

Abstract— Most haptic libraries allow user to feel the
resistance of a flexible virtual object by the implementation of
a point-based collision detection algorithm and a spring-
damper model. Even though the user can feel the deformation
at the contact point, the graphics library renders a rigid
geometry, causing a conflict of senses in the user’s mind. In
most cases, the CPU utilization is maximized to achieve the
required 1-kHz haptic frame rate without leaving any
additional resource to also deform the geometry, while on the
other hand, the Graphics Processing Unit (GPU) is
underutilized. This paper proposes a computationally
inexpensive and efficient GPU-based methodology to
significantly enhance user perception of large existing haptic
applications without compromising the original haptic
feedback. To the best of our knowledge, this is the first
implemented algorithm that is able to maintain a graphics
frame rate of approximately 60 Hz as well as a haptics frame
rate of 1 Khz when deforming complex geometry of
approximately 160K vertices. The implementation of the
algorithm in a virtual reality neurosurgical simulator has
been successful to handle, in real time, complex 3D isosurfaces
created from medical MRI and CT images.

I. INTRODUCTION
APTIC interaction along with elastic object
deformation has been useful for learning many

surgical procedure simulations. Virtual human organs are
deformed by the contact forces generated from medical
instruments. It is well known that realistic simulation of
physically-based deformation of elastic objects is very
challenging because of the complexity of the computation
to be performed in real time. However, a simple spring-
damper model can be adequate for achieving a relatively
realistic deformation for real-time interactions.

Current haptics libraries such as GHOST and
OpenHaptics [19] implement a spring-damper model to

Manuscript received April 30, 2007. This work was supported in part

by the U.S. Department of Commerce NIST ATP Cooperative Agreement
70NANB1H3014 .

C. J. Luciano is with the Department of Mechanical and Industrial
Engineering, University of Illinois, Chicago, IL 60607 USA (phone: 312-
996-0579; fax 312-413-0447; email: clucia1@uic.edu).

P. Pat Banerjee is with the Department of Mechanical and Industrial
Engineering, University of Illinois, Chicago, IL 60607 USA (email:
banerjee@uic.edu).

S. H. R. Rizzi is with the Department of Mechanical and Industrial
Engineering, University of Illinois, Chicago, IL 60607 USA (email:
srizzi2@uic.edu).

allow a point-based force-feedback interaction with 3-DOF
haptic devices such as the PHANToM Desktop, Omni, and
Premium 1.0. For point-based haptic applications, only the
tip of the haptic stylus interacts with the virtual objects. In
each frame, a collision detection algorithm checks if the
Haptic Interaction Point (HIP) is inside the virtual object. If
so, penetration depth is computed as the distance between
the current HIP and the corresponding Surface Contact
Point (SCP). Based on a spring-damper model at the
contact point, the haptics library computes the reaction
forces that are proportional to the penetration depth. The
more the user penetrates the object, the higher the reaction
forces applied by the haptic device.

Even though the spring-damper model implemented by
the haptic library allows the user to feel the object
resistance at the contact point, there is no explicit
deformation of the object geometry. Therefore, the
graphics rendering does not show any object deformation
at all. The goal of this work is to enhance the user’s
experience by rendering a coherent graphics deformation
of the virtual objects colliding with the haptic probe
without compromising the current haptic frame rate.

II. RELATED WORK
CPU-based deformation with haptics: In terms of elastic

deformation, [10] implemented a physically-based
simulation algorithm using pre-computed Green’s
functions and Capacitance Matrix Algorithms to render
object deformation. Haptics rendering is done by GHOST
with the undeformed model. Reference [22] developed a
suturing simulator based on a mass-springs grid of dynamic
vertices to model a flat 3D mesh whose vertices can be
displaced by a virtual pair of scissors. Reference [1]
proposed a deformable model based on a similar mass-
spring grid and a force propagation process to perturb the
vertices around the contact point. Reference [5]
implemented an implicit multi-contact deformation
algorithm that solves Signorini’s and Coulomb’s laws with
a fast Gauss-Seidel-like method obtaining haptic frame
rates of 250Hz. Even though these previous works were
successful to render interactive deformation with 3D
meshes of fewer than 700 vertices, they cannot be extended
to complex geometry without affecting the haptics
performance, because the CPU power must be shared

GPU-based elastic-object deformation for enhancement of existing
haptic applications

Cristian J. Luciano, P. Pat Banerjee, and Silvio H. R. Rizzi

H

Proceedings of the 3rd Annual
IEEE Conference on Automation Science and Engineering
Scottsdale, AZ, USA, Sept 22-25, 2007

SuRP-A05.1

1-4244-1154-8/07/$25.00 ©2007 IEEE. 146

between the haptics rendering and the graphics
deformation.

GPU-based deformation without haptics: In the last two
years the use of GPU has proven to be an effective solution
to general purpose problems. In the field of interactive
elastic object deformation, [16] developed two methods to
model a spring-mass system for complex geometry taking
advantage of the parallel processing of the GPU. Since the
simulation is done exclusively on the GPU, the CPU is not
fully utilized, causing an unbalanced load between CPU
and GPU. Reference [17] proposed an alternative
implementation of the mass-spring system on the GPU.
Reference [6] implemented a physics-based deformation
that combines a CPU simulation engine with a GPU render
engine, achieving a more balanced load. Reference [11]
developed another physically-based deformation algorithm
with a mesh of 18,000 vertices. However, all these GPU-
based deformation methods cannot be seamlessly
integrated with existing polygonal-based haptic
applications.

GPU-based deformation with haptics: [21] modified
their GPU-based implementation to incorporate force
feedback, achieving a haptic frame rate of 450 Hz
deforming 3D meshes of up to 91,000 vertices.
Unfortunately, that frame rate is not high enough to
minimize haptic discontinuities and instabilities [13].
References [3] and [4] presented a GPU-based deformation
method to achieve both haptics and graphics rendering,
implementing a single DOF mass-spring-damper system at
the contact point and using shape-functions to distribute the
deformation of the closest vertices. Previously
implemented algorithms are very useful to incorporate
certain haptic feedback to existing graphics applications
with deformation. However, since the primary focus of the
applications is the graphics performance, they resulted in
realistic graphic deformation at the expense of poor haptic
performance.

III. APPROACH OVERVIEW
The goal of this work is to take an existing haptic

application and enhance the user’s perception by the
incorporation of graphical deformation, while maintaining
a 1-kHz haptic frame rate, and keeping the modifications of
the haptic application at a minimum. The existing haptic
application consists of a virtual reality ventriculostomy
simulator developed by [15] (Fig. 1).

In most CPU-based haptic applications, a common
polygonal geometry is processed by both the CPU (for the
haptics rendering) and the GPU (for the graphics
rendering). Haptics rendering includes collision detection,
computation of forces, and bidirectional communication
with the haptic device. Due to the complexity and
sequential nature of the haptics rendering, as well as the

GPU parallel and vector processing power, the haptics
rendering takes longer than the graphics rendering.
Therefore, the GPU is underutilized most of the time. If
deformation is to be incorporated to the haptic application,
it is more efficient to let the CPU deal with the haptics
rendering while the GPU computes deformation for the
graphics rendering in parallel.

Fig. 1. Virtual human brain being deformed by the
insertion of a neurosurgical catheter

This paper focuses on point-based local deformation

around the contact point, and thus, global deformation and
volume preservation are beyond the scope of this research.
The implemented algorithm can be thought of as a tradeoff
between real-time interaction and sophisticated physics-
based realism.

IV. ALGORITHM

A. Vertex displacement
GHOST implements a 1-DOF spring-damper model,

along the normals of the object surface, to let the user feel
the resistance of the object as the probe makes contact with
the object and then pushes against its surface. Similarly, it
is possible to render the object deformation by displacing
the vertices along its normals. In the case of point-based
haptics rendering, the force feedback calculation is done
only at the contact point. However, for graphics rendering
we need to compute not only the deformation at the contact
point, but also at its neighborhood. In order to do that, we
can take advantage of the vertex shader to displace each
vertex in parallel while the CPU computes the force
feedback.

SuRP-A05.1

147

Fig. 2. Vertex displacements along its normals Ni done
by the vertex shader

Fig. 2 shows how the vertices are displaced along its

normals to deform the object surface. The maximum
displacement is found at the contact point. Then the
displacement decreases non-linearly as the vertices are
located farther away from the contact point. The position of
the displaced vertex Vi+1 can be simply computed by the
vertex shader as:

)(*1 idGNVV iii +=+
where:
Vi = Position of original vertex
Ni = Normal vector of vertex Vi
G(di) = Distribution function

The distribution function G(di) defines the amount of

displacement of the neighbor vertices. It consists of a
Gaussian function with mean of zero and variance σ2 (Fig.
4), which is computed as follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

=
2

2

2*)(σ
id

i epdG
where:
di = Euclidean distance from the contact point to the

vertex Vi

p = penetration depth SCPHIP −=

Each vertex shader computes the Euclidean distance
from its vertex to the contact point. When that distance is
zero, the Gaussian function returns the penetration depth
previously computed by GHOST. As we move away from
the contact point, the displacement tends to zero, producing
a realistic “inverted-bell shape” at the vicinity of the
contact point.

The variance σ2 of the Gaussian function controls the
distribution of the deformation. A small variance creates a
very local deformation affecting only the closest vertices of
the contact point, while a large variance produces a more
global deformation around a larger area, allowing us to
simulate the behavior of different materials. For example
compare Fig. 1 and Fig. 3 to see the difference between
brain and skin deformations.

B. Normal calculation
In order to achieve a realistic rendering of the

deformation, it is necessary not only to deform the surface
displacing the vertices, but also to re-compute the normals
of the deformed surface. This is a crucial step since
lighting depends on the surface normals. A naïve approach
would be to send all new vertices back to the CPU, let it
compute the new normals, and then send all new normals
back to the GPU. However, this would lead to a
performance bottleneck due to the slow communication
from the GPU to the CPU. Hence this computation needs
to be done entirely on the GPU.

The new normals could be computed per vertex on the
vertex shader. The fragment shader would then take the
new computed normals at the vertices of each triangle and
it would interpolate them to obtain the normals at each
fragment inside the polygon. However, since we are
dealing with a non-structured polygonal mesh, previously
decimated to increase the haptics performance, the
isosurface has triangles of different sizes. There are flat
areas in which their vertex density is too low. Therefore,
we get smoother shading performing the normal calculation

p

σ2
(Locality of
deformation)

di

Fig. 4. Gaussian distribution defines the deformation
profile

Fig. 3. Skin deformation with different variance

Original surface

Deformed surface

Na
Nb Nc Nd

NeContact
point

SuRP-A05.1

148

per fragment on the fragment shader.
On the CPU, the normals at each vertex are computed

considering the vertices of the neighboring polygons.
Unfortunately, the GPU cannot follow the same approach
because the fragment shader lacks that information.
Therefore, a different approach needs to be implemented.
Instead of re-computing the normals, the GPU can slightly
perturb the old normals to reflect the changes of the
deformed surface. The idea is to rotate the original normal
N0 at the vertex v towards the contact point c by a certain
angle θ about a rotation axis W (Fig. 5).

Vector VC is computed from the new vertex v (displaced

by the vertex shader) to the contact point c. The rotation
axis W (coming out of the page) is defined by the vector
perpendicular to the plane formed by the vectors N0 and VC
and is computed with the cross product function as:

VCNW ×= 0

The rotation angle θ depends on the slope of the

deformed surface at each vertex v, or even more precisely
at each fragment since the normal calculation is performed
by the fragment shader. Since the deformed geometry
follows a Gaussian function around the contact point, the
surface slope at each fragment can be computed as the first
derivative of the Gaussian function:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− 2

2

2
2 **)(' σ

σ

id

i
i edpdG

Now the rotation angle θ is simply defined as:
())('arctan idG−=θ

Knowing the rotation axis W and the angle θ, it is very
efficient to compute the perturbed normal N1 using the
cross and dot product functions as follows:

)sin(*)(
)cos(*)(

0

01

θ
θ

WN
TNTN

×+
+−+=

where:

)(* 0 WNWT •=

It is important to mention that since the geometry

deformation and the normal computation need to be
consistent, both the vertex and the fragment shaders must
compute the Euclidean distance from the vertex to the
contact point in eye-coordinate system.

The resulting normals are then used by the fragment
shader to render the spot light as well as the directional
light achieving a realistic rendering of the elastic
deformation.

Fig. 6 shows the worst case scenario applying the

deformation algorithm on an area of the geometry in which
the vertex density is extremely low. The flat surface
consists of few large triangles produced by the isosurface
decimation process. Here the vertex shader does not
displace any vertex at all because all of them are far away
from the contact point. However, since the fragment shader
computes the normals, it gives the illusion that the surface
is properly deformed.

Previous Jacobian-based GPU-shader algorithms had to
compute either the inverse of the 3x3 Jacobian matrix, or
the tangents and binormals [17]. This step becomes very
time consuming if the normal perturbation is done by the
fragment shader. The algorithm presented here consists of
a more efficient alternative.

Fig. 5. Normal calculation done by the fragment
shader

Fig. 6. Details of the normal perturbation at a low-
vertex-density area

Vector VC

N0 = old normal

θ

N1= new normal

Vertex v

c = contact point

W = vector perpendicular to plane
formed by N0 and VC

SuRP-A05.1

149

V. IMPLEMENTATION
Two equivalent scene-graphs are stored in the main

memory and handled by two libraries running on the CPU:
GHOST and an open-source Open Inventor
implementation [2]. A haptic scene-graph is created by
GHOST to perform the haptics rendering, and a graphics
scene-graph is created by Coin to perform the graphics
rendering. Coin also serves as the communication link
between the CPU and the GPU. Fig. 7 shows the
interaction between the CPU and GPU, as well as the
communication with the haptic device and the stereoscopic
display of the ImmersiveTouch™ augmented reality system
[14].

In the initialization phase, both haptic and graphic scene-
graphs are created by reading a common set of 3D models
stored in VRML files. The 3D models are complex
polygonal isosurfaces (that represent skin and brain)
previously extracted from a 3D volume created from CT
scan data of a real patient.

In the interaction phase, since haptics rendering needs to
run at 1 kHz, and 60 Hz is fast enough for the graphics
rendering, GHOST and Coin run in two separate threads at
different speeds. GHOST traverses the haptic scene-graph,
detects the collision between the end-effector of the haptic
stylus and the 3D models, and computes the reaction forces
to be sent to the haptic device. Concurrently, Coin

traverses the graphic scene-graph and sends the position of
the contact point, the penetration depth, and the distribution
of the deformation to the GPU.

The GPU deforms the geometry displacing the vertices
around the contact point, and then computes the normals of
the deformed geometry.

The deformation algorithm was implemented in C++
using OpenGL Shading Language (version 1.20) [7] and
the CVS version of Coin (version 3.0), which supports
shaders. The hardware used to run the simulation for the
demo video was a dual Xeon 3.6 GHz Windows PC with
nVidia Quadro FX 3400 graphics card.

VI. REAL-TIME PERFORMANCE RESULTS
Table I shows the performance of the haptics-based

brain surgery simulator running the deformation algorithm.
It demonstrates how the algorithm is able to maintain
acceptable graphic and haptic frame rates.

Haptics frame rate was obtained by using the
gstGetPhantomUpdateRate function available in GHOST.
Graphics frame rate was obtained by running the function
created by [8].

Fig. 7. Implementation architecture

SuRP-A05.1

150

VII. CONCLUSIONS AND FUTURE RESEARCH
An efficient real-time deformation of elastic objects has

been implemented using OpenGL Shading Language.
While the CPU performs the haptic rendering allowing the
user to feel the haptic deformation at the contact point,
visual deformation of the area around the contact point is
computed on the GPU. The main contribution of this paper
is the fact that existing point-based haptic applications
using a spring-damper model can be easily modified by
programming an underutilized GPU to enhance user
perception without affecting the original haptic
performance.

One of the limitations of the algorithm is due to the
simple Euclidean distance used to define the amount of
deformation at a particular vertex and fragment. The
algorithm presents some undesired side effects when
deforming areas close to the contact point (in a straight
line) but disconnected from the affected area. A better
approach would be to compute the geodesic distance.
Unfortunately, the geodesic distance cannot be easily
computed on the GPU because it lacks global information
about the object topology. However, the deformation
achieved by the algorithm has shown to be realistic for
most parts of the models used in the ventriculostomy
simulator.

The algorithm considers a single contact point because
the goal is to enhance an existing haptic application that
currently works with a point-based collision detection
library. However, the same approach can easily be
extended to multiple-point haptic applications using an
object-to-object collision detection library.

Since the collision detection and the computation of
forces are performed with the original (undeformed)
geometry, this approach cannot be extended to plastic (i.e.
permanent) deformation.

GPU-based plastic as well as object-to-object
deformation for haptic applications using a 6-DOF haptic
device will be explored in future to find an open-source
alternative to commercially-available haptic medical
simulators, such as LapSim [9] and Lap Mentor [20].

REFERENCES
[1] Choi, K.S., Sun, H., Heng, P.A. 2003. Interactive deformation of soft

tissues with haptic feedback for medical learning. IEEE Transactions
on Information Technology in Biomedicine, Vol. 7, No. 4,
December.

[2] Coin, Open Inventor, www.coin3d.org
[3] De Pascale, M., De Pascale, G., Prattichizzo, D., Barbagli, F. 2004.

A GPU-friendly method for haptic and graphic rendering of
deformable objects, In Proceedings of Eurohaptics, pp. 44-51.

[4] De Pascale, M., Sarcuni, G., Prattichizzo, D. 2005. Real-time soft-
finger grasping of physically based quasi-rigid objects, In
Proceedings of World Haptics Conference, pp. 545-546.

[5] Duriez, C.; Dubois, F.; Kheddar, A.; Andriot, C Realistic haptic
rendering of interacting deformable objects in virtual environments,
IEEE Transactions on Visualization and Computer Graphics,
Vol.12, Iss.1, Jan.-Feb. 2006, pp. 36- 47.

[6] Georgii, J., Westermann, R. 2005. Interactive simulation and
rendering of heterogeneous deformable bodies. In Proceedings of
VMV.

[7] GLSL, OpenGL Shading Language, www.opengl.org/
documentation/glsl/

[8] Howard, T., Craven, M.,
http://www.cs.manchester.ac.uk/software/OpenGL/frames_wl.txt

[9] Immersion Medical Corporation,
www.immersion.com/medical/products/laparoscopy/index.php

[10] James, D.L., Pai, D.K. 2001. A unified treatment of elastostatic
contact simulation for real time haptics. Haptics-e, The Electronic
Journal of Haptic Research, Vol. 2, No. 1

[11] James, D.L., Pai, D.K. 2002. DyRT: Dynamic Response Textures for
Real Time Deformation Simulation With Graphics Hardware. ACM
Transactions on Graphics (SIGGRAPH 2002), Vol. 21, No. 3, July,
2002, pp. 582 - 585

[12] Kim, M., Punak, S., Cendan, J., Kurenov, S., Peters, J. 2006.
Exploiting graphics hardware for haptic authoring. In Proceedings of
Medicine Meets Virtual Reality 14, pp 255-260.

[13] Lin, M., Salisbury, K. 2004. Haptic Rendering--Beyond Visual
Computing, IEEE Computer Graphics and Applications, Volume
24, Issue 2

[14] Luciano, C., Banerjee, P., Florea, L., Dawe, G. 2005 Design of the
ImmersiveTouch™: a High-Performance Haptic Augmented VR
System, Proceedings of Human-Computer Interaction.

[15] Luciano, C., Banerjee, P., Lemole, G.M., CHARBEL, F. 2006.
Second generation haptic ventriculostomy simulator using the
ImmersiveTouch™ system. In Proceedings of Medicine Meets
Virtual Reality 14, pp 343-348.

[16] Mosegaard, J., Sørensen, T.S. 2005. GPU accelerated surgical
simulators for complex morphology. In Proceedings of IEEE Virtual
Reality. pp. 147-153.

[17] Randima, F. 2004. GPU-Gems: Programming techniques, tips and
tricks for real-time graphics, chapter 42.

[18] Ranzuglia, G., Cignoni, P., Ganovelli, F., Scopino, R. 2006.
Implementing mesh-based approaches for deformable objects on
GPU. In Proceedings of 4th Conference Eurographics.

[19] Sensable Technologies, www.sensable.com
[20] SIMBIONIX, www.simbionix.com/LAP_Mentor.html
[21] Sørensen, T.S., Mosegaard, J. 2006. Haptic feedback for the GPU-

based surgical simulator. In Proceedings of Medicine Meets Virtual
Reality 14. pp. 523-528.

[22] Webster, R.W., Zimmerman, D.I., Mohler, B.J., Melkonian, M.G.,
Haluck, R.S. 2001. A prototype haptic suturing simulator. In
Proceedings of Medicine Meets Virtual Reality 9. pp 567-56.

TABLE I
PERFORMANCE RESULTS

3D
model

vertices faces graphics
fps

haptics
fps

Brain 68,856 22,952 61 1000
Skin 90,207 30,069 60 1000
Skin +
Brain

159,063 53,021 59 999

SuRP-A05.1

151

