
  

Abstract— Most haptic libraries allow user to feel the 
resistance of a flexible virtual object by the implementation of 
a point-based collision detection algorithm and a spring-
damper model. Even though the user can feel the deformation 
at the contact point, the graphics library renders a rigid 
geometry, causing a conflict of senses in the user’s mind. In 
most cases, the CPU utilization is maximized to achieve the 
required 1-kHz haptic frame rate without leaving any 
additional resource to also deform the geometry, while on the 
other hand, the Graphics Processing Unit (GPU) is 
underutilized. This paper proposes a computationally 
inexpensive and efficient GPU-based methodology to 
significantly enhance user perception of large existing haptic 
applications without compromising the original haptic 
feedback. To the best of our knowledge, this is the first 
implemented algorithm that is able to maintain a graphics 
frame rate of approximately 60 Hz as well as a haptics frame 
rate of 1 Khz when deforming complex geometry of 
approximately 160K vertices. The implementation of the 
algorithm in a virtual reality neurosurgical simulator has 
been successful to handle, in real time, complex 3D isosurfaces 
created from medical MRI and CT images. 

I. INTRODUCTION 
APTIC interaction along with elastic object 
deformation has been useful for learning many 

surgical procedure simulations. Virtual human organs are 
deformed by the contact forces generated from medical 
instruments. It is well known that realistic simulation of 
physically-based deformation of elastic objects is very 
challenging because of the complexity of the computation 
to be performed in real time. However, a simple spring-
damper model can be adequate for achieving a relatively 
realistic deformation for real-time interactions.  

Current haptics libraries such as GHOST and 
OpenHaptics [19] implement a spring-damper model to 
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allow a point-based force-feedback interaction with 3-DOF 
haptic devices such as the PHANToM Desktop, Omni, and 
Premium 1.0. For point-based haptic applications, only the 
tip of the haptic stylus interacts with the virtual objects. In 
each frame, a collision detection algorithm checks if the 
Haptic Interaction Point (HIP) is inside the virtual object. If 
so, penetration depth is computed as the distance between 
the current HIP and the corresponding Surface Contact 
Point (SCP). Based on a spring-damper model at the 
contact point, the haptics library computes the reaction 
forces that are proportional to the penetration depth. The 
more the user penetrates the object, the higher the reaction 
forces applied by the haptic device.  

Even though the spring-damper model implemented by 
the haptic library allows the user to feel the object 
resistance at the contact point, there is no explicit 
deformation of the object geometry. Therefore, the 
graphics rendering does not show any object deformation 
at all. The goal of this work is to enhance the user’s 
experience by rendering a coherent graphics deformation 
of the virtual objects colliding with the haptic probe 
without compromising the current haptic frame rate.  

II. RELATED WORK 
CPU-based deformation with haptics: In terms of elastic 

deformation, [10] implemented a physically-based 
simulation algorithm using pre-computed Green’s 
functions and Capacitance Matrix Algorithms to render 
object deformation. Haptics rendering is done by GHOST 
with the undeformed model.  Reference [22] developed a 
suturing simulator based on a mass-springs grid of dynamic 
vertices to model a flat 3D mesh whose vertices can be 
displaced by a virtual pair of scissors. Reference [1] 
proposed a deformable model based on a similar mass-
spring grid and a force propagation process to perturb the 
vertices around the contact point. Reference [5] 
implemented an implicit multi-contact deformation 
algorithm that solves Signorini’s and Coulomb’s laws with 
a fast Gauss-Seidel-like method obtaining haptic frame 
rates of 250Hz. Even though these previous works were 
successful to render interactive deformation with 3D 
meshes of fewer than 700 vertices, they cannot be extended 
to complex geometry without affecting the haptics 
performance, because the CPU power must be shared 
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between the haptics rendering and the graphics 
deformation.  

GPU-based deformation without haptics: In the last two 
years the use of GPU has proven to be an effective solution 
to general purpose problems. In the field of interactive 
elastic object deformation, [16] developed two methods to 
model a spring-mass system for complex geometry taking 
advantage of the parallel processing of the GPU. Since the 
simulation is done exclusively on the GPU, the CPU is not 
fully utilized, causing an unbalanced load between CPU 
and GPU. Reference [17] proposed an alternative 
implementation of the mass-spring system on the GPU. 
Reference [6] implemented a physics-based deformation 
that combines a CPU simulation engine with a GPU render 
engine, achieving a more balanced load. Reference [11] 
developed another physically-based deformation algorithm 
with a mesh of 18,000 vertices. However, all these GPU-
based deformation methods cannot be seamlessly 
integrated with existing polygonal-based haptic 
applications.    

GPU-based deformation with haptics: [21] modified 
their GPU-based implementation to incorporate force 
feedback, achieving a haptic frame rate of 450 Hz 
deforming 3D meshes of up to 91,000 vertices. 
Unfortunately, that frame rate is not high enough to 
minimize haptic discontinuities and instabilities [13].  
References [3] and [4] presented a GPU-based deformation 
method to achieve both haptics and graphics rendering, 
implementing a single DOF mass-spring-damper system at 
the contact point and using shape-functions to distribute the 
deformation of the closest vertices. Previously 
implemented algorithms are very useful to incorporate 
certain haptic feedback to existing graphics applications 
with deformation. However, since the primary focus of the 
applications is the graphics performance, they resulted in 
realistic graphic deformation at the expense of poor haptic 
performance. 

III. APPROACH OVERVIEW 
The goal of this work is to take an existing haptic 

application and enhance the user’s perception by the 
incorporation of graphical deformation, while maintaining 
a 1-kHz haptic frame rate, and keeping the modifications of 
the haptic application at a minimum. The existing haptic 
application consists of a virtual reality ventriculostomy 
simulator developed by [15] (Fig. 1). 

In most CPU-based haptic applications, a common 
polygonal geometry is processed by both the CPU (for the 
haptics rendering) and the GPU (for the graphics 
rendering). Haptics rendering includes collision detection, 
computation of forces, and bidirectional communication 
with the haptic device. Due to the complexity and 
sequential nature of the haptics rendering, as well as the 

GPU parallel and vector processing power, the haptics 
rendering takes longer than the graphics rendering. 
Therefore, the GPU is underutilized most of the time. If 
deformation is to be incorporated to the haptic application, 
it is more efficient to let the CPU deal with the haptics 
rendering while the GPU computes deformation for the 
graphics rendering in parallel. 

Fig. 1.  Virtual human brain being deformed by the 
insertion of a neurosurgical catheter 

 
This paper focuses on point-based local deformation 

around the contact point, and thus, global deformation and 
volume preservation are beyond the scope of this research. 
The implemented algorithm can be thought of as a tradeoff 
between real-time interaction and sophisticated physics-
based realism. 

 
 

IV. ALGORITHM  

A. Vertex displacement 
GHOST implements a 1-DOF spring-damper model, 

along the normals of the object surface, to let the user feel 
the resistance of the object as the probe makes contact with 
the object and then pushes against its surface. Similarly, it 
is possible to render the object deformation by displacing 
the vertices along its normals. In the case of point-based 
haptics rendering, the force feedback calculation is done 
only at the contact point.  However, for graphics rendering 
we need to compute not only the deformation at the contact 
point, but also at its neighborhood. In order to do that, we 
can take advantage of the vertex shader to displace each 
vertex in parallel while the CPU computes the force 
feedback. 
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Fig. 2.  Vertex displacements along its normals Ni done 
by the vertex shader 

 
Fig. 2 shows how the vertices are displaced along its 

normals to deform the object surface. The maximum 
displacement is found at the contact point. Then the 
displacement decreases non-linearly as the vertices are 
located farther away from the contact point. The position of 
the displaced vertex Vi+1 can be simply computed by the 
vertex shader as: 

)(*1 idGNVV iii +=+  
where: 
Vi = Position of original vertex 
Ni = Normal vector of vertex Vi 
G(di) = Distribution function 
 
The distribution function G(di) defines the amount of 

displacement of the neighbor vertices. It consists of a 
Gaussian function with mean of zero and variance σ2 (Fig. 
4), which is computed as follows: 
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di = Euclidean distance from the contact point to the 

vertex Vi 

p = penetration depth SCPHIP −=  

 
 
 
 
 
 
 
 
 
 
 

Each vertex shader computes the Euclidean distance 
from its vertex to the contact point. When that distance is 
zero, the Gaussian function returns the penetration depth 
previously computed by GHOST. As we move away from 
the contact point, the displacement tends to zero, producing 
a realistic “inverted-bell shape” at the vicinity of the 
contact point. 

The variance σ2 of the Gaussian function controls the 
distribution of the deformation. A small variance creates a 
very local deformation affecting only the closest vertices of 
the contact point, while a large variance produces a more 
global deformation around a larger area, allowing us to 
simulate the behavior of different materials. For example 
compare Fig. 1 and Fig. 3 to see the difference between 
brain and skin deformations.  

 

B. Normal calculation 
In order to achieve a realistic rendering of the 

deformation, it is necessary not only to deform the surface 
displacing the vertices, but also to re-compute the normals 
of the deformed surface. This is a crucial step since 
lighting depends on the surface normals. A naïve approach 
would be to send all new vertices back to the CPU, let it 
compute the new normals, and then send all new normals 
back to the GPU. However, this would lead to a 
performance bottleneck due to the slow communication 
from the GPU to the CPU. Hence this computation needs 
to be done entirely on the GPU.  

The new normals could be computed per vertex on the 
vertex shader. The fragment shader would then take the 
new computed normals at the vertices of each triangle and 
it would interpolate them to obtain the normals at each 
fragment inside the polygon. However, since we are 
dealing with a non-structured polygonal mesh, previously 
decimated to increase the haptics performance, the 
isosurface has triangles of different sizes. There are flat 
areas in which their vertex density is too low. Therefore, 
we get smoother shading performing the normal calculation 

p 

σ2  
(Locality of 
deformation) 

di

Fig. 4.  Gaussian distribution defines the deformation 
profile 

Fig. 3.  Skin deformation with different variance 
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per fragment on the fragment shader. 
On the CPU, the normals at each vertex are computed 

considering the vertices of the neighboring polygons. 
Unfortunately, the GPU cannot follow the same approach 
because the fragment shader lacks that information. 
Therefore, a different approach needs to be implemented. 
Instead of re-computing the normals, the GPU can slightly 
perturb the old normals to reflect the changes of the 
deformed surface. The idea is to rotate the original normal 
N0 at the vertex v towards the contact point c by a certain 
angle θ about a rotation axis W (Fig. 5). 

 
Vector VC is computed from the new vertex v (displaced 

by the vertex shader) to the contact point c. The rotation 
axis W (coming out of the page) is defined by the vector 
perpendicular to the plane formed by the vectors N0 and VC 
and is computed with the cross product function as: 

 
VCNW ×= 0  

 
The rotation angle θ depends on the slope of the 

deformed surface at each vertex v, or even more precisely 
at each fragment since the normal calculation is performed 
by the fragment shader. Since the deformed geometry 
follows a Gaussian function around the contact point, the 
surface slope at each fragment can be computed as the first 
derivative of the Gaussian function:  
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Now the rotation angle θ is simply defined as:  
( ))('arctan idG−=θ  

 

Knowing the rotation axis W and the angle θ, it is very 
efficient to compute the perturbed normal N1 using the 
cross and dot product functions as follows: 
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where: 

)(* 0 WNWT •=  
 
It is important to mention that since the geometry 

deformation and the normal computation need to be 
consistent, both the vertex and the fragment shaders must 
compute the Euclidean distance from the vertex to the 
contact point in eye-coordinate system. 

The resulting normals are then used by the fragment 
shader to render the spot light as well as the directional 
light achieving a realistic rendering of the elastic 
deformation.  

 

 
Fig. 6 shows the worst case scenario applying the 

deformation algorithm on an area of the geometry in which 
the vertex density is extremely low. The flat surface 
consists of few large triangles produced by the isosurface 
decimation process. Here the vertex shader does not 
displace any vertex at all because all of them are far away 
from the contact point. However, since the fragment shader 
computes the normals, it gives the illusion that the surface 
is properly deformed. 

Previous Jacobian-based GPU-shader algorithms had to 
compute either the inverse of the 3x3 Jacobian matrix, or 
the tangents and binormals [17]. This step becomes very 
time consuming if the normal perturbation is done by the 
fragment shader. The algorithm presented here consists of 
a more efficient alternative. 

Fig. 5.  Normal calculation done by the fragment 
shader 

Fig. 6.  Details of the normal perturbation at a low-
vertex-density area 

Vector VC 

N0 = old normal 

θ 

N1= new normal 

 

Vertex v 

c = contact point 

W = vector perpendicular to plane 
formed by N0 and VC 
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V. IMPLEMENTATION 
Two equivalent scene-graphs are stored in the main 

memory and handled by two libraries running on the CPU: 
GHOST and an open-source Open Inventor 
implementation [2]. A haptic scene-graph is created by 
GHOST to perform the haptics rendering, and a graphics 
scene-graph is created by Coin to perform the graphics 
rendering. Coin also serves as the communication link 
between the CPU and the GPU. Fig. 7 shows the 
interaction between the CPU and GPU, as well as the 
communication with the haptic device and the stereoscopic 
display of the ImmersiveTouch™ augmented reality system 
[14]. 

In the initialization phase, both haptic and graphic scene-
graphs are created by reading a common set of 3D models 
stored in VRML files. The 3D models are complex 
polygonal isosurfaces (that represent skin and brain) 
previously extracted from a 3D volume created from CT 
scan data of a real patient. 

In the interaction phase, since haptics rendering needs to 
run at 1 kHz, and 60 Hz is fast enough for the graphics 
rendering, GHOST and Coin run in two separate threads at 
different speeds.  GHOST traverses the haptic scene-graph, 
detects the collision between the end-effector of the haptic 
stylus and the 3D models, and computes the reaction forces 
to be sent to the haptic device. Concurrently, Coin 

traverses the graphic scene-graph and sends the position of 
the contact point, the penetration depth, and the distribution 
of the deformation to the GPU. 

The GPU deforms the geometry displacing the vertices 
around the contact point, and then computes the normals of 
the deformed geometry.  

The deformation algorithm was implemented in C++ 
using OpenGL Shading Language (version 1.20) [7] and 
the CVS version of Coin (version 3.0), which supports 
shaders. The hardware used to run the simulation for the 
demo video was a dual Xeon 3.6 GHz Windows PC with 
nVidia Quadro FX 3400 graphics card. 

 

VI. REAL-TIME PERFORMANCE RESULTS 
Table I shows the performance of the haptics-based 

brain surgery simulator running the deformation algorithm. 
It demonstrates how the algorithm is able to maintain 
acceptable graphic and haptic frame rates. 

Haptics frame rate was obtained by using the 
gstGetPhantomUpdateRate function available in GHOST. 
Graphics frame rate was obtained by running the function 
created by [8].  

 
 

 
 

 
 

Fig. 7.  Implementation architecture
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VII. CONCLUSIONS AND FUTURE RESEARCH 
An efficient real-time deformation of elastic objects has 

been implemented using OpenGL Shading Language. 
While the CPU performs the haptic rendering allowing the 
user to feel the haptic deformation at the contact point, 
visual deformation of the area around the contact point is 
computed on the GPU. The main contribution of this paper 
is the fact that existing point-based haptic applications 
using a spring-damper model can be easily modified by 
programming an underutilized GPU to enhance user 
perception without affecting the original haptic 
performance.  

One of the limitations of the algorithm is due to the 
simple Euclidean distance used to define the amount of 
deformation at a particular vertex and fragment. The 
algorithm presents some undesired side effects when 
deforming areas close to the contact point (in a straight 
line) but disconnected from the affected area. A better 
approach would be to compute the geodesic distance.  
Unfortunately, the geodesic distance cannot be easily 
computed on the GPU because it lacks global information 
about the object topology.  However, the deformation 
achieved by the algorithm has shown to be realistic for 
most parts of the models used in the ventriculostomy 
simulator.  

The algorithm considers a single contact point because 
the goal is to enhance an existing haptic application that 
currently works with a point-based collision detection 
library. However, the same approach can easily be 
extended to multiple-point haptic applications using an 
object-to-object collision detection library.  

Since the collision detection and the computation of 
forces are performed with the original (undeformed) 
geometry, this approach cannot be extended to plastic (i.e. 
permanent) deformation.  

GPU-based plastic as well as object-to-object 
deformation for haptic applications using a 6-DOF haptic 
device will be explored in future to find an open-source 
alternative to commercially-available haptic medical 
simulators, such as LapSim [9] and Lap Mentor [20].  
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TABLE I 
PERFORMANCE RESULTS 

3D 
model 

vertices faces graphics 
fps 

haptics 
fps 

Brain 68,856 22,952 61 1000 
Skin 90,207 30,069 60 1000 
Skin + 
Brain 

159,063 53,021 59 999 
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