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Abstract 

Background.  Personalized radiotherapy can improve treatment outcomes of head and neck 

cancer (HNC) patients, where currently a ‘one-dose-fits-all’ approach is the standard. The aim 

was to establish individualized outcome prediction based on multi-institutional international “big-

data” to facilitate risk-based stratification of HNC patients. 

Methods. The data of 4611 HNC radiotherapy patients from three academic cancer centers 

was split into 4 cohorts: a training (n=2241), independent test (n=786), and external validation 

cohorts 1 (n=1087) and 2 (n=497). Tumor- and patient-related clinical variables were considered 

in a machine learning pipeline to predict overall survival (primary endpoint) and local and 

regional tumor control (secondary endpoints); serially, imaging features were considered for 

optional model improvement. Finally, patients were stratified into high, intermediate, and low risk 

groups.  

Results. Performance score, AJCC8th stage, pack-years, and Age were identified as predictors 

for overall survival, demonstrating good performance in both the training cohort (c-index=0.72 

[95% CI, 0.66-0.77]) and in all three validation cohorts (c-indices: 0.76 [0.69-0.83], 0.73 [0.68-

0.77], and 0.75 [0.68-0.80]). Excellent stratification of HNC patients into high, intermediate, and 

low mortality risk was achieved; with 5-year overall survival rates of 17-46% for the high-risk 

group compared to 92-98% for the low-risk group. The addition of morphological image feature 

further improved the performance (c-index=0.73 [0.64-0.81]). These models are integrated in a 

clinic-ready interactive web-interface: https://uic-evl.github.io/hnc-predictor/ 

Conclusions. Robust model-based prediction was able to stratify HNC patients in distinct high, 

intermediate and low mortality risk groups. This can effectively be capitalized for personalized 

radiotherapy, e.g., for tumor radiation dose escalation/de-escalation.  
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1. Introduction 

Head and neck cancer (HNC) affects almost 650,000 individuals and causes 350,000 deaths 

worldwide annually [1]. Historically, the main etiological HNC risk factor was smoking, hence 

HNC incidence rates were expected to decrease along with the decline in societal smoking [2–

5]. Yet, HNC cases increased due to a relatively new epidemiological subtype, human papilloma 

virus (HPV)-related HNC, which affects relatively younger patients and is associated with much 

better prognosis compared to HPV-negative HNC [6,7].  

Radiotherapy is a cornerstone for curative HNC treatment. To date, a ‘one-dose-fits-all’ 

approach is deployed, i.e., all patients receive roughly similar tumor radiation dose prescription 

based mainly on historic pre-HPV clinical trials. Currently, personalizing radiation dose to 

optimize tumor control is relatively unexplored. For instance, only tumor stage (i.e., early stage 

versus locally advanced) is used to select eligible patients in recent dose-escalation clinical 

trials, aiming to improve treatment control by increasing the radiation tumor dose [8–11]. The 

risk of severe radiation-induced sequelae from dose-escalation [10] makes improved selection a 

vital unmet need. On the other hand, patients with a low risk of treatment failure might benefit 

from de-intensified treatment, e.g., MR-guided dose de-escalation [12]. To date, attempts at 

therapeutic de-intensification in large heterogenous cohorts without patient-specific criteria have 

been uncompelling [13–15]; consequently, granular treatment outcome estimation for directed 

dose modification remains a substantive opportunity for HNC treatment personalization. 

Robust treatment outcome prediction based on multifactorial clinical variables is thus crucial to 

improve treatment success and establish effective personalized radiotherapy [16,17]. While 

clinical models have been developed [18–21], they are largely unused; clinical implementation 

has been hampered due to the lack of clinically useful prediction tools that are backed by large 

representative multi-institutional dataset for training and validation.  Additionally, radiomics 

features – tumor-specific characteristics quantified from medical images – have been shown to 

improve HNC treatment outcome prediction [22–24].  An approach to add imaging features to 

well-established clinical models is needed for robust radiomics applications. 

The main aim was to establish a large-scale multi-institutional standard for a more individualized 

outcome prediction in HNC patients of overall survival and oncologic outcomes (i.e., local and 

regional control) following radiotherapy using large high-quality international datasets (>4500 
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HNC patients). Additionally, an interactive web-based risk prediction tool was pursued to make 

the models direct clinically-actionable for clinicians. Finally, we present a serial prediction model 

approach, where the clinical models can be enriched by an optional imaging component (Figure 

1A).  

2. Methods 

2.1. Patient Considerations 

The MD Anderson Cancer Center (MDACC) Big Data Radiotherapy HNC collection effort has 

been initiated for this study. The prospective and retrospective data collection was approved by 

the MDACC Institutional Review Board [PA14-0947/RCR03-0800]. This dataset was used for 

training and independent validation. Prospectively collected data from the University Medical 

Center Groningen (UMCG) was used for external validation (Standardized Follow-up Program: 

NCT02435576). The publicly available data from Princes Margret Hospital (PMH) on The 

Cancer Imaging Archive (TCIA) was used for additional external validation [25].  

Inclusion criteria for all cohorts included: 1) proven squamous cell carcinoma of the head and 

neck, 2) treatment with definitive or adjuvant radiotherapy with/without chemotherapy, 3) no 

prior head and neck radiation. Patients were treated from 2001-2019, 2007-2020, and 2005-

2010 at MDACC, UMCG and PMH, respectively. Prescribed tumor doses were 60–72 Gy, as 

detailed previously by each institution [26–28]. 

2.2. Outcome measures 

The primary prediction endpoint was overall survival (OS). The secondary endpoints were local 

control (LC) and regional control (RC), which were defined as recurrent, progressive, or residual 

disease of the primary tumor or regional lymph nodes after radiotherapy, respectively (with 

death as a censor). Time-to-event was measured from start of radiotherapy until the event, 

alternatively data was censored at last follow-up date. Systematic follow-up was part of the 

standard of care in both treatment centers: every 3 months in year 1, followed by every 6 

months thereafter. 

2.3. Clinical variables definitions 

The clinical variables (and categorizations) considered in this study were demarcated as 

follows: Gender (Female, Male); Age (<55, 55-65, 65-75, >75); Performance score (0, 1, ≥2); 

Smoking status (Current, Former, Never); Pack-years (<5, 5-25, 26-50, >50); T-stage (T0-1, T2, 

T3, T4); N-stage (N0-2a/b, N2c, N3); Tumor site (Oropharynx (OPC), Larynx, Hypopharynx, 

Nasopharynx, Oral Cavity); HPV-status (positive, negative), and Tumor stage AJCC8th (I, II, III, 
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IV)[29]. The AJCC8th staging was generated from the T-stage, N-stage, tumor site and HPV-

status with in-house developed algorithm (eMethods). If HPV-status was unknown/unspecified, 

it was assumed as HPV-negative for non-OPC cases. Categorization was determined on the 

Kaplan-Meier curves in the training data to meet adequate proportionality testing (eFigure 1). 

2.4. Statistical analysis 

The MDACC data set was split into a training and independent validation cohort for the clinical 

model development (Figure 1B). The data with all variables collected (i.e., complete cases) 

were split with a 60:40 ratio into training:validation data. Cases with missing variables (i.e., 

partial cases) were added to the training set. Only complete cases were considered for the 

independent and external validation cohorts.  

Step-wise forward variable selection was employed to select variables for the Cox regression 

OS, LC and RC model based on likelihood ratio-test with a Bonferroni corrected significance 

level of p<0.005. Repeated selection was performed on 10 imputed datasets using Multivariate 

Imputation by Chained Equations (R-package “mice” v3.13.0) with predictive mean matching 

across 25 iterations [30]. Based on the variable selection and intervariable correlation results, 

potential models were tested in the validation cohorts. The final models were used for patient 

stratification. The final OS model was compared with a model based on AJCC8th alone with the 

likelihood ratio-test.  

2.5. Risk-based patient stratification 

Patients were stratified into high, intermediate, and low-risk groups based on the predicted 2-

year mortality risk derived from the Cox regression clinical models. These 2-year mortality risk 

thresholds were visually determined in the training cohort by evaluating the Kaplan-Meier curves 

for the different risk groups. 

2.6. Imaging prediction component 

For a subset of patients with available pre-treatment contrast-enhanced CT scans, image 

characteristics of the primary tumor were quantified in geometric and texture radiomics features 

using previously developed libraries [31,32], according to the Image Biomarker Standardisation 

Initiative [33]. Features were selected with bootstrapped forward stepwise variable selection 

(1000 samples). Subsequently, model improvement was tested for the addition of these features 

to the clinical risk prediction (i.e., linear predictor). 
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3. Results 

3.1. Patients  

A total of 4611 HNC patients were used for the analyses: training (MDACC; n=2241), 

independent test (MDACC; n=786), external validation cohort 1 (UMCG; n=1087) and external 

validation cohort 2 (PMH; n=497). Patient characteristics per cohort are shown in Table 1. 

Noteworthy differences between cohorts were seen in HPV-status (ranging from 16-71%), OPC 

incidence (30-100%) and pack-years (µ=20-31). Imputation of clinical variables was only 

performed in the training cohort for Pack-years (5% missing), Performance score (16%), and 

HPV-status (19%). The overall median follow-up time was 3.6 year [interquartile range (IQR): 

1.6-6.0], and for censored patients (i.e. excluding patients that die) only 4.3 year [IQR: 2.1-6.7] 

(site specific, MDACC: 4.1 [2.1-6.6], UMCG: 3.2 [1.7-5.1] and PMH: 8.0 [6.1-9.3]).  

3.2. Association of clinical variables and treatment outcome  

For OS, univariable analyses showed that all clinical variables were significant (p<0.0001), 

except Gender (eTable 1). For LC or RC, all variables were significant, except Age and Gender 

(p>0.106), and N-stage for LC (p=0.189). 

For comprehensive multivariable model analyses and iterations, please refer to eResults 1.  

For OS, the final model included the following clinicodemographic variables:  Performance 

score, AJCC8th stage, pack-years, and age (Table 2); note that AJCC8th stage is based on T- 

and N-stage, tumor site and HPV-status. The performance of the OS clinical model was good in 

both the MDACC training (c-index=0.72 95%CI [0.66-0.77]) and independent validation cohort 

(c-index=0.76 [0.69-0.83]). External validation showed good performance in both the UMCG 

cohort (c-index=0.73 [0.68-0.77]) and PMH cohort (c-index=0.75 [0.68-0.80]). AJCC8th staging 

alone was significantly inferior (p<0.0001) to clinical OS model with c-indices: training 0.65 

[0.59-0.71]; test 0.72 [0.64-0.80]; UMCG 0.67 [0.62-0.72], PMH 0.69 [0.62-0.76]) 

The final LC model contained T-stage, HPV-status, Performance score, and pack-years, with 

resultant c-indices: training: 0.74 [0.70-0.78]; testing: 0.71 [0.58-0.84], external validation: 0.70 

[0.62-0.76] (UMCG) and 0.74 [0.59-0.89) (PMH). T-stage (HR: T2, 4.19 [2.19-8.03); T3, 4.36 

[2.22-8.58]; T4, 5.02 [2.56-9.83]) and HPV-status (HR: 0.5 [0.34-0.73] were the most dominant 

factors in predicting LC.  

The final RC model included AJCC8th stage, tumor site and performance score as component 

variables (Table 2). Resultant c-indices showed training: 0.74 [0.69-0.78); testing: 0.73 [0.57-

0.89), external validation: 0.7 [0.62-0.77) (UMCG) and 0.71 [0.48-0.94) (PMH). While N-stage 
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can be expected to be an important predictor for RC, the combination of tumor characteristics in 

the AJCC8th outperformed N-stage alone. 

Overall, the calibration plots and Hosmer–Lemeshow analyses showed good calibration of the 

models in the comparator cohort (eFigure 2). Yet, significant calibration deviation was seen for 

the OS model in the external cohorts. 

3.3. Model-based patient stratification 

The survival curves of patients stratified based on their model-based predicted 2-year mortality 

risk (2y-risk) are shown in Figure 2. Based on the training cohort, the best separation was seen 

for predicted 2y-risk lower than 5% (low-risk), between 5-25% (intermediate-risk) and higher 

than 25% (high-risk). The average observed 5-year overall survival was 95% (range:93-98%) for 

the low-risk group, 65% (58-79%) for the intermediate-risk group, and 29% (17-42%) for the 

high-risk group. Notably, the proportion of MDACC and PMH patients stratified as low-risk (20% 

and 26%) was substantially larger compared to the UMCG patients (8%). See eFigures R1.2 

and R1.3 for LC and RC analyses. 

Prediction based on AJCC8th staging alone gives a single 2y-risk per category (x-axis Figure 3-

left), while a sizeable spread can be seen per category in 2y-risk calculated by the clinical model 

(y-axis). Figure 3 shows that only a select portion of the Stage I is low-risk (2y-risk<5%), and 

limit number of Stage III-IV patients are high-risk (2y-risk>25%). The ‘by-the-model-identified’ 

high-risk patients were correctly classified as the majority of these patients died (Figure 3-right).  

3.4. Web-interface prediction and stratification tool 

The clinically-usable prediction tool was implemented in an interactive web-interface https://uic-

evl.github.io/hnc-predictor/ employing the final clinical models. Here the clinical variables of a 

new patient (e.g., Age) can be interactively submitted, whereafter the patient-specific predicted 

OS, LC or RC curves can be calculated. Finally, by submitting the desired 2-year risk threshold, 

the new patient is stratified into being low, intermediate, high risk of OS, LC and/or RC.  

3.5. Models in tumor site sub cohorts 

The clinical models performed well in two largest subcohorts: OPC (n=2930 patients) and larynx 

(n=1257) with c-indices of 0.77/0.76/0.71 and 0.70/0.63/0.73 for OS/LC/RC, respectively 

(eFigure 3). The model performance (c-index:0.66/0.67/0.64) was lower for the oral cavity 

patients (n=805). Overall, the calibration of the models was good, yet the actual mortality risk 

was higher than predicted for the OPC and oral cavity patients (Hosmer–Lemeshow p-

value<0.05), which was comparable to the total cohort. The number of hypopharynx (n=136), 
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nasopharynx (n=56) and unknown primary (n=73) patients was too low to draw reliable 

conclusions (eFigure 3). 

3.6. Imaging component 

For the radiomics features, 455 MDACC patients were used for training, and 229 UMCG and 

430 PMH patients for external validation. The bootstrapped step-wise forward selection 

identified the ‘minor axis length’ of the primary tumor as the most frequently selected geometric 

predictor for OS (eResults 2). This image feature significantly added (likelihood ratio-test; 

p=0.004) to predicted risk from clinical model (i.e., linear predictor). Compared to the clinical 

model (c-index=0.72 [0.63-0.81]), the performance of this combined model increased slightly (c-

index 0.73 [0.64-0.81]). While the validation c-index increase was more pronounced in the 

UMCG cohort (from 0.71 [0.62-0.81] to 0.74 [0.64-0.83]), no performance improvement was 

seen in the PMH validation cohort (from 0.74 [0.67-0.80] to 0.74 [0.67-0.81]). No robust features 

could be identified for LC and RC (eResults 2).  

4. Discussion 

The clear stratification of HNC patients into high, intermediate and low-risk of mortality (Figure 

2) by the models can be effectively used for personalized radiotherapy, e.g., selecting high-risk 

patients for tumor radiation dose escalation or low-risk patients for dose de-escalation. The 

impressive survival differences for patients who are nominally in the same AJCC (including 

HPV) risk category allows for more directive and granular patient-by-patient risk differentiation. 

For example, OPC HPV positive patients are considered for de-escalation trials [13–15], yet our 

findings show that 4% and 14% of these patients have a 2 year mortality of >25% and >15%, 

respectively; for which dose de-escalation may not be advisable. By using this international big 

dataset of more than 4500 patients, this study establishes a benchmark for robust OS, LC, and 

RC prediction in HNC patients. Additionally, the clinic-ready web-based tool calculates and 

visualizes the expected survival and tumor outcome for new individual patients (https://uic-

evl.github.io/hnc-predictor/). The underlying model code, radiomics and clinical data are 

publicly shared in a Figshare repository: https://doi.org/10.6084/m9.figshare.21303000.  

All final clinical models included the patient’s performance score; that poor(er) performance 

scores are associated with poorer survival has been long recognized [34,35], yet that tumor 

control is associated with performance status is less intuitive. The composite variable AJCC8th 

staging together with pack-years, age, and performance score were included in the OS model; 

hence all clinical variables were directly or indirectly incorporated in this model, except gender. 
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Similar OS risk factors have been observed in previous studies, age, tumor location, smoking 

status, T and N-stage [20,36], and later HPV status [18,19].  Beesley et al. developed a US-

trained/EU-validated multistate Bayesian clinical prediction model for radiotherapy OPC patients 

to predict event likelihood parameters [37]. While the modelling procedure was quite different, 

similar input predictors were identified: T, N-stage, HPV status, age, smoking status; notably, 

tobacco pack-years and performance score were not included. Overall, these findings suggest 

that despite distinct modelling approaches and datasets, convergent phenomena have been 

observed. 

For the LC prediction, T-stage, HPV status, performance score, and pack-years were selected. 

Since HPV status was highly correlated to tumor site (Rho=0.89; p<0.0001), it is difficult to 

determine the impact of tumor location on LC. In contrast, for RC, tumor site showed added 

predictive value to AJCC8th staging, which is interesting as it based on the tumor site. This is 

likely due to the difference of the lymphatic tumor spread per tumor location [38].  

Outcome prediction was robust across multi-institutional cohorts, even though they had distinct 

patient demographic profiles (Table 1); particularly, the HPV-positive HNC incidence was 

substantially lower in European compared to the North American cohorts. Additionally, OPC, 

larynx, and oral cavity cancer sub-analyses (eFigure 3) showed clinical applicable levels of 

model performance and calibration. For the hypopharynx, nasopharynx and unknown primary 

cancer sub-cohorts, caution is advised when applying these models due to the sparse patient 

numbers. 

The serial approach of building the prediction model presented in this study (Figure 1A) allows 

for flexible addition of imaging features. Higher OS risk was associated with larger minor axis 

length of the tumor [33], which represents an intuitive metric for tumor size. Previous studies 

showed the relation between OS and features indicating larger or more irregular tumors [22,23]. 

Texture features, in contrast to prior works [22–24], failed to improve our model discrimination 

(eResults 2.2); similar to a previous study [39]. This may be due to the sensitivity of  

intensity/texture features to image acquisition discrepancies [40], arguing for improved image 

harmonization, standardization, and image quality.  

Limitations of the study cohort are that the majority of tumor locations were OPC, larynx and 

oral cavity, underrepresenting hypopharynx, nasopharynx and unknown primary cases. While 

this is a representative of the HNC clinical incidence, this may mean that the presented models 

are not sufficiently tested for underrepresented tumor sites. Another challenge is the definition of 
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local and regional control, for which an event was broadly defined as recurrent, progressive, or 

residual disease. The detection residual/returning disease can be challenging [41], and is further 

complicated when no salvage treatments are available or when patients are lost from follow-up, 

and thus no pathologic conformation, clinical progression or imaging can be obtained. This may  

therefore potentially result in an underdetection bias of disease control in the cohorts, which can 

influence accuracy of the LC and RC models.  

As with multi-site data aggregation and risk modeling efforts at large scale, there are intrinsic 

limitations as function of data availability, e.g., anemia identified by Beesley et al. was not 

recorded in these datasets [37]. Consequently, the utility of this (or any) predictive model is 

necessarily predicated on input variables and could be modified or altered with updated or 

augmented data. Moreover, stage migration considerations between AJCC 7th and 8th edition 

should be noted; for example, extranodal extension was not always specified/recorded as a 

formalized component of AJCC 7th ed. and may have been obscured. Improved incorporation 

could improve the models, or alternatively it could be added as a separate variable[37]. While 

we focus on OS, LC, and RC, future work will focus on predicting distant metastases and 

disease-free survival. 

Nonetheless, this study is to our knowledge based on the largest head and neck extant multi-

site dataset, which allowed for the development of statistically robust and clinic-ready HNC risk 

models. This provides a benchmark platform for extended future developments of image-

incorporating prediction methods, such as deep learning. Moreover, the end-user-enabled web-

interface (GUI) provides an accessible decision support tool for patient-individual risk 

stratification for therapeutic selection.  

5. Conclusion 

Developed and assessed in this international “big-data”-set, our prediction models presented 

excellent capacity to stratify HNC patients at high, intermediate, and low mortality risk – 

outperforming AJCC8th staging. This work sets a benchmark for robust OS, LC, and RC risk 

prediction in radiotherapy HNC patients, which can effectively be capitalized for personalized 

radiotherapy with the clinic-ready web-based tool prediction tool for new patients that does not 

require under-the-hood knowledge of model mechanics (https://uic-evl.github.io/hnc-predictor/) 
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Table 1. Demographics for training, independent validation, two validation cohorts 

  MDACC training MDACC validation UMCG validation TCIA PMH validation p-value 

n 2241   786   1087   497     
Age (mean (SD)) 59.48  (10.14) 59.74   (9.74) 64.17  (10.56) 60.16   (9.90) <0.001 
Sex (%)          
  Female 373 (17) 130 (17) 324 (30) 105 (21) <0.001 
  Male 1868  (83) 656  (83) 763  (70) 392  (79)  
T stage (%)                 <0.001 
   T0 53  (2) 17  (2) 2  (0) 0  (0)  
   T1 507  (23) 178  (23) 196  (18) 90  (18)  
   T2 788  (35) 288  (37) 262  (24) 162  (33)  
   T3 453  (20) 162  (21) 251  (23) 146  (29)  
   T4 414  (18) 136  (17) 376  (35) 99  (20)  
   Tx 26  (1) 5  (1) 0  (0) 0  (0)  
N stage (%)                 <0.001 
   N0 487  (22) 152  (19) 435  (40) 82  (16)  
   N1 276  (12) 116  (15) 130  (12) 48  (10)  
   N2a-b 1081  (48) 356  (45) 279  (26) 202  (41)  
   N2c 318  (14) 141  (18) 202  (19) 123  (25)  
   N3 79  (4) 21  (3) 37  (3) 42  (8)  
HPV status (%)                 <0.001 
   Negative 617  (28) 288  (37) 912  (84) 142  (29)  
   Positive 990  (44) 498  (63) 175  (16) 355  (71)  
   Unknown 634  (28) 0  (0) 0  (0) 0  (0)  
Site (%)                 <0.001 
   Oropharynx 1382  (62) 462  (59) 328  (30) 497  (100)  
   Larynx 420  (19) 179  (23) 446  (41) 0  (0)  
   Oral Cavity 314  (14) 95  (12) 263  (24) 0  (0)  
   Hypopharynx 50  (2) 32  (4) 26  (2) 0  (0)  
   Nasopharynx 22  (1) 0  (0) 23  (2) 0  (0)  
   Unkown primary 53  (2) 18  (2) 1  (0) 0  (0)  
AJCC8th Stage (%)                 <0.001 
   I 605  (27) 271  (34) 159  (15) 156  (31)  
   II 368  (16) 157  (20) 163  (15) 137  (28)  
   III 349  (16) 143  (18) 247  (23) 106  (21)  
   IVa 472  (21) 206  (26) 491  (45) 87  (18)  
   IVb 29  (1) 9  (1) 27  (2) 11  (2)  
   Unknown 418  (19) 0  (0) 0  (0) 0  (0)  
Performance score (%)                 <0.001 
   0 850  (38) 397  (51) 619  (57) 323  (65)  
   1 620  (28) 319  (41) 350  (32) 125  (25)  
   >2 181  (8) 70  (9) 118  (11) 49  (10)  
   Unknown 590  (26) 0  (0) 0  (0) 0  (0)  
Smoking status (%)                 <0.001 
   Never 773  (34) 301  (38) 175  (16) 144  (29)  
   Former 998  (45) 360  (46) 457  (42) 198  (40)  
   Current 453  (20) 125  (16) 427  (39) 155  (31)  
   Unknown 17  (1) 0  (0) 28  (3) 0  (0)  
Pack years (mean (SD)) 22.03  (33.69) 20.01  (28.19) 30.77  (23.90) 24.35  (24.67) <0.001 
Chemotherapy (%)                 <0.001 
   None 446  (20) 115  (15) 696  (64) 254  (51)  
   Concurrent 1060  (47) 410  (52) 389  (36) 243  (49)  
   Induction  218  (10) 100  (13) 1  (0) 0  (0)  
   Induction+concurrent 480  (21) 161  (20) 1  (0) 0  (0)  
   Unknown 37  (2) 0  (0) 0  (0) 0  (0)  
Technique (%)                 <0.001 
   3DCRT 211  (9) 9  (1) 14  (1) 0  (0)  
   IMRT 1496  (67) 450  (57) 517  (48) 497  (100)  
   VMAT 466  (21) 292  (37) 401  (37) 0  (0)  
   IMPT 68  (3) 35  (4) 111  (10) 0  (0)  
   Unknown 0  (0) 0  (0) 44  (4) 0  (0)   
Radiotherapy type (%)         <0.001 
   Primary 1727  (77) 644  (82) 852  (78) 497  (100)  
   Post-operative 251  (11) 40  (5) 230  (21) 0  (0)  
   Unknown 263  (12) 102  (13) 5  (0) 0  (0)   
Mortality events (%) 635  (28) 148  (19) 402  (37) 206  (41) <0.001 
Local failure events (%) 233  (10) 70  (9) 149  (14) 46  (9) <0.001 
Regional failure events (%) 182  (8) 48  (6) 105  (10) 31  (6) 0.005 

Abbreviations: SD: standard deviation; HPV: Human Papilloma Virus ; 3DCRT: Three-dimensional conformal radiotherapy; IMRT: intensity-

modulated radiotherapy; VMAT: Volumetric-Modulated Arc Therapy; IMPT: Intensity modulated proton therapy 

Jo
urn

al 
Pre-

pro
of



Table 2. Clinical model parameters and c-index model performance 

Overall Survival (OS)         
variables category coefficients hazard ratio p value 

Performance score 0 0 1 ref 
 1 0.469 1.6 (1.28-1.99) <0.0001 
 ≥2 0.781 2.18 (1.51-3.16) 0.0001 

AJCC8th stage   I 0 1 ref 
 II 0.117 1.12 (0.76-1.65) 0.5545 
 III 0.679 1.97 (1.42-2.74) 0.0001 
 IVa 0.793 2.21 (1.66-2.94) <0.0001 
 IVb 1.509 4.52 (2.79-7.33) <0.0001 

Pack years ≤5 0 1 ref 
 5-25 0.267 1.31 (1.01-1.7) 0.0459 
 26-50 0.499 1.65 (1.3-2.08) <0.0001 
 >50 0.867 2.38 (1.78-3.17) <0.0001 

Age ≤55 0 1 ref 
 56-65 0.085 1.09 (0.89-1.33) 0.4113 
 65-75 0.400 1.49 (1.2-1.85) 0.0003 
 >75 0.753 2.12 (1.56-2.89) <0.0001 

Local control (LC)         
variables category coefficients hazard ratio p value 

T stage T1 0 1 ref 
 T2 1.432 4.19 (2.19-8.03) <0.0001 
 T3 1.473 4.36 (2.22-8.58) <0.0001 
 T4 1.613 5.02 (2.56-9.83) <0.0001 

HPV status positive=1 -0.694 0.5 (0.34-0.73) 0.0003 
Performance score 0 0 1 ref 

 1 0.421 1.52 (1.05-2.22) 0.0276 
 ≥2 0.801 2.23 (1.38-3.59) 0.0010 

Pack years ≤5 0 1 ref 
 5-25 -0.039 0.96 (0.58-1.6) 0.8807 
 26-50 0.294 1.34 (0.87-2.08) 0.1858 
 >50 0.496 1.64 (1.02-2.64) 0.0403 

Regional control (RC)         
variables category coefficients hazard ratio p value 

AJCC8th stage   I 0 1 ref 
 II 0.442 1.56 (0.7-3.46) 0.2774 
 III 0.984 2.68 (1.28-5.59) 0.0089 
 IVa 1.567 4.79 (2.34-9.81) <0.0001 
 IVb 2.565 13 (4.76-35.55) <0.0001 

Performance score 0 0 1 ref 
 1 0.573 1.77 (1.15-2.73) 0.0093 
 ≥2 0.793 2.21 (1.27-3.84) 0.0049 

Tumor site Hypopharynx 0 1 ref 
 Larynx -0.118 0.89 (0.45-1.75) 0.7343 
 Oropharynx -0.648 0.52 (0.25-1.11) 0.0898 
 Oral cavity -0.853 0.43 (0.21-0.88) 0.0203 
 Unknown Prim -1.140 0.32 (0.07-1.51) 0.1493 

  Nasopharynx -4.995 0.01 (0-21498.48) 0.9932 
Model performance  
(c-index [95%CI]) 

     

 
MDACC  
training 

MDACC  
validation 

UMCG external 
validation 1 

MGH external 
validation 2 

Overall Survival (OS) 0.72 
[0.66-0.78] 

0.76 
[0.68-0.83] 

0.73 
[0.68-0.78] 

0.75 
[0.69-0.81] 

Local control (LC) 0.74 
[0.67-0.82] 

0.71 
[0.58-0.84] 

0.70 
[0.62-0.77] 

0.75 
[0.61-0.90] 

Regional control (RC) 0.74 
[0.64-0.83] 

0.73 
[0.57-0.89] 

0.7 
[0.62-0.78] 

0.74 
[0.56-0.91] 

Abbreviations: HPV: Human Papilloma Virus; CI: confidence interval 
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Figure legends 

Figure 1. Study overview. A) serial prediction model design. The “fundamental clinical 

model” component is the core component as it is based data of >4500 patients; the 

“predicted risk(%)” can be refined with the “optional imaging component”, using radiomics 

features to improve the outcome risk prediction (“refined Predicted Risk (%)”) to stratify 

patients in low, intermediate and high risk patients. The imaging component can be 

dynamically updated with future technical developments. B) Datasets for clinical model 

training, validation, and external validation. Partial cases are patient that are missing at least 

one variable. Only complete cases were used for the validation of the models. 
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Figure 2. Patient stratification based on predicted mortality risk. Survival curves for low 

risk (in green; 2 year mortality risk<5%), intermediate risk (in orange; risk≥5 & <25%), and 

high risk (in blue; ≥25%) in training, validation and two external validation cohort. Note, 

follow-up time was truncated at 6 years for UMCG and 10 years for MDACC and PMH data. 
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Figure 3. Predicted overall survival risk based on clinical model versus AJCC8th 

staging . Predicted 2 year mortality risk (y-axis) depicted per AJCC8th stage group (left); 

percentages on x-axis are risks predicted based on staging alone. Survival curves show 

clear split with model-based risk stratification both in patients with low (right, top) and 

advanced AJCC8th stage (right, bottom) patients. These figures are based on the MDACC 

data. 
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Highlights 

• ‘Big data’ prediction models give distinct HNC treatment failure risk stratification 

• Multi-factorial prediction outperform risk estimation based on AJCC staging alone 

• These models are now integrated in a clinic-ready decision support tool 

• Risk-based patient selection can facilitate personalized radiotherapy strategies  
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