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ABSTRACT 

An algorithm to provide haptic feedback directly from volumetric 
datasets is introduced in this paper. The algorithm is able to 
reproduce and extend the functionality of surface-based haptics 
rendering methods. It can be easily implemented on top of 
existing haptic libraries, such as Sensable’s OpenHaptics. In 
addition, our approach overcomes poor performance in 
OpenHaptics for models consisting of a large number of polygons 
(1Million+). The algorithm allows detecting collisions with 
multiple 3-dimensional shapes. After comparing alternative 
approaches,  such as Depth Buffer and Feedback Buffer, as well 
as SenseGraphics’ Volume Haptics ToolKit 
(ScalarSurfaceFriction mode), our algorithm delivers the highest 
performance in terms of rendering time. 

1 INTRODUCTION 

Lately, volumetric data sets have acquired extraordinary 
significance in medical simulation. Computed Tomography (CT) 
and Magnetic Resonance Imaging (MRI) are examples of 
ubiquitous technologies from which 3-dimensional (3D) data sets 
are obtained. 3D computer models are commonly generated for 
Virtual Reality and Haptics simulation of medical and surgical 
procedures [1], [2]. 

Traditionally, a combination of scene graph managers [3], [4] 
and haptic libraries [5] is used in simulations for simultaneous 
graphics and haptics rendering of 3D models. Those libraries 
commonly require 3D objects to be represented as polygonal 
meshes, i.e. surfaces in 3D space consisting of multiple triangles. 
These polygonal meshes are usually generated using an isosurface 
extraction algorithm such as Marching Cubes [6]. Further 
processing may be required in order to reduce the number of 
triangles in each model (decimation) and to obtain smooth 
surfaces. All these processing stages often demand several hours -
or even days- to complete, requiring the use of additional software 
tools and a considerable amount of human intervention to 
generate high quality 3D models. Although methods to accelerate 
and improve the degree of automation of the segmentation process 
have been discussed in the literature [7], alternative approaches 
must be explored in order to improve the simulations. 

OpenHaptics [5] is one of the most popular commercial haptic 
libraries supporting SensAble haptic devices [8], [9]. It is 
extensively used in a number of systems for Haptics and Virtual 
and Augmented Reality applications, including H3D [4] and  
OpenHaptics-enabled versions of the software described in 

[10],[11].  It has, however, serious limitations when it is required 
to haptically render highly complex shapes. Its two modes 
(Feedback Buffer and Depth Buffer) impose their own constraints 
on the model to be rendered.  On one hand, Feedback Buffer 
delivers high quality haptic rendering, however its performance is 
dependent on the number of polygons in the model. On the other 
hand, Depth Buffer is insensitive to the number of polygons, but 
there are some cases where it exhibits “noticeable discontinuities 
when feeling shapes with deep, narrow grooves or tunnels” [12]. 

To overcome the limitations discussed above, a more natural 
and straightforward approach would be to implement a direct 
volume haptics algorithm. Volumetric data could then be used 
directly as delivered by imaging systems, reducing or even 
eliminating the need of preprocessing stages to build models as 
polygonal meshes. Furthermore, a robust direct volume haptics 
could be a viable alternative to address those problems where 
OpenHaptics fails.  

In this work an algorithm for volume haptics based on proxy 
methods for point-based haptic interaction is presented. This 
algorithm allows the use of 3D datasets without computationally 
expensive pre-processing stages. In addition, the algorithm is able 
to detect collisions based on the proxy position. As in surface-
based haptics, the touching face is also determined, detecting 
whether the probe is at either side (back or front) of the colliding 
shape. The performance of the algorithm is evaluated in terms of 
rendering time using representative datasets, and is compared to 
other existing haptics approaches. 

2 LITERATURE REVIEW AND RELATED WORK 

2.1 Polygonal Mesh Haptics Rendering 

Polygonal mesh methods require 3D models to be represented as 
rigid polyhedra obtained from the original dataset. Within these 
methods, the god-object algorithm, used for single-point contacts, 
was proposed in [13]. This method uses a “god-object” to 
constrain the haptic interface point to the mesh surface, avoiding 
penetration. The tip of the haptic device is coupled to the proxy 
through a spring model. In each haptic frame the force rendered is 
proportional to the distance between the probe and the proxy. A 
virtual proxy point of finite size, to avoid fall-through due to 
numerical gaps in polygonal meshes, was proposed in [14]. The 
same paper also proposes HL, a haptic interface library based on a 
graphics library (GL) from Silicon Graphics. The proxy method 
and the idea of a haptic library based on OpenGL were later 
implemented in SensAble’s OpenHaptics [5], [15].  

2.2 Volume Haptics Rendering 

In volume haptics rendering, force feedback is generated from 
volumetric datasets. Iwata and Noma present in [16] an approach 
called Volume Haptization. For scalar data, they proposed 
mapping voxel values to torque vectors or mapping the gradient of 
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voxel values to force vectors. Avila and Sobierajski [17] describe 
a gradient method where the normal and viscosity force 
components at a given point depend on the material density and 
the gradient magnitude at that point. The disadvantage of these 
methods is that they can produce instabilities or undesired 
vibrations, especially in regions containing sharp transitions, 
where the gradient magnitude and direction can vary abruptly. 

Volume haptics has been systematically studied in a series of 
publications [18], [19], [20], [21]. In [18], a method to generate 
surface and viscosity haptic feedback from volumes, along with 
simulation of material properties is presented. The method 
evolved in [19], where haptic primitives, such as directed force, 
point, line, and plane were presented as building blocks of their 
proxy-based method. Based on those haptic primitives, a number 
of haptic modes were constructed, i.e. viscosity mode, gradient 
force mode, vector follow mode, and surface and friction modes. 
The method is refined in [20], which describes a numeric solver to 
compute the final forces. In [21], the Volume Haptics ToolKit 
(VHTK) is presented and implemented as an extension to 
SenseGraphics H3D [4] application programming interface (API).  

2.3 Intermediate Representation methods 

Intermediate representation methods were first proposed in 
[22]. The idea consists of representing touchable surfaces at a 
given point by a virtual plane tangent to the surface at that point. 
The collision detection loop runs independent of the servoloop 
and is updated at a lower rate, whereas the servoloop is updated at 
a higher rate required to render stiff objects. Combining 
intermediate representations and lower update rates simplifies the 
collision detection problem and helps to quickly detect collisions 
between the tip of the haptic device and the virtual plane. The 
method, however, has a fundamental limitation. If the update rate 
for the virtual plane is too low, the operator will perceive 
discontinuities as the proxy “jumps” from one plane to another. 
This problem was addressed in [23], where the recovery time 
method was presented. The method reduces the magnitude of the 
force immediately after a new virtual plane is computed, allowing 
to gradually and smoothly bring the tip of the haptic stylus to the 
new surface.  A simple algorithm using the intermediate 
representation method on volumetric data was presented in [24]. 
The algorithm extracts virtual planes from the volumetric data 
without the need of precomputing isosurfaces. This algorithm, 
combined with a proxy-based method, allows to generate haptic 
feedback directly from the volumetric data. However, when the 
proxy position lies on one side of a thin object and the haptic 
device is moved to a point on the other side of the thin object, 
then collision with the object is ignored. If this happens, the 
virtual plane is not computed, no force is generated, and the proxy 
does not stop on the surface of the haptic object. This issue is 
exacerbated when the haptic device is moved at relatively higher 
speeds. In [25], an intermediate local representation which uses 
Marching Cubes to generate isosurfaces from voxel data adjacent 
to the haptic stylus position is proposed.  Local isosurfaces from a 
7x7x7 cube are passed to the haptics loop in GHOST as an 
intermediate representation of the local volume data. 

3 METHODOLOGY 

3.1 Overview 

Our algorithm is based on proxy methods and is inspired by the 
intermediate representation method described in [24]. It 
essentially consists of detecting collisions between the proxy point 
and one or more 3D shapes representing objects of interest. 
Shapes are defined from a set of voxels using transfer functions 
without the need to generate polygonal meshes.  

 The algorithm receives two points as parameters (Start and 
End) for each haptic frame rendered by the servoloop at 1 KHz. 
The Start point is the proxy position calculated in the previous 
haptic frame whereas the End point is the current position of the 
haptic device.  

The collision detection routine detects the intersection between 
a line segment (determined by Start and End) and a shape 
surface (Figure 1). Shape surfaces are defined in terms of voxel 
intensities, similar to isosurfaces. 
The algorithm returns the 3D 
coordinates of the intersection 
point P, the normal vector N of 
the surface at the intersection 
point, and the touched side (front 
or back) of the shape surface. It 
also returns TRUE if there is a 
collision or FALSE otherwise. 
With this information, the 
underlying haptic library 
computes the forces as in the case 
of polygonal mesh haptics, and 
positions the proxy at the point P 
when a collision with the shape is 
detected. 

3.2 Algorithm Details 

Figure 2 shows a flow diagram of the algorithm. If the haptic 
stylus has not moved in two successive haptic frames and there 
was no collision in the previous frame, then the Start and End 
points are exactly the same and therefore, the function returns 
FALSE. Otherwise, it continues with a rough bounding-box 
comparison between the line and the volume, quickly returning 
false if they are disjoint.  

If the line is inside the volume bounding box, for each point P 
on the line segment from the Start to the End points, the algorithm 
checks the intensity to the closest voxel V by a set of window 
transfer functions defining the multiple shapes. If the voxel 
intensity is outside the windows specified through the transfer 
functions, then the haptic device has not yet collided with any 
shape and the loop continues with the next point. If none of the 
points on the line segment collide with any shape, the function 
returns false. 

In case the intersected voxel V lies within any of the transfer 
function windows, the algorithm returns the 3D coordinates of the 
point P as the surface contact point. The density of the voxel V is 
used to determine which of the shapes has been touched by the 
haptic device by comparing it with the ranges defined by their 
transfer functions.  

The normal vector N, which is perpendicular to the volumetric 
isosurface at the contact point P, is determined by computing the 
gradient of the neighbor voxels using the central differences 
method. The contact point P and the normal vector N define a 
plane T (tangential to the shape) which serves as an intermediate 
representation of the isosurface. This plane is useful to determine 
if the haptic device is touching either the front or back side of the 
shape. If the Start point is in front of the plane T and the End point 
is behind it, then the colliding face is front. Otherwise, the 
colliding face is back. In this case, the algorithm inverts the 
direction of the previously computed normal vector N. 

3.3 Algorithm parameters 

There are two essential design requirements for this algorithm. 
First, it must be efficient in the sense that it must not affect the 
haptics servo loop sustaining a minimum 1 KHz haptic frame rate. 
Second, it must be robust to avoid undetected collisions. Both 
requirements are directly affected by the selection of the step size 
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Figure 1. Problem geometry 
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with which successive discreet points along the line segment 
(shown in Figure 1) are evaluated. If the step size is too big, a 
collision could be overlooked, especially for thin structures. On 
the other hand, a finely grained step size could help guarantee 
collisions are always detected, but it could also severely impact 
the haptic frame rate, since the algorithm is executed in the servo 
loop thread. 

If we parameterize the line segment from Start to End with 
parameter i, where i is in the interval [0,1], then the following 
linear interpolation equation gives any point P in the line segment 
as a function of  i: 

 (1) 

 
Our algorithm traverses the line segment by varying i from 0 to 

1, incrementing it by a value of delta in each successive 
iteration. Computations of P are done in continuous space and 
further converted to discrete voxel coordinates for retrieving voxel 
values. No sub-voxel resolution is needed. 

Users can move the haptic stylus at various speeds, which is 
reflected in corresponding variations of the line segment length 
from Start to End. Therefore, delta must be carefully 
selected each time the algorithm is executed. A naïve approach 
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Figure 2. Flow diagram of the algorithm 
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would be to divide the line segment into a constant number of 
steps, so the number of iterations is constant for all moving 
speeds. However, this approach would fail to detect collisions 
when the haptic device is moved at high speeds, especially when 
structures are thin. The problem is solved using a variable step 
size as follows: 

 
(2) 

where k is a constant that depends on the voxel size. In this way, 
for higher speeds, the interval [0,1] representing the line segment 
is divided into a higher number of steps.  As shown in Figure 2, 
when the haptic device does not move in two successive haptic 
frames (Start = End), the algorithm returns immediately, 
preventing division by zero in Equation (2). Every time the 
algorithm is executed, the actual distance between successive 
points P to be evaluated in a given line segment is constant, 
regardless of the velocity of the haptic stylus. Thus, initializing k 
to be equal to or less than the minimum dimension of voxels is a 
necessary condition to prevent undetected collisions. 

3.4 Transfer Functions 

The algorithm is able to simultaneously detect multiple shapes 
from volumetric isosurfaces defined by their individual ranges of 
voxel intensities. A transfer function is defined for each haptic 
shape whereby a binary output value is assigned to each possible 
voxel intensity. In graphics volume rendering techniques, piece-
wise linear transfer functions are commonly used to specify color 
intensities and transparency. Similarly, in our approach transfer 

functions are used to determine whether a voxel should be 
touchable or not based on its intensity. 

Figure 3 presents a comparison between graphics volume 
rendering and haptic transfer functions. The first transfer function 
exemplifies opacity as a function of voxel intensities. Gradually 
increasing or decreasing values of opacity, represented by ramps, 
are allowed and commonly used. On the other hand, in the haptics 
transfer functions only discrete binary outputs are permitted. In 
this way, voxels with intensities within the rectangular window 
defined by the transfer function will be regarded as belonging to 
the shape and will, therefore, be touchable. In other words, when 
the collision detection algorithm finds a voxel whose intensity is 
within the rectangular window, it will return TRUE, indicating a 
collision with the shape was detected. 

There are two advantages to using haptic transfer functions. 
First, since they are similar to the ones commonly used in volume 
visualization techniques, a single transfer function may 
simultaneously specify graphics and haptics properties for each 
shape. In Figure 3 it is shown how a haptic transfer function can 
be obtained from its graphics counterpart. As a result, all non-
opaque values will be touchable and haptic parameters such as 
stiffness, static friction, and dynamic friction will be assigned to 
the corresponding voxels. The second advantage is that pre-
processing steps such as segmentation and construction of 
polygonal meshes for each shape are no longer needed. In 
essence, the haptic transfer functions implemented resemble an 
operation of binary thresholding, by which different subsets may 
be determined from the original dataset according to their voxel 
intensities. Therefore, the specification of transfer functions 
provides all the information needed to generate graphics and 
haptics visualization, operating only with the original 
(unmodified) 3D dataset. 

3.5 Implementation 

Our algorithm is intended to take advantage of the efficient force 
computation implemented in existing haptic libraries. Therefore, 
the algorithm performs the collision detection and passes to the 
haptic library all the information needed to compute the forces in 
the same way it does for polygonal meshes. 

OpenHaptics allows users to define custom shapes by a 
callback function which is called in each frame of the servoloop 
thread, before computing the forces to be sent to the haptic device. 
The prototype of the intersect callback function for OpenHaptics 
[26] is as follows: 
 
bool intersectSurface(const HLdouble startPt[3], 

       const HLdouble endPt[3], 

    HLdouble intersectionPt[3], 

    HLdouble intersectionNormal[3], 

    HLenum   *face, 

    void     *userdata  ); 

 
Our algorithm, implemented as a callback function responding 

to the intersectSurface prototype, returns the coordinates of 
the contact point P, the intersection normal vector N, and the 
touching face (as the third, fourth and fifth parameters, 
respectively). OpenHaptics computes forces based on the haptic 
materials associated with the haptic shape (spring, damper, static 
and dynamic friction), allowing the user to feel the contact and 
friction between the proxy and the volumetric isosurfaces. Similar 
to the case of polygonal meshes, by setting the haptic shape’s 
touchable face as HL_FRONT, HL_BACK or 
HL_FRONT_AND_BACK, the algorithm allows the user to feel 
only one or both sides of the haptic isosurface. If there is no 
collision, OpenHaptics updates the proxy position with the current 
position of the haptic device. On the other hand, if there is a 

 

Figure 3. Comparison of Graphics and Haptics transfer functions  
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collision, OpenHaptics fixes the proxy at the surface contact point 
P, and computes the forces to be sent to the haptic device. 

 To detect collisions with multiple shapes, OpenHaptics calls 
the intersectSurface callback function once for each haptic 
shape defined. Those multiple calls are made within each 
individual servo frame at 1 KHz. If the intersectSurface 
callback function returns TRUE, there is a collision with the 
current shape. It returns FALSE, otherwise. However, the 
algorithm needs to be executed only once per haptic frame since 
the goal is to find the first non-transparent voxel along the line 
segment from Start to End. The sixth argument (*userdata) in 
the intersectSurface prototype is used to pass the shape to be 
evaluated in each call. The collision detection algorithm is 
executed only during the call corresponding to the first shape in a 
servo frame. If a collision is detected, the algorithm will 
determine the touched shape comparing the density value of the 
voxel against the value ranges of the transfer function. After the 
first call within a servo frame, there is no need to execute the 
collision detection algorithm again. However, based on the 
*userdata parameter, the callback function will return TRUE 
when the call corresponds to a collided shape, and FALSE for all 
the other shapes.  In this way, OpenHaptics’ intersectSurface 
callback function is called multiple times (once per existing 
shape) but the collision detection algorithm is executed only once 
in each frame of the servo loop, obtaining a constant runtime 
independent of the number of shapes. 

4 EXPERIMENTAL SETUP AND RESULTS 

4.1 Experimental Setup 

Our setup consists of a Dell Precision 690 workstation, Quad Intel 
Xeon @ 2.66 GHz processors, 4 GB RAM, two nVidia QuadroFX 
4600 graphics cards in SLI configuration, and MS Windows XP 
Professional Service Pack 2. The haptic device is a SensAble 
Phantom Desktop, driver version 4.2.49. Our haptic library is 
OpenHaptics 2.0 Academic Edition. The experimental 
applications were developed using Coin3D 2.5.0, SystemsInMo-
tion’s implementation of OpenInventor. SIMVoleon version 2.0.1, 
also from SystemsInMotion, is used for volume rendering. To test 
our implementation against other solutions, we have used the 
Volume Haptics ToolKit (VHTK) from SenseGraphics. In our 
experiments, VHTK version 1.5.1 was built on top of version 1.5 
of the H3D API. VHTK includes its own implementation of 
graphics volume rendering. 

The software runs on the ImmersiveTouch platform [10], [11], 
which is used for collocated graphics and haptics, providing also 
head tracking for viewer’s centered perspective. The display 
resolution is set as 1600x1200 pixels with a vertical refresh rate of 
100 Hz with quad buffering for stereoscopic visualization. 

For the experiments a CT dataset from a patient’s head is used, 
consisting of 512x512x192 voxels linearly converted from 
DICOM files to 8 bits per voxel. Voxel sizes are 0.48x0.48x1.25 
millimeters. A preset value of k = 0.1 mm is used in Equation (2). 
Since the minimum voxel dimension is 0.48 mm, the preset value 
of k prevents undetected collisions. A 3D Gaussian smoothing 
kernel of size seven is applied to the original data in order to 
smooth edges.  

4.2 Performance Comparisons 

The objective of this experiment is to measure the real-time 
performance of the presented algorithm in an environment whose 
conditions are similar to an actual application, comparing it to 
OpenHaptics’ Depth and Feedback Buffer methods for polygonal 
meshes, and also to the ScalarSurfaceFrictionMode in VHTK. For 

that purpose, different combinations of graphics and haptics 
rendering modes are tested, as shown in the following table:  
 

[DB] Surface Graphics using OpenInventor and Surface 
Haptics using OpenHaptics’ Depth Buffer 

[FB] Surface Graphics using OpenInventor and Surface 
Haptics using OpenHaptics’ Feedback Buffer  

[SVHTK] Surface Graphics using H3D and Volume Haptics 
using VHTK  

[VVHTK] Volume Graphics and Volume Haptics both using 
VHTK  

[SV] Surface Graphics using OpenInventor and our algo-
rithm for Volume Haptics  

[VV] Volume Graphics using SimVoleon and our 
algorithm for Volume Haptics  

 
For Volume Graphics, the number of slices for the volume 

renderer implementations varies from 200 to 2000 slices. For 
Surface Graphics, it is necessary to generate a polygonal mesh 
from the original set of voxels. For this purpose, the Marching 
Cubes implementation in the Visualization ToolKit (VTK) is 
used.  In this case, the number of polygons in the polygonal mesh 
varies from approximately 100k to 1200k polygons. The number 
of polygons is modified while preserving the mesh topology using 
VTK’s decimation algorithm. In this way, different meshes with 
increasing level of decimation (i.e. decreasing number of 
polygons) are generated from the original mesh. 

126198 polygons 200 slices 

  
492732 polygons 400 slices 

  
1231832 polygons 2000 slices 

  

Figure 4. Polygonal mesh including wireframe (left) and volume 

(right) renderings of the model used for experiments. 



Figure 4 presents different renderings of the model used for the 
experiments for both Surface Rendering and Volume Rendering. 
For Surface Rendering, the wireframe is also visualized to give a 
clear idea of its polygonal density. Note that the models vary from 
low to very high quality, depending on either the number of 
polygons or number of slices, which is intended to cover the 
practical range of actual applications. 

The results of the experiments for all test cases are presented in 
Figure 5. The measurements reflect the time elapsed in each frame 
of the main rendering loop, including both graphics and haptics 
rendering. These measurements are an indication of how long it 
takes to fully render an entire frame in the main application 
thread, and they are, thus, a good measure of actual performance 
of an application. 

By OpenHaptics’ API design, it is not possible to obtain direct 
measurements of the execution time of each servo loop frame (in 
the haptics thread). It is, however, possible from the main 
application thread to request OpenHaptics’ HD API the average 
and instantaneous servo loop rates. In all the experiments 
OpenHaptics maintained its instantaneous servo loop rate 
(measured using hdGetIntegerv( 

HD_INSTANTANEOUS_UPDATE_RATE, &rate) from the 
application’s main loop) at about 1000 Hz. Given that 

measurement we must assume that no servo loop frames are 
dropped for all the experiments conducted. 

The technique for measuring run time is implemented in such a 
way that values for all cases are comparable, even though they 
involve substantially different algorithms, libraries, and APIs. In 
cases where VHTK is used, minimum modifications were 
introduced in one of H3D’s source files (file Scene.cpp, method  
Scene::idle()) in order to compute its combined rendering time. 

5 DISCUSSION 

From the experiments, it can be seen that the performance of 
[FB], [VV], and [VVHTK] deteriorate as the number of polygons 
or slices is increased. This is the expected behavior for [FB], since 
OpenHaptics’ Feedback Buffer algorithm depends on the number 
of polygons. Similarly, for both graphics volume rendering 
implementations (SimVoleon in [VV], VHTK in [VVHTK]) the 
performance becomes unacceptably low in terms of graphics 
frame rate as the number of slices for the given dataset is 
increased. 

On the other hand, [DB] using OpenHaptic’s Depth Buffer 
shows an initially decreasing performance which stabilizes as the 
number of polygons increases. Since the visualization load for 
[DB] is the same as for [FB], differences in performance must be 
attributed to the use of different haptics algorithms.  Similarly, 
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Figure 5. Results of performance comparisons. 



[SVHTK] using VHTK for haptics volume rendering and H3D’s 
capabilities for polygonal mesh rendering shows an initially high 
value followed by two different plateau regions with steep 
transitions between them. The haptics load is the same for 
[VVHTK] and [SVHTK], and therefore their different behaviors 
are due to their visualization schemes, where polygonal mesh 
visualization outperforms its graphics volume rendering 
counterpart. In addition, performance is comparable for [DB] and 
[SVHTK] in the middle region (approx. 500k to 1000k polygons), 
whereas [DB] outperforms [SVHTK] for a higher number of poly-
gons. 

Finally, [SV] combining our volume haptics algorithm and 
polygonal mesh visualization exhibits an almost flat performance 
in its entire range, outperforming all other cases. The visualization 
load for cases [DB], [FB], and [SV] is exactly the same. 
Therefore, based on the above reasoning, the difference in the 
performance lies in their haptics implementations.  

From these results, it is clear that our volume haptics algorithm 
delivers the highest and most stable performance when compared, 
under similar conditions, to OpenHaptics’ Depth Buffer and 
Feedback Buffer implementations. Besides the OpenHaptics 
library, there is no shared code between our applications ( [DB], 
[FB], [SV], and [VV] ) and VHTK ( [SVHTK] and [VVHTK] ) . 
However, the use of exactly the same dataset and measuring 
techniques suggests that our algorithm also outperforms VHTK’s 
Scalar Surface Friction Mode for this specific task. 

Comparing our algorithm with previous intermediate 
representation approaches, our major contributions are: 

1) Elimination of inadequate haptic feedback: as discussed in 
Section 2.3, there is a limitation in [22] where a lower update rate 
for the intermediate representation with respect to the servoloop 
rate  may cause irregularities in the force feedback. The problem 
is contemplated in the recovery time approach [23], but not 
eliminated. In [24], the update rate of the intermediate 
representation is 1/n of the force computation rate, and so the 
problem in [22] is also present whenever  n > 1. In our approach, 
collisions are detected at exactly the same rate in which the 
servoloop is updated, thus each execution of the collision 
detection is guaranteed to precede the force computation. 
Therefore, our algorithm eliminates this problem inherent in 
intermediate representations. 

 2) No fall-through for thin structures: The algorithm in [24] 
may fail to detect collisions with thin structures, as explained in 
Section 2. This problem is not present in our algorithm, where the 
speed at which the haptic device is moved does not affect the 
robustness of the collision detection algorithm, as shown in 
Section 3.3. 

3) Haptic front/back face detection: Building our algorithm on 
top of an existing haptic library allows detection of back/front 
faces and to assign different haptic properties to each one. This is 
not possible in [22] and [24] 

4) Multiple shape detection: Our algorithm is implemented such 
that it is possible to efficiently detect multiple shapes and assign 
different haptic properties to each of them. This feature is not 
discussed in [22] and [24]. 

5) Leveraging of existing libraries: Building our algorithm as 
part of an existing haptic library allows one to use volumetric as 
well as polygonal mesh models at the same time. Moreover, there 
are additional advantages from using the OpenHaptics library that 
come for free, such as pop-through effects as well as 
touch/untouch callback functions. 

In summary, we have introduced an algorithm to provide haptic 
feedback directly from volumetric datasets. It overcomes poor 
performance in OpenHaptics for models consisting of a large 
number of polygons and allows detecting collisions with multiple 
3-dimensional shapes. Our algorithm delivered the highest 

performance in experimental comparisons with Depth Buffer, 
Feedback Buffer, and the ScalarSurfaceFriction mode in VHTK. 
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