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Abstract—We present the design and evaluation of an integrated problem solving environment for cancer therapy analysis. The
environment intertwines a statistical martingale model and a K Nearest Neighbor approach with visual encodings, including novel
interactive nomograms, in order to compute and explain a patient’s probability of survival as a function of similar patient results. A
coordinated views paradigm enables exploration of the multivariate, heterogeneous and few-valued data from a large head and neck
cancer repository. A visual scaffolding approach further enables users to build from familiar representations to unfamiliar ones. Evaluation
with domain experts show how this visualization approach and set of streamlined workflows enable the systematic and precise analysis of
a patient prognosis in the context of cohorts of similar patients. We describe the design lessons learned from this successful, multi-site
remote collaboration.
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F

1 INTRODUCTION

EACH year, over 50,000 people in the United States are
diagnosed with head and neck cancers [1]. Treatment strategies

are complex and can involve multiple courses of therapy with
different potential outcomes. With head and neck cancer numbers
increasing every year, partly due to viral infections, clinicians
aim to develop customized treatment strategies tailored to each
individual patient, under a healthcare model termed “precision
medicine”.

Unlike epidemiology or public health, which aim to compare
the characteristics of different cohorts or groups of subjects,
precision medicine proposes the customization of healthcare,
with medical decisions, practices, and products being tailored
to the individual patient. The customization is based on individual
factors collected from cohorts of patients who are similar to the
patient under consideration. These factors may include disease
markers, treatment options, demographics, and genetic, lifestyle,
environmental, laboratory, or quality of life data. These data are
not only heterogeneous and large scale, but also locally sparse,
as in finance or astronomy, because some patient measurements
may be missing, incomplete, or irregularly collected on subjects.
Making similarity-based precise recommendations for a specific
patient requires novel approaches which blend biomedicine with
complex quantitative methodology, and with visual encodings to
help explain and operate this complex methodology.

In this work, we present an integrated problem solving envi-
ronment and set of visual workflows that enable the systematic
similarity-based exploration and analysis of individual factors
collected from subsets of patients. Our approach intertwines a
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martingale model and a K Nearest Neighbor approach with visual
statistical encodings and visual analysis in order to compute and
explain the probability of survival under user-specified constraints.
This visual analysis methodology was successfully developed
through an interdisciplinary, remote, geographically-distributed
collaboration.

The contributions of this work are: 1) a description of the
application domain data and tasks, with an emphasis on the
multidisciplinary development of precision medicine tools; 2)
the design of a novel blend of statistics and visual encodings
to compute and explain the probability of survival, based on an
existing cohort of patients; 3) the description of novel interactive
encodings, interactive nomograms and Kaplan-Meier plots; nomo-
gram encodings reflect the weight of each independent variable’s
effect on the dependent variable; 4) an implementation of this
approach in a web-based visual therapy explorer, SMART—Smart
Multidimensional Adaptive Radiotherapy Treatment (Fig. 1); 4)
an evaluation of the resulting workflows and encodings over an
existing head and neck cancer repository, with domain experts; 5)
a start-to-end description of the design process and of the lessons
learned from this successful, multi-site remote collaboration.

2 BACKGROUND AND RELATED WORK

Head & neck cancer treatment In clinical and research settings,
therapy response-driven decisions are made on an ad hoc basis:
almost all current therapy decisions after histopathologic diagnosis
of head and neck cancer are driven by age, performance status,
and clinical staging information (e.g., T3-stage cancer), through
the filter of physician knowledge [2], [3]. The current approach
is not scalable. Ideally, decision junctures would be approached
based on data and knowledge, rather than physician experience or
institutional memory alone.

While data repositories collected from cohorts of subjects are
available, existing advanced risk prediction models capture in
relatively crude fashion oncological outcomes through the use of
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Fig. 1: Patient prognosis for a white female with T4 supraglottic cancer. The Kiviat panel (left) shows the patient along with the five
most similar patients in the repository; glyph colors (mapped to the computed survival probability) capture a notable variation of therapy
outcomes. The interactive nomogram shows that despite variation in treatment, similar T4 patients (green) have similar low survival
outcomes, below 0.5. Two similar patients with higher survival are revealed to be T3-level (purple). The Kaplan-Meier survival over time
plot, however, predicts similar trajectories for the T3 and more severe T4 category. The mosaic context confirms that even the T3 female
subgroup has low mean survival rates, below 0.5.

standard regression-based models [4], [5]. These models do not
handle incomplete demographic or laboratory data. Furthermore,
these models provide the clinicians with few means of interaction
and personalization, limiting their use by physicians.

Visual exploration of patient cohort data In healthcare, the
potential of data visualization has been illustrated in a number of
subareas, including patient cohort analysis. Applications span dis-
ease evolution statistics extracted from electronic medical records
(EMRs) [6], [7], cohort symptom and history comparison [8],
[9], [10], cohort medical image attribute comparison [11], [12],
[13], and cohort heterogeneous medical data analysis [14], [15].
As often the case in clinician-driven visual analysis based on
statistics, the visual encodings in these works include conventional
representations such as histograms, bar charts, pie-charts, box plots,
radial charts, time-series plots and scatterplots.

While our work also builds on patient cohort data, our focus
is on a different problem. Practicing oncologists are not pursuing
overview analyses of cohort data in the style of public health or
epidemiology studies. They pursue precision analysis of relatively
small sets of similar patients. In particular, in this work we focus
on: 1) statistical computing of survival probabilities and similarity
from heterogeneous, locally-sparse data, and 2) contributing
visual encodings and workflows which enable the operation and
explanation of the resulting model mechanics. As in the clinician-
driven analysis works above, these encodings further need to be
adoptable by clinician stakeholders.
High-dimensional data encodings Patient data are high dimen-
sional. Several works [16], [17], [18], [19], [20], [21] present
taxonomies and analyses of high-dimensional visualizations, which
include scatterplots, heat maps, mosaic plots, and star plots. Some

of the visual encodings that we adapt, with modification, are based
on these approaches (mosaic plots, Kiviat diagrams). Other visual
encodings (Kaplan Meier survival plots, nomograms) are novel
means to interactive visual exploration, and are adopted because
they exist, in basic paper form, in the target domain. Paper-based
nomograms, in particular, pre-date parallel coordinate plots by a
century [22], and differ significantly from them (Section 3.6).
Visual design Previous works in visualization design the-
ory [23] [24] [25] investigate human-centered design in the context
of a narrowly focused set of target users. Kerzner et al. [26]
present a design study process for vehicle vulnerability analysis
in information sensitive collaborations. Although collocated visual
design processes have been previously discussed in these works
and others, little is known about the visual design process in the
context of geographically distributed, multi-site collaborations,
in which complementary-expertise teams contribute components
of the problem solving environment. Furthermore, none of these
works follow the activity-centered design paradigm (an extension
of human-centered-design) [27] adopted in this work.

3 METHODS

3.1 Geographically-Distributed Project Setting

The type of complementary expertise, motivation and initiative
required to circumvent obstacles related to large-scale, heteroge-
neous, locally-sparse risk prediction is seldom found at the same
geographical location. The environment we describe was developed
through a geographically-distributed collaboration with domain
experts from several disciplines. In addition to the visualization
research group, one expert and his group specialize in head
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and neck cancer radiotherapy, and two other experts and their
respective groups work in high dimensional data management,
respectively in biostatistics and machine learning. Each research
group corresponds to a different geographical site. Altogether, the
team members have over 15 years of experience in interdisciplinary
collaborations. However, the high level of expertise required
by each field (radiation oncology, biostatistics, big data mining,
biomedical visualization) results in limited knowledge overlap
between individual research groups.

The collaboration spans four sites, each separated pairwise by
200 to 900 miles, and located in the same time zone. Because of
the challenges associated with this type of geographic distribution
and span of expertise, we started by setting up collaboration tools,
including an up-to-date schedule with deliverables, and by com-
pleting an on-line diagnostic survey for geographically distributed
collaborations called the Collaboration Success Wizard [28]. The
survey probes human factors that may strengthen or weaken a
remote collaboration, including mutual expectations, team maturity,
and motivations for working together, while the Wizard provides
both personal and project-level reports to help build successful and
productive collaborative projects. This process enabled the team to
identify its core assets, as well as create a list of actionable items
to strengthen the project, such as “identifying common grounds”
and “articulating precisely the nature of the work”.

3.2 Design Process
Our design process followed an Activity-Centered-Design
paradigm [27], [29], which is an extension of the classic Human
Centered Design paradigm. The approach places particular empha-
sis on functional specifications [30] and on user tasks. We adopted
this approach because it stems from software engineering principles
that have been tested and proven in multi-site settings similar to
ours. We implemented this paradigm through an iterative process
where the research team met weekly via video conferencing, and
quarterly via site visits to confirm requirements and functional
specifications, explore prototypes, refine the design, test the
software, and verify that evolving requirements were being satisfied.
Given the geographically-distributed nature of the collaboration,
the design further benefited from a set of integrated tools, including
several freely-available cloud-based and web-based collaboration
systems.

3.3 Data and Task Analysis
3.3.1 Collocated Data Analysis
The first stage of design, requirement engineering, started with
several face-to-face and video conference semi-structured inter-
views of the radiotherapy and statistics experts, followed by an
in-person observation session. Requirement engineering was largely
completed during an intense 3-day period of face to face meetings,
which included common meals and after-hours discussions. In
an unusual approach, the requirements process was a two-way
dialog in the style of pair programming [31], [32], in which the
group explained repeatedly to a lay, observer audience what the
project was trying to accomplish, and through this process clarified
their own ideas. The interviews established who the users of the
visualization would be and how often it would be used, a prioritized
list of the main tasks performed by radiologists and statisticians
in the process of therapy planning, the data sources and flow of
data through the process, and non-functional requirements such as
portability and support for local and remote collaboration.

TABLE 1: Dataset Descriptors

Demographics

Age Numerical value larger than 0

Gender (2) Male or female

Ethnicity (5) White, african-american,
hispanic, asian, other

ECOG (4) 0 to 3

Therapy Descriptors
Chemotherapy (4) No chemo, concurrent,

induction, or
induction+chemoRT

Local therapy (3) LP/chemoRT, LPRT,
or LP/RT alone

Cancer Descriptors

Site of tumor (4) Glottic, Subglottic,
Supraglottic, or Transglottic

Cancer stage (2) T3 or T4

Nodal disease (2) N+ or N0

Survival Probability Numerical value between 0 and 1

Survival Month Numerical value larger than 0

During the followup observation session, a clinician walked the
interviewer through the therapy planning process using a collection
of paper and proprietary software tools. We identified together
the background roadblocks to cohort-based therapy planning, as
highlighted in the earlier sections: dimensionality, heterogeneity,
sparsity, opacity of existing, insufficiently predictive statistical
tools. We analyzed requirements and wrote the resulting functional
specifications for the application, and had the clinicians and the
larger team approve the preliminary specifications document.

Beyond the co-expertise research groups, the longer-term target
users are cancer radiotherapy clinicians who have collected a
repository of head and neck cancer data over several hundred
patients they have treated. The cancer data are high-dimensional,
sparse and heterogeneous; through brainstorming around a poster
board over several days we identified the following key data inputs
which play a role in guiding the patient therapy, as well as their
categorization:

• Demographics. Patient demographics include variables such
as gender, age, ethnicity, or functional levels of activity
(ECOG), most of which are categorical data.

• Disease Descriptors. Cancer descriptors include the site
of tumor, the cancer stage, and indicators of the disease
spread to the lymph nodes, which are also categorical data.
Imaging data was summarized in the repository, however
the repository did not include images.

• Treatment Descriptors. Treatment variables describe the
therapy sequence used, which may include a combination
of chemotherapy and radiation therapy, and also the
categorical type of local therapy applied—e.g., with organ
(larynx) preservation (LP) or without.

• Outcome Descriptors. Outcome descriptors typically in-
clude the number of months survived by the patient, as well
as whether they are still surviving.

From these recorded variables, the goal is to predict the probability
of survival of a specific patient. With the exception of the patient
age and survival interval and probability, which take continuous
numerical values, all variables used in this analysis take discrete,
categorical values in a typically small set (2 to 5 possible values).
Table 1 summarizes these variables.

3.3.2 Task Analysis
Through repeated interviews with our collaborators and analysis
of the resulting interview data, we summarized a list of tasks for
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analyzing the patient data in head and neck cancer therapy:

• Task 1: Given a particular patient, compute and display the
most similar patients according to demographics, treatment
descriptors, and disease descriptors, along with the patients’
survival probabilities.

• Task 2: Show specific information for a particular patient
(treatment descriptors, demographics etc.), along with their
computed survival probability.

• Task 3: Compare the selected patient to the most similar
patients in terms of their characteristics and computed
survival probability (e.g., survival with age, treatment etc.).

• Task 4: Compare trends in the survival probability over time
of a specific patient’s subgroup versus another subgroup.
E.g., compare the survival probability over 5 years of white
T3 patients between those who have and those who have
not received chemotherapy.

• Task 5: Explore correlations between specific patient (or
subgroup) variables and the predicted survival, and indicate
the variable contribution to the predicted value. E.g.,
explore the relationship between ethnicity and computed
survival probability for a specific patient.

• Task 6: Provide the cohort context for a particular patient
survival probability, including the size of the cohort. E.g.,
display the survival probability of female African-American
patients with glottic cancers, along with the cohort size that
was used to compute that probability.

While the tasks are numbered here, they are often combined in
different sequences along specific workflows to solve higher-level
goals such as “Which cancer descriptor has strong influence on the
survival of patient A?” or “Which therapy course would yield the
best outcome for patient B?”. As also reflected by the tasks above,
the clinicians emphasized repeatedly that their interest is in how a
specific patient fits into the existing repository, and not in general,
public-health style analyses.

3.3.3 Data Preprocessing
To enable risk prediction calculations, we transformed the data to
numerical values. Data was extracted from charts of patients who
were treated with adjuvant or definitive radiotherapy for locally
advanced (stage T3 or T4) laryngeal cancer between 1983 and
2011. Eight prognostic covariates were used in the analysis (i.e.
age, sex, ethnicity, Eastern Cooperative Oncology Group (ECOG)
performance status, primary site, stage, and details regarding
treatment (chemotherapy and local therapy) based on a review
of the literature [33] [34] [35] [36] [37].

For all the text-valued attributes, we created a lookup table for
all possible values to replace the values with consecutive numeric
values (e.g. for sex: 0 = Female, 1 = Male). Missing values were
assigned a distinguished value (or NaN). Out of the eight covariates,
only age was continuous and was not transformed.

3.4 Visual Encodings
Encoding data with many attributes and yet few values per attribute
is not trivial, because, in our experience, graphs with multiple
dimensions are typically hard to understand by users who do not
have a visualization background. For future ease of distribution,
as well as ease of testing, a web-based implementation was also
desirable. For these reasons, we pursued a web-based multiple
coordinated views paradigm that allowed both separation and
integration of the data views along multiple workflows.

Due to the project geographical and time constraints, pro-
totyping took place in a remote setting, punctuated by site
visits. A series of low-fidelity prototypes were sketched on paper
and in software to illustrate how individual features could be
incorporated into an overall design, what tasks could be performed
and what interactions could be incorporated. We followed a parallel
prototyping approach [38], which has been shown to lead to better
design results, in which multiple prototypes were presented to
the group. We discussed multiple versions, combinations and
permutations of these low-fidelity prototypes with the group, and
incorporated their feedback and suggestions in successive iterations.

The final prototype works in two stages, inspired by Van Ham
and Perer’s paradigm for large data: “Search, show context, expand
on demand” [39], [40]. We note that while powerful, this paradigm
has not been well studied outside the domain of large-scale, dense
graphs. In our approach, in the first stage, a clinician may either
enter the search criteria for their patient, or elect to explore a
patient from the existing dataset. The environment then responds
with four interactive coordinated views: 1) a search-based Kiviat
patient comparison panel; 2) a nomogram explorer–a geometric
construction diagram to enable detailed analysis and comparison
of survival probabilities; 3) a survival-over-time comparison panel;
and 4) a context mosaic plot and filter bar panel. The panels are
connected to statistical computation modules that enable filtering
and probabilistic calculations on the selected data. We describe
below each panel and its associated statistics module.

3.5 Nearest Neighbors Comparison Panel

Categorical Kiviat Diagrams. Because clinicians were interested
in analyzing similar patients and their response to treatment, the
first panel enables similar patient comparison. A small-multiple
display of Kiviat diagrams represents the 5 most similar patients to
the one selected. The similarity is determined based on a subset of
the eight most critical attributes. These attributes can indicate how
different patients responded to the same therapy, or how patients
with similar traits responded to different treatments.

Once the most similar patients are retrieved by the statistical
module described below, their attributes are mapped as follows: in
a single Kiviat an axis is assigned to each patient attribute, and
the axes are arranged radially. We assign to each possible attribute
value a distance from the center, and a closed polygon path is
constructed by connecting the points on the axis representing the
patient’s attributes to produce a compact representation of a patient.
Finally, the color of the Kiviats encodes the survival probability
of that patient, from blue (good) to orange (bad). The shape and
color encoding captures effectively the variety of outcomes across
similar patients (Fig. 2).

The Kiviat encoding was selected over heatmaps and parallel
coordinate plots because of its preattentive features. We note
that our encoding extends star plots—typically used to encode
quantitative attributes—to few-valued categorical data. Although
the mapping enforces a false implicit ordering of non-ordinal data
(Asian patients are not “less than” Hispanic patients), the benefits
arriving from the preattentive shape comparison clearly outweighed
the disadvantage. The Kiviat axis ordering is not an issue here:
each Kiviat uses the same axis ordering across patients, resulting
in similar polygon shapes for similar patients.

Statistics Module. When a patient is selected, a statistical
module executes a K Nearest Neighbor (KNN) algorithm to find the
most similar patients in the dataset. To compute patient similarity,
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Fig. 2: Example Kiviat panels for three patients (417, 568, 413). Each panel shows on the left the patient currently selected, and on the
right the 5 most similar patients. The glyph colors encode the patient survival rate, from good (blue) to worse (orange). While the Kiviats
encode few-valued categorical data, as opposed to quantitative, note how the glyph shapes in the small multiple display capture the
patient similarity at a glance.

the algorithm uses the eight most important features presented in
Table 1 (or a subset of these values; to enable therapy exploration,
therapy-variables are by default excluded). As the table shows, all
the attributes except for age are discrete values with no intrinsic
order relation. For example, a white person cannot be said to be
closer to a Hispanic than to an Asian. In the case of discrete data
like ours, Hamming distance is the preferred measure of similarity;
Euclidean or Manhattan distance metrics are not appropriate in
this case. Therefore we compute Hamming distance over all the
discrete attributes:

Hamming(P,Q) =
|A|

∑
i=1

1 i f f (Pi 6= Qi) (1)

where P and Q refer to the patients, |A| is the number of attributes,
and Pi refers to the value of the ith attribute of P. Because the
Hamming distance is a discrete function with range [0,|A|], we
use the age difference as a tiebreaker. The five patients with the
smallest distance measures are selected as the nearest neighbors.

The 5-year probability of survival is computed through the
nomogram module described below.

Interaction. Details on demand are available by hovering over
each Kiviat axis. Further controls allow a user to include or exclude
specific variables from the KNN search.

3.6 Interactive Nomogram Panel

Interactive Nomogram. The second component of the environment
is an interactive nomogram panel. A nomogram (from Greek
“nomos”, law, and “gramme”, line) is a graphical calculating device
in the shape of a two-dimensional diagram. The diagram uses
a parallel coordinate system: it represents the relations between
typically three variables by means of a number of fixed vertical
axes, so arranged that the value of one variable can be found by a
simple geometric construction, for example, by drawing a straight
line intersecting the other scales at the appropriate values.

Nomograms date from 1884 [22] and are commonly used,
in paper form, in the target domain. We adapt and extend the
nomogram encoding for the purpose of similarity-based therapy
planning.

We note that, despite a similar use of parallel coordinates, nomo-
grams differ from the century-later parallel coordinate plots [42] in
several important aspects related to their construction and usage.
Nomograms are, first and foremost, a precision calculating device,
not a general filtering tool—a scalpel, not a sword. Because nomo-
grams are calculating devices, unlike general parallel coordinate
plots, the order of the nomogram axes is fixed, and the last axis
bears particular meaning by encoding the outcome of interest.
Second, the nomogram axes can be, and are in practice, mapped to
few-valued categorical attributes, not many-valued attributes. These
axes can further be translated vertically and scaled. Third, the height
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Fig. 3: Interactive nomogram for a white female subject with T3 supraglottic cancer, before (top) and after (middle and bottom) axis
editing. A filter has been applied along the age axis in all versions. In the top image, a mouse-over highlights one similar patient of
interest. In the middle version, a statistician has determined that the gender axis is irrelevant and has removed it. In the bottom version,
some axes have been rescaled and translated, in order to generate a cleaner, publishable paper nomogram [41].

of each nomogram axis is correlated to the weight of that variable
into the computation of the outcome. Fourth, because nomograms
are employed to analyze one to a few specific individuals, they
should not be used to drive other statistical modules, in the style
of parallel coordinate plots: the resulting statistics on such few
samples would be invalid.

For the order of the first set of axes, we followed the typical
clinician descriptor of a new patient: “56 year old male white
patient with T3 glottic cancer [...]”, hence age, gender, ethnicity,
cancer type, site [...]. The next set of axes encode the treatment
plan applied. The last axis (or the “result” of the nomogram) is
the outcome of that therapy: the 5-year survival rate. The height
of each axis is proportional to the weight of that variable in the
outcome calculation, and thus helps give insight into the mechanics
of the statistical model on which it is based. Where possible, the
vertical tick labels are laid down according to their contribution to
the survival probability: for example, in the nomogram plot age
goes from high values at the axis bottom towards low values at the

axis top, since older age is associated with lower probability of
survival. As in general parallel coordinate plots, each patient in the
repository becomes a polyline in this coordinate system (Fig. 3).

Statistics Module. Because the mean survival probability needs
to be computed over a 5-year period in the presence of incomplete
data, we perform this computation with a martingale model and
a statistical algorithm. We first compute offline the estimated 5-
year survival from a parametric accelerated failure-time model
which assumes a baseline Weibull distribution. Covariates including
gender, age, staging, nodal status, ethnicity, location of tumor etc.
are assumed to be linearly related to the hazard factor. The hazard
factor is the instantaneous probability of dying on any day given the
subject were alive the previous day. A proportional hazards model
typically assumes the logarithm of the hazard is equal to a linear
combination of covariates (e.g., gender, age, staging, etc) [43]. The
model is fit using a maximum likelihood approach. The resulting
5-year survival value is mapped to the last axis of the nomogram.

Interaction. The default usage mode for the nomogram is
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Fig. 4: A survival encoding in the style of Kaplan-Meier, showing
the different survival probability distributions depending on the can-
cer stage. For this interactive plot, white patients with supraglottic
cancer were selected.

along its original purpose: only the K Nearest Neighbors are
shown, and therapy variables are not included in the KNN search.
For wider exploration, users may elect to view other patients, or
recompute and explore the nearest neighbors using only a subset
of the similarity criteria. The Kiviat panel is updated accordingly.

Users can filter the nomogram data by interacting directly with
the axes in the chart, or indirectly through a set of axis controls.
Clicking and dragging along an axis creates a filter with that
selection. The advanced indirect controls allow, in the style of
traditional paper-nomogram generation, the removal of specific
axes and remapping of the values shown.

Figure 3 illustrates the process of nomogram editing to generate
a paper nomogram. The resulting paper nomogram has been
recently published and disseminated [41].

3.7 Kaplan Meier Survival Panel
Survival Curves. The use of survival curves in cancer research has
a long history [44], [45], [46], [47]. Static survival curves were
frequently used by both radiotherapists and statisticians to explain
therapy outcome differences across patient groups. A survival curve
displays the survival experience of a cohort of patients by showing
the survival probability versus time. We blend interactive filtering
with a Kaplan Meier survival plot encoding and a statistical module
to enable the mining of survival probabilities (Fig. 4).

The survival encoding shows how the probability of survival
over time changes depending on the different characteristics of
the patients. For instance, patients with a T4-stage of cancer tend
to have lower chances of survival compared to patients with a
T3-stage cancer over the same period of time. The horizontal axis
of the graph represents time, while the vertical axis represents the
probability of survival of a patient over that period of time. We
compute these plots for all the attributes currently selected by the
user.

Each plot in the graph represents a different value that the
respective attribute can assume, and its color (based on color-
brewer2.org) encodes the attribute. Each plot is surrounded by a
paler ribbon in the same hue, which represents the 95% confidence
interval of our prediction.

Statistics Module. Straightforward estimators of the probability
of survival at a certain time point (e.g., the sample percentage of
subjects surviving beyond a certain time point) are insufficient
when the length of follow-up is variable. For example, when we
estimate the survival probability at 5 years for a subject who is only
followed for 3 years before the study ends, it is unclear whether
the subject would have survived for 5 years. This phenomenon,
known as right-censoring, characterizes many biomedical datasets,
including the one considered here.

The Kaplan-Meier (or product-limit) estimator of the survival
probability is the standard method when the outcome (survival time)
may be right-censored due to loss-to-follow-up or study termination.
Additionally, the Kaplan Meier estimator is the nonparametric
maximum likelihood estimator (MLE) of the survival probability.
MLEs are advantageous because they are the (asymptotic) efficient
estimator. That is, we cannot do better (in terms of minimizing
the mean squared error) than the Kaplan-Meier estimator without
making some parametric assumption about the survival distribution.

We calculate the data in the chart using the Kaplan-Meier
estimator formula:

Ŝ(t) = ∏
ti≤t

ni−di

ni
(2)

where Ŝ(t) is the maximum likelihood estimate, ni is the number
of survivors just prior to time ti, and di is the number of deaths
occurred at ti.

The confidence interval is calculated as a two standard deviation
range around the predicted value, where the standard deviation is
computed using Greenwood’s formula:

ˆVar(Ŝ(t)) = Ŝ(t)2
∑
ti≤t

di

ni(ni−di)
(3)

Interaction. The attribute being analyzed in the survival plot
can be changed by choosing from a listbox located above the graph.
We do not compute or show a Kaplan plot when the number of
patients considered for the plot drops below 5. The plot is linked
to other panels (e.g., the nomogram view) through color.

3.8 Cohort Context
Mosaic Plot. The last component of the environment is a context
mosaic plot (Fig. 5) [48], which shows the number of patients in the
dataset who match the user-specified values for any combination
of attributes. The mosaic has two functions: showing a quantitative
context of the patient distribution based on the current category
selection, and filtering the data if necessary.

The two mosaic axes are mapped to the possible values that a
pair of attributes can take, from a sequence of attributes selected
by the user. Each combination of values is assigned a tile; the
size of the tile is proportional to the percentage of patients with
those particular attributes, within the currently selected dataset. The
mosaic tiles use the same color scheme as the Kiviats to encode the
5-year survival rate for patients belonging to that group: blue means
the mean 5 year survival probability for that group is greater than a
user defined threshold; orange means the opposite. The threshold
can be interactively modified through a scented widget [49] at the
bottom of the mosaic.

The interactive mosaic encoding was selected and streamlined
after multiple discussions of prototypes, over a simpler treemap
encoding, small multiple scatterplot variations, heatmaps, and
textured/multicolored mosaics. Quotes below mark feedback from
our biomed collaborators. Heatmaps, a popular encoding in the
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Fig. 5: Mosaic investigation of survival rates and cancer sites
context for a Hispanic patient. Left: Glottic cancers (second box
from the top, in blue for all ethnicities) indicate high (above 0.52) 5-
year mean survival rates across ethnicities. Right: Hispanics, Asian
and undetermined ethnicities with glottic cancers have even higher
(above 0.69) mean survival rates. However, only the Hispanic group
(rightmost column) contains enough samples to warrant further
investigation.

biomed field, were discarded despite showing large amounts of
overview information in a compact form, because “clinicians are
interested in how their particular patient fits in, and not in generic
overviews”. Small multiple scatterplots took too much screen space
and were “hard to read”. In view of the heatmap comments, the
treemap encoding was a surprising success, yet lost to the mosaic
plot which, after streamlining, was “much clearer and easier to
read”.

Filter Bar. A filter bar at the top of the mosaic serves as a
navigation reminder: each time a filter is applied to the data through
the mosaic, a breadcrumb is added to the bar, showing the attributes
added to the current filter. The breadcrumbs are interactive and
allow users to disable specific filters (Fig. 1).

Statistics Module. The mosaic is linked to the same statistics
module as the nomogram panel. The module computes the 5-year
survival rate of each patient.

Interaction. Clicking on a tile filters the data and updates
the mosaic: only the patients with the selected combination of
attributes will be shown in the updated mosaic. The attributes can
be reordered using a popup menu, if the user wishes to explore the
data in a different sequence from the default one. Hovering over a
tile further displays statistics about that subgroup (such as number
of samples and standard deviation) as details on demand.

3.9 Scaffolding

Because medical professionals tend to resist to novel encodings (as
documented in our related work), it was important to incorporate
in the environment scaffolding components that would ease the
interface learning curve. In the overall layout, encodings that exist
in paper form in the target domain (nomograms and survival plots)
are placed centrally, to provide visual anchors. We link the less
familiar representations (Kiviats and mosaic) to these anchors
through a linked view paradigm, which has been shown to assist in
visual scaffolding [50]. Inspired by similar approaches in successful
videogames, we further provide help buttons for each panel, as
well as for the entire interface, with on-demand explanations for
each visual representation and the interactions available.

Implementation Details. The therapy explorer is built in
Javascript, using the D3.js data visualization library. We imple-
mented our own nomogram package, and make it available as open-

source (https://github.com/uic-evl/d3.nomogram). The explorer is
available at https://uic-evl.github.io/SMART/.

4 EVALUATION AND RESULTS

Because evaluators and designers were separated over space and
time due to the project constraints, we evaluated the therapy
explorer through a combination of multiple demonstrations and
case studies involving the larger expert team, and several hallway
usability tests with novice users. This combined approach enabled
faster design cycles than the weekly electronic meetings: novice
users captured coarse-level design potential issues, while the
experts had final say over design decisions and captured higher-
level potential issues. The demonstrations took various forms, from
collocated designer-driven demos to collocated novice-driven tests
and to expert-driven remote sessions using screen-sharing software.

4.1 Hallway Usability
Hallway usability is a fast, inexpensive method of usability testing
in which randomly-selected people—e.g., people passing by in the
hallway—are asked to try using a product or service. The approach
can help designers identify “brick walls,” problems so serious that
users simply cannot advance using the product. In the early stages
of design, we employed hallway usability to observe six computer
science graduate students use the system. We note that hallway
usability tests are in no way large scale user studies, which exceed
the scope of visualization design works, but a practical, hands-on
approach to improving usability in specific contexts.

We selected a list of reasonably complex tasks for these users
(e.g., “Using the tree map representation, display the overall
survival probability at 0.5 for a given male Hispanic subject with
supraglottic T3-stage cancer”) and gave them the opportunity to
use the prototypes after a brief tutorial. We used a think-aloud
technique while observing the participants, and used their feedback
to improve the design. The approach enabled us, for example,
to evaluate informally the workflow benefits of a linked views
paradigm as opposed to separate tabs, and the advantages and
disadvantages of encodings, for example Kaplan Meier charts,
nomograms, treemaps, or mosaic plots.

These tests and feedback indicated, for example, that the
workflow was best incorporated in a linked views paradigm (lower
time-on-task and fewer clicks), even if this implied less real-estate
screen space per encoding, and that in this application mosaic plots
were easier to understand than treemaps (higher task success and
lower time on task, by a factor as high as 3). Feedback from the
domain experts confirmed these findings during both site visits
and remote meetings (e.g., “mosaic plots are absolutely better than
treemaps in this case”).

4.2 Expert Case Studies and Feedback
To evaluate the effectiveness of the approach, we have completed
two case studies together with domain experts. The case studies
were completed in separate sessions, two weeks apart; the second
case reflects increased user familiarity with the visual representa-
tions. Both case studies involved two senior radiotherapists (one of
whom is a practicing clinician), a statistician, and a data mining
researcher. The therapy explorer was used on a dataset of 632
patients with head and neck cancer. For these two cases, the experts
were given direct access to the web-based explorer, and we used
screen sharing with turn taking, and a think-aloud technique to
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analyze their interactions with the environment. The domain experts
have been using this work for over a year [41]. The case studies
and verbiage reported below have been abbreviated and simplified
for a lay audience.

4.2.1 Patient Prognosis and Therapy Exploration
In the first case study, our collaborators analyzed a specific patient
in the repository, with particular emphasis on patient similarity and
therapy choice (tasks Task 1 - Task 4). The team selected a specific
patient, white female with T4 supraglottic cancer.

The group analysis started directly with the Kiviat comparison
panel. In fact, a team member was visually browsing through the
patient data using the Kiviats, and the subject caught their eye due
to the variation of outcomes in her nearest neighbors: the neighbor
glyph colors varied from light blue to orange (Fig. 1). The most
promising similar case (third from the bottom, in blue) is very
similar—also white female supraglottic, low ecog score, etc—, but
has T3 supraglottic cancer.

The specialist took note of the demographics of the patient, and
proceeded to the mosaic to figure out the context of the patient’s
group (white, supraglottic). After interacting with the mosaic, the
group noted the T3 female subgroup had particularly low mean
survival rates, close to those of the T4 category (Fig 1 mosaic). The
Kaplan Meier survival plot also predicted similar trajectories for
the T3 and T4 categories. Spurred on by this finding, the analysis
moved swiftly to the interactive nomogram panel. After further
filtering by gender, T category, and nodal disease, the analysis
focused on the two patients most similar to the subject. The group
noted with surprise that despite the variation in the treatment
course for these patients, the survival outcomes were very similar
and fairly low. The clinicians are using these findings to identify
high-risk treatment responders.

4.2.2 Hispanic Glottic Therapy Analysis
In this exploratory study, the domain experts hypothesized a
potential correlation between Hispanic ethnicity, glottic tumor
site, multiple therapy paths, and survival rates for a specific patient
(tasks Task 1 through Task 6). This hypothesis marked a departure
from the state-of-the-art therapy planning protocol at the clinic,
which was primarily based on cancer staging (T3 versus T4).

After selecting the patient characteristics, the radiotherapists’
exploration started with the nomogram panel, while the data mining
researcher headed straight to the Kiviat panel, and the statistician
zeroed in on the Kaplan-Meier survival plot. After reconvening and
interacting as a group with the mosaic plot and the survival slider,
it was noted that across all ethnicities, glottic cancers had higher
5-year mean survival rates (Fig. 5 left) than cancers at other sites,
and that Hispanics, Asian and undefined ethnicities had even higher
5-year mean rates (Fig. 5 right) than other ethnicities. The details
on demand revealed that from these three subgroups, the Hispanic
glottic group had sufficient samples present in the repository (23
subjects, as opposed to 1, respectively 5).

Drilling down in this subgroup, the mosaic view confirmed
that T3 cancers had higher survival rates than the more advanced
stage T4 cancers, as expected.When switching to the Kaplan Meier
T-category survival plot, we easily noted, however, that the T4
and T3 ribbons (standard deviation) were both wide and at times
overlapping, indicating similar survivals regardless of the cancer
staging. As expected, the predicted survival time in months for
T3 cases was significantly longer than the one for T4. However,
and surprisingly, the advanced-stage T4 cases featured higher

Fig. 6: T-category survival plot for Hispanic glottic cancer cases
(T3 in brown, and T4 in pink). The T4 and T3 ribbons (standard
deviation) are both wide and at times overlapping. The predicted
survival time in months for T3 cases is significantly longer than
the one for T4. However, and surprisingly, T4 cases feature higher
probability of survival in the middle 4 to 17 years survival period
than T3 cases: note that in this 4-17 interval (X axis) the T4 line
chart is higher than the T3 line chart.

probability of survival in the 4 to 17 years survival period than T3
cases (Fig. 6).

Next, the group examined the nearest neighbors of the specific
Hispanic glottic patient (Fig. 7). As shown in Fig. 7, the six cases
are remarkably similar with respect to eight possible variables
(Site, TCategory, Gender, Ethnicity, Chemotherapy, NodalDisease,
Ecog, LocalTherapy). Furthermore, they all had reasonable survival
outcomes, as encoded by the blue shades of the glyphs. Encouraged
by this finding, the group used the interactive nomogram to explore
correlations between the patient’s age at the time of treatment and
the survival rate. Within the patient’s age group, all similar patients
with glottic cancer had reasonably high survival rates. Survival
rates in the same group lowered dramatically for patients with
supraglottic cancer, indicating that the tumor site was an important
predictor of treatment success. Follow-up clinical studies will be
informed by this observation, and may be used to refine the therapy
selection protocol.

4.2.3 Expert Feedback
The clinicians were enthusiastic about the therapy explorer (“freak-
ing awesome”). The Kiviat encodings, the interactive nomograms,
and the interactive survival plots were immediate successes,
while the context mosaic was more slowly adopted after a few
demonstrations. In addition to the case studies completed with the
therapy explorer, the group promptly noticed several anomalies
in the dataset that had never been discovered before and turned
out to be data copying issues. This confirms the power of this
approach even in a challenging task such as outlier detection. The
experts further confirmed the value of the explorer as a research
and education tool, and are eager to publicize it.

During the evaluation process, we noted that the layout of
the panels on the same screen made possible multiple workflows
(Fig. 8): 1) left to right, beginning by browsing the patient set
to find similarities, followed by context data and comparison of
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Fig. 7: Kiviat profile for a Hispanic male patient with glottic cancer,
and the 5 most similar patients in the repository. The polygon shade
encodes the 5-year survival rate (blue is better, grays and browns
towards orange are worse). Note how similar the six patients are
with respect to 8 variables.

survival, followed by filtering operations, and progressing towards
individual patient detailed analysis and survival prediction; 2) right
to left, beginning with therapy exploration, then moving on to
similarity search etc; 3) middle to either left or right, beginning
with the survival plots and followed by similarity search or context
analysis; 4) from top to bottom, filtering the patient data in the
nomogram, then examining the context of the results, and so on.
We note that Marshall and Shipman [51], who have studied the use
of tools for collaborative work, observed before that users resist
systems that impose formalisms such as structures and procedures.
We speculate that the coordinated views paradigm followed in our
work supports not only flexible integration of multiple data views,
but also flexible workflows.

5 DISCUSSION

The case studies and the domain expert feedback indicate that
our integrated approach is of significant help in the comparative
exploration of treatment outcomes. The evaluation with expert
users of varied backgrounds further shows that the therapy explorer
is at the same time user-friendly and powerful. Experts could find
in just minutes new interesting patterns and even anomalies in a

dataset they had explored using different tools for a long time. The
novice usage evaluation sessions and an emphasis on scaffolding
have further helped in creating an easy to use and clear interface.
The result is a compact design which maximizes the use of screen
real estate and supports flexible expert workflows.

The statistics-backed interactive nomograms and the interactive
survival plot encodings are novel contributions. The exploration
of Kiviats and mosaics in the context of few-valued categorical
data is further original. The exploration of the design space
with an emphasis on an activity-centered design process, and the
implementation of the Van Ham and Perer’s mantra in this few-
valued context are further novel contributions. The combination of
visual encodings in a tool to handle multivariate data in precision
medicine is also novel.

The chosen visual encodings have been shown to have com-
plementary strengths. When connected through scaffolding, these
multiple encodings and views on the data provided insight into
domain problems, steered the investigation, and allowed for the
generation of new observations. In this scaffolding context, helpful
factors were the fact that static nomograms existed in the target
domain. Similarly, the interactive Kaplan Meier survival plots are
close to the static plots and error bars common in biomedicine.

In terms of limitations, we note that our precision approach
operates on a relatively reduced set of patient markers, none of
which include spatial characteristics. Integrating a larger number
of markers in both the statistical methods and in the visual
representations is an ambitious direction of future work.

A measure of the success of this project is the adoption
of the tool for research purposes by our co-authors and their
research labs. Reflecting on the design experience in this successful
geographically-distributed collaboration, we note the following
points:

• P1 Sprint requirements engineering: collocated, two-
way, sprint-style. The data and task analysis phase can
really make or break a geographically distributed visual
design project, and as such constitutes the best use of face
to face time. This starter set of requirements was generated
and refined through peer-programming style interaction, in
which the team explained the project, in several rounds, to
a lay audience. This two way dialog and mutually-approved
document formed a solid foundation for the prototyping
stage.

• P2 Prototyping and scaffolding: parallel prototyping,
domain encodings, and live demos. In our remote, multi-site
collaboration—with reduced and strict time available for
meetings—parallel prototyping was a key element, as were
live demos. We furthermore found success by building upon
domain-specific encodings. Using those familiar encodings
within a linked view framework served as a visual scaffold,
allowing the users to harness and expand their previous
analysis experience. We furthermore found that paper
prototypes are convenient for fast design iterations, but
that sometimes live demos are required to make the case for
a particular encoding: for example, mosaics only became a
success once interacting with them was possible.

• P3 Local/Remote evaluation: combined hallway usability
and remote testing. The combination of hallway usability
and remote testing methods has allowed for faster design
and development cycles, in a collaboration which had to
tackle differences in geographical space and expertise. To
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Fig. 8: Three of the possible workflows through the explorer, as observed during evaluation with domain experts who had different
backgrounds. These observations show how panel layout in a linked views approach enable multiple workflows.

this end, a web-based implementation was also important
for remote testing. Due to the limited time available for
e-meetings, it was further important to have scenarios
ready to demonstrate the benefits of specific encodings
and interactions.

6 CONCLUSION

In conclusion, we have designed, developed and validated a novel
visualization approach to precision medicine that enables the
detection of similar patients and then the systematic exploration
and comparison of individual factors collected from these groups
of similar patients. Our approach integrates a statistical model and
a K Nearest Neighbors approach with visual analysis in order to
compute and explain the probability of survival under user-specified
constraints.

We introduced scalable visual encodings for these data, which
are multivariate, heterogeneous and often few-valued. These linked
encodings combine statistics-driven nomograms—an interactive
parallel plot representation for risk prediction; interactive Kaplan-
Meier survival plots—a visual representation for risk evolution
over time; Kiviat representations; and statistics-driven mosaics. The
combination of these familiar and unfamiliar encodings follows
visual scaffolding principles, to support their adoption by the target
audience. The statistics-driven encodings we have introduced and
documented in this work may find application in other domains
that feature risk assessment, for example in finance visualization.

Evaluation with domain experts shows that the combination of
these encodings supports streamlined workflows which help radio-
therapists quickly identify similar patients and predict outcomes.
Last but not least, we described the expert feedback and the design

lessons learned from this successful, multi-site remote collaboration.
We believe these findings transfer across collaborations, visual
designs and application domains.
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