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Fig. 1: The visualization declaration scheme can span different devices for rendering: (a) large display, (b) tablet, and (c) HoloLens.

Abstract— Multi device environments present new opportu-
nities for collaborative visual data analysis and sense making by
utilizing each device's strengths and capabilities. However, one
of the associated challenges with visual data analysis in multi
device environments is the sharing of visual components across
devices. We present a framework developed on top of SAGE2
platform for cross-device collaborative visual data exploration.
As part of our framework, we contribute the concept of
rapid development and assembling of visualizations that can
span multiple devices of different modalities. It provides the
users with an environment for visualization compositions that
delegate the rendering to the target device, allowing them to
augment their large display workspace with portable devices
for further exploration territories. Facilitated by its intuitive
visualization composition pipeline, users with no programming
skills such as data analysts can enhance their analytical scope
with no coding barriers. We describe the framework, its
implementation with a use case, and the rationale behind its
design.

I. INTRODUCTION

Visual analytics “The science of analytical reasoning
facilitated by interactive visual interfaces” [1] encompasses
a large amount of data that comes form different sources
and domains. Therefore, understanding such large datasets
is rarely a solitary activity. Collaborative visual data anal-
ysis enables multiple users (often called analysts) to work
together to collaboratively contribute contextual knowledge
that deepens their understanding of the data. The hetero-
geneity of the datasets and the inclusion of multiple users
in such collaborative environments demanded solutions that
go beyond the desktop [2][3]. Tiled display walls have been
shown to increase the performance of visualization tasks [4]
and the productivity of exploratory visual analysis [5]. In
recent years, spreading to multi-device settings for co-located
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collaborative visual data analysis has emerged to leverage
other device capabilities.

We integrate the SAGE2 large display with portable de-
vices (tablets and augmented reality headset) for co-located
multi-device visual data analysis. SAGE2 [6], the successor
of SAGE [7], is a middleware developed using web-browser
technologies to take multiple displays and unify them as one
high-resolution workspace. It enable users to collaboratively
share and display their contents on the large display (Fig.
2). Display clients provide information of the corresponding
viewport in the workspace via their URLs. Any number of
displays on different systems can be joined to form a unified
view of the SAGE2 workspace.

SAGE2 native applications are written in JavaScript using
SAGE2 API. Applications open simultaneously on the large
workspace enabling users to collaboratively interact with
them. Users interact with the workspace through UI clients
running on their devices using a SAGE2 pointer, which
is an html element that collects the native mouse events
and propagates them to the corresponding display client
for handling. Due to its distributed application and event
model, all users input events are passed to the head node
server which in turn distributes them to display clients for
handling. Each display client has its own instance of running
applications and receives events to handle them consistently.

We integrate the SAGE2 large display with portable
devices of different modalities like tablets and AR headsets
to create additional visual exploration territories. Coupling
and coordinating with different devices requires middle
modules for data sharing, translation and synchronization
due to different platforms interdependency. To tackle this
issue, we developed our framework based on declarative
visualization design and operation transformation (OT) for
seamless migration of visualizations and their interactivity
between devices.



Fig. 2: User collaborating during a SAGE2 session where they share
digital contents (i.e. PDFs, images, etc.) on the large display. [6]

The next section covers related work about collaborative
visual analytics and the use of heterogeneous devices for
visual data analysis. We then present the design principles
for the proposed framework. The following is the framework
overview. The collaborative scenario with expert feedback
is presented next. Lastly, we present the future work and
conclude the paper.

II. RELATED WORK

Here, we review some of the related work in the areas
of collaborative visual analytics and visual data analysis in
multi device environments. We derive our design guidelines
and principles based on principles from these areas that still
apply.

A. Collaborative Visual Analytics

Visual analytics is “The science of analytical reasoning
facilitated by interactive visual interfaces”[1]. The reasoning
process is a collaborative task that is done by multiple
analysts due to the heterogeneity of emerging datasets.
Therefore, building frameworks to support synchronous and
asynchronous collaborative visual analytics was a natural
next step. Many Eyes [8] was among the first systems to
utilize web technology to provide an asynchronous collabora-
tive mechanism of large-scale data visualization. Vistrates by
Badam et al. [9] is a framework based on component model
to design data visualization tasks that support synchronous
and asynchronous collaborative visual data analysis. In con-
trast to distributed analysis, Lark [10] was developed to
support collocated collaboration. It utilizes the visualization
pipelines for direct manipulation on the tabletop. To promote
the distributed visual analysis interfaces, Munin [11] and
PolyChrome [12] were developed using multiple surfaces and
displays.

Both synchronous and asynchronous visual analytics need
special considerations due to the unique requirements for
each setting. Work partitioning across space and time in asyn-
chronous collaborative settings provides scalability yet intro-
duces new challenges. Heer and Agrawala [13] defined a set
of design considerations that identify important aspects for
achieving effective collaboration in visual analytics settings.
Those aspects with regards to asynchronous collaboration are
important to increase the collaboration awareness and work
engagement during asynchronous visual analytics. Petra et

al. [14] presented an overview of collaborative visualization
scenarios and their associated challenges. Other efforts have
been made to identify design considerations for specific
collaborative settings such as collaboration around tabletops
[15] and collaboration in multi-display environments [16].

B. Heterogeneous Devices for Visual Data Analysis

Developing novel displays has been a significant effort to
support visual data exploration and analysis. Large displays
and tabletops support better collaboration in large spaces
[17]. Spreading to multi-device settings emerged to support
co-located collaboration for visual analytics. McGrath et al.
[18] proposed the Branch-Explore-Merge protocol to support
the coupled and decoupled visual data exploration around
tabletops. Portable devices, i.e. tablets, allowed for private
exploration and merging of results onto the shared space,
and hence, the branching and merging protocol facilitates
flexible levels of exploration territories. Yoshimoto et al.
[19] integrated a tabletop and wall display for different view
modalities and an interaction metaphor. Gestural interactions
are used on a 2D map on the tabletop to provide basic
interaction and navigation of the 3D map on the wall. Due
to their popularity and portability, tablets, mobile phones
and smart watches have also been integrated with large
displays and tabletops to steer the interaction and the visual
exploration. By leveraging each device's display and input
modalities, they provide fluid interplay between them to
support the visual data analysis tasks [20].

The current approaches of visual data exploration beyond
a single desktop computer enabled new sense-making en-
vironment that support analysts needs. Several frameworks
proposed different configurations of novel displays to support
the analysis tasks. In VisTiles [21], mobile devices were
utilized by leveraging their portability and dynamics. Vis-
Tiles enables flexible layout and distribution of coordinated
multiple views, and therefore aids a user-friendly interface.
The coordinated multiple views can adapt to the spatial
arrangement of devices enabling new visualization composi-
tion and exploration of multivariate data. Other frameworks
proposed a display composition environment to utilize the
capabilities of heterogeneous devices and extend the visual
space for visual data exploration. Munin [11] was a software
framework which attempted to unify the composition of the
multi device environment through a service-based model. It
envisions the anytime and anywhere visual data analysis.
Sharing information in a heterogeneous device environment
is a challenging task. Like Munin, VisPorter [22] is a
multi-device system that enables the lightweight sharing and
integration of information among different devices. These
systems extend the visual space to enhance the users cogni-
tion about their data investigation. Andrews and North [23]
proposed the Analysts Workspace by utilizing the spatial
affordances of the large high-resolution display to embody
resources and create a new sense making space. The recent
research efforts handle some of the design and technological
challenges in multi device environments. However, more



effort is demanded to investigate the cross device interaction
and interplay from the perspective of visual data exploration
and analysis, in addition to harnessing the challenges of
visualization sharing and distribution among different device
modalities.

III. DESIGN PRINCIPLES

(D1) Device agnostic visualization sharing

Generally, there are two ways to develop visualizations.
One is a native development for a specific platform, and
the other is a web-based development. Unlike native ap-
plications, web-based applications can be deployed to any
device using web technology. Many frameworks and toolkits
were developed based on web technology like D3 [27]
and JavaScript InfoVis Toolkit [28] to support information
visualization applications. PolyChrome [12], Vistrates [9]
and Visfer [26] are all web-based frameworks developed
to support the collaborative visual analysis. However, some-
times, going natively cannot be avoided when working with
devices like AR/VR headsets. In addition, native applications
are necessary to take the full advantage and support of
the target device. Going with one way is not enough to
support all applications and user requirements. To close this
gap, solutions for cross-platform infrastructures are essential
[30]. Wagner et al. [29] made an effort to support native
applications that can be complied to more than 20 devices
based on the Unity3D game engine.

(D2) Support of parallel and joint activities

The style of collaboration between participants is affected
by the display setup, the problem under investigation and
the analysis metaphors. Studies showed that collaboration
around interactive surfaces for information visualization in
co-located settings takes the forms of completely indepen-
dent, partially independent and joint (coupled) work [10][31].
Other studies by Isenberg et al. [25][32] identified the styles
of collaboration as a spectrum that varies from loosely
coupled to tightly coupled. These findings emphasize the
importance of supporting individual and public work, and
efficient transitions between styles. Another aspect that is
related to the style of collaboration around interactive sur-
faces, is the use of the space. Territoriality, which is the
spatial coordination of collaborative work, also takes three
forms as identified by Scott et al. [33]. Users use the space
for personal work, group work and for storage.

(D3) Fluid cross-device interaction

Spreading visualizations and the analysis tasks to multi
devices requires intuitive cross-device interactions. Infor-
mation sharing and management should not distract users
from the actual analysis. Embodied interactions [17] leverage
the proximity of devices to develop interactions that carry
out these operations. Badam and Elmqvist [26] presented
a cross-device interaction technique for data sharing in
ubiquitous environments based on a design elicitation study.
The interaction technique leverages the physicality of the

devices, to effortlessly share visualizations across devices
using a built-in camera and embodied QR codes. In VisPorter
[22], gestural interaction was utilized to transfer information
across displays in an intuitive and direct way. Their approach
was based on the concept of physical references of shared
information, rather than using symbolic references such as
IDs and URLs.

(D4) Exploiting the physical space

Utilizing physical space is essential in scalable visual data
analysis. Andrews et al. [24] showed that analysts exploit the
spatial affordances of large displays to serve as an external
memory and as a semantic layer for spatial data layout and
organization. In collaborative settings around tabletops, users
frequently move and organize information to approach their
analysis tasks [25]. Multi device ecologies enable users to
carry information and form dynamic exploration territories
across displays that populate the physical space. The view
and the analysis process can be extended to span multiple
exploration sites across the physical space. The affordances
of the physical space enable the flexible configuration and
coordination of devices to approach the task. In addition,
physical space is essential to embody information and im-
merse users in their data.

IV. SYSTEM OVERVIEW

The proposed framework is specifically designed to seam-
lessly support the collaborative visual data analysis that
can span multiple devices of different modalities. Here, we
discuss the primary features of the framework. We refer
to the design principles (D1-D4) with the description of
the framework and how the choice is made to meet these
principles.

A. Physical Environment

The proposed framework is built on top of SAGE2
middleware that drives tiled wall displays and unifies them
as one high-resolution display. The framework is developed
primarily to enable the integration of portable devices with
SAGE2 display to compose a heterogeneous visual data
analysis environment enhanced with further exploration ter-
ritories (D4). The spectrum of portable displays can have
smart-watches at one end and VR headsets at the other
end. Due to the unique requirements of integrating devices
from categories at the very ends, we limited our scope
to support the integration of portable devices that vary in
between like tablets and the HoloLens AR headsets. Any
number of mobile devices with a built-in camera and web
browsers (i.e. tablets and phones) can be joined to pull
and push visualizations from and to other devices (D3).
Although the tablet client is written in JavaScript as SAGE2
native applications, the coordination layer is necessary due
to the difference in interactivity handling between SAGE2
applications and other JavaScript-based applications. The
HoloLens client device extends the exploration into the third
space. Each distinct HoloLens client should run on a separate
machine.



Fig. 3: An overview of the system components. A visualization scheme is defined by the user through a set of filtering and visual
encoding specifications. The server coordinate the spanning of the scheme to the target device and coordinate the event wrapping and
sharing between devices.

B. Declarative Visualization Design

Developing visualizations can be a tedious process for
users with no programming skills, such as data analysts.
Therefore, visualization authoring systems and toolkits have
been widely adapted in recent years. The presented frame-
work enables the rapid construction of visualizations by
following the flow of the information visualization reference
model [34]. Here, users play a major role in the visual
mapping task that maps each data attribute onto a single
visual channel. We treat visualizations as user-configurable
semantic units (D1).View transformation is delegated to
the target device for rendering. The declarative language
is employed to represent the visualization semantic, which
is dynamically manipulated by the system throughout the
analysis process to maintain a persistent state of the vi-
sualization. Grammar-based representation of visualizations
has been introduced in many works with various levels of
abstraction. While some have a higher level of abstraction for
simplicity, others offer a lower level of abstraction for more
expressiveness. Examples of these declarative languages in-
clude Vega [35], Vega-Lite [36], ggplot2 [37] and ggvis
[38]. Unlike other grammar-based applications, we assume
a dynamic visualization scheme that gets updated with user
interactivity with the visualization.

We employ an all-in-one JSON format to declare three
main components of the visualization in our framework.
These components are: query specification for data retrieval,
visual encoding channels, and interactivity state. We cap-
ture those components during user composition of visu-
alization. The interactivity state is captured automatically
using our persisting state mechanism and update the scheme
accordingly. Fig. 4 shows an example structure of these
components. Decoupling the visualization semantic from its
view transformation process enabled a seamless migration of
visualizations across devices (D1).

C. Events Global Space Encapsulation

We integrate the portable devices with the wall display
to enable private, portable and extended exploration of the
data. However, concurrent use is a key feature in groupware
applications. Therefore, we enable the coupled exploration
style between tablets and wall display (D2). That is, in-
teractions on the shared visualization are also maintained
and executed in the coupled device for global exploration.
Concurrent use requires management of consistency between
simultaneous interactions. Operation Transformation (OT)
is an early mechanism originally developed to maintain
concurrent use and consistency in text editing tools [39].
Its capabilities have been extended over the years to support
collaborative groupware applications. Recently, ShareJS [40]
used a centralized server to maintain the global state between
all clients in online collaborative text editing. PolyChrome
[12] adapts the same mechanism to maintain concurrent
web-based visualization exploration by pushing DOM events
between browsers. DOM Events are wrapped into a global
space and inversed on the target display to support different
display sizes and configurations. We draw upon this work
by encapsulating coarser interaction operations to a global
space, so they can be shared and inversed by the target
device.

Working with cross-platform requires interactions to be
captured and defined in a higher semantic level. Gotz and
Zhou [41] organized users' visual analytic activities based
on semantic richness. Low-level events, like mouse clicks,
have little semantic compared to high-level tasks such as
selection and brushing. To support sharing interactions across
different platforms, we rely on the action tier and capture
the coarser exploration actions defined by [42]. The actions
are encapsulated into a global space with higher semantic
definition. Then, they could be shared with other devices
where they are inversed and interpreted.



Fig. 4: An example of a visualization scheme structure. (a) visualization at initial state. A new visualization state is pushed to the scheme
after an exploration event occurred in (b).

D. Visualization Persist State

In visual analytic systems, users are able to interactively
explore the data and change views to generate new hypothe-
ses and results. It is especially important in collaborative
settings to share visualizations in their current state.

Most visualization frameworks lack the ability to capture
the visual exploration state and the path that led to it. The
most challenging aspect is how to capture the visualization
state. From the visualization task perspective, interactions
in visualization can include a set of low-level events, such
as brushing interaction which is composed of the events:
mouse-down, mouse move and mouse up. Do we consider
the visualization state after each low-level event or after a
richer semantic interaction that is composed of a set of low-
level events?

The state definition needs to be identified first before
any effort to capture it is made. As discussed in the last
section, we define operations as data-centric or interaction-
centric operations. To enable consistency between different
platforms, we chose to define the visualization state based on
semantic rich interactions. We enable client side maintenance
of a persist state. The state is recorded as the user interacts
with the visualization. We defined an intermediate layer to
record and push the state to the visualization scheme. When
the visualization is shared, the state is recovered according
to the device-dependent interactivity and visual channels
encoding.

V. EVALUATION

To evaluate the use of the prototype system for the
visual data analysis of real world datasets, we conducted
a collaborative session with two visualization researchers.
Here, we outline the data analysis scenario and discuss
feedback from experts.

A. Collaborative Scenario

Two researchers with a background in visualization one
has additional experience using immersive technologies con-
ducted a visual data analysis of two geosciences datasets.
For reference, we will refer to the users as U1 and U2.
The users performed a visual analysis task to ascertain
the relationship between injection volume, the pressure of
fracking wells and the frequency of earthquakes in Okla-
homa State. The earthquake dataset is provided courtesy
of http://service.iris.edu/ and the Wells injection dataset is
provided courtesy of http://www.occeweb.com/. The users
started with the question: Is there any correlation between the
injection volume of wells and earthquake events? U1 began
by mining the data for all earthquake events during 2010
and then he visualized them on a large display map. He also
created a map of the locations of active well during 2010.
U2 captured the barcode attached to the map of earthquakes
by using the camera of the handheld device to pull the map
visualization and performed analysis of the mapped data. He
created a line chart to plot the frequency of earthquake events
over the year and pushed the chart to the wall. They observed
an increase in the number of earthquake incidents during the
month of December.



Fig. 5: In a collaborative session, the user on the left is examining data in 3D using a HoloLens device. Data points (Wells) within the
blue rectangle on the left map are viewed in 3D via HoloLens. The other user on the right is using a tablet (with linked visualization) to
inspect specific areas on the right map

To investigate the temporal relationship with injection
volume, he moved to the map of wells and captured the
attached barcode. Then, he created another line chart of total
volume injection per month. A pattern is observed, so he
pushed the chart to the wall and started to discuss with U1.
They observed an increase of volume injection during the
month of November, which has no temporal relation with the
increase in earthquake events, but they made a hypothesis:
can a high volume injection cause an increase in earthquake
frequency for the next month? U2 used the HoloLens to
examine the relative depth of the wells compared to the
depth of the earthquakes. They concluded that an additional
investigation of the observed pattern is needed for different
years and probably for different states to test their hypothesis.

B. Expert Feedback

We collected feedback from the experts regarding the
usage of the system for visual data analysis and the benefits
of integrating different devices into the process of visual data
analysis. U1 mentioned that the use of the tablet gave more
freedom of movement, obtain the data they want, process
it and push it back. He also believes that this will allow
different people to focus on different things of the analysis
process. Because of the affordance of portability, both users
mentioned that it would be beneficial to use the portable
devices as a controlling metaphor to control visualization on
other devices (i.e. tablet to control a visualization on large
display or on the HoloLens). Controlling here is different
than coordinating or linking visualizations. In this context, it
means moving visuals around, minimize or maximize them,
etc. U2 mentioned that it is useful to view datasets in 2D on
the large wall and in 3D on the HoloLens, but the hardest
part is to determine what the HoloLens user is seeing. As
U1 used the HoloLens to view the data in 3D, he added that
it also needs a kind of representation on the large display or

any mechanism that would increase the awareness. Experts
gave good feedback on how the devices are complementary
to each other.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented the PolyVis framework
for the building and promoting of visualizations in multi
device environments. It supports visual data exploration by
utilizing multiple devices of different modalities. Our pri-
mary goal was to maintain consistent sharing and interaction
with visualizations across different platforms. To achieve
this, we relied on the declarative visualization design and the
operation transformation paradigms. We treat visualizations
as semantic units (in the form of grammar) to migrate
to and render by different devices. SAGE2 users assume
a major role in the composition of visualization grammar
without any need for programming skills. The interactivity
with the visualization is captured and stored in a global
space for consistent representation. Therefore, the state of the
visualization will be maintained as the data analysis proceeds
regardless of the processing device. There are a few areas
that we plan to improve in the future. First, the visualization
layers at each device only support few visualization types.
We plan to extend that to support more advanced types
of visualization such as multi lines, stacked bars, parallel
coordinate, node-link, etc. We plan also to support the 3D
version of these types on the HoloLens client. In addition,
as suggested by experts, we would like to implement a
mechanism for cross-device multi-coordinated views. With
multiple visualizations at a time, it would be beneficial for
the visual exploration to connect data points across scattered
views.
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