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Abstract
This dissertation presents algorithms and techniques that are applicable to the radiosity method
for computer graphics. First, radiosity and relevant background information is introduced. The
reconstruction problems with uniform meshing and their solutions are discussed. This is fol-
lowed by a description of an implementation of a parallel progressive refinement algorithm and
its use in the CAVE Automatic Virtual Environment (CAVE). A new approach to the meshing
problem is presented with a parallel planar projection discontinuity meshing algorithm. This al-
gorithm uses perspective projection, hardware assisted visibility determination, and constrained
Delaunay triangulation to solve problems with uniform meshing. The algorithm makes use of
available hardware resources to a prior: determine shadow boundaries that are essential to
computing the discontinuity mesh. This method can be implemented with a minimum of com-
monly available graphics hardware and capabilities, namely Z-buffering and orthographic and
perspective projections. Significant speedups can be obtained with systems that support stencil
masks or Z-buffer through hardware. Finally, results from the parallel renderer in conjunction

with the mesher are presented along with future items of research in this area.

ix



CHAPTER 1

INTRODUCTION

1.1 Physically Based Lighting Models

Computer graphics rendering involves many tradeoffs between implementation and the per-
ceived realism in the final image. Early computer graphics systems were limited by hardware
and software algorithms and strove to give a flavor of realism in the scene rather than an exact
representation. As hardware improved and new software techniques were developed it was re-
alized that it would be possible to generate quite accurate imagery, perhaps with such realism
that the image would be indistinguishable from a photograph of the real thing. Photorealism
became a clarion for rendering. In order to achieve this goal the physics of light behavior in
an environment needed to be understood. This led to the separation between local and global
illumination models. Local illumination models are concerned with the shading of a surface at a
point independent of the interaction between neighboring surfaces. Global illumination models
shade a scene by taking into account the interaction of light between each object (surface) and
every other object (surface) in the scene. Global illumination models are considered physically
based lighting models because they account for the propagation of these effects throughout the
environment. The first such application of a global illumination model is the now-famous ray

tracing method developed by Whitted [31].



Early on in computer graphics it was observed that the contributions to the perceived illu-
mination of a surface were due to different types of light-reflecting effects. Some of the light
reflecting from a surface was specular in nature, and some of the reflected light was matte,
or diffuse. This classification of reflection into two categories does not completely describe all
aspects of light reflection, but does account for the predominate features of light behavior that

govern how we perceive typical objects in everyday life.

The two major physically based lighting models that arose out of the study of specular and
diffuse light reflection are ray tracing and radiosity. Classic ray tracing concentrates on handling
the specular nature of light transport using the physics of optics. Classical radiosity seeks to
model the interreflection of the diffuse component of light using an energy balance equation

and considering all surfaces as ideal Lambertian reflectors.

This dissertation presents two areas of work in the radiosity method. These are one, a parallel
implementation of a commonly used algorithm which solves the radiosity matrix. This matrix
and the parallel implementation will be discussed in greater detail in chapter 2 and in chapter
3. The other and main thrust of original research presented in this thesis is the development
of a new meshing technique to identify shadow boundaries. This process is often referred to
as discontinuity meshing and the technique developed here is called, parallel planar projective
discontinuity meshing (quite a mouthful!). Meshing is the process of slicing and dicing the
polygons that comprise the geometry of a scene in order to solve a discrete formulation of
radiosity (see section 2.2). Meshing and discontinuity meshing will be discussed in chapter 2

and the parallel planar projection method will be detailed in chapter 4.



CHAPTER 2

BACKGROUND

Much has been written about the radiosity method of lighting for computer generated scenes
and objects. Good basic references are [4], [24], and [10]. The following sections will present
some of the material found in these references as well as newer material as it pertains to the
problems at hand. Sections 2.1, 2.2, and 2.3 will introduce the mathematical formulation for
the radiosity method and provide background material on the various aspects of radiosity for
computer graphics. Section 2.4 will introduce meshing which is the area in which this thesis

presents original research (see chapter 4).

2.1 The Radiosity Formulation

Radiosity has its roots in the field of radiative heat transfer [20]. Its use for computer graphics
dates to 1984 and 1985 when researchers at Cornell University and at Fukuyama and Hiroshima
universities, in the United States and Japan, used it to model the interaction of the diffuse
component of light in a closed environment, respectively [11] [18]. As the method evolved,
it was unified with the particle transport theory, finite element methods, and the rendering

equation [15].

Although the original derivation of radiosity for computer graphics was not done so, the radiosity

formulation can be derived from an energy balance equation [24]:



L($,90,¢0) = Le(x7907¢0) +/pbd($,00,¢0,0,¢)Li($,0,¢)COSde (21)
N———— S—— \Q _

total radiance  emitted radiance

reflected radiance

Where,

L(x,0y,¢0), is the radiance leaving point x in direction (6, ¢y );

L.(x,60y, ¢o), is the emitted radiance from point x and is a property of the surface;

L;(x,6,¢), is the incident radiance impinging on point z from direction 6, ¢;

(2 is the set of directions (#, ¢) in the hemisphere covering the surface at point x;

Poa(x, 0o, Po, 0, @); is the bi-directional reflectance distribution function (BRDF') describing

the reflective properties of the surface at point x;

Equation 2.1 is a form of the rendering equation.

Classical radiosity makes additional assumptions [10]:

1. All surfaces are opaque.
2. Surfaces are small.
3. The radiosity (energy arriving) across a surface is constant.

4. The irradiance (energy departing from) across a surface is constant.



To convert to the standard form, we can use the relation, B = Lw. Additionally a visibility
term is introduced in order to allow the integration to occur over the entire scene, but taking

into account only those surfaces visible from point x:

1 : if x and y are mutually visible
Viz,y) = (2.2)

0 : otherwise

Equation 2.1 can be simplified by moving the reflectance term outside the integral (since the

radiosity method assumes diffuse energy transfers only [11] [24]).

These simplifications yield the following:

0 cos @'

B(x) = Bx) +pule) | BV ) dy 23

r2

2.2 Discretization

Discretizing is the process of breaking up a problem into N discrete pieces and is necessary in

order for the radiosity solution to be computationally tractable.

The integral in Equation 2.3 is a double integral over all the surfaces, S, in the environment. If

the environment is broken into N sub-surfaces, or patches, see Figure 1, we have the following



discretize
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Figure 1. Discretization of radiance across a surface

formulation:

Ba) = Bl)+ i) Y. [ B3

r?

Viz,y) dy (2.4)

Another simplifying assumption is that the radiosity, B(y), is constant over each patch. Al-
though this is not a requirement, it does serve to simplify the calculations. In practice both
(constant) zero order and higher order basis functions representing the radiosity of a patch
have been used. Higher order techniques such as the Galerkin method are an ongoing area
of research in radiosity. This thesis will not cover higher order methods further, inviting the

curious reader to peruse the literature for details [32].



For classical radiosity, the reflectance, pgq, is considered to be constant across a patch’s surface.

Likewise the emittance, F;, is considered to be uniform.

These assumptions result in the following equation:

N
1 cos 6 cos 0’
Bi=Ei+p; », BJZ /xep' /yep. — "V (z,y) dydx (2.5)

2
i=1 wr

Or in a more concise format:

N
Bi = Ei + Pi Z Fi]‘Bj7 (26)
Jj=1
where,
1 cos 8 cos b’
F,,=— ——V{(x,y) dyd 2.7
= [ ] TRy v 2.7

In matrix form:



1 —Pan —P1F12 —P1F1n W B, E,
—PQF21 1- P2F22 s _p2F2n B, E,
= (2.8)

2.3 Form Factor Computation

Solutions to the integral in Equation 2.7 are varied. Analytic solutions exist and a closed form
solution to arbitrarily oriented polygons can be found in [21]. In practice most form factor

computation is done numerically using one of two methods: Hemicube, or Ray Tracing.

2.3.1 Hemicube Form Factors

In the hemicube method the form factor between patch ¢ and patch j is computed using available
display hardware. Using the Nusselt analog [25] and substituting a half cube for a hemisphere,
the form factor is computed by projecting the scene onto the hemicube faces. Each face is
divided up into small elements, called, “pixels” (an unfortunate use of the term since it can
easily be confused with the use of pixel for “picture element” on a monitor). Each element is

assigned a delta form factor value:

AF,, AA, (2.9)

z':7r\/$?—i-zi2—i-1



or,

AF, =—— = AA, (2.10)

The viewpoint is placed at the center of patch ¢ and the rest of the scene is drawn from the
perspective of the viewpoint. The polygons are identified with a special color. The elements
are scanned via the Z- or frame buffer. Form factors are summed by adding the corresponding

delta form factor for that element.

2.3.2 Ray Tracing Form Factors

Since the form factor calculation is essentially a visibility calculation, ray tracing methods lend
nicely to this part of a radiosity computation. Form factors are determined by casting a set
of rays from the source patch, i, to the destination patch, j, and computing the percentage
of rays that hit the destination patch. One advantage to using ray tracing over the hemicube
method is a reduction in aliasing. Hemicube suffers from the possibility of missed objects which
fall between intra-pixel spacing. In hemicube, these elements will not be sampled. Ray tracing

alleviates this problem by casting sample rays to all visible elements.

The following equation is used to compute form factors from a differential area to a finite area

[29].

N
Z 5, 005 Ok 08 Oy (2.11)
7TT£+Aj/n '

3|'—‘
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Source

Figure 2. Form factor calculation using ray tracing

where k is the kth sample point on the source j (see Figure 2).

The differential area is defined by a vertex on the receiver, and the finite area is represented by

the current source.

2.4 Meshing

Meshing is one of the most important steps in computing an accurate and realistic radiosity
simulation. Determining accurate form factors is another important issue in radiosity image

synthesis and has been studied extensively [21] [23] [4] [24].

Meshing involves the subdivision of the original input surface “patches” into smaller “elements”.
Smaller mesh elements contribute to a better representation of the radiosity by more accurately
describing the gradient across the surface. Patches (mesh elements) that are constructed large
compared to the scale of illumination changes will blur the image since the computed radiosity

will be averaged over a larger area. This is depicted in Figure 3.
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Figure 3. Radiosity gradient across mesh elements of different resolution
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2.4.1 Uniform Meshing

Figure 3 shows that as the mesh size decreases, the radiance is represented more accurately

across the surface. In this instance a simple, uniform mesh was chosen.

2.4.1.1 Multiblocking

Multiblocking is a type of uniform meshing that seeks to break up complex or concave geometry

into a uniform mesh using a recursive subdivision scheme [5].

2.4.2 Deficiencies of Uniform Meshing

The illumination is better represented across a surface with a uniform mesh but there are
problems associated with using one. The number of interactions between elements will increase
on the order of N? with N representing the number of input patches. Although easier to

implement, naive, uniform meshing can impose serious computational limitations.

Another problem with the uniform meshing approach is that it can lead to serious visual
artifacts. One example is aliasing which is due to the regular and coarse nature of uniform

meshing. An example of this can be seen in Figure 4.

Mach banding is another problem that occurs with a uniform mesh. Linear interpolation
introduces D' discontinuities at the element boundaries. Heckbert uses the notation that a
function has a D* discontinuity at a particular point if the function is C*~! continuous but not
C* continuous [14]. The human visual system is very sensitive to these kinds of discontinuities.

They typically show up as discernable light bands in the rendered image.
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Figure 4. Uniform grid exhibiting severe aliasing artifacts

A finer mesh can alleviate some of the problems of aliasing, but eventually the N? patch factor

dominates the computation times. What is needed are more sophisticated meshing strategies.

2.4.3 Non-Uniform Meshing Strategies

This thesis addresses this issue directly with a new method of discontinuity meshing using a
hardware-assisted shadow projection technique. Before we discuss this method in detail it would
serve us well to review other meshing strategies. Many researchers have tackled this problem
and looking at these techniques should give some insight into the validity and usefulness of the

method developed here.
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2.4.3.1 Adaptive Subdivision

Adaptive meshing is an a posteriori method by which the mesh is re-evaluated during each
iteration of the radiosity solution. The computation begins by computing the radiances of the
initial uniform mesh. As each iteration of the solver completes a pass, the current computed
radiance values at the node points are sampled and the mesh is adjusted if the computed
radiosity of a neighbor differs by some user-preset tolerance. The first example of this method

used for computer graphics can be found in [3].

2.4.3.2 Decomposition Methods

Decomposition methods strive to create a mesh from a collection of node points mapped to
the geometry. They are better suited to complicated geometry and allow the mesh to be more
easily manipulated during mesh refinement. There are a number of schemes described in [6].
Delaunay triangulation and BSP trees are often used in employing these methods. In fact,
parallel planar projection, the technique introduced in chapter 1 and described in detail in

chapter 4 is a decomposition method.

2.4.3.2.1 Delaunay Triangulation

Delaunay triangulations are often used in computational geometry and computer vision appli-

cations as well as, more recently, radiosity!. Delaunay triangulation is defined as follows:

!One property which is of particular consequence to computer graphics is the fact that a Delaunay
triangulation minimizes the smallest angle of its triangles over all possible triangulations in the set of
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Definition 2.1 If P is a set of points on the plane, then a triangulation, T, of P is a Delaunay

triangulation if for each edge in T there exists a circle, O, with the following properties:

1: The endpoints of each edge in T lie on the boundary of O;

2: No other vertez in P lies in the interior of O.

2.4.3.3 Hierarchical Radiosity

Hierarchical radiosity is a technique that structures a mesh into a hierarchy of interacting
elements [13]. At each level in the hierarchy, elements can interact with elements at any other
level. The metric that determines which elements interact with each other is based upon the
form factor between them. Hierarchical methods are based upon recent advances in N-body
simulations where the force from a cluster of objects at a given distance can be approximated
by treating the cluster as one continuous object. In radiosity, the distance term is manifest in

the form factor calculation.

2.4.3.4 Discontinuity Meshing

Contrary to adaptive meshing, discontinuity meshing is an a priori method that attempts to

identify appropriate mesh boundaries based upon the geometrical configuration of a scene.

points, P, that comprise the triangulation. This has the effect of reducing long, thin triangles as much
as possible. This is important when triangulations are rendered with Gouraud shading. Long, thin
sliver triangles interspersed with wide, short triangles will exhibit shading artifacts when using linear
interpolation.
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Discontinuity meshing alleviates many of the sampling problems associated with other forms
of meshing by constructing a mesh that falls along the discontinuity boundaries of a particular
target surface. If the discontinuity boundaries can be accurately determined, then the radiance

function on either side of the boundary can be reconstructed exactly [24].

Recall from Equation 2.3 that the radiosity contains a visibility term, V(x,y). When solving
the discrete form of this equation, patches are classified into one of three categories of visibility

with respect to the current emitter. A patch is either

1: Completely visible
2: Completely invisible

3: Partially visible

Partially visible patches are problematic. From Equation 2.2 the visibility term evaluates to

either 0 or 1. For patches that are invisible, Equation 2.3 reduces to,

cosf cos@’
T 2

dy

r

B)= B+ o)y [ B

Discontinuity meshing reduces the error associated with partially visible patches. If the shadow,
or discontinuity boundary, is fully determined, then patches falling on one side of the boundary
will have V(z,y) = 1 and patches falling on the other side will have V(z,y) = 0. In uniform

meshing a large number of patches will likely be partially visible to an emitter patch, unless
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the element mesh factor is set very high. Increasing the mesh density in a uniform mesh suffers

from O(n?) complexity issues as described in 2.4.2 and should be avoided if possible.

2.4.3.5 Backprojection

Another shadow boundary technique uses a backprojection data structure [8] [27]. This method
locates mesh boundaries with the following requirement: Each mesh face has a view of the light
source which is topologically equivalent. Backprojection can be used to compute the complete
discontinuity mesh and is therefore important for catching subtle visibility changes called visual
events. The types of visual events classified are VE (Vertex-Edge) and EEE (Edge-Edge-Edge)

interactions [33].

Backprojection is similar to another visibility technique which determines the antiumbra and
antipenumbra of a convex area light source shining through holes using a mathematical formal-
ization called Plicker Coordinates, a five-dimensional line representation [28]. The antiumbra
is the volume from which all points on the light source can be seen. The antipenumbra is the

volume from which some, but not all, of the light source can be seen.



CHAPTER 3

PARALLEL PROGRESSIVE REFINEMENT

3.1 Introduction

Progressive Refinement [2] has become one of the standard techniques for implementing a usable
radiosity system. It is based upon proven techniques in linear algebra and is an indispensable
tool in the arsenal of the rendering writer. It allows reasonable update times as the radiosity
solution emerges and provides valuable feedback early on as to whether lighting, geometry, or

basic assumptions about the underlying physical model are correct.

With this in mind and the desire to create renderings at real-time frame update rates, a par-
allel version of progressive refinement was implemented on a shared memory multi-processor
machine. This chapter provides the theory behind progressive refinement and describes the

system that implements a parallel version of the progressive refinement algorithm.

The rendering system developed in this chapter was used to demonstrate the capabilities of
parallel rendering for the VROOM exhibit at the ACM’s Special Interest Group GRAPHics
(SIGGRAPH) conference in July, 1994. The renderer was showcased in the CAVE Automatic
Virtual Environment, an immersive virtual reality theatre developed at the Electronic Visual-

ization Laboratory at the University of Illinois at Chicago.

18
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In the context of this thesis the parallel implementaion of the progressive refinement algorithm
is described. In chapter 4 it is used for rendering images of scenes meshed via application of

the meshing algorithm developed there.

3.2 Progressive Refinement Theory

Progressive refinement concerns the graceful update of an image during scene rendering. For
radiosity it is one of the most useful tools for providing interactive update rates during image
computation. Progressive radiosity was first introduced in 1988 [2]. Ray tracing of form factors

was incorporated into the model in 1989 [29].

In the original radiosity method, the set of linear equations from Equation 2.8 are solved using a
Gauss-Seidel iteration method. This technique returns updated radiosity values on a per patch
basis by “gathering” the incoming energy across the surfaces. Gauss-Siedel has been shown
to converge to a final solution asymptotically faster than other methods due to the diagonally

dominant nature of the radiosity matrix [26].

From Equation 2.6 and Equation 2.8 one can see that a single term of these equations is

evaluated as such:

This can be interpreted as a gathering for patch B; of the radiant energy from all other patches

in the scene.
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1. For each patch 1

2 Set unshot radiosity B; to emittance E;
3. while (not converged)

4 For each patch i

5. Select patch B; with highest unshot radiosity
6 For each patch j

7. Calculate form factor F};

8 new radiosity B; = p;F;; unshot B;

9. unshot radiosity B; = unshot radiosity B; + new radiosity B;
10. radiosity B; = radiosity B; + new radiosity B;

11. Set unshot radiosity B; to zero

Figure 5. Pseudocode for progressive refinement

In progressive radiosity, the energy distribution is more analogous to “shooting,” where the
patch radiosities in the entire scene are updated by sending out the unshot radiosity from the
current patch. This is the reverse of the gathering process and results in computation of the

radiosity received by all patches, B;, as a result of shooting from patch B;:
Progressive radiosity provides useful image displays much earlier on in the solution process.

This enables interactive image update rates in a smoother and more graceful manner than the

original method. Pseudocode for progressive refinement is shown in Figure 5.
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Geometry array (patches)

ight source

KEY

*p 1 pointer to input patch

Figure 6. Initial input geometry pointed to by patch array

3.3 Implementation

The input geometry is initially composed of patches representing planar convex polygons. Two

types of primitive are accepted — triangles and quadrilaterals. See Figure 6.

The system can accept pre-meshed input polygons as shown in Figure 6 and then perform
meshing. Alternatively pre-meshed geometry can be read in. As patches are read into the
system, they are meshed into a quadtree data structure. The leaves of the quadtree represent
the polygonal elements that are inserted into a heap array and ultimately rendered to the screen.
After quad-meshing, several arrays are set up to maintain order and aid in parallelization during

the rendering stage.
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light source

heap Element array

*ke

**ez

ke

*¥g

*%a

m+1 mesh lines

*ka

m+2 pointer to element

pointer to pointer to element

parallelization occurs across this array

Figure 7. Heap and Element arrays for input geometry

There are two levels deep of arrays of Element pointers. An Element is a node in the quadtree
hierarchy. A binary heap is maintained whose contents are doubly indirect pointers to leaf

nodes in the hierarchy. Sorting is performed on the heap array. See figure Figure 7.

We use a binary heap sort [7] for the following reason. The total time to extract shooting
elements (the ones with the greatest unshot radiosity) is O(n + mlgn), where n is the input
data set size, and m is the total number of iterations. This is better than O(mmnlgn) which
would result in using another sorting method. This is possible because the heapify stage of a

heap sort algorithm takes O(lgn) and the build time O(n). The build time is only required once
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at the beginning, and the O(mlgn) results from executing the heapify stage for m iterations.
The final heapsort stage, which takes O(nlgn), is not needed during the iteration stage since
the top of the heap (the first element of the array) contains a pointer to the element we are
looking for: the one with the largest unshot radiosity (this is patch B; as shown in psuedocode

in Figure 5.

Note in Figure 7 that a uniform meshing scheme is depicted. This shows the Element array

sequentially accesses the various elements associated with a parent patch.

Parallelization is implemented across the geometry array during the shooting stage of the pro-

gressive refinement solution.

The pseudocode for the parallel version looks similar to Figure 5, except that after each shooting

patch, i, is determined, the shooting is distributed across the parallel processors (see Figure 8).

The heap is used to sort the elements by unshot radiosity value and the largest one is extracted.
The geometry array is used to process the receivers and is distributed among the number of

processors available. This is depicted in Figure 9.

In order to avoid memory contention when calculating the radiosity of an element, receivers
are not (necessarily) uniformly distributed across the processors available. This is necessary
because patches are meshed via a quadtree data structure with the outer vertices at each mesh

level being shared (Figure 10).
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1. For each patch 1

2 Set unshot radiosity B; to emittance E;

3. while (not converged)

4. For each patch i

5 Select patch B; with highest unshot radiosity

6 Partition the input patches n over the processors p such that

7. each processor shoots to approzimately n/p patches
Parallel section

8. For each patch j

9. Calculate form factor F};

10. new radiosity B; = p;F;; unshot B;

11. unshot radiosity B; = unshot radiosity B; + new radiosity B,
12. radiosity B; = radiosity B; + new radiosity B;

15. Set unshot radiosity B; to zero

Figure 8. Pseudocode for parallel progressive refinement

Geometry array

Receivers *e
1
Processor 1 ~— Processors —— each processor

¥
€2 handles a number of elements, not

necessarily the same number for

*
Receivers —— each processor treats the 3 each processor.
elements that are assigned to it as receivers
and computes the radiosity received by it
from the current source element. o Processor 2
m
#
“m+1
®
“m+2

Processor n
*e
n

Figure 9. Parallel distribution of geometry elements across processors
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The elements are distributed among processors using two parameters: 1) the number of pro-
cessors available in the system, and 2) whether the element’s root patch is the same as the last
element on the processor before it. During an initialization stage of the parallel computation,
elements are assigned to a particular processor by ranging across the Element array. This works
because elements are stored in the Element array in the order their parent patch was meshed.
All that is needed to ensure that neighboring receiver elements do not fall on different proces-
sors is to find parent patch transitions via a root pointer, which every element has. The root
pointer points to the top of the quad tree for every patch, i.e. the topmost parent patch (see

Figure 11).
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Quad meshed element: Vertices V() —to— V3 comprise the original element. The element is meshed sharing
the outer vertices, and creating five new inner vertices (e.g. V12)'

Figure 10. Quad meshing
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Figure 11. Quad tree mesh showing root pointer pointing to topmost parent




CHAPTER 4

DISCONTINUITY MESHING USING PARALLEL PLANAR

PROJECTION

The meshing algorithm introduced in this chapter presents a new method for computing dis-
continuity (shadow) boundaries on polygonal elements. The aim behind this method is to use
currently available graphics hardware to assist in determining the discontinuity boundaries.
This should accomplish two goals. One, to reduce the size of the mesh that would otherwise
be required to produce a smooth image with uniform meshing, and two, to produce a more

accurate solution during rendering.

Section 4.1 presents an overview of the algorithm. This is followed by a detailed description
of the algorithm and its workings in sections 4.2 through 4.2.4. The complexity is analyzed in

section 4.2.5.

4.1 Overview

The process proceeds as follows: A three-dimensional model is read into a database. The
database is then meshed via an elaborate preprocessing stage. This stage consists of drawing
the scene from every light source’s viewpoint and taking every potential receiving polygon into
consideration as a Target. Target polygons are those elements which do not emit energy (i.e.

non-light sources). Meshing information for a target polygon is extracted from the projection
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of all other polygons in the scene onto the target. This is accomplished by noting that the
two-dimensional perspective projection of one polygon onto another specifies the discontinuity
boundary formed by two regions separated by shadow. The application of this rule for all the

polygons in the scene results in the discontinuity mesh.

4.2 Theory and Description

Parallel planar projection meshing is an a priort method and can be considered an image space
algorithm. It is invoked prior to the parallel rendering system described in 3.3. The mesh is
generated using parallel plane projection techniques. The basic idea is this: every polygon in
the scene is considered as a potential target. All other polygons which may or may not occlude
the target are considered potential “blockers.” Identify the mesh by projecting all blockers
onto each target in turn, and mesh the target. The projection is done from the perspective of
the light sources. Light sources are used as the projection point because they are the primary
contributors to high radiance gradients on receiving surfaces, i.e. shadows and discontinuity

boundaries are due mostly to visual events on the surface of a target due to the light sources.

Pseudocode of the procedure is shown in Figure 12 with each stage elaborated upon in following

sections of this chapter.

4.2.1 Geometry Identification

In this stage the geometry is read in and light sources are identified. As stated earlier, polygonal

objects not considered light sources are identified as possible targets.



Stage 1: Geometry Identification (section 4.2.1)
Read a databaseand triangulate
Identify light sources
For each light source i do
Set viewpoint at source i
for each potential target polygon j in scene do
Stage 2: Polygon Culling (section 4.2.2)
Render target into stencil buffer
Render scene minus source © with special vis-ID color
Scan frame buffer and tag visible triangles via vis-1D color
If target polygon j vis-ID indicates visibility do
for each potential blocker polygon k in scene do
for each vertex V; of light source do
Stage 3: Projection/Edge Insertion (section 4.2.3)
if blocker k wvisible, project onto target j
and generate nodal points and 2D edge segments
Stage 4: Triangulation (section 4.2.4)
Mesh target polygon j via constrained Delaunay triangulation
Back project triangulation to 3D object space

Figure 12. Pseudocode for parallel planar discontinuity meshing algorithm
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4.2.2 Polygon Culling

The ultimate mesh can be reduced when only visible objects are considered for meshing. There
are two visibility classifications in this algorithm. One is with respect to the light source. The
other is with respect to the target. If a target is not directly visible from the light source, it
can be ignored with regards to this meshing operation. If the blocker is completely invisible
with respect to the target, it will add no direct discontinuity boundaries, and can thus be culled

from the list of projectors.

A visibility pre-processing stage is performed by rendering the scene from the viewpoint of the
light source. Each polygon is colored with a “visibility ID,” as it is rendered into the frame

buffer. This technique is sometimes referred to as rendering into an “item buffer.”

The frame buffer is scanned for visibility IDs which are used to index and set a flag in a visibility
array. Later during the projection stage the visibility flag array is used to determine whether
a specific target should be meshed, and whether a specific blocker contributes to the meshing

of a target.

Notice in Figure 13 that the polygon ID 1 (dashed polygon) will neither be targeted for meshing,

nor be used to compute the mesh for either polygon ID 0 or polygon ID 3.

In a typical scene there may be many polygons that will be rendered visible while a target is
being meshed, but will not offer any contribution to the meshing for that polygon. Figure 13
shows that polygon ID 0 (behind the current target) and polygon ID 1 (completely occluded)

will not contribute to the meshing of polygon ID 2, while polygon ID 3 (in front of target) will



31

visibility flags visibility flags
occluded
current target
polygon 0 | 1 polﬁgg(in Clll’I'eIIl]t) t%rget polygon 0 | 0 D 2
polygonl | 0 D0 polygon1 | 0
polygon2 | 1 polygon2 | 1
polygon3 | | polygon3 | 1
T ~3
Without stencil mask. With stencil mask

Figure 13. Visibility preprocessing and flags array

contribute meshing information. Polygons behind or outside the target can easily be eliminated
by first rendering with a mask in the shape of the target, and then rendering the rest of the

scene.

The masking can be accomplished via one of two methods. On systems with hardware support
for stencils, the target can be rendered into the stencil plane first, which will mask out all
non-overlapping polygons. On systems without hardware stenciling, the equivalent operation
can be performed by first clearing the Z-buffer to its Z-maximum values. The target is rendered
into it in a regular manner. The Z-buffer is then scanned and set to Z-minimum at every pixel
which is equal to Z-maximum. The rest of the scene is rendered and the frame buffer scanned

as before.
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4.2.3 Projection and Edge Insertion

In the projection phase of the algorithm, potential targets are identified via the item buffer.
Every polygon marked “visible” is considered a target. A target is meshed by projecting the
visible polygons onto the target surface. In this way every polygon visible with respect to the

light source is meshed by every polygon visible with respect to itself.

The perspective transformation is not an affine transformation and in general is not useful for
taking measurements of an object: distances are not retained and angles are preserved only
on faces which are parallel to the projection plane. We are concerned with extracting the
discontinuity mesh on a target polygon by projecting blockers onto its surfaces and computing
the 2D intersection points of their respective edges. If angles are preserved on the target then
the object space triangle and its projection will be similar [9]. The parametric space of the
2-D intersection calculations will in turn be linear since the ratio of the projection to its world
dimensions will be linear (See Figure 15). The trick is to force the target onto a plane parallel
to the projection plane prior to projection. This can be achieved by eliciting a maximum of

two rotations and a translation on the target.

In order to align a target polygon with the projection plane, the scene needs to be rotated
in the appropriate manner for each target in question. The target should fall somewhere
on the projection plane but it is not necessary that it fall in the center of projection. The
transformation that makes this possible can be constructed by applying a translation of the

viewpoint to the origin and performing a rotation about a single axis. The axis to perform the
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------------- target
----------- plane of target Vi
1
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3 gluLookat(eye,@,lﬁ)
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-7 =N
t
Vs

Figure 14. Aligning target to be parallel to the projection plane using gluLookat()

rotation is determined by the cross product of the Z-axis with the vector formed by the eye-
to-reference point. For implementations on graphics libraries without arbitrary axis rotations,

two rotations will be needed’.

Shadow edges are determined by projecting blockers edge by edge onto the target. For blocker
edges that cross the boundary of the target polygon, two dimensional line intersections are used

to clip the edge. The edges derived from this stage are considered shadow boundaries and are

IThe codes developed in this thesis make use of the Silicon Graphics Inventor 7™ and OpenGL
graphics libraries. The gluLookat() command from OpenGL provides the means to accomplish the
translations and rotations that are necessary to put the target onto the projection plane. The eye point
is set at the vertex of the light source. To determine the reference point, the normal vector of the plane
representing the target polygon is subtracted from the eye point. Calculating the reference point in
this manner will map the target (plane) so that its normal is parallel to the negative z-axis. Choosing
the up vector is somewhat arbitrary at this point. All we need is a vector that is perpendicular to the
normal of the target. Using any of the three vectors that represent the sides of the target polygon will
suffice. Figure 14 shows how the parameters for gluLookat() are determined. To extract the window
coordinates of projected polygons the OpenGL gluProject() command was used. The reverse operation
to back-project the polygons to their object space coordinates was accomplished with the gluUnProject()
command.
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A
D
C F
E
B AB _ DE
BC = EF

Figure 15. Similar triangles

inserted into an edge list. The edge list is used as input to a constrained Delaunay triangulation

in the triangulation phase (see section 4.2.4).

Figure 16 shows the resultant edges that are inserted into the edge list after a blocker is projected
onto a target. Notice that the original edges of the target triangle are always inserted into the
edge list. In this example the blocker edges EF and FD are clipped but the entire edge DE is

included in the edge list.

4.2.4 Triangulation

In this algorithm triangulation is applied after projection. The list of edges generated from the
edge insertion stage (see Figure 12 and section 4.2.3) are sent to a constrained Delaunay trian-
gulation routine. The Delaunay triangulation method is based upon the algorithm developed
in [12] using codes that improve upon this method supplied by [22]. After this is completed the

resulting triangles are back-projected to their three-dimensional object space counterparts.
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blocker: ADEF

Edges List
AB

BC
CA
DE
EG (clipped EF)
HD (clipped FD)

target: AABC

Figure 16. 2D edge clipping and insertion

4.2.5 Complexity

The complexity of the algorithm can be analyzed by looking at the pseudo code in Figure 12
and identifying stages with loops. Stage 1 contains the inner loops of light sources, stage 2
contains the render loop, stage 3 encompasses the vertices per light loop, and stage 4 has the
Delaunay triangulation. We can ignore the stage 3 loop because light sources have a constant

number of vertices (in this algorithm, three, since every polygon is decomposed into a triangle).

Every non-light polygon is compared against every other polygon in the scene via the loops in

stage 1 and the render loop. This yields a complexity of,

O(mn?) (4.1)
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mis the number of light sources, and p is the number of input polygons.

The Delaunay triangulation has a complexity of O(nlnn) [12] which is greater than the (n)

factor from the inner most loop of stage 2. Thus, the worst case complexity of the algorithm is,

O(mn®inn) (4.2)

However, the render loop is very speedy due to its hardware nature and in practice is not a
terribly limiting feature of this algorithm. As seen by the timings in chapter 5, complex scenes

can be meshed in reasonable times.



CHAPTER 5

RESULTS

This chapter provides results of timings and renderings described in previous chapters, as well

as implementation-specific details of parallel planar projective discontinuity meshing.

5.1 Parallel Progressive Refinement Timings

Timings for the parallel progressive refinement system are presented. For these timings, a
scene consisting of one light source, a floor, and a 3D extrusion of the letter “R” was rendered
(from now on referred to as the “R” scene). A wireframe drawing of this scene is shown in
Figure 17. The total number of polygons processed was 23872. The number of processors in
these timing tests varied from one to twelve. The timings were run on a production Silicon
Graphics challenge array containing 12 150 MHZ Mips IP19 Processors. Timing tests were run

during the day with normal operational loads.

Figure 18 shows a graph of timing runs on the scene depicted in Figure 17.

Graphs of the mean and standard deviation from these timings are shown in Figure 19 and

Figure 20.
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| <«—— light source

<«— planar floor

Figure 17. “R” scene: Wireframe geometry for parallel progressive radiosity timings



39

# polygons=23872 #iterations=1

800 . . : . ;
R1.1.dat’ —=—
R1.2.dat” —+-
'R1.3.dat’ -&--
700 |- t Riddat’ - ]
‘» 'R1.5.dat’ —-
R1.6.dat’ -
: R1.7.dat’ o~
600 - x R1.8.dat’ —+- |
: 'R1.9.dat’ -= -
'R1.10.dat’ >—
: R1.11.dat’ &
500 - ‘~, Ri12.dat % |
* R1.13.dat’ ~o-
2 \ ‘Ri.14.dat —+-
S ol : R1.15.dat’ = - |
g i R1.16.dat’ -x--
s .
300 |
200 |
100 |
O 1 1 1 1 1
0 2 4 6 8 10 12

# processors

Figure 18. Parallel progressive radiosity timings for the “R” scene

5.2 Parallel Planar Projection Meshing Implementation Issues and Timings

This section covers some of the implementation issues surrounding the meshing method de-

scribed in chapter 4.

5.2.1 Delaunay Triangulation

The Delaunay triangulation was made possible by a public domain implementation [22].
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Figure 19. Mean plot from the “R” timings

5.2.2 Window Size

The window size chosen for the projection and culling stages is dynamically configurable. A
square window region was used. In the culling phase a polygon is deemed visible if one or more
screen pixels with its item buffer tag are rendered into the frame buffer. Polygons with small
surface area will not contribute large gradients to the radiance function: Thus, a large window
area is not required. As with the hemicube form factor method, aliasing is a potential problem.

Larger window size reduces the chance for triangles to be missed at a tradeoff for rendering
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Figure 20. Standard deviation plot from the “R” scene timings

time during the culling phase. Typical window sizes used to mesh scenes in this thesis varied

from 128 to 700 pixels on a side.

5.2.3 Parallel Planar Meshing and Rendering

The mesher was run across various geometrical data sets. Figure 21 shows the meshing sequence
of a simple scene consisting of a triangular light source, a triangular blocker, and a rectangular
floor (target). The three-image sequence depicts some of the stages in the mesher. Starting in

Figure 21a we see the original data. Figure 21b shows the triangulation phase of the original
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input geometry (in wireframe mode so that the triangles can be identified). Figure 21c shows

a wireframe display of the final projected, triangulated, mesh.

Figure 22 shows a close-up, top view of the meshed floor from Figure 21. Figure 23 shows
renderings of Figure 21. Going from top to bottom, the first three images of the scene are
meshed with a combination of the mesh generated from the parallel planar meshing system
and the application of multiblocking as discussed in 2.4.1.1. The mesh level represents the
amount of times the uniform meshing algorithm was applied. The images are rendered with
the parallel rendering system described in Chapter 3. The additional meshing of the planar
projected mesh is necessary in order to represent finer shading details across the surface. This
is because the parallel planar mesher has no concept of separation distance. This is essential to
the computation of accurate form factors. For patches that have a large area relative to their

separation distance, the form factor approximation used in Equation 2.11 breaks down [30].

Figure 24 was generated from the same geometry used in the parallel progressive refinement
timings in 5.1. Figure 25 shows a radiosity rendering of the mesh in Figure 24 using the parallel

radiosity system described in chapter 3.

5.2.4 Timings

Table I shows parallel planar meshing statistics for scenes of various levels of detail. The timings

were performed on an Onyx with a Reality Engine level II graphics engine.
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Figure 21. Meshing sequence for simple scene

TABLE I

PARALLEL PLANAR MESHING STATISTICS FOR SAMPLE SCENES

‘ Scene ‘ Input polygon count ‘ Polygon count after meshing ‘ CPU Clock (secs) ‘ Wall Clock (secs) ‘
Simple | 3 40 0.170000 1
“R” | 138 1729 5.030000 7

Vise | 1050 7263 181.180000 232




Figure 22. Top view of simple scene floor mesh
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parallel planar meshing
uniform mesh level 0
# polygons = 45

parallel planar meshing
uniform mesh level
# polygons = 645

parallel planar meshing
uniform mesh level 4
# polygons = 5445

Uniform meshing only
uniform mesh level 6
# polygons = 9217

Figure 23. Renderings of simple scene at various mesh resolutions
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Figure 24. Resultant mesh from parallel planar projection of the “R” scene

Figure 25. Radiosity rendering of the “R” scene
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Figure 26. Vise scene used in meshing timings

47



CHAPTER 6

DISCUSSION AND FUTURE WORK

6.0.5 Discussion

This thesis approached the radiosity problem from two sides.

A parallel implementation of the progressive refinement algorithm was accomplished. Looking
at the data depicted in the timing plots of Figure 19 we can see that adding more processors
does in fact speed up rendering in a fairly linear fashion. For several of the timing runs there
was actually an increse in rendering time by adding more processors. This is probably due to
a combination of reasons: memory contentions and/or cache misses, and processor usage. As
the number of processors increase, the frequency with which memory bank overlaps and cache

stalls will increase.

The hump in the timings around the processor count of six can be most likely attributed to
a busy system. This is evident in Figure 18 which shows a sudden increase in rendering time
around the six processor mark. Probably six of the twelve processors in the system were being
used by other processes during some of the timing runs. We can see in Figure 18 that for both
the busy (top set of lines after the hump) and available (bottom set of lines after the hump)

processors that there is a steady decrease in rendering time as more processors are added.
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The parallel planar projection discontinuity mesher presented a new approach to the meshing
problem. Certain stages rely on computation to be performed in graphics hardware. This differs
from other approaches that compute shadow and discontinuity boundaries such as, shadow
volumes by Nishita and Nakamae [19], back projection by Drettakis and Fiume [8], and Stewart,
and Ghali [27], and discontinuity meshing by Lischinski, Tampieri, and Greenberg [17]. The
use of specialized hardware for speeding up rendering algorithms goes back to the inception of
the field. One such example is the use of the Z-buffer to generate a first hit list for ray tracers.
The hemicube method as described in section 2.3.1 is another good example of a method that
benefits from graphics hardware acceleration. If state-of-the-art hardware is available then
parallel planar projection discontinuity meshing is an atractive alternative to other meshing
strategies. For example, this algorithm was run on Silicon Graphics Reality Engine level 11
hardware. Level IT Reality Engines are capable of generating up to 1.6 million triangle meshes
per second. This kind of hardware performance enables an O(n?Inn) algorithm to run in

reasonable times.

The example images that were generated from parallel planar projection and shown in the results
section are of higher quality than their uniform meshing counterparts. However, there are some
limitations and problems with this method. If we look closely at Figure 25 we can see some
shading artifacts. This is due to the following reasons. The algorithm only handles Vertex-
edge visual events, and the triangulation phase was not completely robust. The Delaunay
triangulation produced copious amounts of triangles, some of which were degenerate in nature.

There were many duplicate vertices which create shading artifacts when sent to the renderer.
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A post processing phase to clean up the final triangulation did not always succeed in producing
a completely topological equivalent of the initial input geometry. Thus, sometimes small holes
form, edges overlap, and vertices were duplicated. In order to actually render the scene, the
geometry had to be converted from Inventor to BOFF (Barnes Object File Format). The two

formats were not completely compatible which may have contributed to some of the artifacts.

6.0.6 Future Work

Future work and research for the parallel planar mesher would be to speedup of the basic algo-
rithm and extending it to handle a wider variety of visual events. Another improvement would
be to put the mesher under a hierarchical umbrella as did Lischinscki et. al. in [16]. It is
important to bound the form factor computation which would obviate the need for additional
meshing that the renderer now performs. Another area for further research would be to exper-
iment with a topological data structure, such as the winged edge [1], which would likely enable

better handling of discontinuity segments and overlapping regions.

Parallelization of the parallel planar mesher is another area of future work. This could be
accomplished by implementing the algorithm across multiple geometry engines. For example,
our system consisted of three Silicon Graphics Reality Engines on an eight-processor Onyx. One
process could be assigned to each geometry pipe. The database could be distributed accross

these processors resulting in significant speedup of the algorithm.
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