
Haptic Interaction with Volumetric Datasets Using Surface-based Haptic
Libraries

Silvio H. Rizzi Cristian J. Luciano P. Pat Banerjee

Department of Mechanical and
Industrial Engineering, University of

Illinois-Chicago

Department of Mechanical and
Industrial Engineering, University of

Illinois-Chicago

Departments of Mechanical and
Industrial Engineering, Computer

Science, Bioengineering, University of
Illinois-Chicago

ABSTRACT

An algorithm to provide haptic feedback directly from volumetric
datasets is introduced in this paper. The algorithm is able to
reproduce and extend the functionality of surface-based haptics
rendering methods. It can be easily implemented on top of
existing haptic libraries, such as Sensable’s OpenHaptics. In
addition, our approach overcomes poor performance in
OpenHaptics for models consisting of a large number of polygons
(1Million+). The algorithm allows detecting collisions with
multiple 3-dimensional shapes. After comparing alternative
approaches, such as Depth Buffer and Feedback Buffer, as well
as SenseGraphics’ Volume Haptics ToolKit
(ScalarSurfaceFriction mode), our algorithm delivers the highest
performance in terms of rendering time.

1 INTRODUCTION

Lately, volumetric data sets have acquired extraordinary
significance in medical simulation. Computed Tomography (CT)
and Magnetic Resonance Imaging (MRI) are examples of
ubiquitous technologies from which 3-dimensional (3D) data sets
are obtained. 3D computer models are commonly generated for
Virtual Reality and Haptics simulation of medical and surgical
procedures [1], [2].

Traditionally, a combination of scene graph managers [3], [4]
and haptic libraries [5] is used in simulations for simultaneous
graphics and haptics rendering of 3D models. Those libraries
commonly require 3D objects to be represented as polygonal
meshes, i.e. surfaces in 3D space consisting of multiple triangles.
These polygonal meshes are usually generated using an isosurface
extraction algorithm such as Marching Cubes [6]. Further
processing may be required in order to reduce the number of
triangles in each model (decimation) and to obtain smooth
surfaces. All these processing stages often demand several hours -
or even days- to complete, requiring the use of additional software
tools and a considerable amount of human intervention to
generate high quality 3D models. Although methods to accelerate
and improve the degree of automation of the segmentation process
have been discussed in the literature [7], alternative approaches
must be explored in order to improve the simulations.

OpenHaptics [5] is one of the most popular commercial haptic
libraries supporting SensAble haptic devices [8], [9]. It is
extensively used in a number of systems for Haptics and Virtual
and Augmented Reality applications, including H3D [4] and
OpenHaptics-enabled versions of the software described in

[10],[11]. It has, however, serious limitations when it is required
to haptically render highly complex shapes. Its two modes
(Feedback Buffer and Depth Buffer) impose their own constraints
on the model to be rendered. On one hand, Feedback Buffer
delivers high quality haptic rendering, however its performance is
dependent on the number of polygons in the model. On the other
hand, Depth Buffer is insensitive to the number of polygons, but
there are some cases where it exhibits “noticeable discontinuities
when feeling shapes with deep, narrow grooves or tunnels” [12].

To overcome the limitations discussed above, a more natural
and straightforward approach would be to implement a direct
volume haptics algorithm. Volumetric data could then be used
directly as delivered by imaging systems, reducing or even
eliminating the need of preprocessing stages to build models as
polygonal meshes. Furthermore, a robust direct volume haptics
could be a viable alternative to address those problems where
OpenHaptics fails.

In this work an algorithm for volume haptics based on proxy
methods for point-based haptic interaction is presented. This
algorithm allows the use of 3D datasets without computationally
expensive pre-processing stages. In addition, the algorithm is able
to detect collisions based on the proxy position. As in surface-
based haptics, the touching face is also determined, detecting
whether the probe is at either side (back or front) of the colliding
shape. The performance of the algorithm is evaluated in terms of
rendering time using representative datasets, and is compared to
other existing haptics approaches.

2 LITERATURE REVIEW AND RELATED WORK

2.1 Polygonal Mesh Haptics Rendering

Polygonal mesh methods require 3D models to be represented as
rigid polyhedra obtained from the original dataset. Within these
methods, the god-object algorithm, used for single-point contacts,
was proposed in [13]. This method uses a “god-object” to
constrain the haptic interface point to the mesh surface, avoiding
penetration. The tip of the haptic device is coupled to the proxy
through a spring model. In each haptic frame the force rendered is
proportional to the distance between the probe and the proxy. A
virtual proxy point of finite size, to avoid fall-through due to
numerical gaps in polygonal meshes, was proposed in [14]. The
same paper also proposes HL, a haptic interface library based on a
graphics library (GL) from Silicon Graphics. The proxy method
and the idea of a haptic library based on OpenGL were later
implemented in SensAble’s OpenHaptics [5], [15].

2.2 Volume Haptics Rendering

In volume haptics rendering, force feedback is generated from
volumetric datasets. Iwata and Noma present in [16] an approach
called Volume Haptization. For scalar data, they proposed
mapping voxel values to torque vectors or mapping the gradient of

Email: {srizzi2,clucia1,banerjee}@uic.edu

voxel values to force vectors. Avila and Sobierajski [17] describe
a gradient method where the normal and viscosity force
components at a given point depend on the material density and
the gradient magnitude at that point. The disadvantage of these
methods is that they can produce instabilities or undesired
vibrations, especially in regions containing sharp transitions,
where the gradient magnitude and direction can vary abruptly.

Volume haptics has been systematically studied in a series of
publications [18], [19], [20], [21]. In [18], a method to generate
surface and viscosity haptic feedback from volumes, along with
simulation of material properties is presented. The method
evolved in [19], where haptic primitives, such as directed force,
point, line, and plane were presented as building blocks of their
proxy-based method. Based on those haptic primitives, a number
of haptic modes were constructed, i.e. viscosity mode, gradient
force mode, vector follow mode, and surface and friction modes.
The method is refined in [20], which describes a numeric solver to
compute the final forces. In [21], the Volume Haptics ToolKit
(VHTK) is presented and implemented as an extension to
SenseGraphics H3D [4] application programming interface (API).

2.3 Intermediate Representation methods

Intermediate representation methods were first proposed in
[22]. The idea consists of representing touchable surfaces at a
given point by a virtual plane tangent to the surface at that point.
The collision detection loop runs independent of the servoloop
and is updated at a lower rate, whereas the servoloop is updated at
a higher rate required to render stiff objects. Combining
intermediate representations and lower update rates simplifies the
collision detection problem and helps to quickly detect collisions
between the tip of the haptic device and the virtual plane. The
method, however, has a fundamental limitation. If the update rate
for the virtual plane is too low, the operator will perceive
discontinuities as the proxy “jumps” from one plane to another.
This problem was addressed in [23], where the recovery time
method was presented. The method reduces the magnitude of the
force immediately after a new virtual plane is computed, allowing
to gradually and smoothly bring the tip of the haptic stylus to the
new surface. A simple algorithm using the intermediate
representation method on volumetric data was presented in [24].
The algorithm extracts virtual planes from the volumetric data
without the need of precomputing isosurfaces. This algorithm,
combined with a proxy-based method, allows to generate haptic
feedback directly from the volumetric data. However, when the
proxy position lies on one side of a thin object and the haptic
device is moved to a point on the other side of the thin object,
then collision with the object is ignored. If this happens, the
virtual plane is not computed, no force is generated, and the proxy
does not stop on the surface of the haptic object. This issue is
exacerbated when the haptic device is moved at relatively higher
speeds. In [25], an intermediate local representation which uses
Marching Cubes to generate isosurfaces from voxel data adjacent
to the haptic stylus position is proposed. Local isosurfaces from a
7x7x7 cube are passed to the haptics loop in GHOST as an
intermediate representation of the local volume data.

3 METHODOLOGY

3.1 Overview

Our algorithm is based on proxy methods and is inspired by the
intermediate representation method described in [24]. It
essentially consists of detecting collisions between the proxy point
and one or more 3D shapes representing objects of interest.
Shapes are defined from a set of voxels using transfer functions
without the need to generate polygonal meshes.

 The algorithm receives two points as parameters (Start and
End) for each haptic frame rendered by the servoloop at 1 KHz.
The Start point is the proxy position calculated in the previous
haptic frame whereas the End point is the current position of the
haptic device.

The collision detection routine detects the intersection between
a line segment (determined by Start and End) and a shape
surface (Figure 1). Shape surfaces are defined in terms of voxel
intensities, similar to isosurfaces.
The algorithm returns the 3D
coordinates of the intersection
point P, the normal vector N of
the surface at the intersection
point, and the touched side (front
or back) of the shape surface. It
also returns TRUE if there is a
collision or FALSE otherwise.
With this information, the
underlying haptic library
computes the forces as in the case
of polygonal mesh haptics, and
positions the proxy at the point P
when a collision with the shape is
detected.

3.2 Algorithm Details

Figure 2 shows a flow diagram of the algorithm. If the haptic
stylus has not moved in two successive haptic frames and there
was no collision in the previous frame, then the Start and End
points are exactly the same and therefore, the function returns
FALSE. Otherwise, it continues with a rough bounding-box
comparison between the line and the volume, quickly returning
false if they are disjoint.

If the line is inside the volume bounding box, for each point P
on the line segment from the Start to the End points, the algorithm
checks the intensity to the closest voxel V by a set of window
transfer functions defining the multiple shapes. If the voxel
intensity is outside the windows specified through the transfer
functions, then the haptic device has not yet collided with any
shape and the loop continues with the next point. If none of the
points on the line segment collide with any shape, the function
returns false.

In case the intersected voxel V lies within any of the transfer
function windows, the algorithm returns the 3D coordinates of the
point P as the surface contact point. The density of the voxel V is
used to determine which of the shapes has been touched by the
haptic device by comparing it with the ranges defined by their
transfer functions.

The normal vector N, which is perpendicular to the volumetric
isosurface at the contact point P, is determined by computing the
gradient of the neighbor voxels using the central differences
method. The contact point P and the normal vector N define a
plane T (tangential to the shape) which serves as an intermediate
representation of the isosurface. This plane is useful to determine
if the haptic device is touching either the front or back side of the
shape. If the Start point is in front of the plane T and the End point
is behind it, then the colliding face is front. Otherwise, the
colliding face is back. In this case, the algorithm inverts the
direction of the previously computed normal vector N.

3.3 Algorithm parameters

There are two essential design requirements for this algorithm.
First, it must be efficient in the sense that it must not affect the
haptics servo loop sustaining a minimum 1 KHz haptic frame rate.
Second, it must be robust to avoid undetected collisions. Both
requirements are directly affected by the selection of the step size

Start

N

T

P

End

Figure 1. Problem geometry

EndStartP ⋅+⋅−= ii)1(
with which successive discreet points along the line segment
(shown in Figure 1) are evaluated. If the step size is too big, a
collision could be overlooked, especially for thin structures. On
the other hand, a finely grained step size could help guarantee
collisions are always detected, but it could also severely impact
the haptic frame rate, since the algorithm is executed in the servo
loop thread.

If we parameterize the line segment from Start to End with
parameter i, where i is in the interval [0,1], then the following
linear interpolation equation gives any point P in the line segment
as a function of i:

 (1)

Our algorithm traverses the line segment by varying i from 0 to

1, incrementing it by a value of delta in each successive
iteration. Computations of P are done in continuous space and
further converted to discrete voxel coordinates for retrieving voxel
values. No sub-voxel resolution is needed.

Users can move the haptic stylus at various speeds, which is
reflected in corresponding variations of the line segment length
from Start to End. Therefore, delta must be carefully
selected each time the algorithm is executed. A naïve approach

Intersect (Start point, End point, Intersection point, Intersection normal, Colliding face)

Start point =

End point?
No

Return false

Yes

No

Compute normal

vector N from

voxel gradients at

vicinity of voxel V

Define tangential

plane T

perpendicular to N

Is Start point in

front of T and is End

point behind T?

Colliding face = FRONT

Intersection

normal = N

Yes

No

End

Intersection

normal = -N

Colliding face = BACK

Intersection

point = P

Does line bounding

box collide with volume

bounding box?

For each point P

in the line

Yes

Is voxel V

transparent?

Find closest voxel

V to point P

No

Determine the

colliding isosurface

End loop

Yes

Handle collision

Handle collision

between line and

volume

Return true

Begin

Figure 2. Flow diagram of the algorithm

StartEnd −

=
k

delta

would be to divide the line segment into a constant number of
steps, so the number of iterations is constant for all moving
speeds. However, this approach would fail to detect collisions
when the haptic device is moved at high speeds, especially when
structures are thin. The problem is solved using a variable step
size as follows:

(2)

where k is a constant that depends on the voxel size. In this way,
for higher speeds, the interval [0,1] representing the line segment
is divided into a higher number of steps. As shown in Figure 2,
when the haptic device does not move in two successive haptic
frames (Start = End), the algorithm returns immediately,
preventing division by zero in Equation (2). Every time the
algorithm is executed, the actual distance between successive
points P to be evaluated in a given line segment is constant,
regardless of the velocity of the haptic stylus. Thus, initializing k
to be equal to or less than the minimum dimension of voxels is a
necessary condition to prevent undetected collisions.

3.4 Transfer Functions

The algorithm is able to simultaneously detect multiple shapes
from volumetric isosurfaces defined by their individual ranges of
voxel intensities. A transfer function is defined for each haptic
shape whereby a binary output value is assigned to each possible
voxel intensity. In graphics volume rendering techniques, piece-
wise linear transfer functions are commonly used to specify color
intensities and transparency. Similarly, in our approach transfer

functions are used to determine whether a voxel should be
touchable or not based on its intensity.

Figure 3 presents a comparison between graphics volume
rendering and haptic transfer functions. The first transfer function
exemplifies opacity as a function of voxel intensities. Gradually
increasing or decreasing values of opacity, represented by ramps,
are allowed and commonly used. On the other hand, in the haptics
transfer functions only discrete binary outputs are permitted. In
this way, voxels with intensities within the rectangular window
defined by the transfer function will be regarded as belonging to
the shape and will, therefore, be touchable. In other words, when
the collision detection algorithm finds a voxel whose intensity is
within the rectangular window, it will return TRUE, indicating a
collision with the shape was detected.

There are two advantages to using haptic transfer functions.
First, since they are similar to the ones commonly used in volume
visualization techniques, a single transfer function may
simultaneously specify graphics and haptics properties for each
shape. In Figure 3 it is shown how a haptic transfer function can
be obtained from its graphics counterpart. As a result, all non-
opaque values will be touchable and haptic parameters such as
stiffness, static friction, and dynamic friction will be assigned to
the corresponding voxels. The second advantage is that pre-
processing steps such as segmentation and construction of
polygonal meshes for each shape are no longer needed. In
essence, the haptic transfer functions implemented resemble an
operation of binary thresholding, by which different subsets may
be determined from the original dataset according to their voxel
intensities. Therefore, the specification of transfer functions
provides all the information needed to generate graphics and
haptics visualization, operating only with the original
(unmodified) 3D dataset.

3.5 Implementation

Our algorithm is intended to take advantage of the efficient force
computation implemented in existing haptic libraries. Therefore,
the algorithm performs the collision detection and passes to the
haptic library all the information needed to compute the forces in
the same way it does for polygonal meshes.

OpenHaptics allows users to define custom shapes by a
callback function which is called in each frame of the servoloop
thread, before computing the forces to be sent to the haptic device.
The prototype of the intersect callback function for OpenHaptics
[26] is as follows:

bool intersectSurface(const HLdouble startPt[3],

 const HLdouble endPt[3],

 HLdouble intersectionPt[3],

 HLdouble intersectionNormal[3],

 HLenum *face,

 void *userdata);

Our algorithm, implemented as a callback function responding

to the intersectSurface prototype, returns the coordinates of
the contact point P, the intersection normal vector N, and the
touching face (as the third, fourth and fifth parameters,
respectively). OpenHaptics computes forces based on the haptic
materials associated with the haptic shape (spring, damper, static
and dynamic friction), allowing the user to feel the contact and
friction between the proxy and the volumetric isosurfaces. Similar
to the case of polygonal meshes, by setting the haptic shape’s
touchable face as HL_FRONT, HL_BACK or
HL_FRONT_AND_BACK, the algorithm allows the user to feel
only one or both sides of the haptic isosurface. If there is no
collision, OpenHaptics updates the proxy position with the current
position of the haptic device. On the other hand, if there is a

Figure 3. Comparison of Graphics and Haptics transfer functions

Non-

Touchable

Touchable

Voxel

Intensity

Voxel

Intensity

0

1

Graphics

(Volume Rendering)

Haptics

O
p

ac
it

y

I1 I2 I3 I4

I1 I4
0

All non-opaque

values are

touchable

collision, OpenHaptics fixes the proxy at the surface contact point
P, and computes the forces to be sent to the haptic device.

 To detect collisions with multiple shapes, OpenHaptics calls
the intersectSurface callback function once for each haptic
shape defined. Those multiple calls are made within each
individual servo frame at 1 KHz. If the intersectSurface
callback function returns TRUE, there is a collision with the
current shape. It returns FALSE, otherwise. However, the
algorithm needs to be executed only once per haptic frame since
the goal is to find the first non-transparent voxel along the line
segment from Start to End. The sixth argument (*userdata) in
the intersectSurface prototype is used to pass the shape to be
evaluated in each call. The collision detection algorithm is
executed only during the call corresponding to the first shape in a
servo frame. If a collision is detected, the algorithm will
determine the touched shape comparing the density value of the
voxel against the value ranges of the transfer function. After the
first call within a servo frame, there is no need to execute the
collision detection algorithm again. However, based on the
*userdata parameter, the callback function will return TRUE
when the call corresponds to a collided shape, and FALSE for all
the other shapes. In this way, OpenHaptics’ intersectSurface
callback function is called multiple times (once per existing
shape) but the collision detection algorithm is executed only once
in each frame of the servo loop, obtaining a constant runtime
independent of the number of shapes.

4 EXPERIMENTAL SETUP AND RESULTS

4.1 Experimental Setup

Our setup consists of a Dell Precision 690 workstation, Quad Intel
Xeon @ 2.66 GHz processors, 4 GB RAM, two nVidia QuadroFX
4600 graphics cards in SLI configuration, and MS Windows XP
Professional Service Pack 2. The haptic device is a SensAble
Phantom Desktop, driver version 4.2.49. Our haptic library is
OpenHaptics 2.0 Academic Edition. The experimental
applications were developed using Coin3D 2.5.0, SystemsInMo-
tion’s implementation of OpenInventor. SIMVoleon version 2.0.1,
also from SystemsInMotion, is used for volume rendering. To test
our implementation against other solutions, we have used the
Volume Haptics ToolKit (VHTK) from SenseGraphics. In our
experiments, VHTK version 1.5.1 was built on top of version 1.5
of the H3D API. VHTK includes its own implementation of
graphics volume rendering.

The software runs on the ImmersiveTouch platform [10], [11],
which is used for collocated graphics and haptics, providing also
head tracking for viewer’s centered perspective. The display
resolution is set as 1600x1200 pixels with a vertical refresh rate of
100 Hz with quad buffering for stereoscopic visualization.

For the experiments a CT dataset from a patient’s head is used,
consisting of 512x512x192 voxels linearly converted from
DICOM files to 8 bits per voxel. Voxel sizes are 0.48x0.48x1.25
millimeters. A preset value of k = 0.1 mm is used in Equation (2).
Since the minimum voxel dimension is 0.48 mm, the preset value
of k prevents undetected collisions. A 3D Gaussian smoothing
kernel of size seven is applied to the original data in order to
smooth edges.

4.2 Performance Comparisons

The objective of this experiment is to measure the real-time
performance of the presented algorithm in an environment whose
conditions are similar to an actual application, comparing it to
OpenHaptics’ Depth and Feedback Buffer methods for polygonal
meshes, and also to the ScalarSurfaceFrictionMode in VHTK. For

that purpose, different combinations of graphics and haptics
rendering modes are tested, as shown in the following table:

[DB] Surface Graphics using OpenInventor and Surface
Haptics using OpenHaptics’ Depth Buffer

[FB] Surface Graphics using OpenInventor and Surface
Haptics using OpenHaptics’ Feedback Buffer

[SVHTK] Surface Graphics using H3D and Volume Haptics
using VHTK

[VVHTK] Volume Graphics and Volume Haptics both using
VHTK

[SV] Surface Graphics using OpenInventor and our algo-
rithm for Volume Haptics

[VV] Volume Graphics using SimVoleon and our
algorithm for Volume Haptics

For Volume Graphics, the number of slices for the volume

renderer implementations varies from 200 to 2000 slices. For
Surface Graphics, it is necessary to generate a polygonal mesh
from the original set of voxels. For this purpose, the Marching
Cubes implementation in the Visualization ToolKit (VTK) is
used. In this case, the number of polygons in the polygonal mesh
varies from approximately 100k to 1200k polygons. The number
of polygons is modified while preserving the mesh topology using
VTK’s decimation algorithm. In this way, different meshes with
increasing level of decimation (i.e. decreasing number of
polygons) are generated from the original mesh.

126198 polygons 200 slices

492732 polygons 400 slices

1231832 polygons 2000 slices

Figure 4. Polygonal mesh including wireframe (left) and volume

(right) renderings of the model used for experiments.

Figure 4 presents different renderings of the model used for the
experiments for both Surface Rendering and Volume Rendering.
For Surface Rendering, the wireframe is also visualized to give a
clear idea of its polygonal density. Note that the models vary from
low to very high quality, depending on either the number of
polygons or number of slices, which is intended to cover the
practical range of actual applications.

The results of the experiments for all test cases are presented in
Figure 5. The measurements reflect the time elapsed in each frame
of the main rendering loop, including both graphics and haptics
rendering. These measurements are an indication of how long it
takes to fully render an entire frame in the main application
thread, and they are, thus, a good measure of actual performance
of an application.

By OpenHaptics’ API design, it is not possible to obtain direct
measurements of the execution time of each servo loop frame (in
the haptics thread). It is, however, possible from the main
application thread to request OpenHaptics’ HD API the average
and instantaneous servo loop rates. In all the experiments
OpenHaptics maintained its instantaneous servo loop rate
(measured using hdGetIntegerv(

HD_INSTANTANEOUS_UPDATE_RATE, &rate) from the
application’s main loop) at about 1000 Hz. Given that

measurement we must assume that no servo loop frames are
dropped for all the experiments conducted.

The technique for measuring run time is implemented in such a
way that values for all cases are comparable, even though they
involve substantially different algorithms, libraries, and APIs. In
cases where VHTK is used, minimum modifications were
introduced in one of H3D’s source files (file Scene.cpp, method
Scene::idle()) in order to compute its combined rendering time.

5 DISCUSSION

From the experiments, it can be seen that the performance of
[FB], [VV], and [VVHTK] deteriorate as the number of polygons
or slices is increased. This is the expected behavior for [FB], since
OpenHaptics’ Feedback Buffer algorithm depends on the number
of polygons. Similarly, for both graphics volume rendering
implementations (SimVoleon in [VV], VHTK in [VVHTK]) the
performance becomes unacceptably low in terms of graphics
frame rate as the number of slices for the given dataset is
increased.

On the other hand, [DB] using OpenHaptic’s Depth Buffer
shows an initially decreasing performance which stabilizes as the
number of polygons increases. Since the visualization load for
[DB] is the same as for [FB], differences in performance must be
attributed to the use of different haptics algorithms. Similarly,

Performance Comparisons

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Slices

ru
n

 t
im

e
 [
m

s
e

c
]
(l
o

g
 s

c
a

le
)

100000 300000 500000 700000 900000 1100000 1300000

Polygons

VVHTK - VHTK Volume Graphics and VHTK Volume Haptics (x in slices)

VV - SimVoleon Volume Graphics and our Volume Haptics algorithm (x in slices)

FB - Coin3D Surface Graphics and OpenHaptics Feedback Buffer (x in polygons)

DB - Coin3D Surface Graphics and OpenHaptics Depth Buffer (x in polygons)

SVHTK - H3D Surface Graphics and VHTK Volume Haptics (x in polygons)

SV - Coin3D Surface Graphics and our Volume Haptics algorithm (x in polygons)

Figure 5. Results of performance comparisons.

[SVHTK] using VHTK for haptics volume rendering and H3D’s
capabilities for polygonal mesh rendering shows an initially high
value followed by two different plateau regions with steep
transitions between them. The haptics load is the same for
[VVHTK] and [SVHTK], and therefore their different behaviors
are due to their visualization schemes, where polygonal mesh
visualization outperforms its graphics volume rendering
counterpart. In addition, performance is comparable for [DB] and
[SVHTK] in the middle region (approx. 500k to 1000k polygons),
whereas [DB] outperforms [SVHTK] for a higher number of poly-
gons.

Finally, [SV] combining our volume haptics algorithm and
polygonal mesh visualization exhibits an almost flat performance
in its entire range, outperforming all other cases. The visualization
load for cases [DB], [FB], and [SV] is exactly the same.
Therefore, based on the above reasoning, the difference in the
performance lies in their haptics implementations.

From these results, it is clear that our volume haptics algorithm
delivers the highest and most stable performance when compared,
under similar conditions, to OpenHaptics’ Depth Buffer and
Feedback Buffer implementations. Besides the OpenHaptics
library, there is no shared code between our applications ([DB],
[FB], [SV], and [VV]) and VHTK ([SVHTK] and [VVHTK]) .
However, the use of exactly the same dataset and measuring
techniques suggests that our algorithm also outperforms VHTK’s
Scalar Surface Friction Mode for this specific task.

Comparing our algorithm with previous intermediate
representation approaches, our major contributions are:

1) Elimination of inadequate haptic feedback: as discussed in
Section 2.3, there is a limitation in [22] where a lower update rate
for the intermediate representation with respect to the servoloop
rate may cause irregularities in the force feedback. The problem
is contemplated in the recovery time approach [23], but not
eliminated. In [24], the update rate of the intermediate
representation is 1/n of the force computation rate, and so the
problem in [22] is also present whenever n > 1. In our approach,
collisions are detected at exactly the same rate in which the
servoloop is updated, thus each execution of the collision
detection is guaranteed to precede the force computation.
Therefore, our algorithm eliminates this problem inherent in
intermediate representations.

 2) No fall-through for thin structures: The algorithm in [24]
may fail to detect collisions with thin structures, as explained in
Section 2. This problem is not present in our algorithm, where the
speed at which the haptic device is moved does not affect the
robustness of the collision detection algorithm, as shown in
Section 3.3.

3) Haptic front/back face detection: Building our algorithm on
top of an existing haptic library allows detection of back/front
faces and to assign different haptic properties to each one. This is
not possible in [22] and [24]

4) Multiple shape detection: Our algorithm is implemented such
that it is possible to efficiently detect multiple shapes and assign
different haptic properties to each of them. This feature is not
discussed in [22] and [24].

5) Leveraging of existing libraries: Building our algorithm as
part of an existing haptic library allows one to use volumetric as
well as polygonal mesh models at the same time. Moreover, there
are additional advantages from using the OpenHaptics library that
come for free, such as pop-through effects as well as
touch/untouch callback functions.

In summary, we have introduced an algorithm to provide haptic
feedback directly from volumetric datasets. It overcomes poor
performance in OpenHaptics for models consisting of a large
number of polygons and allows detecting collisions with multiple
3-dimensional shapes. Our algorithm delivered the highest

performance in experimental comparisons with Depth Buffer,
Feedback Buffer, and the ScalarSurfaceFriction mode in VHTK.

ACKNOWLEDGMENT

This work was supported in part by NIH NIBIB grant
1R21EB007650-01A1.

REFERENCES

[1] C. Luciano, P. Banerjee, G.M. Lemole, F. Charbel, “Second

Generation Haptic Ventriculostomy Simulator Using the Im-

mersiveTouch™ System,” Proceedings of 14th Medicine Meets

Virtual Reality, J.D. Westwood et al. (Eds.), IOSPress, pp. 343-348,

2006.

[2] P. Banerjee, F. Charbel, "On-Demand High Fidelity Neurosurgical

Procedure Simulator Prototype at University of Illinois using Virtual

Reality and Haptics," Accreditation Council for Graduate Medical

Education (ACGME) Bulletin, September 2006; p. 20-21.

[3] Systems In Motion Coin3D, available at http://www.coin3d.org/

[4] H3D.org, available at http://www.h3dapi.org/

[5] SensAble Technologies OpenHaptics, available at

http://www.sensable.com/products-openhaptics-toolkit.htm

[6] W. Lorensen, H. Cline, "Marching Cubes: A high resolution 3D sur-

face construction algorithm," Computer Graphics, Vol. 21, No. 4,

July 1987.

[7] S. Rizzi, P. Banerjee, C. Luciano, "Automating the Extraction of 3D

Models from Medical Images for Virtual Reality and Haptic Simula-

tions," Automation Science and Engineering, 2007. CASE 2007.

IEEE International Conference on , vol., no., pp.152-157, 22-25

Sept. 2007

[8] T.H. Massie, J.K.Salisbury, “The PHANTOM Haptic Interface: A

Device for Probing Virtual Objects,” Symp. On Haptic Interfaces for

Virtual Environments. Chicago, IL, Nov. 1994.

[9] SensAble Haptic Devices, available at

http://www.sensable.com/products-haptic-devices.htm

[10] C. Luciano, P. Banerjee, L. Florea, G. Dawe, "Design of the Im-

mersiveTouch™: A High-Performance Haptic Augmented VR

System," Proceedings of Human-Computer Interaction (HCI)

International Conf. Las Vegas, 2005.

[11] P. Banerjee, C. Luciano, L. Florea, G. Dawe, et. al, Compact haptic

and augmented virtual reality device. U.S. Provisional Patent

Application no. 60/646,837, March 2005, U.S. Patent Application,

January 2006.

[12] SensAble OpenHaptics Toolkit Version 2.0 Programmer’s Guide,

pp. 6-6

[13] C.B. Zilles, J.K. Salisbury, "A constraint-based god-object method

for haptic display," Intelligent Robots and Systems 95. 'Human

Robot Interaction and Cooperative Robots', Proceedings. 1995

IEEE/RSJ International Conference on , vol.3, no., pp.146-151 vol.3,

5-9 Aug 1995

[14] D.C. Ruspini, K. Kolarov, O. Khatib, “The haptic display of

complex graphical environments”. In Proceedings of the 24th

Annual Conference on Computer Graphics and Interactive

Techniques, International Conference on Computer Graphics and

Interactive Techniques. ACM Press/Addison-Wesley Publishing Co.,

New York, NY, 345-352, 1997.

[15] B. Itkowitz, J. Handley, W. Zhu, "The OpenHaptics toolkit: a library

for adding 3D Touch navigation and haptics to graphics applica-

tions," Eurohaptics Conference, 2005 and Symposium on Haptic In-

terfaces for Virtual Environment and Teleoperator Systems, 2005,

pp. 590-591, 18-20 March 2005.

[16] H. Iwata, H. Noma, "Volume haptization," Virtual Reality, 1993.

Proceedings., IEEE 1993 Symposium on Research Frontiers in , vol.,

no., pp.16-23, 25-26 Oct 1993

[17] R.S. Avila, L.M. Sobierajski, “A haptic interaction method for vol-

ume visualization.” In Proceedings of the 7th Conference on Visuali-

zation '96 (San Francisco, California, United States, October 28 - 29,

1996). R. Yagel and G. M. Nielson, Eds. IEEE Visualization. IEEE

Computer Society Press, Los Alamitos, CA, 197-ff.

[18] K. Lundin, A. Ynnerman, B. Gudmundsson, “Proxy-based haptic

feedback from volumetric density data.” In Proceedings of the Euro-

haptic Conference, pp. 104-109. University of Edinburgh, United

Kingdom, 2002.

[19] K. Lundin, B. Gudmundsson, A. Ynnerman, "General proxy-based

haptics for volume visualization," Eurohaptics Conference, 2005 and

Symposium on Haptic Interfaces for Virtual Environment and Teleo-

perator Systems, 2005, pp. 557-560, 18-20 March 2005.

[20] K. Lundin, M. Cooper, A. Ynnerman, “The orthogonal constraints

problem with the constraint approach to proxy-based volume haptics

and a solution.” In Proceedings of SIGRAD Conference, pp. 45-49,

Lund, Sweden, Nov. 2005.

[21] K. Lundin, M. Cooper, A. Persson, D. Evestedt, A. Ynnerman, “Ena-

bling design and interactive selection of haptic modes.” Virtual Real-

ity, 2006. DOI: 10.1007/s10055-006-0033-7.

[22] Y. Adachi, T. Kumano, K. Ogino, "Intermediate representation for

stiff virtual objects," Virtual Reality Annual International

Symposium, 1995. Proceedings, pp.203-210, 11-15 Mar 1995.

[23] W.R. Mark, S.C. Randolph, M. Finch, J.M. Van Verth, and R.M.

Taylor, “Adding force feedback to graphics systems: issues and

solutions”. In Proceedings of the 23rd Annual Conference on

Computer Graphics and interactive Techniques SIGGRAPH '96.

ACM, New York, NY, 447-452. 1996.

[24] K. Chen, P. Heng, and H. Sun, “Direct haptic rendering of isosurface

by intermediate representation.” In Proceedings of the ACM

Symposium on Virtual Reality Software and Technology (Seoul,

Korea, October 22 - 25, 2000). VRST '00. ACM, New York, NY,

188-194.

[25] O. Körner, M. Schill, C. Wagner, H.J. Bender, R. Männer, “Haptic

volume rendering with an intermediate local representation”. In:

Proc of the 1st International Workshop on Haptic Devices in

Medical Applications, pp. 79–84 (1999)

[26] SensAble OpenHaptics Toolkit Version 2.0 Programmer’s Guide,

pp. 6-32

