ± face_width/2 and ± face_height/2 only one ellipse (maximum) should be

found by the Hough Transform.

1.4. From now on (next 511 training frames), we will fix the y coordinate extraction point at this new

ycenter. This is because after training several subjects, I observed that when they look down (chin

down) and if they are wearing t-shirts, sometimes the elliptical head tracker got stuck in its round

collarless neckline (curly crew neck). Besides, we want to train the NN with the head center when

the subject is looking either down or up because the system does not track the head orientation. On

other words, from now on we fix the height of the head center.

1.5. We initialize a smoothing median filter (see Smoothing section 5.2 above) using this sample

(coordinate center).

1.6. Using this new center we extract the region inside the box (image sub-window) and store it as a 1D

vector into the training NN. This will become its first weight NN vector.

2. Repeat each of the next 511 training video frames:

2.1. For each pixel in the range of xcenter ± face_width/2 and ycenter do the following:

2.1.1. Extract an image sub-window of size face_width and face_height around this pixel.

2.1.2. Run the training NN with this sub-image and obtain the confidence = confidence output.

2.1.3. Look for the maximum confidence in this range and return this new [xcenter,ycenter] center position at

this maximum. The new located face should be at this coordinate.

75

2.2. Explanation. In the first case, the training NN has only one weight vector already stored (the rest

511 vectors are zero). So if the user move his or her face slowly, the second frame should have a

similar face at a similar [xcenter,ycenter] position respect to the first frame. Once this second face is

extracted and entered into the training NN (which, up to this point, has only one ‘image-face’ stored

from the first frame), it should locate this ‘second face’ without any problem, after all, there are

similar. As training progresses, the training NN will be filled by previously found faces. Remember

we are looking only in the range of last xcenter ± face_width/2 and ycenter. Hence only one face can occur

in this image area. With the slow movement restriction, new faces will be similar in pose and

position to the ones that were already stored. These new faces will be found immediately. The

advantage of this method is that since the position center follows the face in a very smooth way

(no jumpiness), after training the recognizer, detector, and Tracking NN with these highly correlated

vectors, the resulting head position will also tend to be smooth. But there is a big disadvantage:

using only this method alone might guarantee the stability, but not the precision. When the user

head is moved to each side (chine left/chin right) this ‘incremental NN training’ tends to displace

the head center to one side of the face or the other, showing some background. In certain way, this

method follows the tip of the nose. Even worse, sometimes it never recovers and tends to center at

a half face. We need another process in parallel which has to not only maintain this smoothness but

also correct the position to the head center. Despite all drawbacks that elliptical head tracker alone

might have (lack of smoothness, unreliability as face detectors, excessive false-positives and false-

negatives, etc.), combining both methods provides me with an excellent solution for this ‘automatic’

NN training. Remember that we limit the ellipse search where only one face could be found in the

sub-image and, given this constraint, elliptical head trackers are very good finding the center of the

head (ellipse). Summarizing, the incremental NN training provides smoothness to the extracted

training date, and the ellipse head tracker assures these training data are going to be located close to

head center.

76

2.3. Find the face using the elliptical head tracker around the previous xcenter face center position using

the search range of [xcenter ± face_width/2, ycenter], smooth out its results and compare both reported

centers (elliptical and incremental). If the xcenter face center reported by the incremental NN training

is drifting apart from the reported by the elliptical head tracker in more than face_width/10 pixels,

correct it, otherwise continue with the xcenter provided by the training NN.

2.4. We store the new center in xcenter, and ycenter and continue with the next frame.

3. After we finish the whole training set we are ready to train each individual NN with 512 face poses

taken from the training NN. In this case, I use two very well documented methods: simple vector

averaging, and Kohonen-based algorithm for SOM training [41, 42] which is fully explained in section

6.6 (SOM Modules: description, input and training).

4. Recognizing NN. The recognizing NN has 256 weight vectors (neurons) and the training NN has 512

vectors. Each training vector represents a face pose with a unique characteristic: given the nature of

head movements, all these internal ‘feature vectors’ are highly correlated so in this particular case, simple

averaging in pairs to obtain 256 recognizer weight vectors from 512 training vectors gives me very good

results. I compared these results against the Kohonen algorithm (section 6.6) and I obtained similar

outcomes. The huge advantage is the speed: vector averaging is much faster.

5. Detecting and Tracking NN. Here we have to go from 512 training vectors to 64 (Detecting NN) and

8 (Tracking NN). Again, there are the same highly correlated training vectors but simple averaging

implies taking 8 (detector)/65 (tracker) training vectors and average them into 1 detector/tracker weight

vector. I tested both algorithms and evaluate the tracker performance (see section 5.3) and obtain better

results with the Kohonen method.

6. The resulting weight vectors are saved as AVI files under the user’s profile. The user can visualize these

vectors using the tracker system GUI and recover (load) this vectors for future use (not need to re-train

again unless change in the camera settings or environment).

77

5.3. Evaluation

A number of experiments were performed to evaluate the system. We show an analysis of the

tracker system at each stage (recognition, detection and tracking) and it corresponding errors running in real

situations (conferences, demos, etc.). Stability, resolution and latency are also included. Results in tabular

form can be found in section 1.7.

5.3.1. Methodology

During several experiments, demos, etc. I recorded and collected several video images and choose

thirty based on their contents (more than one person in front of the cameras, people’s faces in very different

poses, a particular face disappearing from the camera field of view and reappearing later, etc.). Each video

segment has 512 frames (512/30 fps = 17 sec.). Once all thirty segments are put together I end up with one

long test video of 17 • 30 = 510 sec. (8.5 min). There I counted 150 different persons (faces), each one in

many different poses (see Figure 5.7 as an example) across the video images.

At the same time, I gathered thirty different training video sessions (thirty different faces) with the

condition that the face of the person with which the tracker system is being trained comes into view at least

once during the test video (see Figure 5.8).

78

Figure 5.7: Snapshot of video images recorded to evaluate the tracker system

Figure 5.8: Snapshot of a sequence of training video images

5.3.2. Tracker System Error in Recognizer Only Mode

During this test I temporary disabled the ‘change to detection mode’, meaning that once the tracker

system recognized a face it will not switch to detect any face again during next frames, but it will try to

recognize the trained face over and over. I didn’t disable the prediction module, therefore once the tracker

‘locks’ in the target face (right or wrong) it will continue during next frames to search only in a small

predicted image-area. For each of the thirty different persons (faces) used for training, I ran the tracker

using the test video with 150 different faces in which the trained face is also displayed. Since this is a

tracking system I decided to define a false positive when the system ‘locks’ either in the wrong face or in a

non-face. A 0% recognition error would be zero false positives in which all thirty faces were properly

recognized.

79

After training with the thirty different faces and running the tracker with the test video thirty

times, I obtained five cases where the system locks in the wrong face (sometimes even in a non-face object)

giving a tracking error (in recognizer mode only) of 100%-25/30•100=16%. After re-training the system

with those faces the tracker couldn’t recognize I was able to obtain better results recognizing 28 out of 30

cases (two false positives), consequently dropping the error to 6.6%. A third attempt recognized 27 faces

giving an error of 10%.

I also tested the tracker error for one face only. In this particular case, I trained the system with one

user face and ran the recognizer using the same training-face video in which, of course, only one face was

present. This is a simple case in which one particular user wants to use the system alone without any other

person (face) present in the camera’s field of view that could cause the tracker to fail (lock in the wrong

face). I repeat this experiment for each thirty training videos and only one failed (100%-29/30•100=3.3%)

but after re-training this face the error was 0%. I repeat this evaluation three times with the same results.

5.3.3. Tracker System Error in Detector Only Mode

Suppose we want to track any face to feed a multi-user and multi-view VR system. How well the

tracker system can perform as a multi-face tracker? Unfortunately not very good, basically for three reasons:

1. Faces Database. In order to train the Detecting NN to detect any face, the NN must be trained

with a huge amount of faces so it can internally learn a general face. For front face only, we can

rely on several large databases like the FERET facial database from Georgia University (1,109

sets comprising 8,525 images), CMU and Harvard face database (1050 face examples) and ORL

database of faces (400 images with 256 gray levels per pixel in PGM format). To reduce the

amount of variation between images of faces we have to normalize them which mean aligns each

one with one another (same 2D position, orientation and scale), extract them from their

background and preprocess for brightness and contrast. A thorough explanation of each one of

80

these steps can be found in Chapter 2 of [1]. These methodology, beside of being very time

consuming (it is not fully automatic), still will not take into account all possible face’s poses, but

just only for frontal faces with slight rotation and tilt. To detect other poses based only in frontal

face databases different algorithms need to be developed.

2. Number of Internal Neurons. To speed up the tracker frame rate (see Chapter 5) the Detecting

NN module uses only 64 face_width by face_height 1D vectors (neurons) to store similar face poses

(average user-face at similar positions). Based on my experimentation, this is enough for

detecting the user’s face in most of his/her poses during tracking and still avoid locking or

tracking non-face objects. But definitively this is not enough to learn a general face, even less in

multiple poses. Variability in the images of the face is going to increase the complexity of the

decision boundary to distinguish faces from non-faces beyond the capability of this number of

neurons. What is going to happen is that the NN will end up generalizing too much (too few

decision boundaries) and detecting non-face objects as faces (false positives) or missing faces (false

negative).

3. Background Training. Training a NN for the face detection task is challenging because of the

difficulty in characterizing prototypical “non-face” images. For example, unlike upright face

recognition in which the classes to be discriminated are different faces, the two classes to be

discriminated in face detection are ‘images containing faces’ and ‘images not containing faces’. It

is easy to get a representative sample of images which contain faces, but much harder is to get

representative samples of those which do not. To simplify the task, this tracker is trained with

the fixed current background seen by the installed cameras, which is enough for head tracking

purpose, but not enough for a general face detector.

Despite all the mentioned problems I went ahead and tested the tracker system as a face detector. To do

so I performed the following procedure: I trained the Detecting NN with the thirty training videos (thirty

81

different persons in all poses) but adding the condition of not initializing the Detecting NN between

training sessions. Once I finished the whole training I temporary modified the system to start in

detection mode, to always scan the whole image-frame, and then to mark the number and position of

faces it detects. This includes modifying the algorithm Scanning depicted in Chapter 5 in order to

search for all local maxima. Then I ran the system using again the same test video with 150 uniquely

identified faces, counted the true positives, false positives, and false negatives, and summed up the false positives

and false negatives as tracker error (after all, detecting a non-face or missing a face are errors from a head

tracker point of view). I performed this test three times, re-initializing and re-training the Detecting NN

every time. After this, I repeated the same process but this time using the training videos as test (only

one face present per segment). Table 5.1 summarized the results.

Table 5.1: Tracker error as a detector using 150 faces.

150 Faces True Positives
(right detection)

False Positives
(non-faces)

False Negatives
(missed faces)

Tracker Error
(sum of False)

First Test 147 (98%) 52 3 55

Second Test 144 (96%) 68 6 74

Third Test 146 (97.3%) 57 4 61

Table 5.2: Tracker error as detector using one face.

1 Face True Positives
(right detection)

False Positives
(non-faces)

False Negatives
(missed faces)

Tracker Error
(sum of False)

First Test 1 (100%) 5 0 5

Second Test 1 (100%) 4 0 4

Third Test 1 (100%) 3 0 3

5.3.4. Tracker Performance Rate

Here I will determine the performance of this system acting as a real tracker. On other words, how

well it can track a user, independently of its precision, resolution, etc. Since the system start trying to

82

recognize the tracker user, any error in the recognition module will undoubtedly affect its performance as

a tracker. The figures are obtained from the previous section. The tracker error during recognition goes

from 6.6% to 16%, depending on the training. Therefore, when the system starts, the performance goes

from 84% to 93.4%. After the user is correctly recognized, the system switch to detection/tracking mode

and the prediction module assures that the system will only look in a small window around the user’s face.

This is the case in which the system has to detect/track only one face and, based on our previous evaluation,

is a 100% certain the tracker will find the user’s head.

There is one caveat about these results. During the evaluation as a detector (see previous section) we

concluded that the system can produce a lot of false positives. The side effect of this is that if during tracking

the user makes sudden movements, the prediction module can fail and the system will end up trying to find

a face in a sub-window in which there is no tracker’s face. Two things could happen here:

1. The tracker cannot find any object (face or non-face) whose detection confidence is greater than the

detection threshold and, as a result, it switches back to recognition mode. In this case the tracker is

functioning properly because it will look for the tracker’s face again.

2. The tracker determines that there is one object (non-user face or non-face) with enough confidence

(above detection threshold) to be interpreted as the tracker user’s face. In this case the system is

failing to track the right person. There are two workaround: to increase the confidence threshold or

to restart the tracker system. But, there is a limit on how much we can increase the confidence

threshold, otherwise we will reach a point in which the system can not detect and track anymore.

As a rule of thumb, do not make any sudden/fast moves during tracking.

5.3.5. Frame Rate

83

During recognition (startup) the tracker system achieves only 9.2 fps, but when it is switched to

detection mode it increases the frame rate up to 30 fps (stereo camera nominal frame rate). If instead of the

stereo gear the input is a pre-recorded video (left/right stereo images), the tracker can go up to 100 fps.

5.3.6. Tracking Latency

As depicted in Figure 3.1 the Tracker Latency (TrL) is composed by the Input Latency (InL) plus

Processing Latency (PrL) plus Output Latency (OutL). The OutL is the time it takes the 3D position data

(the tracker algorithm output) to reach the Ethernet port. Given the current technology (processor speed,

TCP/IP stacks, OS, etc.) this is negligible (0 ms) compared to the others delays. As for the PrL, this is easy

to calculate since it is the time it takes the whole tracker system algorithm to obtain the 3D head position

once it receives the input images from the stereo cameras. Inserting (starting and stopping) the proper

timers in the code allows me to easily calculate this delay. I ran the system for an hour and average the

results obtaining a delay of 9 ms.. The standard deviation is almost zero because unless the OS decided to

do something else, this number should not change. This is consistent with the 100 fps the system can

achieve reading pre-recorded movie files in place of grabbing images from the stereo camera (again, reading

movie files delays are negligible when using fast PCs with a lot of memory).

The most difficult part is to determine the Input Latency (InL) which is the time it takes the image

captured by the camera sensor, to be converted to digital data, to travel through the various interfaces, to

reach the PC (more interfaces and/or frame grabber board) and finally to be delivered to the input

algorithm in charge of processes it (Tracker System). Even worse, most of the digital video cameras have

internal buffers to make independent the sensor readout (frame rate) from their interface bandwidth (or

speed).

My co-advisor, Daniel Sandin, devise a clever and simple procedure to approximate this latency (see

Figure 5.9):

84

− Implement a program that can display a black or white square in the PC screen (screen

desktop).

− Then, another piece of the program should be able to determine if the incoming image from the

camera is black or white.

− Set the cameras pointing (and close) to the screen. The black or white square in front of the

cameras should cover their field of view.

− Paint a black square and signal the cameras to grab one image (the stereo gear has the capability

to run in ‘continue’ grabbing mode or ‘single’ mode in which they only capture an image when

they receive an external command). At the exact same time start a timer.

− Wait in a loop until this ‘black’ image arrives into the computer (frame buffer). When it reaches

the program, stop the counter and measure the time.

− Changes (re-paint) the square box to ‘white’. Command the cameras to grab an image, start the

timer, wait until the internal frame buffer changes to ‘white’, stop the timer and measure the

time.

− Repeat switching to black and white and measuring the delay enough times to get a stable

average and post the results.

Input Latency (InL)

Left/Right
video

cameras

CC IEEE 1394a

Figure 5.9: Latency measurement.

85

I left running this procedure for an hour, averaged the results, calculated the standard deviation

and obtained 73.5 ms ± 10 ms. I assumed that the delay introduced by the ‘grab a single image’ command

was much less that the input latency (grabbing the image and sending it to the PC).

As a conclusion the measured Tracker Latency (TrL) is around 82.5 ms ± 10 ms.

5.3.7. Static Jitter and Drift

Here I have to determine how stable the 3D head tracker position is if the face being tracked is not

moving (it is in a fixed position). Also if the subject maintains its position for hours, does the output 3D

position drift?

To test this I trained the Tracker with the ‘dummy’ head (Figure 5.2), stood the dummy in a stand

in front of the cameras and let the system recognized and tracked the dummy head for an hour without

moving it. I tried this experiment several times, every time re-training with dummy and tracking it at

different positions (including different depths, far and close). The results were encouraging; after averaging

the position data and calculating the maximum, minimum deviation I obtain a long term drift of zero pixels

and a static jitter (or short term drift) of zero ± 2 mm in x, y coordinates and ± 3 mm in z.

5.3.8. Dynamic Jitter

This is difficult to measure automatically because when the user moves around, its head center

moves too and there is not easy way to measure the drift or position variation from the center unless we

know a priori the center path. The only way is to do it manually. For this purpose I used the same training

videos and test video from previous sections. I trained the system for each individual user (this time only

fifty) and run the test video in which this user should appear at least one time. Once the Tracker recognized

the person, I modified the system to stop and begin frame by frame with a click of a mouse. Then, I visually

followed the ellipse center (which should be centered at the user’s head) and recorded any sudden jump or

‘jitter’ around this face center. I only wrote the maximum deviation among the three x, y and z coordinates

86

once per each running. I re-trained and repeated the test three times to observe the effect of training in

the drift. Table 5.3 summarizes the results.

Table 5.3: Maximum deviation per training session

 Training Re-Training Re-Training (again)

1 ± 9 mm ± 2 mm ± 3 mm
2 ± 5 mm ± 7 mm ± 5 mm
3 ± 6 mm ± 4 mm ± 14 mm
4 ± 8 mm ± 3 mm ± 9 mm
5 ± 10 mm ± 12 mm ± 10 mm
6 ± 2 mm ± 3 mm ± 7 mm
7 ± 8 mm ± 9 mm ± 15 mm
8 ± 5 mm ± 6 mm ± 4 mm
9 ± 12 mm ± 5 mm ± 3 mm

10 ± 15 mm ± 16 mm ± 8 mm
11 ± 3 mm ± 13 mm ± 12 mm
12 ± 16 mm ± 16 mm ± 4 mm
13 ± 9 mm ± 13 mm ± 10 mm
14 ± 14 mm ± 6 mm ± 4 mm
15 ± 3 mm ± 13 mm ± 6 mm

The conclusion is that the dynamic jitter could go from ± 2 mm (best case) to ± 16 mm (worst case) and it

depends definitively on the training.

5.3.9. Static Precision

The result of this test not only depends on the camera characteristics but mostly on the camera

calibration program which is responsible for correcting its geometry and lens deficiencies.

I tested the static precision (tracker user is not moving) only around the sweet spot. I trained the

Tracker with the dummy and centered it at the sweet spot using a stand. I also re-calibrated the system using

the internal translation and rotation matrices so the center of the dummy’s head position at the sweet spot

will be the coordinate center (x=0, y=0, and z=0). With a ruler, I carefully moved in the x, y plane the head

87

center close to each border of the combine cameras’ field of view, and measure the distances. I set the

limits at ±40 cm in x, y plane and ±20 cm for z. I adjusted the internal scale matrix so the Tracker outputs

the same 3D head position at each limit.

Once the system recognized the dummy and switched to tracker mode, I used a ruler to move the

head center at 10 cm increments in x, parallel to the camera’s baseline and maintaining y and z coordinates

constant. I waited until the system output stable numbers, and then I recorded the Tracker 3D head

position and compared it against the ruler. I repeated the procedure for y and z. Table 5.4 summarizes the

comparison results.

Table 5.4: Static precision. Measured vs. 3D head position Tracker ouput.

Ruler Marks

Measured x, y, z -40 cm -30 cm -20 cm -10 cm 0 cm +10 cm +20 cm +30 cm +40 cm

 Tracker x -40 -30.5 -20.6 -9.8 0.1 10.7 19.8 31 40.1
 Tracker y=0 0.2 0.1 0.3 -0.1 0.1 0.1 0.2 0.4 0.2
 Tracker z=0 0.3 -0.1 0.1 0.2 0 -0.1 -0.3 0.3 0.1

 Tracker x=0 0.1 0.2 0.1 -0.1 0.1 0.2 0.1 0.3 0.1
 Tracker y -40.5 -30.3 -19.6 -9.3 0.1 10.8 19.1 29.3 40.2
 Tracker z=0 0.1 0.2 -0.1 0.2 0.2 0.3 0.2 -0.3 0.1

 Tracker x=0 -0.3 -0.2 0.1 0.2 0.1
 Tracker y=0 -0.2 0.1 -0.2 0.3 -0.2
 Tracker z -20.5 -10.5 -0.1 11 19.6

Looking at the Table 5.4 we can conclude that the precision is about of ±1 cm in the x, y and z axis

across a volume of ±40 cm in x, ±40 cm in y and ±20 cm in z and sampling every 10 cm.

5.3.10. Resolution

I measured the resolution using the previous Static Precision test. Each time I had to stop at any

ruler mark to test the precision, before moving to the next mark I slightly moved the head in the x, y and z

88

directions. More specifically, with the ruler I moved the head until the tracker system output a different x,

y or z position and then, measured this distance with the ruler. I repeated this for all the samples and

calculated the average and standard deviation in x, y or z. The results were 4 mm ± 2 mm in x and y, and 3

mm ± 4 mm in z. These results were across a volume of ±40 cm in x, ±40 cm in y and ±20 cm in z. The

bad results in z are possible due to the stereo correspondence algorithm which at the end is related to the

quality of the NN training. The results in x and y are consistent with the theoretical values calculated in

section 3.4.

89

6. REAL-TIME CAMERA-BASED FACE DETECTION USING A MODIFIED LAMSTAR
NEURAL NETWORK SYSTEM

6.1. Introduction

This chapter is going to present the original research which helped me to understand and gain

experience in neural networks [25]. Although the results as a sole face detector were encouraging, in place of

adding to this design the recognition part and continue to develop the tracker system, some drawbacks

forced me to re-think the thesis and to re-design the neural networks (NN) architecture. Here follows the

main problems with the original design:

• Training Time. The time to train these NN was too much (five minutes), definitely not very

convenient in our VR environments. We want a new tracker user ready to use the system

quickly. The final thesis can train a user in less than two minutes.

• Maximum Frame Rate. in this original design I could not made the detection frame rate reach

more than 16 fps. With a proper (faster frame rate) stereo camera gear the already described

tracker system can reach up 100 fps using the same PC hardware.

• Use Color Information. This system performs very well as a face detector but it use camera

color information. This has two problems. First and more important skin color vary a lot with

different types of illumination (tungsten, fluorescent, etc.) making more difficult the detection or

recognition is this changes from the NN training to running the tracker. To control the

illumination and be independent of this factor in the final design we decided to use infrared light

which only produce gray-level images. Second, color cameras are more expensive, slower frame

rate and with less resolution than the equivalent gray-level cameras (given the same CCD or

CMOS image sensor they usually have to use more sensor pixels (depends of the color filter

arrangement) per image pixel, also use more bandwidth to send color information, etc.).

90

6.2. Original Face Detector Description

What it is described here is a cost-effective real-time (640x480 at 16 Hz) face detector that will serve

as the core of a video-based, tetherless 3D head position and orientation tracker system targeted for either

auto-stereoscopic displays or projection-based virtual reality systems. It will be tested first using EVL’s

Access Grid Augmented/Autostereo Virtual Environment (AGAVE), a high-resolution autostereoscopic

display consisting of tiled LCD displays driven by a PC cluster and fitted with a highly sensitive tracker

system to track user’s gaze and gestures without the use of head mounted or hand held tracking devices.

The attempt tracker system (Figure 6.1) will consist of two neural network-based face detectors

working in parallel, each running through four distinct phases. They are: pre-processing, which includes input

masking, image normalization, histogram equalization, and image sub-sampling; detection, where a modified

LAMSTAR neural network takes the pre-processed image, scans for a face and outputs the coordinates of

the corresponding box surrounding the face; post-processing, where facial feature extraction and stereo

correspondence matching occurs to extract the 3D information; and the implementation of a prediction

module, which is based on a neural network linear filter with a Tap Delay Line (TDL). The function of the

prediction module is to inform the face detection modules where in the scene the face will likely be found,

so as to avoid scanning the next whole frame for a face. If the face is not detected in the predicted position,

the system will rescan the entire scene. The pre-processing and post-processing stages use computer vision

techniques. This chapter addresses the pre-processing and detection phases.

Based on recent surveys, face detection approaches rely upon one or a combination of the following

techniques: Feature-based, Image/View-based and Knowledge-based. The proposed face detector is based

on a modified LAMSTAR neural network system along with a novel combination of the three techniques

mentioned above.

91

At the input stage, after image normalization and equalization are achieved, the information is

divided into sub-pattern categories, each representing a part of the raw image. Each sub-pattern is then fed

to a neural network layer that is a Kohonen SOM (Self-Organizing Map) module. The outputs of all the

neural network modules are interconnected by correlation-links which will be explain later, and can hence

determine the presence of a face with enough redundancy to provide a high detection rate. The face

detector is also rotationally and size invariant for front-view faces to a certain degree. This chapter will detail

several aspects of the technique.

To meet real-time constraints (low latency and high frame rates), the algorithms are highly tuned for

the new Intel 4 Family Processor micro-architecture, specifically its vector processor.

Figure 6.1: The attempted tracker system

6.3. Background

The core of the face detector is a system of artificial neural networks based on Graupe and

Kordylewski’s LArge Scale Memory STorage And Retrieval (LAMSTAR) network research, which targets

large-scale memory storage and retrieval problems [43-46]. This model attempts to imitate, in a gross

92

manner, processes of the human central nervous system (CNS) concerning storage and retrieval of

patterns, impressions, and sensed observations including processes of forgetting and recollection. It

attempts to achieve this without contradicting findings from physiological and psychological observations, at

least in an input/output manner. Furthermore, it attempts to do so in a computationally efficient manner

using tools of neural networks, especially Self-Organizing-Map based (SOM) network modules, combined

with statistical decision tools. Its design was guided by trying to find a mechanistic neural network-based

model for very general storage and retrieval processes involved in, say, recalling the face of a previously

encountered person. LAMSTAR follows a top-down approach based on neurophysiological observations

that involve many parts of the CNS for the reconstruction of information. This general approach [45] is

related to Minsky’s idea [47] that the human brain consists of many agents, and a knowledge link is formed

among them whenever the human memorizes an experience. When the knowledge link is subsequently

activated, it reactivates the mental agents needed to recreate a mental state similar to the original. The

LAMSTAR network employs this general philosophy of linkages between a large number of physically

separate modules that represent concepts, such as time, location, patterns, etc., in an explicit algorithmic

network. (Note: for consistency, this chapter uses the term correlation links instead of knowledge links.)

The LAMSTAR network has been successfully applied in fields of medicine (diagnosis) [43, 44, 46],

engineering (automotive fault detection) and multimedia information systems [48]. Whereas the LAMSTAR

design addresses large-scale memory retrieval problems, the face detection system is a comparatively small-

scale retrieval problem. We are most interested in modeling our system design based on the LAMSTAR

concept of using correlation links to retrieve stored information (faces).

Our real-time system design has two major constraints: the detection and subsequent tracking of a

face must be performed in less than 33 ms to achieve 30 fps, and we only require the memory capacity

needed to store one face. Hence, we limit our use of LAMSTAR concepts to processes of storage and

retrieval, interpolation and extrapolation of input data, and the use of reward-based correlation-links

93

between modules to retrieve stored information. Since our coding approach deals only with pre-processed

raw images, we use input vector or input pattern when referring to the sub-window image, sub-vectors or sub-

patterns when referring to the post-processed segmented image, and correlation-links (C-links) when referring to

the connection between modules.

6.4. System Overview

The modified LAMSTAR network is a self-trained/self-organized system of neural networks

composed of Self-Organizing-Map (SOM) [42] modules (Figure 6.2 and Figure 6.3), with added statistical

decision tools. Interpolation takes place at these SOM levels, where the incomplete sub-pattern (minor

variation or lack of data) is reconstructed as a result of the generalization property of the SOM network.

The extrapolation, which is the primary function of associated memory models, is a result of correlation-

based retrieval among SOM modules where one or more (but not all) sub-patterns are needed to reconstruct

the entire pattern.

6.5. The Kohonen Self-Organizing-Map

Our system needs to map, in an unsupervised mode, whatever cluster of input data it is presented.

Kohonen’s Self-Organizing-Map (SOM) [42, 49] is best suited for this task because it is a self-organizing

neural network that quickly integrates new input data into existing clusters by analyzing, then classifying the

data using connection weights modified through different iterations.

94

Figure 6.2: Kohonen Self-Organize-Map (SOM) network

Using the Lateral Inhibition technique, where distant neighbors are inhibited and closer ones

reinforced, the Kohonen SOM is able to infer relationships and, as more input data is presented (in our case

pre-processed video images), it creates the closest possible set of outputs for the given inputs. The output of

a Kohonen SOM network (Figure 6.2) is a weighted sum of its inputs:

[T]TT
1 1

0

, where: ... , ...
m

j ij i j j j mj
i

k w x w w x x
=

⎡ ⎤= = = =⎣ ⎦∑ w x w x m

≠ =

 (6.1)

After the equation weights (wij) are computed during the training phase, an unknown case is

presented to the network. All outputs are found and the maximum output neuron is declared the winner,

thus determining its class. The Kohonen neural network implements a “Winner-Take-All” (WTA) strategy

[49], i.e., for any given input vector only one Kohonen neuron output is 1, whereas all others are 0:

0

1, 0
m

winner j winner winner i winner i j winner
i

k k k w x k≠
=

> ⇒ = = ∑ (6.2)

95

The neighborhood size parameter is used to model the effect of the Mexican hat or Gaussian hat

function. Only input patterns whose neurons fall within the neighborhood size participate in training (i.e.,

learning) and weight changes (i.e., updates); all others are excluded. A good reference for these techniques

and Kohonen SOM network implementations can be found at [50, 51].

6.6. SOM Modules: description, input and training

In this modified LAMSTAR network, each Kohonen SOM module represents a class of sub-

patterns. The model assumes that the input patterns have been separated into sub-patterns before entering

the SOM module (Figure 6.3). The network is thus organized to assign each neuron to a class of neurons

(i.e., one SOM module) that best corresponds to the input sub-pattern. This SOM configuration yields very

rapid matching with good error tolerance, and is capable of generalization.

Arrays of correlation links (C-links) horizontally connect the modules using coefficients determined

by the statistical correlations between the various patterns considered. A coordinated activation of neurons

between the various modules allows the network to recreate (interpolate) complex patterns and make

associations (i.e., detect a face).

96

Figure 6.3: Simplified LAMSTAR diagram including the relationship between SOM models, SOM output
layer and C-links

The input pattern/image is coded in terms of a real vector x given by:

T T T1[, ..., , ...,]i m=x x x x T (6.3)

The dimension of each i’th sub-vector varies according to the number of elements needed to

describe a sub-pattern feature. To store data concerning the i'th category of the input pattern, each sub-

pattern xi is then channeled to the corresponding i'th SOM module. Thus, the dimension of a sub-pattern is

equal to the amount of pixels representing a specific feature.

A winning neuron is determined for each input based on the similarity between the input vector xi

and weight vectors wi (stored information). For a sub-pattern xi, the winning neuron is determined by the

minimum Euclidean distance between xi and wi:

97

min

where: - input vector in ' SOM module
- index of the winning neuron

- winner weight vector in ' SOM module
- a number of neurons (stored patterns) in ' SOM mod

i i i i
winner k

i

i
winner

k

i th
winner

i th
k i

− = − ∀x w x w

x

w

th

2

1

ule

- Vector Euclidean distance: ()

where: n - dimension of sub-vectors and

i n

i i
i

w x
=

=

− = −∑x w

x w

 (6.4)

The SOM module is a Winner-Take-All (WTA) network where only the neuron with the highest

correlation between its input vector and its correspondence weight vector will have a non-zero output. The

WTA feature also involves lateral inhibition such that each neuron has a single positive feedback onto itself

and negative feedback connections to all other units.

1,

0,

where: - output of neuron in ' SOM module

- winning weight vector in ' SOM module
- index of winning neuron in ' SOM module

i i i i
winner ji

j

i
j

i
winner

for winner j

otherwise

j i th

i th
winner i th

⎧ − < − ∀ ≠⎪= ⎨
⎪⎩

x w x w
o

o

w

 (6.5)

The neuron with the smallest error determined by the previous two equations (6.4) and (6.5) is

declared the winner and its weights wwinner are adjusted using the Hebbian learning law, which leads to an

approximate solution:

(1) () (() ())

where: (1) - the new value of winning
 weight vector in the ' SOM module

- learning coeffi

i i i i
winner winner winner

i
winner

winner

t t t t
t

i th

α

α

+ = + ⋅ −

+

w w x w

w

w

cient

() - current input ' sub-vector

() - current wining weight vector

i

i
winner

t i th
t

x

w

 (6.6)

98

The adjustment in the LAMSTAR SOM module is weighted according to a pre-assigned Gaussian

hat neighborhood function ∆(winner,j):

(1) () (,) (() ())

where: (1) - new weight of neighbor neuron from

 winning neuron

(,) - neighborhood define as

i i i i
j j j

i
j

t t winner j t t

t j
winner

j winner

α+ = + ∆ ⋅ ⋅ −

+

∆

w w x w

w

2

22gaussian hat:
j winner

e σ

−

 (6.7)

6.7. Training/Storage phase

The training of the SOM modules and the training of the C-links are performed in separate phases

(see Figure 6.4):

• Storage of new sub-patterns in SOM modules. In the first case, given an input pattern x and for each xi

sub-pattern to be stored, the network inspects all weight vectors wi in the i’th SOM module. If

any previously stored pattern matches the input sub-pattern within a preset tolerance (error ε), the

system updates the proper weights or creates a new pattern in the SOM module. It stores the

input sub-pattern xi as a new pattern, xi = wj
i, where index j is the first unused kj

i neuron in i'th

SOM module. If there are no more ‘free’ neurons, the system will fail, which means either the

preset tolerance has to be increased to include more patterns in the same cluster of already

stored patterns, or more neurons have to be added on the i’th SOM module.

• Creation of C-links among SOM modules. Individual neurons represent only a limited portion of the

information input. For efficient storage and retrieval, only individual sub-patterns are stored in

SOM modules, and correlations between these sub-patterns are stored in terms of

creating/adjusting the C-links connecting the neurons in different SOM modules (Figure 6.3,

Figure 6.4 and Figure 6.6). This linkage distributes storage information horizontally between

SOM modules. Consequently, in case of failure in one cell, one loses little information if a

99

pattern is composed of many sub-patterns. The neurons in one module of the network are

connected to those in another by C-links. Correlation-link coefficient values C-link are

determined by evaluation distance minimization as in equation (6.4) and (6.5) to determine

winning neurons, where a win (successful match) activates a count-up element associated with

each neuron and with it respective input-side link. During training/storage sessions, the values

of C-links are modified according to the following simple rule (reward):

, , ,
, , ,,

,

,
,

() (()), for () 0
()

1 , otherwise

where: correlation link between ' neuron in ' SOM module
and ' neuron in ' SOM module

i j i j i j
k l reward k l Max k li j

k l

i j
k l

reward

C old C old C C old
C new

C k th i
l th j th

r

β

β

⎧ − − ≠⎪= ⎨
⎪⎩

−

− coefficient eward

th (6.8)

If the correlation link between two sub-patterns already exists, namely, Ci,j
k,l > 0 (a result from

previous training), the formula of equation (6.8) updates (increases) the analyzed C-link. If there are no

correlations (Ci,j
k,l = 0), the system creates new C-link with initial value Ci,j

k,l =1.

6.8. Detection/Retrieval phase

The retrieval phase of the model (Figure 6.4) selects sub-patterns from the input pattern one at a

time, than examines correlations with stored sub-patterns of a given class of sub-patterns in each SOM

module. For example, one i’th SOM module could have previously stored noses, and will correlate any given

input i’th sub-pattern and determine if there is a match or not (e.g., a nose or not).

The face is detected (or retrieved) by means of it C-links. Once all the winning neurons are

determined, the system obtained all correlation-links coefficient values among all SOM modules. The output

SOM layer (Figure 6.2 and Figure 6.6), which all C-links are inter-connected, will determine the presence

or not of a face.

100

Read Input vector x

After Image preprocessing get
input Image/Pattern

Storage (Training) or
Retrieval (Detection)?

Sub-pattern stored?

For each sub-pattern xi

 Find if sub-pattern is already stored
- Determine i'th SOM winning neuron
- Get winning weight wwinneri

Store new sub-pattern

For every i'th SOM module in which sub-pattern has not been stored:
- create new sub-pattern wnewi = xi

Correlation-links

Create correlation-links among SOM modules (winning neurons)

Store

No, Not store

Find winning neurons

For every i'th SOM modules
- Find winning neuron ki: For every ki -> min ||wki-xi||

Find correlation-links

- Ctotal = Sum all correlation-links among i'th SOM modules
- Feed SOM output layer with Correlation-links

SOM Output Layer Face!No
Face

Detection

YesNo

 if for ALL already
stored wi

||wi-wwinneri||<err

Yes, Already stored

Figure 6.4: Flow diagram of the face training/storage and detection/retrieval

6.9. Methodology

Functioning as the head tracker in a virtual reality system, the face detector need only detect the face

of the person intended for tracking. The system, therefore, accommodates each new user by retraining itself.

Training is achieved through the following steps:

• With the face detector system set in training mode, the user faces a video camera and centers his

face in a surrounding ellipse (Figure 6.6) shown on the face detector workstation screen. This is

the training sub-window.

• A command initiates the training and the user slowly runs through a series of subtle head poses

(chin left/right, chin up/down, tilting left/right) over the course of 10-15 seconds. This process

allows the system to accommodate for the natural changes in the user’s face orientation while

using the virtual reality system.

101

• A command terminates the training stage. The user moves away from the camera’s field-of-

view. The user may opt to save the internal training parameters under a filename to later retrieve

in lieu of retraining the system.

• A command initiates background training. The video camera takes a snapshot of the background

scene and trains the neural network as non-face cases. Like in detection (Figure 6.5), it scans the

whole image using a sub-sampling technique applied to every location of the image-scene to

account for every possible face size [1]. This takes approximately five minutes. If the

environment does not change, the user can save the background training information for later

use.

This face detector first determines whether a given image sub-window belongs to the face category.

Variability in the face images may increase the complexity of the decision boundary to distinguish faces

from non-faces. To reduce this variability, the input image is pre-processed (Figure 6.5). During training

and detecting phases, a pre-processing step [1] masks the background pixels from the face pixels with an

ellipse mask (Figure 6.6). It then attempts to equalize the intensity values across the face pixels. A linear

function is factored into the intensity values contained in the window, then subtracted out and corrected for

extreme lighting conditions. Next, histogram equalization is applied to correct for different camera gains and

to improve contrast. For each of these steps, the pre-processing is computed based on pixels inside the

ellipse mask.

During the training process the system will train whatever face appears in the training sub-window

in the image screen (Figure 6.6). Using an interpolation technique, the training sub-window is first reduced

in size to match the internal face detection sub-window size, currently 64 x 85. This dimension is the

minimum face width and height the system is able to detect and track.

102

During the detection process, it is still able to detect a trained face that appears larger than the

trained sub-windows size, using a sub-sampling technique applied to every location of the image-scene. The

input image is repeatedly sub-sampled by a factor of 1.2.

Once the image sub-window is pre-processed and reduced to a determined input vector size, the

image is divided in non-parallel strips that cover local features that might important for face detection

(Figure 6.6). Each non-parallel strip is a sub-vector (or sub-pattern) that is raw-fed into each SOM module.

Currently there are ten SOM modules, each with a number of outputs ranging from five to thirty. There is

also an output SOM layer inter-connected with all the other SOM modules. It only has two output neurons

for the face and non-face case (Figure 6.3 and Figure 6.6).

Acquire Image

Get Image from Video Camera

Training Sub-window Image

- Obtain a sub-window image at center of image
- Reduce size (interpolate) to final training sub-window size
- Training Face should cover the entire training sub-window

Masking

Apply an ellipse mask

Pre-filtering

- Lighting Correction
- Histogram Equalization

Training
or

Detecting?
Training

Scanning and sub-sampling

for each image pixel
 for each possible sub-window size > Training sub-window size

- perform sub-sampling (downsize) to Training sub-window size

Detection

LAMSTAR

Input Vector (Image/Pattern)
ready to be process by LAMSTAR

Figure 6.5: Flow diagram of the pre-processing stage

103

In order to properly use a Kohonen SOM network, it is recommended that all weights and input

vectors are normalized, therefore during training and detection phases, sub-patterns and SOM weights are

mapped to [-1, 1] and their lengths set to 1.

During the face and background training, sub-patterns are present and each SOM module is trained

individually. All weights are initialized with random low values (< 0.2) and C-links coefficient with 0, which

means no correlation at all. Once the SOM output is obtained using the WTA technique, the C-links

between SOM modules and the output layer are established. During detection, the system selects the

winners of each SOM module and through the C-links and weights the output SOM layer should be able to

determine whether or not a face is present.

104

x = [x1 ,…,xi ,xj ,...xm ,xrgb]T

(wv1)T· x1

·

(wu1)T· x1

·

(w11)T· x1

(wni)T· xi

·

(wki)T· xi

·

(w1i)T· xi

(woj)T· xj

·

(wlj)T· xj

·

(w1j)T· xj

(wqm)T· xm

·

(wpm)T· xm

·

(w1m)T· xm

1st SOM module i'th SOM module j'th SOM module m'th SOM module

(wtrgb)T· xrgb

·

(wsrgb)T· xrgb

·

(w1rgb)T· xrgb

Analyze RGB color
SOM module

Color Analysis

Where:
x - Input image vector (after pre-processing)
x1...xm - Input sub-patterns (sub-vectors). They represent parts

or strips of input image
xrgb - Image color information
xout - Correlation-links inputs of SOM output layer.
i,j - i'th and j’th SOM modules which analyze

facial features
m - Maximum number of SOM modules
rgb - SOM module that analyze RGB skin color
C - Correlation-link vectors between modules

i,jk,l - Correlation-link from k’th neuron, i'th SOM module
to l’th neuron on j’th SOM module

wik - Weight vector of the k’th neuron of the I'th SOM module

w2T· xout=0

w1T· xout=1

Face/non-Face
SOM Output Layer

Correlation-Links to Output Layer

Figure 6.6: Snapshot of the face detector system including the relationship between SOM models

6.10. Implementation details

For video input, the face tracker system uses a Videre Design MEGA-D video camera. Its native

image CMOS sensor resolution (ZR32112) is 1288 by 1032, and provides sub-sampling by binning

(averaging) or decimation (removing) through its library developed by SRI International. It connects to the

host using an IEEE 1394 at 400Mbps. An important and vital feature of this digital camera is its sub-

window capabilities. Once a face is found in the scene, the face detector prediction module can send (not

yet implemented) a sub-window command to the video camera to confine the next scan to the portion of

105

scene where the face is found. This substantially might reduce the bandwidth used between the camera

and the host computer and increases the throughput of the face detector.

The system runs on a Dell 530MP with an Intel® Dual Pentium IV Xeon @1.7GHz and 768MB

RAMBUS.

The pre-processing is developing using the Intel® Integrated Performance Primitive (IPP) library and the

vector products involve in the internal SOM programming the Intel® C++ Class Libraries for SIMD

Operations. The compiler is the Intel® C++ Compiler v7. The analyzer tool is Intel® VTune™ Performance

Analyzer 6.1. All libraries, classes and tools are optimizing for Pentium 4 and Xeon™ processor.

6.11. Conclusions And Future Research

This research is intended to serve as the core of a video-based, tetherless 3D head position and

orientation tracker system targeted for either auto-stereoscopic or projection-based virtual-reality systems.

Although still in early stages of development, this face-detection approach is showing promising

results. We have successfully trained the system to detect a single face with it background in less than five

minutes. Before the prediction model is enabled, even in a controlled environment where lighting and

background remain constant, it can take from 0.5-16 fps to detect a face. The slow rate of 0.5 fps is due to

the location of the face in the scene and the necessary successive image sub-sampling at each pixel position

in order to detect arbitrary face sizes. Once the prediction model is enabled, the system achieves a detection

rate of 16 fps.

This system is also able to locate and track a face at varying distances from the video camera, with

the size of the face ranging from 640 x 480 pixels (maximum full frame) to 64 x 85 pixels (minimum due to

internal face detection sub-window size).

106

A simple linear extrapolation prediction module localizes the scanning area to where the face is

likely to appear in the scene. It takes the position velocity between the last two frames and uses it to predict

the subsequent frame. This scheme improves system performance from 0.5 fps to 16 fps. However, when

the system fails to detect a face, the system has to rescan the entire scene.

The performance of face detection and tracking is fairly robust for up-right frontal faces, achieving

90% of true positive detection rate (i.e., the face is a face). Once the system detects and locks onto a face, it

only fails if the person’s head rotates or tilts too much (lack of proper face training) or makes sudden

movements (lack of good prediction and/or distorted face cause by video smearing). Sometimes, the system

also fails with slight combinations of rotation and tilt; this could be due to either a lack of thorough training

on the part of the user or a problem in the system’s network design.

During the early stages of system development, when the system was only trained for face detection

in controlled environments, the system had an average of 50% false positive (i.e., the face was not a face).

After adding background training (non-face cases), the system improved and false positive detection went to

0%.

Tests are inconclusive in an uncontrolled environment, where more people can be present and the

system might lock in a face that is not trained user’s face.

Future work includes:

• Create a user information database. Each time the system learns to identify a new user face, a

new record with weights and coefficients can be added and saved for future use.

• Refine the sub-pattern and SOM module arrangements to achieve better detection and faster

system response.

107

• Add additional detectors, each one that can be independently trained, to create redundancy

and therefore better reliability and accuracy.

• Stress the system in an uncontrolled environment and try to reach 30 fps (with prediction

enabled).

• Continue developing the 3D head position and orientation tracker system.

• Currently, when the prediction module fails, the system has to re-scan the entire image, lowering

performance to 0.5 fps. New techniques are being developed that use the coordinates of the last

box surrounding the face (the face sub-window), increase the box size and then re-scan that area.

The box size is incrementally increased and re-scanned until the face is found.

• Implement a better prediction module to avoid decreasing the frame rate. Currently under

development is a more sophisticated prediction module based on a neural network linear filter

with a Tap Delay Line (TDL).

• Decrease the bottleneck caused by image sub-sampling at each pixel position by developing a

better algorithm for detecting arbitrary face sizes.

• Try different video camera with higher sensitivity, faster shutter speed and therefore less

smearing.

This face-detection system is being designed to detect specific faces, not arbitrary faces; therefore, it

differs from most of the general face-detection research in the literature. It is designed for use in a virtual-

reality system with known users as a tetherless replacement for a magnetic head tracker. It avoids

generalization, and doesn’t lock on unknown persons who enter a scene, enabling the user to reliably control

the virtual environment. Future research will, however, compare this specific algorithm with more general

efforts, to determine the benefits and bottlenecks of this approach.

108

7. CONCLUSION AND FUTURE WORK

7.1. Conclusions

This thesis demonstrates the effectiveness of recognizing and tracking people using a view based

approach with neural networks and its viability to replace current technology used by commercial trackers

used in our VR environments. After evaluating the technology used by currently available commercial

trackers in Chapter 2, this thesis successfully achieves most of the goals proposed in Chapter 3.

Chapter 4 shows a novel idea to preprocess the input video images to remove the variation caused

by lighting and camera parameters. Unlike current local preprocessing techniques, we apply a global

preprocessing based on shading correction. The results are similar to local preprocessing but with enormous

benefit of speed which is translated in faster frame rates.

Chapter 5 is the core of this thesis. It describes all the different NN the system counts and their

goals. There are three NN per left and right video input, each one specifically tuned for one purpose: face

recognition, face detection, and head tracking. This chapter also explains a very efficient algorithm capable

of training the NN with a user in less than two minutes.

After successfully been trained, the Tracker has a low initial recognition error of 6.6%, and 0% when

it switched to detection/tracking mode. More impressive is the frame rate of 100 fps @ 320x240 it can

achieve with a standard PC. Resolution and precision are within proposed margins.

The only immediate drawback which affects the jittering and tracker error as a recognizer, detector,

and tracker, is the training process. Instead of training the system with the user, it seems like the system is

training the user, teaching him or her how to move the head during training in order to obtain a better

tracking performance (less jittering and recognition error). Most of the time, it is not necessary to re-train

with the same user, but if the system is not performing well, re-training once more is generally enough.

109

The system has been shown during several important events and one IEEE VR conference with

a total of more than sixty persons successfully using the Tracker. The good results obtained here encourage

me to continue developing more robust and faster NN based trackers in order to use them on the next

generation of VR display devices on which this laboratory is currently researching.

7.2. Future Work

• Prediction. Not only predict the next area of the video image to look for the head to speed up the

tracker frame rate, but also in order to lower the tracker’s latency predict the next head position in the

next video frame.

• Training of body parts or objects. Research the feasibility of training the NN to detect and track

other body parts (especially hands) or objects.

• Background extraction from the face. Once it is recognized, the left and right user face can be

extracted from the background and use it for avatar projects [52].

• Improve training methodology. We have to yet establish a “good” methodology to train a new user,

specifically how he or she has to move his/her head to obtain good training data and therefore good

tracking performance. Sometimes the system is able to track the new user but the head position is not

smooth enough and jumps around the real head center, or sometimes the system has difficulty

recognizing the person. In these occasions we have to ask the user to sit down and perform the training

again in order to get a better performance.

• Create a user information database. Each time the system learns to identify a new user face, a new

record with NN weights and coefficients can be added and saved for future use. Then if the same user

wants to use the tracker another day, he or she can query and recover the training data and use it

without having to re-train the system again.

• Multiple face detection, recognition and tracking. Incorporating a user information database and

given the increasing speed of PCs, examining this possibility is not far fetched. Multiple face recognition

110

can be very useful for customizing VR systems based on different users. For example a person walks

in, the tracker recognizes him or her, and then using this information the host system run a specific VR

application.

• Move to next generation of VarrierTM autostereoscopic display. During the evaluation of the thesis

(see section 1.7) I used the first version of the VarrierTM display (see Figure 1.2 and Figure 1.3). I use

this VR device solely as a test bed. The next goal is to implement this tracking technology into the next

generation of bigger and more immersive VarrierTM display (see Figure 1.4).

• Increment tracking frame rate. Given current technology in processor speed, display frame rates, etc.

is possible to experience VR systems in a more realistic and smooth ways than before. For example, the

CAVE® runs typically at 120 Hz and a minimum of 60 Hz (30 fps per eye). MS-Windows screen displays

have a minimum of 65 Hz. VarrierTM displays run now at 30 Hz, but we are targeting a minimum of 60

Hz. Since the algorithms I developed are able to track at 100 fps or more, to deliver this information at

higher speed, I have to upgrade and test a new stereo camera gear capable of performing higher frame

rates at the same or more video image resolution. There is another immediate solution but I have not

test it yet: some cameras, including the ones I am using now, can perform “area-scan”. This means that

sending certain commands to the cameras from the application can force the camera’s image sensor to

read only a sub-window of the video image. This will effectively increase the frame rate due to the less

use of bandwidth. Since I already have implemented a prediction module that tells the NN algorithms

which image area to look next, I can use this information to feedback to the stereo cameras and

consequently increase its frame rate.

• Two viewpoints (one stereo camera) vs. multiple viewpoints (several cameras). It would be

difficult if not impossible for the combined field-of-view of only two cameras to cover the space-

volume in which a user can move and head-track using the next generation of VarrierTM displays (see

Figure 1.4). Especially given the height of the stacks of tile LCD displays, it might be necessary not only

111

to install several cameras at the top, but also at the bottom so the user can look up or down and still

be face-recognized. This, of course, implies that I have to develop a more sophisticated multiple view

correspondence algorithm to extract the precise 3D head position, and in conjunction with algorithms

for multiple face recognition and detection working as a unit.

• Multiple Recognizing NN per left/right channel. Currently to meet real-time restrictions, during

recognition I am only arbitrating between left and right Recognizing NN. A much better solution would

be to have several left and right Recognizing NNs in parallel and arbitrate among them. This would give

us a greater recognition performance. Incoming faster PCs will allow me in the near future to implement

and test this idea.

112

CITED LITERATURE

[1] H. A. Rowley, "Neural Network-Based Face Detection," Doctor of Philosophy's thesis in Computer
Science, Carnegie Mellon University, Pittsburgh, CMU-CS-99-117, 1999.

[2] K.-K. Sung, "Learning and Example Selection for Object and Pattern Detection," Doctor of
Philosophy's thesis in Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, A.I.T.R. No. 1572, 1995.

[3] M.-H. Yang, D. J. Kriegman, and N. Ahuja, "Detecting Faces in Images: A Survey," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 24, 2002.

[4] E. Hjelmås and B. K. Low, "Face Detection: A Survey," Computer Vision and Image Understanding, vol.
83, pp. 236-274, 2001.

[5] T. Fromherz, P. Stucki, and M. Bichsel, "A Survey of Face Recognition," University of Zurich MML
Technical Report No 97.01, 1997.

[6] R. Chellappa, C. Wilson, and A. Sirohey, "Human and machine recognition of faces: A survey,"
Proceedings IEEE, vol. 83, pp. 705-740, 1995.

[7] J. Isdale, "What Is Virtual Reality? A Homebrew Introduction and Information Resource List,"
Version 2.1, October 8th 1993.

[8] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. Kenyon, and J. C. Hart, "The CAVE, Audio Visual
Experience Automatic Virtual Environment," Communications of the ACM, vol. 35, pp. 64-72, 1992.

[9] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, "Surround-Screen Projection-Based Virtual Reality:
The Design and Implementation of the CAVE," ACM Computer Graphics, vol. 27, pp. 135-142, 1993.

[10] M. Czernuszenko, D. Pape, D. Sandin, T. DeFanti, G. L. Dawe, and M. D. Brown, "The
ImmersaDesk and Infinity Wall Projection-Based Virtual Reality Displays," Computer Graphics, vol.
31, pp. 46-49, 1997.

[11] A. Johnson, D. Sandin, G. Dawe, T. A. DeFanti, D. Pape, Z. Qiu, S. Thongrong, and D. Plepys,
"Developing the PARIS: Using the CAVE to Prototype a New VR Display," presented at
Proceedings of the 4th International Immersive Projection Technology Workshop (CDROM),
Ames, IA, 2000.

[12] G. Bishop, H. Fuchs, and e. al., "Research directions in virtual environments: report of an NSF
invitational workshop," University of North Carolina at Chapel Hill, Chapel Hill, NC March 23-24
1992.

[13] D. Sandin, T. Margolis, G. Dawe, J. Leigh, and T. DeFanti, "The Varrier Auto-Stereographic
Display," presented at SPIE, San Jose, California, 2001.

113

[14] D. Sandin, E. Sandor, W. Cunnally, M. Resch, T. DeFanti, and M. Brown, "Computer-Generated
Barrier-Strip Autostereography," presented at Proceedings of SPIE, Three-Dimensional
Visualization and Display Technologies, 1989.

[15] T. Ogi, T. Yamada, K. Tamagawa, and M. Hirose, "Video Avatar Communication in a Networked
Virtual Environment," presented at INET 2000 Proceedings, Emerging Multimedia, Pacifico
Yokohama Conference Center, Yokohama, Japan, 2000.

[16] S. Meyers, D. Sandin, W. Cunnally, E. Sandor, and T. DeFanti, "New Advances in Computer-
Generated Barrier-Strip Autostereography," presented at Proceedings of SPIE, Stereoscopic
Displays and Applications, 1990.

[17] M. A. Nixon, B. C. McCallum, W. R. Fright, and N. B. Price, "The Effects of Metals and Interfering
Fields on Electromagnetic Trackers," Presence, vol. 7, pp. 204-218, 1998.

[18] S. Bryson, "Measurement and calibration of static distortion of position data from 3D tracker,"
Applied Research Branch, Numerical Aerodynamics Simulation Division, NASA Ames Research
Center, Moffett Field, CA 94035 RNR Technical Report RNR-92-011, April 8 1992.

[19] R. L. Holloway, "Registration Error Analysis for Augmented Reality," Presence: Teleoperators and
Virtual Environments, vol. 6, pp. 413-432, 1997.

[20] M. Ghazisaedy, D. Adamczyk, D. Sandin, R. Kenyon, and T. DeFanti, "UltraSonic Calibration of a
Magnetic Tracker in a Virtual Reality Space," presented at Proceedings of the IEEE Virtual Reality
Annual International Symposium (VRAIS '95), Raleigh, NC, 1995.

[21] S. Bryson and S. S. Fisher, "Defining, Modeling, and Measuring System Lag in Virtual
Environments," presented at Proceedings SPIE, Stereoscopic Displays and Applications I, 1990.

[22] D. He, F. Liu, D. Pape, G. Dawe, and D. Sandin, "Video-Based Measurement of System Latency,"
presented at Proceedings of the Fourth International Immersive Projection Technology Workshop
2000, Ames, IA, 2000.

[23] S. R. Ellis, B. D. Adelstein, S. Baumeler, G. J. Jense, and R. H. Jacoby, "Sensor Spatial Distortion,
Visual Latency, and Update Rate Effects on 3D Tracking in Virtual Environments," presented at
Proceedings of the IEEE Virtual Reality, NASA Ames Research Center, Houston, Texas, 1999.

[24] P. A. Laplante and A. D. Stoyenko, Real-Time Imaging, Theory, Techniques, and Applications, First ed:
IEEE Press, 1996.

[25] J. Girado, D. Sandin, T. A. DeFanti, and L. Wolf, "Real-time Camera-based Face Detection using a
Modified LAMSTAR Neural Network System," presented at Proceedings of IS&T/SPIE's 15th
Annual Symposium Electronic Imaging 2003, Applications of Artificial Neural Networks in Image
Processing VIII, Santa Clara, California, USA, 2003.

[26] R. Newman, Y. Matsumoto, S. Rougeaux, and A. Zelinsky, "Real-Time Stereo Tracking for Head
Pose and Gaze Estimation," presented at Fourth IEEE International Conference on Automatic
Face and Gesture Recognition 2000, Grenoble, France, 2000.

114

[27] Y. Matsumoto and A. Zelinsky, "An Algorithm for Real-time Stereo Vision Implementation of
Head Pose and Gaze Direction Measurement," presented at Proceedings of IEEE Fourth
International Conference on Face and Gesture Recognition (FG'2000), 2000.

[28] J. Woodfill and B. V. Herzen, "Real-Time Stereo Vision on the PARTS Reconfigurable Computer,"
presented at Proceedings IEEE Symposium on Field-Programmable Custom Computing Machines,
Napa, 1997.

[29] H. A. Rowley, S. Baluja, and T. Kanade, "Rotation Invariant Neural Network-Based Face
Detection," Carnegie Mellon University and Justsystem Pittsburgh Research Center, Pittsburgh, PA
15213 CMU-CS-97-201, December 1997 1997.

[30] H. A. Rowley, S. Baluja, and T. Kanade, "Neural Network-Based Face Detection," IEEE Transactions
on Pattern Analysis and Machine Intelligence, 1998.

[31] K.-K. Sung and T. Poggio, "Example-based Learning for View-based Human Face Detection,"
Massachusetts Institute of Technology and Artificial Intelligence Laboratory Center for Biological
and Computational Learning A.I. Memo No. 1521, C.B.C.L. Paper No. 112, December 1994 1994.

[32] K.-K. Sung and T. Poggio, "Example-Based Learning for View-Based Human Face Detection,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 39-51, 1998.

[33] R. Jain, R. Kasturi, and B. G. Schunck, Machine Vision, First ed: McGraw-Hill, 1995.

[34] P. Heckbert, Graphics Gems IV, First ed: Academic Press, Inc., 1994.

[35] R. R. Anderson, J. Hu, and J. A. Parrish, "Optical radiation transfer in the human skin and
applications in in vivo remittance spectroscopy," in Bioengineering and the Skin, R. Marks and P. A.
Payne, Eds., First ed. Lancaster: MTP Press Limited, 1981, pp. 253-265.

[36] M. Z. Brown, D. Burschka, and G. D. Hager, "Advances in computational stereo," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 25, pp. 993- 1008, 2003.

[37] D. Maio and D. Maltoni, "Real-time face location on gray-scale static images," Pattern Recognition, vol.
33, pp. 1525-1539, 2000.

[38] M. J. Donahue and S. I. Rokhlin, "On the Use of Level Curves in Image Analysis," CVGIP: Imge
Understanding, vol. 57, pp. 185-203, 1993.

[39] S. Birchfield, "An Elliptical Head Tracker," presented at 31st Asilomar Conference on Signals,
Systems, and Computers, 1997.

[40] S. Birchfield, "Elliptical Head Tracking Using Intensity Gradients and Color Histograms,"
presented at IEEE Conference on Computer Vision and Pattern Recognition, Santa Barbara,
California, 1998.

[41] T. Kohonen, "The Self-Organizing Map," Proceedings of the IEEE, vol. 78, 1990.

115

[42] T. Kohonen, Self-Organization and Associative Memory, Third ed. New York: Springer-Verlag, 2001.

[43] D. Graupe, Principles of Artificial Neural Networks, vol. 3, First ed. Singapore: World Scientific
Publishing Co. Pte. Ltd., 1997.

[44] D. Graupe and H. Kordylewski, "A Large Memory Storage and Retrieval Neural Network for
Adaptive Retrieval and Diagnosis," International Journal of Software Engineering and Knowledge Engineering,
vol. 8, pp. 115-138, 1998.

[45] D. Graupe and W. J. Lynn, "Some Aspects Regarding Mechanistic Modeling of Recognition and
Memory," Cybernetica, vol. 12, pp. 119-141, 1969.

[46] H. Kordylewski, "A Large Memory Storage and Retrieval Neural Network for Medical and
Engineering Diagnosis/Fault Detection," Doctor of Philosophy's thesis in Electrical Engineering
and Computer Science, University of Illinois at Chicago, Chicago, TK-99999-K629, 1998.

[47] M. L. Minsky, "K-Lines: A Theory of Memory," Cognitive Science, vol. 4, pp. 117-133, 1980.

[48] S. Chang, D. Graupe, and K. Hasegawa, "An Active Multimedia Information System for
Information Retrieval, Discovery and Fusion," International Journal of Software Engineering and Knowledge
Engineering, vol. 8, pp. 139-160, 1998.

[49] S. Kaski and T. Kohonen, "Winner-Take-All Networks for Physiological Models of Competitive
Learning," Neural Networks, vol. 7, pp. 973-984, 1994.

[50] T. Masters, Practical Neural Network Recipes in C++. San Diego: Academic Press, 1993.

[51] V. Rao and H. Rao, C++ Neural Networks and Fuzzy Logic, Second ed. New York: MIS Press, 1995.

[52] J. Insley, D. Sandin, and T. DeFanti, "Using Video to Create Avatars in Virtual Reality," presented at
Visual Proceedings of the 1997 SIGGRAPH Conference, Los Angeles, CA, 1997.

116

VITA

NAME Javier Ignacio Girado

EDUCATION B. Electronics Engineering, ITBA University, Buenos Aires, Argentina

M. Electronics Engineering, ITBA University, Buenos Aires, Argentina

Ph.D., Computer Science, University of Illinois at Chicago, IL, USA

1982

1984

2004

FELLOWSHIPS INTI National Institute of Industrial Technology, Buenos Aires,
Argentina

Microprocessor Department

Electronic Division

Acoustic Division

1984-1990

1983-1984

1982-1983

HONORS Member of the “Electronic Equipments Development Group”,

ITBA University, Buenos Aires, Argentina

1982-1983

RESEARCH
EXPERIENCE

Research Assistant, Electronic Visualization Laboratory,
University of Illinois at Chicago, IL, USA

Research Assistant, INTI, Buenos Aires, Argentina

Microprocessor Department

Electronic Division

Acoustic Division

Research Assistant, EE Department, Electronic Circuit
Design course, ITBA University, Buenos Aires,
Argentina

Research Assistant, EE Department, “Electronic
Equipments Development Group”, ITBA University,
Buenos Aires, Argentina

Jan 1996-Aug 2004

1984-1990

1983-1984

1982-1983

Aug 1983-Dec 1983

Dec 1982-Feb 1983

117

TEACHING
EXPERIENCE

Research Assistant, “Independent Study: From C to C++’
course”, Electronic Visualization Laboratory, University of
Illinois at Chicago, IL, USA

Lecturer, “‘C’ Programming Language” and “Electronic Circuit
Design”, ITBA University, EE Department, Buenos Aires,
Argentina

Lecturer, “Post-Graduate course: Microprocessor for Electronic
Engineers”, UTN University, EE Department, Buenos Aires,
Argentina

Teaching Assistant, “Circuit Theory and Synthesis” and
“Communication Systems I”, ITBA University, EE
Department, Buenos Aires, Argentina

Research Assistant, “Fast Fourier Transform and Digital Filters,
Implementation using Microprocessors” and “SPICE 2G.6 (circuit
simulation program) Seminar: Programming, use and applications in
design”, INTI, Electronic Division and Microprocessor
Department, Buenos Aires, Argentina

Freelance Lecturer, Organized and conducted the following
Seminars, Training Courses, Workshops and Help-desks:
trained programmers in Object Oriented Technology (OOT) using
IBM VisualAge and SmallTalk over IBM AS400 and IBM
OS2/2 PCs; Introduction and Advance Lotus 1-2-3 v2.0/v3.0,
including Advance Macro programming; Clipper; FoxBase; dBASE
II/III/IV programming, including introduction to Relational
Databases; RPGI;, Quick Basic; C and Turbo Pascal programming;
PC-DOS OS, including PC Support and System Calls, Viruses
and Anti-Viruses; MultiMate; Open Access; Perfect Picture; Lotus
Freelance, Lotus Manuscript; Harvard Graphics; Diagraph;
StatGraphics; WordPerfect

Merck & Co., Buenos Aires, Argentina branch

IBM, Buenos Aires, Argentina branch

Raychem International Corporation, Argentina branch

Proartel S. A. (TV Station), Buenos Aires, Argentina

Atanor S. A., Buenos Aires, Argentina

Banco Provincia, Buenos Aires, Argentina

Jan 1998-May 1998

Mar 1985-Jul 1987

Aug 1985-Dec 1985

1983-1984

1983, 1985

Oct 1985-Jun 1995

May 1994-May 1995

Aug 1989-Dec 1990

Aug 1986-Feb 1987

Aug 1986-Mar 1987

Jan 1987-Jul 1987

118

PROFESSIONAL
EXPERIENCE

Freelance Consultant, Project Leader, System Designer
and Programmer, Network and System Administrator,
Programmer, Technical Support

Quantum Market Research, Inc., Oakland, CA, USA

Keytech S.A., Buenos Aires, Argentina, partner with
Compression Labs, Inc, San Jose, CA, USA

Hasar S.A., Buenos Aires, Argentina

Broadcast Systems, Madrid, Spain

Merck & Co., Buenos Aires, Argentina branch

Merck & Co., Sidney, Australia branch

Merck & Co., Oakland, New Zealand branch

Merck & Co., Puerto Rico, USA branch

Merck & Co., NJ, USA Headquarters

IBM, Buenos Aires, Argentina branch

Raychem International Corporation, Argentina branch

Proartel S. A., Buenos Aires, Argentina,

Atanor S. A., Buenos Aires, Argentina

Akapol S.A., Buenos Aires, Argentina

AGFA-GEVAERT ARGENTINA S.A., branch of
Agfa NV, Belgium

Dec. 2003

Mar 1993-Jun 1995

Jan 1993-Aug 1995

Jan 1991-Mar 1991

Oct 1985-Jun 1995

Jan 1991

Jan 1990

Jan 1989

Jan 1988

May 1994-May 1995

Aug 1989-Dec 1990

 Aug 1986-Feb. 1987

Aug 1986-Mar 1987

 Mar 1987-Sep 1987

 Oct 1988

119

COPYRIGHTABLE
INTELLECTUAL
PROPERTIES

Javier I. Girado, Daniel Sandin, “A two-way
videoconferencing program with audio capability”
Provisional Patent Application, University of Illinois at
Chicago, IL, USA

Javier I. Girado, Felipe M. Girado, “Girado's
Conditional Access Management System”, TXu-726-
267 COPYRIGHT HISTORY MONOGRAPH FILE
(COHM) database, Computer program & screen
displays

Filed in January 2000

Date of Creation 1994

Date of Reg. 17 Nov95

PUBLICATIONS J. Girado, D. Sandin, et al.,“Real-time Camera-based Face Detection using a Modified
LAMSTAR Neural Network System”, Proceedings of IS&T/SPIE's 15th Annual
Symposium Electronic Imaging 2003, Applications of Artificial Neural Networks
in Image Processing VIII, Santa Clara, California, USA, SPIE

J. Leigh, J. Girado, et al., “TeraVision : a Platform and Software Independent Solution for
Real Time Display Distribution in Advanced Collaborative Environments”, Access Grid
Retreat 2002 Proceedings, La Jolla, CA, USA

J. Leigh, J. Girado, et al., “AccessBot: An Enabling Technology for Telepresence”,
CDROM Proceedings of INET 2000, The 10th Annual Internet Society
Conference, Yokahama, Japan

WORKSHOPS EVL doctoral student Javier Girado Presented “Global Tele-Immersion: Working in

CyberSpace,” as a keynote speaker at the “Science and Technology and Companies: A
Vision for the 21st Century” workshop and plenary sessions, held in Barcelona,
Spain. The event was sponsored by Barcelona University (UB) and the Technical
University of Catalunya (UPC), and reflected the interest of both institutions to
foster joint research projects and a technology exchange, and to promote the new
cientific and Technological Park Barcelona 2000 (PCTB2000), Jan 20-21, 2000

PRESENTATIONS VarrierTM auto-stereo system driven by a Real-Time 3D Head Position Tracker

System with stereo cameras using a Face Detection and Recognition Neural
Network (Ph.D. thesis). The event was an open house hosted for the IEEE VR
2004 conference at the Electronic Visualization Laboratory (EVL), University of
Illinois at Chicago (UIC), March 29, 2004

VOLUNTEER
WORK

Team member of GraphicsNet on-site support at SIGGRAPH 2000, New
Orleans, Louisiana, August 2000

ACKNOWLEDGMENTS Joseph A. Insley, Daniel J. Sandin, and Thomas A. DeFanti, “Using Video to

Create Avatars in Virtual Reality”. Visual Proceedings of the 1997
SIGGRAPH Conference, Los Angeles, CA, August 1997, pp. 128

120

	INTRODUCTION
	Background
	Motivation
	The Goal
	Artificial Neural Networks
	The Challenge of Face Detection and Recognition
	An Image-Based Approach using Neural Networks
	Evaluation

	BACKGROUND
	Introduction
	Background in VR
	Brief Introduction of Virtual Reality and its Devices
	The Need and Importance of Tracker Systems in VR

	Background in Commercial VR Tracker Devices
	Tracker Systems Used in VR Environment
	Disadvantages in Tracker Systems Used in VR environment
	Real Specification of Tracker Systems used in VR environment
	Advantages in Tracker Systems used in VR environment

	PROPOSING NEW TRACKER SYSTEM
	Introduction
	A word of Tracker Latency (or Lag)
	What is a Real-Time System?

	Defining the New Tracker Systems Specifications
	Specifying the Hardware and the Environment
	Theoretical tracker specificaions using VarrierTM autostereo

	DATA PREPARATION
	Introduction
	Preprocessing for brightness and contrast
	Standard approaches
	Thesis approach: Global Equalization in a Controlled Environ
	Thesis Approach: Global Preprocessing Using Shading Correcti

	Camera Calibration

	HEAD TRACKER
	Introduction
	Overview of tracking algorithm
	Training
	Methodology description
	Algorithm description

	Evaluation
	Methodology
	Tracker System Error in Recognizer Only Mode
	Tracker System Error in Detector Only Mode
	Tracker Performance Rate
	Frame Rate
	Tracking Latency
	Static Jitter and Drift
	Dynamic Jitter
	Static Precision
	Resolution

	REAL-TIME CAMERA-BASED FACE DETECTION USING A MODIFIED LAMST
	Introduction
	Original Face Detector Description
	Background
	System Overview
	The Kohonen Self-Organizing-Map
	SOM Modules: description, input and training
	Training/Storage phase
	Detection/Retrieval phase
	Methodology
	Implementation details
	Conclusions And Future Research

	CONCLUSION AND FUTURE WORK
	Conclusions
	Future Work

	NAME
	Javier I. Girado, Daniel Sandin, “A two-way videoconferencin
	Javier I. Girado, Felipe M. Girado, “Girado's Conditional Ac

