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"spatial_relation": "nearest",
"layer_in": {"name": "shadows0"},
"layer_out": {"name": "shadows1"},
"operation": "shadow1 - shadow0"

(d) Weighted shadows "knots": [   
{   
"name": "shadow_building",   
"operation": "-jan*-feb ... -0.5*nov*-dec" 

  }
]

"plots": [{    
"plot": {      
"mark": {"type": "arc"},      
"encoding": {           }

    },   
"knots": ["shadow_building"],   
"arrangement": "footprint",   
"args": {"bins": 32}

}]
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Fig. 1: The Urban Toolkit enables the creation of urban visualizations through a new grammar that uses knots to integrate thematic
(e.g., sunlight access, demographic) and physical (e.g., buildings, street networks) data layers. Left: An example of what-if scenario
planning for urban shadow analysis. The difference between current (a) and proposed (b) urban development scenarios can be
specified through algebraic operations using the grammar (c). Right: Sunlight access analysis at the building level. Chained operations
are specified using the grammar, with plots embedded in the 3D environment (d).

Abstract— While cities around the world are looking for smart ways to use new advances in data collection, management, and analysis
to address their problems, the complex nature of urban issues and the overwhelming amount of available data have posed significant
challenges in translating these efforts into actionable insights. In the past few years, urban visual analytics tools have significantly
helped tackle these challenges. When analyzing a feature of interest, an urban expert must transform, integrate, and visualize different
thematic (e.g., sunlight access, demographic) and physical (e.g., buildings, street networks) data layers, oftentimes across multiple
spatial and temporal scales. However, integrating and analyzing these layers require expertise in different fields, increasing development
time and effort. This makes the entire visual data exploration and system implementation difficult for programmers and also sets a high
entry barrier for urban experts outside of computer science. With this in mind, in this paper, we present the Urban Toolkit (UTK), a
flexible and extensible visualization framework that enables the easy authoring of web-based visualizations through a new high-level
grammar specifically built with common urban use cases in mind. In order to facilitate the integration and visualization of different
urban data, we also propose the concept of knots to merge thematic and physical urban layers. We evaluate our approach through use
cases and a series of interviews with experts and practitioners from different domains, including urban accessibility, urban planning,
architecture, and climate science. UTK is available at urbantk.org.

Index Terms—Urban visual analytics, Urban analytics, Urban data, Visualization toolkit.

1 INTRODUCTION

Cities around the world are looking for smart ways to make use of data
to address their problems. By analyzing data from cities, urban scien-
tists, practitioners, policymakers, and communities can gain a deeper
understanding of complex urban problems, enabling better planning,
policies, and urban resilience, making government more efficient and,
ultimately, improving the lives of residents. But the complex nature
of urban issues and the overwhelming amount of data have posed sig-
nificant challenges in translating these efforts into actionable insights.
Drawing a comprehensive picture often involves collaboration across
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multiple disciplines, including computer science, engineering, climate
sciences, architecture, urban planning, and public health, leading to
a variety of analytical workflows and tasks to transform, integrate,
and analyze different urban data layers, often across multiple spatial
and temporal scales [25]. Urban visual analytics is considered a key
component in enabling such analyses. It has been used to augment
data mining solutions and leverage domain knowledge [7, 16, 27, 28],
as well as public dissemination of findings and policies [30, 44, 45].
While there have been many successful urban visual analytics tools,
tackling a variety of urban problems [24, 71], the area still suffers from
a fragmented community and disconnected efforts [69]. Projects are
often siloed and developed based on one-off collaborations between
computer scientists and urban experts to tackle specific problems. In
the end, new solutions are often built from scratch, leading to wasted
efforts and results that are difficult to reuse and extend to different
scenarios and geographical locations. Furthermore, creating visual
analytics prototypes and tools is still challenging and time-consuming,
requiring expertise in visualization, computer graphics, and data man-
agement. This is especially true in the increasingly important case of
3D urban analytics [47], in which the design and implementation of
visualization systems are substantially more complex. This results in a
considerable effort even for experienced visualization developers, and
also in high entry barriers for urban experts outside of computer science
and communities lacking the necessary resources.
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The visualization community has made significant strides in fa-
cilitating the authoring and prototyping of interactive visualization
interfaces through toolkits and high-level grammars. While these
contributions have significantly lowered the entry barrier for infor-
mation [11, 12, 56, 57, 74], scientific [38, 43, 52], and immersive visual-
ization [13, 60], the same cannot be said about urban visual analytics.
Urban data and urban analytical tasks impose specific requirements that
must be met to drive real-world applications. To democratize urban
visual analytics, we need new capabilities that empower a broad range
of stakeholders to analyze urban data and foster new reproducible,
flexible, and extensible tools.

As a step towards this direction, in this paper, we propose the Urban
Toolkit (UTK), an open-source visualization toolkit for the easy author-
ing and prototyping of urban visual analytics applications. Considering
such applications and tools, UTK proposes to enable the following:
(1) extensibility so that new functionalities by visualization researchers
can be incorporated, (2) reproducibility, ease of use, and deployment by
urban experts and communities, and (3) flexibility so that outcomes can
be translated into different urban domains and geographical locations.
Our goal is to minimize the necessity of being familiar with low-level
concepts (e.g., rendering) or coding (e.g., C++ or JavaScript) to enable
prototyping, evaluation of visualization designs, and the creation of
compelling and useful urban visual analytics tools, even for 3D analysis
scenarios. To achieve this, at the core of UTK is a high-level visualiza-
tion grammar for creating and sharing map and plot-based interactive
urban visualizations. The grammar uses knots (grammar-defined links,
or ties, between spatial layers) to easily integrate 2D and 3D data layers
across multiple spatial resolutions. UTK also offers a suite of func-
tionalities to facilitate the ingestion and parsing of data from different
sources, supporting a broad range of use cases. A tight connection
between the data handling and visualization capabilities enables the
easy integration of UTK into existing urban workflows and the quick
prototyping of visualization interfaces. UTK is publicly available at
urbantk.org.

These functionalities can be seen from at least three different angles:
first and foremost, as a unified framework aimed at urban scientists
and experts that abstracts many low-level data management and vi-
sualization aspects involved in implementing urban visual analytics
applications. Second, as a testbed for visualization researchers and
practitioners interested in the implementation of new applications as
well as the prototyping and user evaluation of design choices and tech-
niques for urban visualization. And third, as an easy-to-use authoring
tool for stakeholders and communities that enables the creation and
sharing of interactive urban visualizations. To highlight the usefulness
of our proposal across diverse domains and workflows, we present a
set of use cases that implement complex analysis scenarios using UTK.
We also report on a series of interviews with urban experts from urban
planning, architecture, and climate sciences. The work reported in this
paper can be summarized as follows:
• We introduce a high-level visualization grammar to facilitate the

development and sharing of urban visual analytics applications.
• We conceptualize a flexible way to specify data integration across

multiple spatial resolutions.
• We present the Urban Toolkit, a toolkit that facilitates the design,

authoring, and deployment of urban visual analytics applications.
• We report on a set of use cases inspired by previous works demon-

strating UTK’s ease of use, flexibility, and reproducibility.
• We present the feedback obtained from domain experts, reporting

their perspectives on UTK.

2 BACKGROUND

Urban environments are complex ecosystems where various agents,
events, and infrastructures dynamically and continuously interact. That,
coupled with the fast-paced rhythm of life, creates an intricate net of
relationships, correlations, events, and phenomena that can be sensed,
simulated, or modeled, generating a large-scale stream of data. Fol-
lowing previous works [17, 47], in this paper, we categorize the urban
data analysis targets into physical and thematic layers. Physical layers
represent the city’s physical aspects (e.g., buildings, road networks,

parks, water bodies) as geometries. Thematic layers store the urban
data from simulations, machine learning models, sensing initiatives,
or surveys. Figure 2 shows a thematic layer with sunlight access data
integrated with four different types of physical layers. Multivariate
datasets might require the use of abstract visualizations [39].

Traditionally, the decision-making process has relied on tools that
mainly utilize certain urban datasets defined over 2D maps, using a flat
city metaphor to represent the city environment [71]. More recently,
however, several works have explored alternatives that integrate the
built and the natural environment into the analysis process [47]. The
reason is that a large portion of urban data either relates to natural phe-
nomena (e.g., wind [9], noise [63]) or must be analyzed concurrently
with physical layers (e.g., road topology [36], buildings [53], side-
walks [31]). If this physical context is not considered, relevant insights
can be lost [10, 25]. For example, civil engineers analyzing landslides
or floods must integrate data from simulations and data representing
buildings, mountains, and street networks to assess the impact of new
disasters [19]. Urban planners, architects and community boards ana-
lyzing the impact of new buildings on surrounding ones must integrate
view, sky exposure, and building data to inform design and neighbor-
hood character [27]. These analyses are often performed by teams
with complementary objectives. In summary, at the core of a growing
number of urban analysis workflows is the fundamental integration
between physical (including 3D) and thematic data layers over multiple
spatial scales.

Designing and implementing interactive visualization systems for
exploring multiple layers of data poses several challenges. First, the
design process of an urban visual analytics application is naturally an
iterative one [58], but there have been few studies that guide the best
practices in the field [47, 48]. As a consequence, multiple alternative
designs have to be tried out before the final one is chosen. Second,
implementing visualizations and interactions, especially 3D ones, is
not trivial. In fact, even for developers with experience in computer
graphics technologies, a substantial effort is often necessary to iterate
over different design choices. Finally, while general GIS systems
provide analytical capabilities alongside the possibility of defining
dashboards, they are not extensible and have a long learning curve.
Therefore, a visual analytics framework that can support the exploration
of urban data by different stakeholders can greatly benefit from a highly
flexible approach. Such a framework can allow the stakeholders to
guide the analysis in any direction required without being constrained
by the limitations of the system. That is especially relevant with urban
data due to its intricacies and complex relationships. Moreover, it can
serve as a test bed for evaluation studies, facilitating comparison among
different visualization designs, integration schemes, and interactions.
Our overall goal in the present paper is to propose such a framework.

3 RELATED WORK

In this section, we review prior work in two areas. First, we review
prior work on urban visual analytics tools. Then, we review prior work
on grammars, toolkits, and authoring tools to facilitate the creation of
new visualizations.

3.1 Urban visual analytics

Visual analytics systems are important tools for urban data analysis [24].
However, these tools are often tailored to particular domains and de-
signed to analyze specific data layers independently. For example, pre-
vious works focused on transportation and mobility [28], planning [46],
environmental pollution [23], and public safety [29]. More closely
related to our work are tools that enable the integration and exploration
of multiple urban data layers. Chang et al. [15] proposed a system that
juxtaposes a 3D view of the city with an information view that displays
multidimensional urban data. Ferreira et al. [27] proposed a visual
analytics tool that integrates physical and thematic data layers for urban
development analysis. More recently, Ortner et al. [49] and Miranda et
al. [45] proposed systems that integrate 3D spatial and non-spatial views
for view impact and sunlight access analysis, respectively. Zeng and
Ye [70] proposed a system that integrates physical entities and design
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metrics to study urban vitality. Sun et al. [62] proposed to embed visual-
izations into the physical layer, while Speckmann and Verbeek [61] and
Angelini et al. [8] proposed map distortion techniques, with the latter
inspired by manipulations of volumetric data [21]. The integration of
layers is also explored in tools for disaster management [20, 65].

While these tools have shown valuable contributions in tackling
various urban problems, the vast majority is not publicly available. This
is a serious limiting factor for urban experts interested in using these
tools across different domains or regions. Moreover, even if they were
available, many rely on complex datasets that require laborious and
time-consuming steps to parse and clean. Popular commercial and
open-source GIS tools, while providing spatial analysis capabilities
and abstracting many of these challenges, do so to the detriment of
flexibility. They also offer limited support for the integration of spatial
and abstract visualization components, as well as the integration of
multiple physical and thematic layers.

UTK shares many similarities with previous efforts in urban visual
analytics. It offers a unified method to integrate diverse data layers
and supports multiscale analysis, as well as spatial (including 3D) and
abstract visualization components. By adopting a declarative visualiza-
tion grammar and streamlining data integration computations, we hope
to facilitate the use and deployment of applications by urban stakehold-
ers. We also hope to offer flexibility to visualization researchers so
that they can extend and adapt the system as needed while ensuring
reproducibility of outcomes to enable sharing of results across different
domains and regions.

3.2 Grammars and authoring tools for visualization
Urban visual analytics tools are systems specifically built to gain in-
sight into datasets and facilitate domain use cases. Because of their
complexity and design process, these tools are usually difficult to adapt
to other scenarios, datasets, regions, or scales. To facilitate deploy-
ment, flexibility, and reproducibility, general authoring tools have also
been adopted by urban experts, enabling the creation of visualization
interfaces, sometimes even removing the requirement to know how to
program. These works can be divided into three categories: template-
based tools that expose their functionalities through GUIs, low-level
libraries requiring programming knowledge, and high-level visualiza-
tion grammars. Given the ubiquity of spatial data, many of these tools
support the creation of maps-based visualizations.

In the first category, we have general template-based tools that
follow a drag-and-drop metaphor for authoring visualization inter-
faces [5, 6, 68]. While enabling the easy creation of visualization
interfaces, they are too general to support the complex data and an-
alytical tasks of real-world urban applications [71]. Their mapping
capabilities are also restricted to 2D spatial regions. In the second
category, we have low-level visualization libraries [1, 3, 12]. These
libraries offer some facilities for the creation of well-known charts, as
well as the freedom to create new visualization designs. deck.gl [2], for
example, offers functionalities to create layer-based spatial visualiza-
tions. However, it lacks support to integrate, interact and link multiple
layers and visualizations.

In the third category, we have high-level visualization gram-
mars [37, 42, 51, 56, 59, 60, 74], a compromise between the ease of
use of template-based tools and the flexibility of visualization libraries.
Rather than be constrained by templates or requiring the program-
ming of individual visualization components, visualization grammars
empower users to specify their visualizations through high-level abstrac-
tions. In doing so, visualization specifications and system components
are clearly separated. Given their ease of use and flexibility, these
grammars allow for quickly iterating over different visualization de-
signs. For example, with Vega [57], Vega-Lite [56], and Animated
Vega-Lite [74], users can author their own visualizations through JSON
files following rules that specify marks, encodings, and interactions
of the plots. DXR [60], VRIA [13], and Deimos [40] extend Vega-
Lite’s grammar to virtual and augmented reality, offering the ability
to create immersive visualizations within arbitrary (including urban)
environments, but without offering complex integration and interaction
between different data layers.

Our work is inspired by and extends the aforementioned high-level
visualization grammars. UTK, beyond offering a unified and stream-
lined framework to load and parse urban layers, also provides a con-
ceptual model to integrate physical and thematic layers across multiple
resolutions. This model is made available to the user through a declara-
tive grammar, enabling data transformation while abstracting low-level
implementation details.

4 UTK DESIGN GOALS

In this section, we synthesize the design goals that guided the devel-
opment of UTK. These principles were motivated by our previous
contributions and collaborations with urban experts [26, 27, 31, 45, 47]
and also by our goal of making the general tasks of designing, proto-
typing and sharing interactive urban visualizations easier. Recurrent
meetings with an urban expert (co-author of the paper) also influenced
the design and implementation of the toolkit. These meetings can
be divided into three phases. In the initial meetings, we focused on
establishing a shared vocabulary and on critically reflecting on the
limitations and tradeoffs of previous works. Then, we reflected on our
experience as visualization researchers, tool builders, and urban experts
and how our practices could be improved with a unified framework.
This process led to a set of design goals and capabilities for UTK. In
the final phase, as the framework took shape, we reflected on whether
the design goals were being met. Each broad design goal is divided
into fine-grained goals. In the follow-up sections, we refer back to
these goals when describing UTK’s grammar (Section 5) and overall
framework (Section 6). Section 7.2 reflects on the design goals.
(D1) Extensibility. The extensibility to create new visualization designs
and use these designs at different scales and aggregations is paramount
to urban visual analytics tools. Visual analysis of data happens through
an iterative process where insights are roughly derived through free
exploration and formulation of hypotheses. This freedom is impacted
by the system’s range of features and execution possibilities and the
amount of friction it generates during its use. The smaller the gap
between what the user conceptualizes as the next exploratory step and
the actualization of it, the smaller the friction [72]. Minimizing this
gap is not trivial, especially considering complex data such as urban
ones, and the relationship between multiple data layers. With this in
mind, it is important to offer the user the ability to create custom
visualizations that match, to the best extent possible, their exploration
model (D1.1). These models might also include complex operations,
such as aggregations or comparisons (e.g., computing the difference
between two or more development scenarios [14, 22]) (D1.2). It is
also important to abstract low-level tasks (loading data, rendering,
interaction, navigation) so that the user can focus on the actual tasks
that more directly impact the visual analytics process (D1.3).
(D2) Reproducibility. Reproducing an urban visual analytics system
is neither an easy nor sufficiently discussed task. Most of the previ-
ous works remain closed-source projects, to the detriment not only of
the broader visualization community but also of urban experts. These
systems are often a complex amalgamation of features, techniques,
models, and libraries. Therefore, even though the data is readily avail-
able in many cases, the development of the surrounding system is
time-consuming and full of intricate implementation details. Rather,
we should strive to enable easier collaboration between users and in-
crease the verifiability of future research, especially when considering
that many of these tools aim to influence decision-making in real-world
settings [67]. We should increase reproducibility in two major ways: (1)
Standardizing formats and inputs so that data can be easily packaged
and shared (D2.1), and (2) Treating the entire system as an artifact
that is shaped around a high-level specification defined by the user
(D2.2). Since the system is built from a specification, reproducing it
should be as simple as sharing a JSON file with supplementary datasets.
(D3) Flexibility. The principle of how flexible a tool is to be adapted
to other regions, scales, and data is also rarely considered. Most vi-
sual analytics contributions follow one-off collaborations with urban
experts and result in highly specialized tools to a single scenario. This
flexibility is seldom listed as a requirement for these tools. From a visu-
alization perspective, the effort needed to re-engineer a tool to work in
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Fig. 2: UTK supports the integration of thematic and physical layers at multiple scales through grammar-defined knots. For example, sunlight access
aggregated at a grid (a), ZIP code (b), and street level (c). It also supports thematic data over building surfaces (d).

another region or with other data might not be worthwhile if the proper
incentives are not in place (e.g., collaborators to use the tool, perspec-
tives towards a new publication). From an urban domain perspective,
extending tools often requires expertise in highly specialized areas of
computer science beyond what can be expected from an urban expert.
The status quo is where urban visual analytics tools are rarely adopted
by experts beyond the original collaborators that helped in the design
process. A well-designed framework must offer support to changing
region, scale, or data (D3.1) and offer solutions to minimize friction
and retooling while avoiding exposing low-level functionalities to
the user (D3.2).

5 A VISUALIZATION GRAMMAR FOR URBAN VISUAL ANALYTICS

With the aforementioned design principles in mind, we now present
the key concept behind UTK: a visualization grammar specifically de-
signed for urban visual analytics. The grammar allows for a detailed
and precise specification of the entire visualization interface: views,
camera position and direction (for spatial views), data layers (including
operations on top of them), and plots. The former is the primary compo-
nent of the grammar, and all other items are defined in the context of a
view. That being said, a view can be manipulated as any other item and
can be used to compose multiple or embedded views. Next, we detail
our grammar’s rules, grouping them into three categories: composing
views, data layers (including thematic, physical, layer integration, and
operation), and plotting data. For our abstract code description, we
follow Ren et al.’s notation [54], with := representing assignments, |
representing “or”, ? representing optional elements, + representing one
or more elements, and * zero or more.

5.1 Composing views
At the highest level of our visualization grammar, we have the element
views containing one or more (view, camera) elements of the visu-
alization. Each individual view element is defined by: a map; knots,
defining links between data layers (Section 5.2); and optional plots,
defining 2D plots (Section 5.3). Knots store the integrated data that
will be visualized in both maps and plots. Considering Figure 1 (d),
map will define the overall 3D map, knots will define the integration
between physical (i.e., buildings) and thematic (i.e., shadow) layers,
and plot will define the embedded radial plot.

views := (view+,camera+)

view := (map,knots,plot∗)

map := (camera_id,(knot_id,interaction)+)

camera := (camera_id,position,direction)

interaction := brush | pick

A combination of multiple view elements should enable the creation
of flexible juxtaposed visualizations [47]. If a camera is shared across
view, then the same camera transformations are used in the views.
Conversely, if different camera elements are used, we have a multi-
view interface. Finally, a map is defined as reference to a camera
and a list of tuples with a reference to a knot to be rendered and an
interaction. The brushing interaction allows users to select a subset

of a layer. On the other hand, the picking interaction allows the user to
select entire objects at once (considering the definition of an object at
the geometry level).

5.2 Specifying data layers
The capacity to load, integrate, visualize, and perform operations on
top of data layers sets UTK’s grammar apart. As previously mentioned,
UTK organizes layers into two types: thematic and physical layers.
Thematic data layers correspond to discrete measurements over the 2D
or 3D space. For example, noise complaints and crime occurrences
over 2D regions or shadow values over 3D building surfaces. Physical
layers correspond to the built or natural environment, such as buildings,
road networks, mountains, or regions of interest in a city, such as
neighborhoods and parks. The physical layer will be responsible for
defining all the geometric information that will ultimately be rendered
on the map, while the thematic layer carries the data attributes that
will be linked to the physical layer. Thematic layers must be defined
through a set of discrete points (coordinates). Physical layers, however,
can only be defined through a set of objects and their coordinates:

layerthematic := (layer_name,coordinates,color_scale)

layerphysical := (layer_name,objects,coordinates)

A color_scale will map the thematic data domain to a color range.
Both thematic and physical layers are composed of points. For the
physical layers, these coordinates can be grouped together to form a 2D
or 3D polygon (object), such as ZIP area. A key aspect in many urban
analytical workflows is the necessity to navigate and visualize data at
multiple scales (Figure 2). The separation of data through layers allows
us to cover these scales by simply specifying aggregations of thematic
layers over physical layers. For example, a macro-scale analysis can be
performed by joining a thematic layer with a physical layer describing
neighborhoods. Similarly, a meso-scale analysis can be performed with
a join between the thematic layer and a physical layer describing lots
and a micro-scale analysis with a physical layer describing buildings.

5.2.1 Integrating layers
UTK’s grammar allows for spatial joins to be performed through knots –
i.e., an explicit integration between thematic and physical layers. Knots
are high-level data integration operations that link thematic and physical
layers, and each view is composed of a series of knots.

knots := (knot⊗filter)+

knot := (knot_name,(integration_scheme)+)

filter := bounding_box | address

Each knot is defined as a series of chained integration_scheme el-
ements. An integration_scheme is defined as a spatial_relation
(e.g., nearest, contains, within) between either two knots or two layers
(specified by their names):

integration_scheme := ((layerin|knotin),(layerout|knotout),

spatial_relation?,operation?)

spatial_relation := nearest | contains ...
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Fig. 3: Integration between thematic and physical layers. (a) A knot is defined as the combination of a thematic and a physical layer through a spatial
relation (e.g., nearest, contains) and an aggregation operator (e.g., sum, mean) if the relationship is 1 : n. Each thematic data point will be mapped to
an individual physical layer coordinate (e.g., grid) and/or object. (b) For example, thematic data that is defined at a regular grid can be linked with a
grid defined at the building level. Aggregations can then be performed at a building cell level (c) or building footprint level (d). (e) The concept of
knots also allows for more complex data operations, such as the comparison between alternate planning scenarios.

A filter ⊗ operation performs a selection of items from knots taking
into account a bounding box or specified address. If the spatial rela-
tion is 1 : n (i.e., physical object contains n thematic data points), we
can specify an aggregation operation (e.g., mean), or a user-defined
JavaScript function (custom_function) that aggregates the values.

operation := aggregation | custom_function

aggregation := min | max | sum | mean ...

Knots provide a flexible and intuitive way to chain integration
schemes over multiple physical scales. For example, thematic point
data (e.g., taxi pickups) can be aggregated over physical object data
(e.g., ZIP codes) by specifying a knot with contains (i.e., a link be-
tween point and object) followed by an aggregation. This concept
also allows for more complex integration, such as the ones considering
sunlight access values defined at the surface of a building. For example,
consider the case shown in Figure 3 (b, c). In (b, top), an input the-
matic layer contains sunlight access values defined at a coordinate level.
A nearest spatial_relation creates a link between each thematic
coordinate and the nearest coordinate in the output building physical
layer (b, bottom). Aggregations can then be performed at building
cell level (c) or footprint level (d). Figure 4 shows the results of these
aggregations. Through these operations, UTK supports multi-scale
exploration (D3.1).

"name": "shadowAverage",
"integration_scheme": [  
{"spatial_relation": "nearest",   
"layer_in": {"data": {"name": "shadows",                         

"url": "shadows.utk"},                
"level": "coord"}   

"layer_out": {"name": "shadows","level": "coord"}},  
{"spatial_relation": "contains",   
"layer_in": {"name": "shadows","level": "coord"},   
"layer_out":{"name": "buildings","level":"objects"},   
"operation": "mean"}

]

"knots": [  
{    
"name": "shadowAverage",    
"integration_scheme": [     
{"spatial_relation": "nearest",      
"layer_in": {"data": {"name": "shadows",                               

"url": "shadows.utk"},                     
"level": "coord"}      

"layer_out":{"name":"shadows","level":"coord"}} 
   ] 
 },  
{"name": "buildings",    
"integration_scheme": [      
{"layer_in": {"data":{"url":"buildings.utk"}}} 

   ] 
 },

Thematic data (coords)
Physical data (coords)
Physical data (objects)

Building 
aggregation knot

Thematic data (coords)
Physical data (coords)

Cell
aggregation knot

Fig. 4: UTK abstracts spatial joins through the use of knots. Top: Knot
integrating thematic and physical layers. Bottom: Knot integrating a
thematic layer with the average per building.

5.2.2 Operations with knots

Knots also facilitate the specification of layer operations, supporting
D1.2. This is particularly important for what-if analyses in which
an urban expert must compare different built environment configu-
rations and evaluate the one that best satisfies certain criteria (e.g.,
building designs that minimize the amount of shadow on neighboring
parks). Figure 1 (left) presents an example of the shadow in two sce-
narios: with and without two buildings near a park in Chicago. The
difference (Figure 1 (c)) is shown in shades of blue. UTK’s gram-
mar enables such operations to be specified through the operation
element. For example, the knot (difference, (nearest, shadow0,
shadow1, shadow0-shadow1)) computes the difference between two
knots (shadow0 and shadow1). Note that since both knots are defined
over the same physical layer (i.e., buildings), the nearest element
is redundant. Operations can only be performed between knots with
the same physical layer, but their thematic layers can have different
resolutions. Since knots will map each thematic data point to an indi-
vidual physical layer coordinate (through the integration_scheme),
this guarantees that there will not be any mismatch between knots.

5.3 Plotting data

UTK’s grammar also facilitates the creation of 2D plots, both linked to
the view or embedded in the 3D environment. Both types have been
shown to be useful in our previous evaluations [47], and support D1.1.
For the specification of these plots, we enable the insertion of Vega-
Lite’s specifications into one defined according to UTK’s grammar. In
doing so, we leverage a wealth of easy-to-use visualizations that have
been proposed by the Vega community at large (D1). A UTK plot is
defined as:

plot := (vega_spec,(knot_name,arrangement)+,

interaction?,args?)

arrangement := linked | embedded

embedded := surface | footprint ...

where vega_spec is a Vega-Lite specification. Two types of arrange-
ments are supported. In a linked arrangement, plots are displayed
on top of the 3D map. In an embedded arrangement, plots are embed-
ded directly into the 3D map. Two different embedding arrangements
are supported: surface, where a 2D plot is displayed on the surface
of a physical layer, and footprint, where a 2D plot is displayed on
the horizontal cross-section of a physical layer. Plot parameters (e.g.,
number of segments in a radial plot) are also defined in the grammar
(args) and passed to both Vega-Lite and to the frontend (to compute the
intersection between building and horizontal cross-section). Figure 5
shows examples of these possibilities.
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  ...  
"plots": [    
{      
"plot": {        
"mark": {"type": "arc"},        
"encoding": {           } 

     },      
"knots": ["shadowBuilding"],      
"arrangement": "footprint",      
"args": {"bins": 32} 

   } 
 ]  

vega-lite spec.

  ...  
"plots": [    
{      
"plot": {        
"mark": "bar",        
"encoding": {           } 

     },      
"knots": ["shadowBuilding"],      
"arrangement": "surface",      
"args": {"bins": 32} 

   } 
 ]  

vega-lite spec.

  ...  
"plots": [    
{      
"plot": {        
"mark": "bar",        
"encoding": {           } 

     },      
"knots": ["shadowAverage"],      
"arrangement": "linked" 

   } 
 ] 
 ...

vega-lite spec.

Fig. 5: Different types of physical and thematic layers integration. Left: linked view showing the distribution of sunlight access. Middle: embedded
surface plots showing the distribution of sunlight access over building surfaces. Right: embedded footprint plots showing horizontal cross-section
distribution of sunlight access.

6 UTK: A TOOLKIT FOR URBAN ANALYTICS

UTK is a general toolkit for urban analytics that uses the previously
introduced visualization grammar to create new map-based visualiza-
tions. However, given the complexity of urban data and workflow, UTK
also offers data loading and parsing capabilities. Our framework can
then be divided into two modules, detailed next.

6.1 Backend module
UTK’s backend is a collection of data management functionalities for
loading, saving, transforming, and aggregating the data into formats
appropriate to the frontend. Its functionalities are exposed through a
Python API that can be accessed in computational notebooks. In line
with D1.3, many of the time-consuming aspects of urban analytics are
abstracted by this component in such a way that, in order to have the
data for an initial urban interface, the user only needs to:
import utk
uc = utk.OSM.load(‘Chicago,USA’,layers=[‘buildings’])
uc.save(‘chi’)
uc.view()

This will download and parse OpenStreetMap’s (OSM’s) building
data for the city of Chicago and open a web browser with a default
grammar specification to visualize the data. UTK supports a wide range
of data that model physical and thematic aspects of a city. To ensure
consistency, the physical layer is immutable in the system, meaning that
all operations done using knots only transform the thematic layer. The
immutability of the physical layers adds stability to the system since
the users do not need to be concerned about ensuring that the operations
maintain the mapping of the physical/geometric representations. The
layers can be loaded from multiple data formats, including Pandas’
DataFrames, GeoJSONs, shapefiles, and CSV files, supporting D2.1.
Physical layers. We support four types of physical layers:
OpenStreetMap data. OSM provides spatial data for a large number
of cities. The data, however, is specified as tags and elements that
represent a number of urban features, such as parks, water bodies,
and buildings. Such data must be parsed to be used by rendering and
visualization pipelines. With UTK, a user can specify a region of
interest through a bounding box, polygon, or address (similar to the
example above). UTK will automatically download and parse the data
into UTK-ready layers and formats, such as 3D triangle meshes for
OSM buildings, 2D polygons for OSM parks, and network data for
street networks. The framework also supports the Protocolbuffer Binary
Format – a data format used to store OSM data locally.
Polygons and triangle meshes. UTK supports both 2D polygons as
well as 3D triangle meshes representing physical features, such as
neighborhoods, ZIP codes, and buildings.
Network data. Our framework also supports street and footpath side-
walk data that usually describes a graph where vertices correspond to
street corners and edges to road or sidewalk segments.
Grid. UTK supports a fine-grained grid that covers the city and/or the
surface of buildings. These grids can be used to aggregate and overlay
thematic data over surfaces.

Thematic layers. UTK can load data where each point is defined by
a latitude, longitude, height, and value tuple. In practice, any value
attributed to a coordinate in the 3D space can be loaded.

As an example to showcase UTK’s flexibility in using data from
previous efforts, we have incorporated Miranda et al. [45] shadow
accumulation algorithm and also made it available via our Python API.
For each surface point in the urban environment, the computed dataset
contains the accumulated shadow over a user-specified period of time
– i.e., how much of the view to the sun was occluded considering the
accumulation period. That being said, all data used in the grammar
specification must follow a two-step loading process. The first step
involves preprocessing the supported data so that they conform to a
format accepted by UTK. The second step establishes links between
the different layers to create knots, as specified in the grammar. The
.utk files are the result of this two-step process.

6.2 Frontend module

UTK’s web interface is composed of two components: A JSON editor
and a map view (Figure 6). The JSON editor allows for the editing,
saving, and loading of visualization specifications through an embedded
JSON editor. We use JSON for its conciseness and portability (D2.2).
As the user adds new views, layers, knots, plots, or changes parameters
in the JSON file, the map view is updated. If the user navigates the 2D or
3D environment and changes camera parameters, the new information
will be saved in the JSON file. The map view will also display the
linked and embedded plots specified using Vega-Lite’s grammar.

When specifying layer elements, the user defines a path to the .utk
file as the name of the layer. These references can only be made inside
the layerin element of the integration_scheme. This is the only
place in the specification where the user can make direct references
to locally stored data. Otherwise, the data is only manipulated as
knots. This allows for isolation between data and interface so that the
interpreter can guarantee consistency of operations.
Data interaction. Interactions are supported on the map and on the
2D plots by specifying an interaction for map and plot elements,
respectively. Selected entities in the 2D plots are highlighted on the
map and vice versa. This link between plots and physical elements
is facilitated by the knots. A reference to a knot is required when
creating a new plot – hence the data ingested to Vega-Lite is going to
be dictated by how the knots are created. For example, if a knot is
aggregating data by ZIP area, the data passed to the plot will be at the
same resolution. And if a bar chart is displayed, each bar element will
have a 1 : 1 mapping to a particular ZIP code. A selection in the chart
will then highlight the appropriate area.

6.3 Implementation & analysis workflow

Implementation. The UTK framework has been developed using a
client-server architecture. UTK’s frontend uses React for user inter-
faces and WebGL for the 3D map component. UTK’s backend was
implemented using Python. For reverse geocoding and to access OSM
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Fig. 6: UTK’s frontend has a built-in JSON editor, and modifications to
the JSON file are visualized in the map view. Here, we visualize the
spatial distribution of noise complaints in Manhattan, with a linked parallel
coordinate plot showing other urban datasets.

data, we use GeoPy and Overpass, respectively. Spatial joins and
aggregations are performed using Geopandas’ functionalities.
Analysis workflow. Figure 7 presents a high-level overview of UTK’s
architecture and the expected ways that the user can interact with both
UTK’s frontend and backend. If no data was previously created, in the
first step, the user should set up the UTK environment (Figure 7 (right)).
This involves creating a new Jupyter Notebook and specifying an area
of analysis using UTK’s Python API. After that, the physical data layers
will be created and persisted as .utk files. Even though the framework
already offers a number of data functionalities, users can also make use
of other libraries and load their output into the framework as long as
the data adheres to UTK’s formats. Having a separation between the
frontend and the backend enables users to go back and forth between
UTK’s Python API and the grammar visualization functionalities. After
the data is created, the user can visualize it using the frontend and use
UTK’s grammar to create the visualizations. When deploying to the
web, users can optionally hide the JSON editor and only expose the
map view. A tight connection between visualization and data through
knots ensures that the user has enough flexibility to iteratively modify
the data in Jupyter Notebooks and easily visualize the new data without
having to worry about setting up the environment from scratch (D3.2).

7 EVALUATION

To demonstrate UTK’s capabilities, flexibility, and ease of use, we
present examples motivated by real-world problems and inspired by
previous collaborations with architects and urban planners. Then, we
report on a series of one-hour semi-structured interviews with five
different urban experts, where we asked them their perspectives on
UTK’s usability, limitations, and potential extra features to be added.

7.1 Example gallery
Next, we highlight examples showcasing how UTK can be used in
different analysis workflows, motivated by the needs of urban domains.

7.1.1 Example 1: Building energy efficiency
In this use case, we are exploring buildings in Chicago’s Near North
Side area to identify locations in each building that are the most energy
efficient in terms of receiving more shadows during summer than winter.
As noted in previous studies [35,66], more shadows during summer can
lead to cooler internal temperatures, and more sunlight during winter
has the opposite effect. In both cases, shadows can contribute to a lower
dependency on AC. We start this analysis by using UTK’s backend to
create a physical layer with Chicago’s buildings and twelve thematic
layers with the accumulated shadows for a day in each month of the
year. Creating these layers is simple, requiring less than 10 lines of
Python code. We then move to UTK’s frontend and, using the JSON
editor, we create twelve knots, each linking the physical layer with a
thematic layer. To model the trade-off between summer and winter
shadows, we create a new knot that averages the accumulated shadows,

UTK vis spec.
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New / updated
specification UTK setup

UTK API
(Python)

Database

Backend

Data
wrangling

Save / load

Socrata
Geopandas
Simulations

OSM
.csv files

JSON

.utk

User

Query

Data

Fig. 7: Overview of UTK’s architecture and how the user interacts with
the frontend and backend components of the framework.

with weights depending on the month (see Miranda et al. [45] for the
weights). Again, the concept of knots provides an easy abstraction
for averaging the accumulated shadows. Note that UTK’s expressivity
allows us to chain aggregations. We define a separate knot for each
month’s shadow and perform an operation over knots to get the final
result, as shown in Figure 1 (d, top).

UTK also allows us to easily integrate 2D and 3D visualization
to minimize occlusion problems. Figure 1 (d, bottom) highlights the
specification of an embedded radial plot that displays the data distri-
bution along the horizontal cross-section (footprint), with shades of
blue denoting facades that have more positive than a negative shadow,
according to our weighted average. One could also use iterate over
different types of plots, as shown in Figure 5. With minimal effort in
terms of navigation, it is possible to assess that the selected buildings
have very different cross-section profiles. By analyzing data at the
building level, experts can gain insights into the unique characteristics
of individual buildings and their surrounding environments, allowing
them to develop targeted energy consumption strategies. Moreover,
the analysis can reveal which floors and sides of each building have
been exposed to more summer shadows on average. Through the data
analysis of building and land use, experts can also identify candidate
areas for urban farming and green infrastructure [50], promoting more
sustainable and resilient urban development.

7.1.2 Example 2: Historic preservation

Preserving historic landmarks is key to the preservation of cultural
heritage. One of the important but often overlooked causes of build-
ing deterioration is the shadow cast by neighboring buildings [41]. In
Boston, the shadow cast by new developments has long been the subject
of public debate. In this case, we will use UTK for what-if or alternate
scenario testing. We have chosen the John Hancock Tower in Back Bay,
Boston – a 60-story skyscraper. We would like to measure the accu-
mulated shadows cast by Hancock Tower on the 146-year-old Trinity
Church and the Public Garden. We start by using UTK’s backend to
download OSM data for Boston and perform the shadow simulation
for winter and summer. Next, using UTK’s frontend, we create four
knots, integrating physical and thematic layers for summer (with and
without the tower) and winter (with and without the tower). Here,
UTK’s capabilities in computing differences between knots can help
compute the amount of accumulated shadows cast by the tower. Consid-
ering two knots with the computed shadow for the current and alternate
states, we can simply create a new one and compute their difference:
knotdiff=(diff,(knots0,knots1, nearest, knots0-knots1))

Figure 8 (a) shows the current state of accumulated shadows during
summer and winter (the number of accumulated minutes is shown near
the color scale). The right panel depicts the amount of shadow that
would disappear with the removal of the tower; in other words, UTK
enables us to easily extract the amount of accumulated shadow cast by
this specific building. We can see from the figure that during summer,
the orientation of the building resulted in a low amount of accumulated
shadow cast over the church compared to the total accumulated shadow
cast by other buildings in its vicinity. During winter, the eastern side
of Trinity is more severely shadowed by the tower. As illustrated in
Figure 8 (b, top), during winter, the shadow cast by the Hancock Tower
also spreads over the Public Garden, located miles away.
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Fig. 8: Evaluating shadows cast by a skyscraper in Boston. (a) The
current shadow situation during winter and summer. (b) Amount of
shadow cast solely by the skyscraper – i.e., shadow that would disappear
with the removal of the building. The color scales show the accumulation
period (360 minutes during winter and 480 minutes during summer).

7.1.3 Example 3: Neighborhood signatures
Cities are often described by their most prominent features, such as
cultural diversity and economic activities. Recognizing the unique
characteristics of each neighborhood is crucial in planning and resource
allocation. Given that, identifying patterns and understanding the dy-
namics between livability measures require analyzing datasets across
scales [27].

In this example, we will use eight datasets from the NYC Open Data
portal [4] for neighborhood characterization: crime and noise reports;
restaurant, parks, and subway locations; sky exposure; school quality
reports and taxi pickups. We start by using the backend to parse the
CSV files from the identified datasets and create the thematic layers.
In this step, we also use the backend to download OSM data for NYC
and parse shapefiles with the neighborhoods. Using the frontend, we
then specify knots that aggregate thematic layers over physical ones.
For example, to create thematic and physical layers:
layernoise=(noise,coords), layerzip=(zip,objs,coords)

Aggregations and joins can be performed through knots that link
physical and thematic layers. We then create a knot with a single
integration scheme between layernoise and layerzip, specifying that
noise complaints within ZIP areas will be added together:
knotnoise=(noise2zip,(layernoise,layerzip, contains, sum))

We can then specify a Vega-Lite parallel coordinate plot that visual-
izes the data from knots created for each of the previously mentioned
dataset. This creates the interface shown in Figure 6 (from a UTK
specification with fewer than 200 lines). The map shows a neighbor-
hood in Manhattan with the most noise complaints. Looking at other
indicators, we can see that it has a low sky obstruction rate, signaling a
lower density neighborhood with relatively low access to public transit.
Considering that it does not have a large number of taxi pickups and
it is not a destination for food services, this elevated number of noise
complaints seems alarming. Further investigation into the types of com-
plaints is required to address the concerns of its residents. This insight
was easily extracted from simple interactions with UTK, enabling users
to spend more time on analysis and exploration.

7.1.4 Example 4: Tripping risk in Downtown Boston
Sidewalk surface is among the most important factors in determining
the risk of outdoor falls [64]. Slippery surfaces pose a major challenge
to pedestrians navigating the outdoor environment in cold and snowy
weather [18]. In the absence of sunlight, and when the temperature
suddenly drops, a transparent and slippery form of thick coating of
ice, known as black ice, can form on top of pavements. In general,
the temperature of the surface and the type of surface material are key
contributing factors to black ice formation [33].
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Fig. 9: Knot’s custom operator specifies whether a sidewalk is dangerous
or not based on its surface material and shadow.

In this example, we use surface material data [31] together with
shadow accumulation data aggregated at the sidewalk level to calculate
a risk measure for identifying places that can pose a higher risk of
falls in cold seasons [32]. Our risk measure is calculated using three
factors of interest to urban accessibility experts: the percentage of
bricks, the percentage of granite, and the accumulated shadow data
for a day in December (winter solstice). UTK’s backend was used to
create a physical layer from a shapefile with sidewalk geometry and
thematic layers from our shadow simulation and from a CSV file with
the sidewalk material data. We classified dangerous sidewalks as the
combination of two knots, one with accumulated shadow and another
one with the sidewalk material. We considered dangerous sidewalks as
the ones with bricks and concrete, and more than half of the time under
shadow during the accumulation period. This can be easily represented
through the operation:
knotdanger = (danger, (knotshadow, knotmat,nearest,op))
op=((mat==‘brick’||mat==‘conc’) && shadow>0.5?0:1)

We chose Boston’s downtown and North End neighborhoods for their
historic fabric and because they are considered popular destinations.
Figure 9 shows our tripping risk map. UTK allows for easy iteration
over multiple parameters through a simple combination of knots. The
operation can be adjusted based on user’s preferences and city-scale
fall risk models by simply editing the JSON specification.

7.2 Reflection on design goals
In terms of extensibility, UTK provides the ability to create custom
plots and integrate them into map-based visualizations. Our examples
show two different possibilities (radial plot, parallel coordinates) of
juxtaposed and embedded plots, satisfying D1.1. Examples 1 and 4
highlight the use of knots to perform operations across layers (D1.2).
Example 4, specifically, goes toward tackling a design consideration
recently highlighted by Saha et al. [55], i.e., facilitating the blending of
datasets for multivariate analysis. Throughout the examples, UTK ab-
stracted many low-level steps involved in urban data analytics, namely
downloading and parsing OSM data, joining data for visualization
purposes, rendering, and navigation, satisfying D1.3. From an imple-
mentation perspective, UTK’s backend and frontend follow a modular
approach, ensuring that new functionalities can be added without the
need to modify the core code.

For reproducibility, the examples highlight UTK’s support for stan-
dard formats, namely CSV files in example 3 and shapefiles in example
4, supporting D2.1. Also, rather than relying on cumbersome deploy-
ments, visualizations can be shared through small and concise JSON
files (D2.2). Considering its flexibility, UTK also provides a suite of
data functionalities that facilitate porting use cases for other regions
(D3.1). Examples 1 and 2 could be easily replicated in other cities just
by changing the layer creation step. Similarly, new datasets could be
added to example 3 or other assessment factors could be considered
in example 4. The examples also highlight analyses at different scales
(sidewalk, building, and neighborhood). With UTK, visualizing the
basic layers of a city requires only a few lines of Python code to import
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the data, along with a JSON file specifying the desired visualization.
UTK abstracts all necessary data transformations, enabling users to
focus on the analytical aspects of their work without worrying about
the technical details (D3.2).

7.3 Experts’ feedback

To gain domain perspectives into several aspects of UTK, we inter-
viewed five urban experts from different specialties, roles, and levels
of seniority. None of the experts are co-authors in this paper. We
asked the experts to asynchronously interact with UTK by reading
a quick start document and three tutorials highlighting different use
cases. Then, we proceeded to a semi-structured interview where the
expert was asked questions regarding UTK’s features, limitations, and
usability. We interviewed: two climate scientists with experience in
climate and urban morphology based in North America (P1 and P2),
an urban planner with experience in urban micro-climate based in Asia
(P3), an architect and urban planner interested in the analysis of urban
morphology (P4), a geographer and GIS expert that worked as the
deputy secretary of urban planning for a large city in South America
(P5). P5 has an MSc degree, and the others have PhDs.
Use cases. P1 and P2 were primarily interested in using UTK for
heat vulnerability analysis. They mentioned it would be interesting
to “integrate temperature, humidity, and shading for city-scale analysis
and compare seasons.” They were also receptive to how UTK moves

“away from static maps and enables alternate scenario planning, ideal
for climate change resilience.” Finally, P1 mentioned how UTK “facil-
itates engagement not only across disciplines, but also across urban
communities”, as certain outcomes can “target users with different
levels of expertise.” P1 mentioned that the visual analysis could be

“authored by an expert, but delivered to a community through a web
portal, hiding the grammar from them.” One concrete example was the
possibility to create “hourly temperature shadow maps for communities
to minimize heat exposure.”

P3 was responsive regarding the multi-scale capabilities offered
by UTK, enabling “switching contexts and scales in a fast way” and
the “exploration of how different sides of buildings are exposed to
sunlight.” In their practice, P3 uses temperature and sky view factor
simulations to compute the pedestrian level of comfort. They mentioned
that UTK’s “capacity to aggregate data and perform a difference of the
results is especially useful to assess the impact of different parameters
and conditions of the simulations”. P4 pointed out the potential for
collaborative analysis using the framework: “researchers could easily
share their visualizations instead of cumbersome GIS files.” They
mentioned that making the fast shadow accumulation computation
available could lead to major use cases given that it’s “easy to use
and integrate into existing workflows.” Moreover, noise and property
management were brought up as potential use cases. P5 mentioned that
the tool is ideal for analyzing urban morphology and that “3D makes
it more attractive to users and a great tool for communication.” They
mentioned how, for urban land use decisions, “3D is important to assess
possible new developments and communicate that to stakeholders.”
Usability & adoption. We asked the urban experts how easy it would
be to integrate UTK into their current practices. They all mentioned
that they see value in the tool. P3 mentioned that, by adopting 2D
and 3D metaphors, the framework can “cater to a broader audience,
as opposed to just supporting one or the other.” Regarding UTK’s
usability, P4 mentioned the need for more intuitive ways to interact
with the physical layer: “it would be helpful to click on a building
and interactively change its height.” P4 was also ambivalent regarding
having access to the grammar, pointing out that “learning what JSON I
can write takes time”, but appreciated that they “don’t have to work
with too many tools and menus.” P5 was also more cautious, saying
that “it would require training to educate people on the grammar, with
examples to showcase its use.” But on the other hand, “GIS tools
are complex and cumbersome, lightweight solutions would be very
welcomed.” They mentioned that the “usability of current GIS tools
is a problem and experts sometimes resort to limited toolboxes such
as Google Maps / Earth for their vis.” And that “even though data is
being made available, visualizations are usually very simple, whatever

is supported by Google Maps.” P5 highlighted that “UTK could easily
plug into a data lake to visualize bus data, with operational indicators
for the city.” Moreover, it provides a “lightweight approach to visualize
cities in 3D, good for both city management and communication.”

7.4 Comparison with existing tools
In this section, we provide a comparison between UTK and popular GIS
tools, namely ArcGIS and QGIS. One of the drawbacks of these tools
is the overwhelming number of operations and toolboxes. For instance,
ArcGIS Pro has more than 200 different operations in only one of its 41
toolboxes, each having its specific requirements for data and processing,
and according to previous work, users often struggle to find the right
one for their task [73]. UTK, on the other hand, offers a concise
specification that is easy to learn and modify. The grammar-based
framework makes it possible to perform a wide range of visual analytic
tasks with our grammar elements, offering a compelling alternative to
traditional GIS tools. The ability to define custom links between layers
summarizes a range of geospatial operators into a single functionality.

Another limitation of existing tools is the lack of support for repro-
ducible and shareable formats in many of their toolboxes. To reproduce
an analysis done with those operations, a user needs access to the tool,
which might require costly licensing and a cumbersome installation
process. In contrast, UTK saves the visualization and processing spec-
ification in human-readable JSON files. By building their own chain
of operations, users can easily iterate designs, ensuring more trans-
parency and reproducibility of their work. The self-contained nature
of grammar-based visualizations allows for easier collaboration, shar-
ing, and replication of visualizations. ArcGIS and QGIS also have
limited capabilities in creating plots and embedding them into phys-
ical layers [34]. UTK provides customizable plotting functionalities
(through Vega-Lite), as well as the ability to manipulate plots with
flexible integration options (e.g., embedded on building surfaces [47]).
Beyond embedding plots, UTK directly links them to the underlying
data source, enhancing interactivity and contextualization.

8 CONCLUSION AND FUTURE WORK

This paper presents the Urban Toolkit, a flexible grammar-based declar-
ative framework for urban visual analytics. UTK streamlines many of
the usual data tasks common in urban analyses and, as shown in our
use cases, makes it possible to prototype complex analysis scenarios
relatively easily, in line with what has been recently highlighted by
Saha et al. [55] and Ziegler and Chasins [73]. We envision that our
toolkit can popularize the process of authoring urban visual analytics
systems, as well as facilitate user studies for a better understanding of
the benefits of 2D and 3D visualizations in urban environments [47].

While promising, our current implementation presents some lim-
itations. As shown in the examples throughout the paper and the
accompanying video, UTK can leverage data concerning different lay-
ers from reasonably large portions of a high-density urban area (e.g.,
Manhattan with approximately 3 million triangles). However, high-
resolution geometric data can also make matching operations between
physical and thematic layers computationally expensive. As of now,
our implementation uses Geopandas to perform spatial joins, a library
that was not optimized for interactivity. We intend to investigate how
to integrate more efficient algorithms and data structures to enable
higher resolution physical models and thematic data, as well as faster
joins [26]. Furthermore, UTK’s support for temporal data is limited. In
our current implementation, different knots can be used to aggregate
data referring to different time ranges, but that is not scalable. We
intend to investigate extensions to the grammar and the incorporation
of timeseries data structures to better handle temporal data.

Since urban planning is tightly linked to simulations for scenario
planning, we plan to incorporate other simulation capabilities, such as
wind and noise, and make them available for researchers and practi-
tioners through our API. In addition, we plan to conduct a controlled
user study to evaluate ease-of-use, as well as investigate the deploy-
ment of applications in different platforms, such as immersive environ-
ments [13, 60]. By making UTK public, we hope to pave the way for a
more robust ecosystem of open tools for urban visual analytics.
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