
Experimental Studies Using

Photonic Data Services

at IGrid 2002

Robert L. Grossman and Yunhong Gu and Don Hamelburg
and Dave Hanley and Xinwei Hong and Jorge Levera

and Dave Lillethun and Marco Mazzucco and Joe Mambretti
and Jeremy Weinberger

December, 2002

Abstract

We describe an architecture for remote and distributed data intensive applica-
tions which integrates optical path services, network protocol services for high
performance data transport, and data services for remote data analysis and dis-
tributed data mining. We also present experimental evidence using geoscience
data that this architecture scales to long haul, high performance networks.

1 Introduction

A fundamental research challenge is to develop systems for remote data analysis
and distributed data mining which scale to very large data sets. The data may
be at rest in the sense that it resides on remote disks and tapes or it may be in
motion in the sense that it is collected and streamed from a remote instrument.

The analysis and mining of this type of data is difficult for several reasons:

1. For fixed window size, the bandwidth of reliable network protocols such
as TCP, which requires acknowledgments for each packet, is roughly ap-
proximated by 1/RTT , where RTT is the round trip time for a packet to
travel between the client and server. For an application across the Atlantic
that gives a rough limit of approximately 5 Mb/s, even if the path has a
capacity many times greater, such as 1 Gb/s link.

2. In the last few years, we have gained a better understanding of the prim-
itives required to integrate data mining with databases. On the other
hand, we do not yet have a good understanding of the primitives required
for remote data analysis and distributed data mining.

1



In this paper, we introduce an architecture for remote data analysis and dis-
tributed data mining which integrates services to set up optical paths, network
protocols designed for high performance networks, and data services providing
simple primitives supporting the remote analysis and distributed mining of large
data sets. We also describe experiments showing the speedup gained with this
approach for some typical data mining algorithms such as computing simple
correlations for streaming geoscience data.

In Section 2, we describe related work. In Section 3, we describe the ar-
chitecture we introduce called Photonic Data Services or PDS. In Sections 4–6,
we describe the three main layers of PDS. In Section 7, we describe two ex-
perimental studies involving PDS applications. Section 8 is the summary and
conclusion.

A preliminary version of this paper describing a prior version of the archi-
tecture and experiments with an OC-12 network appeared in the conference
proceedings [1].

2 Background and Related Work

In this paper, we are concerned with supporting remote data analysis and dis-
tributed data mining applications with high performance data transport ser-
vices. In addition, many applications will also require high performance com-
pute services, which we do not address. Today, these would be typically pro-
vided by local compute clusters or by virtual compute clusters accessed via a
computational grid [2] or computational middleware architecture [3].

It has long been recognized that TCP is not appropriate for high performance
applications on long haul networks. The reason is simple: the TCP protocol
requires acknowledgment of each packet. This limits the bandwidth to be a
function of 1/RTT , where RTT is the time required to send a packet and
receive an acknowledgment [4], page 186.

One approach to improving TCP performance for data intensive applications
is to adjust the TCP window size to be the product of the bandwidth and the
RTT delay of the network [4]. This approach requires modifying and tuning the
kernel of each of the operating systems transporting the packets and ensuring
that the networking hardware can support these large or jumbo packets.

Another approach to overcoming the limitations of TCP is to stripe TCP
over several standard TCP network connections. In contrast to the first ap-
proach, this can be done at the data middleware or application level. This ap-
proach has been implemented several times, including PSockets [5] and GridFTP
[6]. It has been observed that the performance of striped TCP begins to level off
after about 12-20 sockets, effectively limiting its usefulness to OC-3 or OC-12
networks.

There have been three main architectural approaches to date for distributed
data mining: agent based systems, data grid based systems, and data web based
systems. We consider each in turn.

The first approach is to use agents over commodity networks to move data,

2



remotely control the data mining algorithms at the different sites, and to collect
the intermediate results and models. Systems with this architecture include the
JAM system developed by Stolfo et. al. [7], the BODHI system developed by
Kargupta et. al. [8], the Kensington system developed by Guo et. al. [9], and
the Papyrus system developed by Grossman et. al. [10].

The second approach is to use grid-based middleware. Systems with this
architecture include those developed by Subramonian et. al. [11], Moore et. al.
[12], and Grossman et. al. [10]. More recently, Globus has emerged as the dom-
inant middleware for working with distributed clusters [2]. The Globus infras-
tructure for data intensive computing is called the data grid, and includes ser-
vices for parallel TCP striping (GridFTP), and data replication services (Globus
Replica Catalog and Globus Replica Management) [13].

Other grid middleware services that have been used for data mining include
the DataCutter developed by Saltz et. al. [14] and Discovery Net developed by
Guo et. al. [15]. For example, Du and Agrawal recently used the DataCutter
for some distributed data mining experiments [16].

The third approach and the one used in this paper is to use data webs, which
are web based infrastructures for data [17]. Unlike grid middleware which is
built over authentication, authorization and access (AAA) control mechanisms
for rationing and scheduling presumably scarce high performance computing
resources [2], data webs are built using W3C standards and emerging standards
for web services and packaging (SOAP and XML). Data webs in contrast to
data grids are designed to encourage the open sharing of data resources without
AAA controls, in the same way that the web today encourages the sharing of
document resources without AAA controls [18].

For small data sets, data webs use W3C standards and emerging standards
to manage both the data and metadata. These include HTTP, DSTP (DataS-
pace Transport Protocol) and other emerging standards for transport [19], and
SOAP and XML for packaging [18]. For large data sets, this infrastructure is
used just for the meta-data, while specialized network protocols and data ser-
vices (the photonic data services described below) are used to manage the data
itself. Providing separate mechanisms for control paths and data paths is an old
idea in high performance computing going back to at least the IBM High Perfor-
mance Storage System (HPSS). Developing the appropriate data web services
and protocols to work with large remote and distributed data is a fundamental
research challenge.

3 Photonic Data Services

Today data intensive applications working with remote and distributed data
are generally based upon standard networking (IP) and transport (TCP) pro-
tocols. For data mining applications running on commodity networks analyzing
small data sets these protocols work extremely well. Data mining applications
involving large, distributed data sets have generally used specialized networks
such as NSF’s vBNS network or the Internet 2’s Abilene network. In practice,

3



very large bandwidth applications have to be scheduled on these networks and
require the use of specialized transport protocols [5].

This paper describes applications based upon the following specialized ser-
vices:

Intelligent signaling for paths by applications. As optical networking
architectures become more common, a new possibility is emerging. A band-
width demanding application can request an optical connection between the
data sources and the data sinks for a specific application. More specifically,
the application can request the set up, status and tear down of the required
optical paths. Clearly there is a cross over point: for short transfers of small
data, TCP is clearly preferable, while for long transfers of very large data, a
dedicated optical path is clearly preferable.

With today’s MEMS technology, reconfiguration of a light path in an optical
add/drop multiplexer (OADMs) or optical cross connects (OXCs)can be done
in milliseconds. New cross connect technologies such as semiconductor optical
amplifiers (SOAs) would shorten this to nanoseconds [20]. Today, as we will see
below, applications requiring moving > 0.5 GBs for remote data analysis and
distributed data mining can benefit from requesting specialized lambda paths.
In the future, the cross over point will be much smaller.

Specialized network protocols. It is clear that TCP does not currently
perform well for moving large data sets over long distances. Recently there has
been a flurry of activity investigating alternative protocols [5], [6], [21], [13],
and [22]. Our assumption is that one or more of these alternative protocols will
be commonly used by data intensive applications, supplementing TCP when
required.

Specialized data services. Moving data is different than moving bits. In
addition, we assume that data intensive applications will also make use of spe-
cialized protocols and services for working with data, services which support
metadata operations, record and attribute selection, missing data, sampling,
and related data services.

In this paper, we introduce the idea of integrating 1) specialized photonic
path services; 2) high performance network protocols and 3) high performance
data services providing data mining primitives for remote data analysis and
distributed data mining. We call these integrated services photonic data services
or PDS.

As an example, in Section 7.3, we describe a distributed data mining appli-
cation in which 1.8 GB of vegetation data over a region specified by latitude
and longitude coordinates is correlated with 1.8 GB of climate data over the
same region. Both data sets are in the US in different locations, but the client
doing the correlation is in Amsterdam.

Assume that both data sources are connected to the client by 10 Gb/s links.
Today, the data would be moved to a common location using a standard network
protocol such as TCP, merged, and then correlated. Merely moving the data
across the Atlantic takes over 3000 seconds, as we will see in Section 7.3.

4



Our assumption is that in the future dedicated links will not be common,
but the ability to set up specialized photonic paths on a per application basis
will be. Using the photonic data services described below, a photonic path can
be set up in less than a minute and the two 1.8 GB streams transported and
merged in less than 70 seconds, as we will see in Section 7.3. As the path services
software matures, we expect the set up time to be reduced substantially, so that
a data mining computation that today requires approximately an hour could be
done in approximately a minute.

For the purposes here, the layered network model we use is a simple extension
of the standard 5-layer model in which we split the top layer into two. One of
these provides specialized data services for remote data analysis and distributed
data mining and the other is the top application layer. Here is the layered model
we are using:

1. Physical Links. We assume that the physical links are provided by multi-
channel wavelength-division multiplexed (WDM) communications, as well
as by Ethernet, and other technologies.

2. Path Services Layer. We assume that there are services allowing us to set
up paths between devices, tear down paths, check the status of paths, set
up routing, etc.

3. Internet Layer. This layer provides a common network addressing and
routing across multiple networks. For our applications, we use the Internet
Protocol (IP) in this layer.

4. Network Protocol Services Layer. We assume that there are transport ser-
vices including TCP, UDP, and other more specialized protocols providing
high performance over the paths. Our applications use specialized high
performance protocols in this layer.

5. Data Services Layer. We assume that there are standard services for
moving data such as SOAP-based web services, as well as more specialized
data services designed for performance networks.

6. Application Layer. We assume that the remote data analysis and dis-
tributed data mining applications can request standard and specialized
network services depending upon the applications requirements.

In the next three sections, we describe the three service layers we have imple-
mented and integrated to create photonic data services to support data analysis
and data mining. Our implementation of the path services (Layer 2) is called
ODIN [23]; our implementation of the network protocol services (Layer 4) is
called SABUL [22]; our implementation of data services (Layer 5) uses high
performance implementations of the DataSpace Transport Protocol (DSTP) we
have developed [24]. Using these three services, we developed an application
for merging two high bandwidth data streams of earth science data employing
a join algorithm called the continuously generated merge or CGM [25].

5



The work described in this paper is the first time we have integrated these
three service layers and performed experimental studies using them.

Integrating Photonic Data Services with web services is straightforward and
will be described in a forthcoming publication. To do this, we simply added two
additional layers between PDS layers 5 and 6: one for the description of data
services (for example, WSDL) and one for the discovery of data services (for
example, UDDI) [18].

4 Path Services - ODIN

The path services used in PDS are called the Optical Dynamic Intelligent Net-
work Service Layer or ODIN [23]. ODIN receives requests for circuits by ap-
plications, which for PDS can be from layer 4 or 5 services, and contacts the
required network switches, including both optical-domain DWDM switches and
traditional Ethernet switches and IP routers, to set up the circuits.

ODIN consists of two sub-systems: one, called the TeraScale High Perfor-
mance Optical Resource Regulator or THOR, interfaces to the optical fabric;
while the other, called the Dynamic Ethernet Intelligent Transit Interface or
DEITI, interfaces to the traditional Ethernet/IP fabric. We now describe these
systems following [23].

ODIN is designed to dynamically provision and control global light paths.
The ODIN subsystem THOR is based on new signaling methods for dynamically
provisioning light paths. These light paths can be used to create optical VPNs
(OVPNs), as well as to extend these light paths to edge resources through other
types of dynamically provisioned paths, such vLANs.

ODIN can be used to establish “services on demand” and, as noted, not
only dynamically allocated light paths, but also dynamically allocated transient
(or permanent) Optical Virtual Private Network (OVPNs). In part, ODIN
accomplishes its functions through interactions with lower layer optical services
such as THOR.

ODIN is designed to work within a single administrative domain and to
provide a predefined set of path services. Since the only allocation of paths is
through ODIN, it has complete knowledge of the topology and current resource
allocations within the administrative domain. ODIN accepts requests for path
services from services and applications over the network. When resources are
allocated to fulfill requests, ODIN communicates with the requisite network
switches to configure them as required. These switches can be optical-domain
DWDM switches, Ethernet switches and/or IP routers.

With the current implementation of PDS, layer 4 or 5 services determine
whether a photonic path is required. If so, a request is sent to the ODIN server.
The ODIN server 1) finds the closest optical endpoints for the specific source
and destination; 2) establishes the optical connection; and 3) activates other
related network components to provide the required upper layer services, such
as MPLS and Tagged VLAN switching.

6



5 Network Protocol Services - SABUL

In this section, we follow [22] and describe a network protocol we have developed
called the Simple Available Bandwidth Utilization Library or SABUL. SABUL
is designed for high performance data transfer and is especially useful on long
haul networks.

The idea behind SABUL is simple. SABUL combines the UDP protocol in
order to send data at a high rate with the TCP protocol in order to do this in a
reliable fashion. UDP has no flow control, rate control, or reliable transmission
mechanisms. SABUL implements these control functions in a separate TCP
control channel. This approach is in contrast to the approach of other high
performance protocols such as NETBLT [26] which combine the data and control
channels.

In SABUL, the packets on the UDP channel consist of the usual UDP header
plus a 32 bit field for a sequence number. On the TCP channel, each packet
consists of: a list of lost data packets, a field stating the requested data rate,
and a field reserved to report the state of the receiver’s available buffer size. We
define the communication state information to be the information contained in
these TCP packets.

The flow is assumed to be unidirectional. Data is sent to the receiver over
the UDP channel, while current communication state information is sent over
the TCP channel, from the receiver to the sender. Since the communication
state information is passed over TCP, its arrival is ensured; since the amount
of this information is relatively small, it has a negligible effect on the overall
performance of SABUL.

One of the advantages of SABUL is its continuous updating of state infor-
mation. In contrast, NETBLT uses a mechanism that sends buffers of data at a
fixed rate. At the end of transmission of each buffer, the receiving side of NET-
BLT sends the sender a list of packets that were lost in the transmission of this
buffer. The sender then resends these packets; the process continues until all
packets in the buffer are accounted for. Then the next buffer can be transmitted
by NETBLT. NETBLT needs to block until all packets are accounted for on the
sending side before sending another buffer. This process can be further delayed
since packet loss information is transmitted unreliably by the receiver to the
sender (since this information is sent over UDP). Another deficit of NETBLT
is that it needs to wait for at least one round trip time to get each update of
packets lost.

In SABUL, however, each time the receiver notices at least one missing
packet, it uses the TCP channel to transmit to the sender a list of packets that
were lost. It does not have to block the sending of packets over the UDP channel
to wait for an incoming packet containing the communication state information.
This allows for changing the rate and flow of data, and retransmission of any
missing packets during the transmission of the data. The list of missing packets
is updated every time a missing packet is received. If during a predefined amount
of time no packet was lost, and thus no transmission sent to the sender on the
TCP channel, the receiver sends a notification of this fact to the sender with

7



communication state information. This allows the sender to empty its buffer of
packets which have successfully been received and adjust the rate and flow if
necessary.

6 Data Services - DataSpace Transfer Protocol

In this section we follow [19] and describe data services designed to be compo-
nent services or primitives for distributed data mining applications. The ser-
vices are part of a protocol called the DataSpace Transfer Protocol, or DSTP,
which we have developed. Access to DSTP data can also be gained through
proxy servers, such as SOAP based servers. The experiments below used high
performance DSTP servers which we have developed [24].

Distributed Columns of Numerical Data. The data model for DSTP
Version 2 is simple. Data is divided into rows (data records) and columns (data
fields or data attributes). Both may be distributed over the web. Access to
the data itself is through a DSTP server, or through a proxy service, such as
through a SOAP based server. Physically, the data itself may be stored as files,
in databases, or using other specialized storage mechanisms. Logically, data is
just a distributed collection of columns. Version 3 of DSTP may support a more
complex data model.

Universal Correlation Keys. A Universal Correlation Key (UCK) is a glob-
ally unique id (GUID) and is used for relating columns of data on two different
DSTP servers. Each column of data is associated with at least one column of
UCKs.

Multi-Dimensional UCKs. UCKs may be combined to provide multi-dimensional
keys. This is essential for working with scientific and engineering data, such as
the geoscience data used in the experiments below. For example, this data uses
latitude and longitude as the UCKs.

Column Based Meta-Data. Associated with each column of data is attribute
meta-data and with each data set (a collection of columns) data set meta-
data. DSTP applications may or may not use this meta-data. On the other
hand, this meta-data is essential for building and deploying statistical models.
DSTP servers provide a simple mechanism for associating metadata to columns
and collections of columns. DSTP applications often access metadata using
SOAP/XML based web services.

Universal correlation keys enable distributed columns to be correlated in the
following fashion: Pairs (ki, xi), where ki is a UCK value and xi is an attribute
value, on DSTP Server 1 can be combined with pairs (kj , yj) on DSTP Server
2 to produce a table (xk, yk) in a DSTP client. The DSTP client can then, for
example, find a function y = f(x) relating x and y. This simple mechanism
of distributed columns identified by UKCs (perhaps vector valued) is sufficient
information for many data mining algorithms.

Depending upon the request, DSTP servers may return one or more columns,
one or more rows, or entire tables. DSTP uses XML to describe the metadata.

8



DSTP applications can also access small data sets using XML so that DSTP
is compatible with SOAP. On the other hand, for efficiency and scalability,
the default is for data itself to be transmitted as records delimited by carriage
returns, with fields delimited by commas. The DSTP client may also indicate
that a specialized high performance protocol such as SABUL should be used for
the data channel. To summarize, the DSTP protocol uses XML for metadata
and small data, while data is typically streamed, with large amounts of data
streamed using SABUL or other high performance network protocols.

The DSTP protocol includes commands for retrieving metadata, retrieving
UCKs, retrieving data and subsets of data, and mechanisms for sampling, work-
ing with missing data, and merging by UCKs.

We note that some of the IGrid demonstrations, such as browsing data from
the Protein Data Bank, required 30 or more seconds when using SOAP/XML for
the metadata while less than a second when using specialized DSTP streaming
protocols. This is due to the overhead to parse XML, which becomes more of
an application burden as the number of attributes grows.

7 Experimental Studies

7.1 IGrid 2002 Testbed

We assume that our network consists of Dense Wavelength-Division Multiplexed
optical devices together with standard Ethernet/IP devices. For our experi-
ments we used the Chicago area OMNInet [27] and the global Terra Wide Data
Mining Testbed [28].

OMNInet is an optical networking testbed deployed in the Chicago metropoli-
tan area. OMNInet currently provides 1 GE and 10 GE services between
Northwestern, the University of Illinois at Chicago, and the StarLight facility
in Chicago. OMNInet is operated by a research consortium consisting of iCAIR
at Northwestern, the Electronic Visualization Laboratory at the University of
Illinois at Chicago, Argonne National Laboratory, SBC, and Nortel.

The Terra Wide Data Mining Testbed (TWDM) is a testbed built on top
of DataSpace for the remote analysis, distributed mining, and real time explo-
ration of scientific, engineering, business, and other complex data. Currently,
the TWDM Testbed consists of five geographically distributed workstation clus-
ters linked by optical networks with StarLight in Chicago as the optical inter-
change point. These sites include StarLight itself, the Laboratory for Advanced
Computing at UIC, iCAIR at Northwestern University, SARA in Amsterdam,
and CANARIE in Ottawa. SARA is connected to StarLight via the Netherlands’
Surfnet network, Ottawa is connected to Starlight via Canda’s CANARIE net-
work, and UIC and iCAIR are connected via OMNInet.

The setup for the experiments in the next two sections was as follows. Three
node DSTP clusters were located at the SARA research facility in Amsterdam,
at the University of Illinois at Chicago, and at the StarLight Facility in Chicago.
StarLight and the University of Illinois at Chicago are located several miles a

9



part. The SARA cluster and the StarLight cluster were connected via a 10 Gb/s
Surfnet link. The UIC cluster and StarLight cluster were connected via a 10
Gb/s OMNInet link.

The machine in Amsterdam was a dual P4, 1700 Mhz, with 512M RAM. The
machines in Chicago were dual PIIIs, 1000Mhz, with 512M RAM. The machines
were all running Linux, with the 2.4.x kernels.

7.2 PDS Application: Lambda FTP

Our first series of experiments measured an application we developed called
Lambda FTP, a high performance implementation of FTP using SABUL. The
testing was done between two three-node clusters, one located at StarLight in
Chicago and one located at SARA in Amsterdam. The results are reported in
the table below. Standard TCP provided about 4.36 Mb/s of bandwidth, while
each of the three SABUL streams provided about 900 Mb/s of bandwidth, so
that the aggregate SABUL bandwidth was about 2.7 Gb/s between the two
three node clusters.

We note that DSTP servers can stream data using SABUL so that these
performance numbers are also applicable to streaming DSTP data. In general,
though, DSTP clients perform some type of computation so that actual band-
width is dependent upon the particular data web application. An illustration
of this is contained in the next section.

File Transfer between Chicago and Amsterdam (Mb/s)
TCP Stream SABUL

Stream 1
SABUL
Stream 2

SABUL
Stream 3

Aggregate
SABUL
Stream

4.36 902.8 902.9 907.1 2712.8

7.3 PDS Application: Lambda Joins

Our second series of experiments involved testing a basic operation in distributed
data mining, merging two data streams by a common key. For this series of
experiments, we merged two NCAR data sets [29]. One of the data sets was
located at UIC in Chicago and one was located at SARA in Amsterdam. The
merging was done at StarLight in Chicago.

The two DSTP streams of data were merged by an algorithm called the
Continuously Generated Merge, or CGM, which we developed for merging two
high bandwidth data streams [25]. In this case, we merged the two streams
using latitude, longitude, and time as the common vector valued key. Once
distributed streaming data has been merged in this way, simple statistical counts
using a finite buffer can be done in a variety of ways to support the interactive
exploration of large remote data sets [30].

Merging distributed data streams by common keys is a basic operation in
distributed data mining. Other examples include merging satellite imaging data

10



of different modalities by latitude/longitude and merging network route dumps
by source address.

We now briefly review the CGM algorithm following [25]. In the CGM
algorithm we assume the data is partially presorted. Without loss of generality,
assume there are two data streams, A and B, being drawn into a client in
approximately ascending order and we are trying to merge on one UCK. The
CGM algorithm depends upon two parameters: a parameter N determining the
number of records in a window, which is used to buffer the streaming data, and
Nh, the number of entries in two auxiliary hash tables. The algorithm has an
even step and an odd step. The even steps of the algorithm are as follows:

1. The client grabs some fixed number of records N , from both stream A
and stream B and places them in window A and window B respectively
(each has room for exactly N records).

2. A hash is done on the value of each UCK in window A and the record
is placed in the appropriate location in hash table A, overwriting any
previous record.

3. A hash is done on the value of each UCK in window B and if the value
hashes to an occupied location in hash table A, both the records are
merged. If the value does not hash to an occupied location in hash table
A, then the record is placed in the appropriate location in hash table B,
overwriting any previous record.

In the odd steps of the algorithm, the above algorithm is executed, but
reversing the roles of A and B.

The results in the table below are from the CGM algorithm running using
TCP as the network protocol and DSTP as the data service protocol. Each
data stream was 300 MB in size. The CGM algorithm used a hash table size
of 50,000 and a window size of 10,000. The data was randomized by replacing
every n’th row (for example, for 10 percent every 10’th row) with a random row
which was within 50,000 lines of the current row.

As can be seen from the table, the average speed varied between 4-5 Mb/s.

Merging two data streams without PDS
Rand % Match % Time sec Data Rate Mb/s

2 96.6 513 4.68
10 89.9 540 4.44
20 81.5 531 4.52
33 73.1 563 4.26

The next two results below are from the CGM algorithm running SABUL as
the network protocol and DSTP as the data service protocol. One DSTP Server
per cluster was used to send and receive data, so that the maximum bandwidth
between the two clusters was 1 Gb/s. The data size this time was 1.8 GBs so
that in total 3.6 GBs of data were merged by the algorithm. The average speed

11



varies between 400-500 Mb/s. This means that CGM over SABUL was about
600x faster on average, since the amount of data was 6x greater and the elapsed
time was about 100x less.

When testing the algorithm we realized the largest single affect on the per-
formance of the merge was the length of the record. The longer the record size
the memory copying required, the greater the merge time. To illustrate this we
ran two tests. In the first, both data files containing 1 UCK and 1 attribute; in
the second, both data files containing 1 UCK and 7 attributes.

Merging two data streams with PDS - 1 attribute
Rand % Match % Time sec Data Rate Mb/s

2 99 53.3 550
10 91 52.4 550
20 83 56.2 512
33 78 54.6 527

Merging two data streams with PDS - 7 attributes
Rand % Match % Time sec Data Rate Mb/s

2 99 66.3 434
10 92 65.7 438
20 82 64.2 449
33 79 65.1 442

8 Summary and Conclusion

In this paper, we have introduced an architecture called Photonic Data Services
or PDS which integrates path services, network protocol services, and data ser-
vices. With intelligent path services, distributed data mining applications can
intelligently signal for a special photonic path, use this for distributed data
mining, and then release it for use by other applications. With high perfor-
mance network protocols, data mining applications can work effectively with
remote Gigabyte size data sets over high performance networks. These types of
protocols are sometimes several hundred times faster than traditional protocols
over the same high performance networks. With specialized data services such
as streaming merges, distributed data mining services can effectively correlate
distributed Gigabyte size data sets.

In this paper, we have provided experimental evidence that this approach
is practical and useful and that our implementations scale to remote Gigabyte
size data sets that are distributed over thousands of miles. Compared to cur-
rent implementations of data mining primitives for merging two data streams
and computing counts, our Photonic Data Services are significantly faster. For
example, to stream two 1.8 Gigabyte data streams of geoscience data across
the Atlantic, merge the results using latitude, longitude and time as keys, and
compute simple counts required over an hour with conventional services and
less than a minute using the photonic data services described in this paper. We
emphasize that both experiments used the same high performance network.

12



We believe that the work described here is novel for the following reasons:

1. This is the first description describing an architecture for integrating path
services for photonic networks, network protocols designed for high per-
formance networks, and data services supporting primitives to facilitate
remote data analysis and distributed data mining. Integrated services such
as these can provide the foundation for scaling distributed data mining to
large data sets. We call this architecture Photonic Data Services.

2. This is the first integration which allows applications (in our case data ser-
vices middleware) to signal to optical networks requests to set up, check
the status, and tear down photonic paths. The ability to configure paths
and related services on an as-needed basis is essential if these services will
one day move from today’s experimental networks to tomorrow’s produc-
tion networks. Think of this as intelligent application signaling.

3. This is the first experimental study demonstrating the feasibility of the
distributed mining of Gigabyte size data sets that are separated by thou-
sands of miles and over a hundred milliseconds in packet round trip time.

There are three main areas of work for the future:

1. First, we plan on scaling photonic path services to multiple administrative
domains. The experiments reported here used photonic paths services
within the OMNInet domain, but paths between OMNInet and Surfnet
were set up by hand. This is a Photonic Data Service Layer 2 research
problem.

2. Second, we plan on investigating the performance of SABUL on larger
clusters. The experiments reported here were limited to three node clus-
ters. This is a Photonic Data Service Layer 4 research problem.

3. Third, we plan on developing additional remote data analysis and dis-
tributed data mining algorithms using DSTP primitives. This is a Pho-
tonic Data Service Layer 5 research problem.

References

[1] R. L. Grossman, Y. Gu, D. Hanley, X. Hong, J. Levera, M. Mazzucco,
D. Lillethun, J. Mambretti, J. Weinberger, Photonic data services: Inte-
grating path, network and data services to support next generation data
mining applications, in: Proceedings of the Next Generation Data Mining
Conference, Kluwer, 2003.

[2] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing Infras-
tructure, Morgan Kaufmann, San Francisco, California, 1999.

[3] NSF middleware initiative, Retrieved from www.nsf-middleware.org
(September 2, 2002).

13



[4] J. Walrand, P. Varaiya, High Performance Communication Networks, Mor-
gan Kaufmann, San Francisco, California, 2000.

[5] R. L. Grossman, H. Sivakumar, S. Bailey, Psockets: The case for
application-level network striping for data intensive applications using high
speed wide area networks, in: Supercomputing, IEEE and ACM, 2000.

[6] A. Chervenak, I. Foster, C. Kesselman, S. Tuecke, Protocols and services for
distributed data-intensive science, ACAT2000 Proceedings (2000) 161–163.

[7] S. Stolfo, A. L. Prodromidis, P. K. Chan, Jam: Java agents for meta-
learning over distributed databases, in: Heckerman et al. [32].

[8] H. Kargupta, I. Hamzaoglu, B. Stafford, Scalable, distributed data mining
using an agent based architecture, in: Heckerman et al. [32], pp. 211–214.

[9] J. Darlington, Y. Guo, J. Sutiwaraphun, H. W. To, Parallel induction al-
gorithms for data mining, Lecture Notes in Computer Science 1280.

[10] R. L. Grossman, S. Bailey, A. Ramu, B. Malhi, H. Sivakumar, A. Turinsky,
Papyrus: A system for data mining over local and wide area clusters and
super-clusters, in: Proceedings of Supercomputing 1999, IEEE and ACM,
1999.

[11] S. Parthasarathy, R. Subramonian, Facilitating data mining on a network
of workstations, Advances in Distributed and Parallel Knowledge Discovery
.

[12] R. W. Moore, C. Baru, R. Marciano, A. Rajasekar, M. Wan, Data-intensive
computing, in: The Grid: Blueprint for a New Computing Infrastructure
[2], pp. 105–129.

[13] Globus data grid, Retrieved from http://www.globus.org/datagrid/
(September 2, 2002).

[14] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Sussman, J.Saltz,
Distributed processing of very large datasets with datacutter, Parallel Com-
puting 27 (11) (2001) 1457–1478.

[15] Patrick, Y. Guo, The design of a platform for distributed kdd components,
in: Parthasarathy et al. [31], pp. 63–78.

[16] W. Du, G. Agrawal, Using general grid tools and compiler technology for
distributed data mining: Preliminary report, in: Parthasarathy et al. [31],
pp. 51–61.

[17] R. Grossman, M. Hornick, G. Meyer, Data mining standards initiatives,
Communications of the ACM 45 (8) (2002) 59–61.

[18] W3c semantic web, Retrieved from www.w3.org/2001/sw/ (September 2,
2002).

14



[19] R. Grossman, M. Mazzucco, Dataspace - a web infrastructure for the ex-
ploratory analysis and mining of data, IEEE Computing in Science and
Engineering .

[20] M. Veeraraghavan, R. Karri, T. Moors, M. Karol, R. Grobler, Architec-
tures and protocols that enable new applications on optical networks, IEEE
Communications Magazine (2001) 118–127.

[21] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, The data
grid: Towards an architecture for the distributed management and analysis
of large scientific datasets, Journal of Network and Computer Applications
23 (2001) 187–200.

[22] R. L. Grossman, M. Mazzucco, H. Sivakumar, Y. Pan, Simple available
bandwidth utilization library for high-speed wide area networks, submitted
for publication .

[23] D. Lillethun, J. Mambretti, J. Weinberger, Odin: Path services for optical
networks, in preparation, www.icair.org .

[24] S. Bailey, E. Creel, R. L. Grossman, S. Gutti, H. Sivakumar, A high per-
formance implementation of the data space transfer protocol (dstp), in:
Large-Scale Parallel Data Mining, Springer-Verlag, 2000, pp. 55—64.

[25] M. Mazzucco, A. Ananthanarayan, R. L. Grossman, J. Levera, G. B. Rao,
Merging multiple data streams on common keys over high performance
networks, in: Proceedings of Supercomputing 2002, IEEE and ACM, 2002.

[26] D. Clark, M. Lambert, L. Zhang, Netblt: A high throughput transport
protocol, Frontiers in Computer Communications Technology: Proceedings
of the ACM-SIGCOMM ’87 (1987) 353–359.

[27] J. Mambretti, Omninet, www.icair.org/omninet .

[28] Terra wide data mining testbed, Retrieved from
www.ncdm.uic.edu/testbeds.htm (September 2, 2002).

[29] National Center for Atmospheric Research, Community Climate Model,
Retrieved from www.cgd.ucar.edu/cms/ccm3/ (April 10, 2002).

[30] R. L. Grossman, J. Levera, M. Mazzucco, Aggregate queries on streams
of data using a small buffer, UIC Laboratory for Advanced Computing
Technical Report (2002).

[31] S. Parthasarathy, H. Kargupta, V. Kumar, D. Skillicorn, M. Zaki (Eds.),
High Performance Data Mining, SIAM, Philadelphia, Pennsylvania, 2002.

[32] D. Heckerman, H. Mannila, D. Pregibon, R. Uthurusamy (Eds.), Proceed-
ings the Third International Conference on the Knowledge Discovery and
Data Mining, AAAI Press, Menlo Park, California, 1997.

15


