Focusing on e-Science, LambdaGrid and Virtual Laboratory Applications

iGrid 2002, the 3rd biennial International Grid applications-driven testbed event, challenges scientists and technologists to utilize multi-gigabit experimental optical networks, with special emphasis on e-Science, LambdaGrid and Virtual Laboratory applications. The result is an impressive, coordinated effort by 28 teams representing 16 countries, showcasing how extreme networks, combined with application advancements and middleware innovations, can advance scientific research.

As computational scientists strive to better understand very complex systems – whether biological, environmental, atmospheric, geological or physics, from the micro to the macro level, in both time and space – they will require petascale computing, exabyte storage and terabit networks. A petaflop is one-hundred-times faster than today’s largest parallel computers, which process ten-trillion floating-point operations per second (10 teraflops). An exabyte is a billion gigabytes of storage, and terabit networks will eventually transmit data at one trillion bits per second – some 20 million times faster than a dialup 56K Internet connection.

Recent, major technological and cost breakthroughs in networking technology have made it possible to send scores of lambdas on a pair of customer-owned or leased optical fiber, making the terabit network of the future conceivable. (Here, lambda refers to a fully dedicated wavelength of light, each capable of bandwidth speeds from 1-10 gigabits/second.) Research is moving from locally-connected, processor-centric environments to distributed-computing environments that rely on optical connections, where the networks are faster than the resources they connect. Researchers are moving from grid-intensive computing to LambdaGrid-intensive computing, in which computational resources are connected by multiple lambdas.

As a conference, iGrid 2002 demonstrates application demands for increased bandwidth. As a testbed, iGrid 2002 enables the world’s research community to work together briefly and intensely to advance the state of the art – by developing new network-control and traffic-engineering techniques; new middleware to bandwidth-match distributed resources; and, new collaboration and visualization tools for real-time interaction with high-definition imagery. Much of the iGrid 2002 infrastructure will persist and be available for long-term experimentation.

LambdaGrid-intensive computing will become the main enabling technology for facilitating multi-institutional and multi-disciplinary advanced collaborations, enabling researchers to share unique resources and to have uniform and ubiquitous access to these facilities. In turn, this will enable the development of Virtual Laboratories, or science portals, for distributed analysis in applied scientific research. Groups worldwide are collaborating on major research projects, creating experimental platforms upon which future e-Science and large-scale distributed-computing experiments can take place. iGrid 2002 is a window into this world.

Application Demonstrations

- APBioGrid (AU, JA, SI)
- ATLAS LightPath Transfer (CA, CE, NL)
- Bandwidth Challenge from Low-Lands (CA, CE, FR, IT, JA, NL, UK, US)
- Bandwidth Gluttony: Physics (CE, US)
- Beat Box (US)
- Collaborative Access Grid (US)
- D0 Data Analysis (NL, US)
- Distributed Analysis (GE, JA, TA, UK, US)
- Dynamic Load Balancing SAMR (UK, US)
- Fine Grained Authorization for GARA (CE, US)
- GENIUS (CE, IT)
- Global Telescience with IPv6 (JA, TA, US)
- Griz (NL, US)
- High Performance Data Webs (CA, NL, SW, UK, US)
- HDTV Over IP (SP, US)
- Image Feature Extraction (GE, TA)
- Kites Flying In and Out of Space (CA, FR, JA, NL, SI, US)
- Network Intensive Computing (GE, US)
- PAAPAB (SW, US)
- Photonic TeraStream (NL, US)
- TACC Quantum Chemistry Grid (JA)
- TeraScope (US)
- TeraVision (US)
- The Universe (UK, US)
- Video IBPster (FR, GE, IT, US)
- Virtual Laboratory on National Scale (NL)
- Visiting Ancient Olympia (GR, US)
- vlbiGrid (FI, NL, UK, US)

Participating countries/locations:
Australia (AU); Canada (CA); CERN/Switzerland (CE); France (FR); Finland (FI); Germany (GE); Greece (GR); Italy (IT); Japan (JA); Netherlands (NL); Singapore (SI); Spain (SP); Sweden (SW); Taiwan (TA); United Kingdom (UK); United States of America (US).

Of course, during the week of iGrid, NL is an active participant in all these demonstrations!
NetherLight, located at the Amsterdam Internet Exchange facility on the campus of the Amsterdam Science & Technology Centre, is an advanced optical infrastructure and proving ground for network services optimized for high-performance applications. Operational since summer 2001, NetherLight is a multiple Gigabit Ethernet (GigE) switching facility for high-performance access to participating networks and will ultimately become a pure lambda switching facility for wavelength circuits, as optical technologies and their control planes mature. NetherLight’s international connectivity includes dedicated lambdas to the Starlight facility in Chicago and to CERN in Switzerland. On a national scale, SURFnet connects ASTRON/ JIVE in the region of Dwingeloo in northern Holland (ASTRON is the Netherlands’ Foundation for research in astronomy and JIVE is the Joint Institute for VLBI [Very Long Baseline Interferometry] in Europe) to NetherLight by means of a 32-wavelength Dense Wave Division Multiplexing (DWDM) transport network.

Researchers use the NetherLight facility to investigate novel concepts of optical bandwidth provisioning and to gain experience with these techniques. In particular, researchers are investigating different scenarios on how lambdas can be used to provide tailored network performance for demanding grid applications. Important issues are: how to get traffic onto and out of lambdas; how to map load on the network to a map of lambdas; how to deal with lambdas at peering points; how to deal with provisioning when more administrative domains are involved; and, how to do fine-grain, near-real-time grid application-level lambda provisioning.

NetherLight has been realized by SURFnet, the Dutch Research Network organization, within the context of GigaPort, the Dutch Next Generation Internet project.

StarLight, the optical STAR TAP initiative, is a persistent infrastructure that supports advanced applications and middleware research, and aggressive advanced networking services. StarLight is a multi-vendor 1Gbps, 2.5Gbps, and 10Gbps experimental switching facility, serving as a nodal point for the other end, or switching hub, for national and international experiments. StarLight will ultimately become an anchor for wavelength-rich LambdaGrids, with switching and routing at the highest experimental levels, laying the foundation for fully optical switching.

StarLight is a networking, database, visualization and computing research support facility planned by researchers for researchers. It is a middleware, protocol, and network measurement and monitoring research environment for applications, focusing on developing and testing methods for high-performance application provisioning on optical networks. It serves researchers using IP-over-lambda networks, addressing restoration issues, building LambdaGrids, optimizing DNS services, and testing novel protocols for long, very-high-bandwidth connections.

StarLight serves e-Science researchers who have spent the past 1.5 years helping design it. These include the technical leaders of USA research efforts, academic research and education networks, next-generation Federal networks, major state initiatives, Meta-PoPs, metro initiatives, and international research and education networks.

StarLight is being developed by the Electronic Visualization Laboratory at the University of Illinois at Chicago (UIC), the International Center for Advanced Internet Research at Northwestern University, and the Mathematics and Computer Science Division at Argonne National Laboratory (ANL), in partnership with Canada’s CANARIE and Holland’s SURFnet. STAR TAP and StarLight are made possible by major funding from the USA National Science Foundation to UIC (awards ANI-9980480 and ANI-9730202) and USA Dept. of Energy funding to ANL.

iGrid 2002 Wide Area Network (WAN)
iGrid’s enabling technology is a 2.5Gbps experimental network provided by SURFnet, the Dutch Research Network organization, which connects the NetherLight facility in Amsterdam to StarLight, a USA National Science Foundation-supported facility in Chicago. This very-high-speed transoceanic optical network between Europe and the USA is the first multi-gigabit link for use by the advanced scientific and engineering research community. Level 3 Communications, Inc., the wavelength service provider, graciously donated an additional, full 10Gbps transoceanic wavelength, from StarLight to NetherLight, for the benefit of iGrid 2002.

The USA’s Internet2 Abilene 10Gbps network, the European Union’s DataTAG 2.5Gbps network, and Canada’s CA*net4 multi-gigabit network connect to StarLight, as do other networks from Europe, Asia and South America. In Europe, SURFnet provides a 2.5Gbps link from NetherLight to CERN. In the USA, Abilene’s New York City Point of Presence (PoP) is connected to NetherLight via a 10Gbps wavelength provisioned by Tyco Telecom through the Internet Educational Equal Access Foundation (IEEEAF).

iGrid 2002 Local Area Network (LAN)

The iGrid 2002 LAN is a dedicated network built with Cisco equipment. The LAN’s central router is a Cisco 6509 router/switch that is connected to the SURFnet backbone via 10GigE for IPv4 and 1GigE for IPv6. The SURFnet backbone router, a Cisco 12416, uses the new Ashara 10GigE linecard.

A second Cisco 6509 is installed in the conference’s main demo room for switching purposes. It is connected to the central router at 10GigE as well. To provide connectivity to the smaller conference rooms, switching equipment (a Cisco 4006 and Cisco 3524) is used, interconnected at GigE. The conference also supports wireless local-area networking (WLAN).
The SURFnet5 network, built in the context of the GigaPort Project, consists of a core at two distant locations in Amsterdam, each equipped with two fully resilient Cisco 12416 routers. The core routers are interconnected via multiple 10GigE Packet Over SONET (POS) links. The 15 SURFnet PoPs are resilient; they are connected to each of these two core locations at 2 x 10GigE POS. The iGrid 2002 LAN is connected to SURFnet’s Amsterdam PoP at SARA, which delivers a total capacity of 20GigE to the SURFnet core.

The Netherlands’ Global Connectivity

For iGrid 2002, SURFnet’s connectivity to other National Research and Education Networks (NRENs) totals 30Gbps!

- 10Gbps lambda between Amsterdam and Chicago (Level 3), used to peer with StarLight and connected NRENs
- 10Gbps lambda between Amsterdam and New York (Tyco/IEEEAF), used to peer with Abilene
- 2.5Gbps connectivity to Géant, used to peer with all European NRENs;
- 2.5Gbps lambda between Amsterdam and Chicago (SURFnet) connecting NetherLight with StarLight
- 2.5Gbps lambda between Amsterdam and CERN (SURFnet), connecting NetherLight with CERN
- 2.5Gbps lambda between CERN and Chicago (EU DataTAG), used to connect CERN and other European DataTAG members to StarLight.

StarLight Global Connectivity

The StarLight facility uses a Juniper M10 for National Research and Education Network (NREN) GigE connectivity, and uses a Juniper M5 for MREN (the Midwest MetaPoP) traffic. StarLight also has an OC-12 connection to the Ameritech Advanced Data Services (AADS) facility in Chicago, where a Cisco 7505 STAR TAP router is maintained for NREN ATM traffic. A Cisco 6509 serves as an additional MREN router as well as the StarLight GigE Exchange Point switch.

For iGrid 2002, Caltech and Juniper Networks loaned StarLight a Juniper T640 with 10GigE interfaces. The T640 router is being used to terminate Level 3’s temporary OC-192 link, Abilene’s 10GigE connection (upgraded from 2GigE for iGrid), and 10GigE links from the Midwest’s two TeraGrid DTNet sites, Argonne National Laboratory and the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.
Abilene

Abilene, developed by the University Corporation for Advanced Internet Development (UCAID), in partnership with Qwest Communications, Cisco Systems, Juniper Networks, Nortel Networks and Indiana University, is an Internet2 backbone network providing nationwide high-performance networking capabilities for over 215 USA universities and affiliated research laboratories in all 50 states, the District of Columbia and Puerto Rico. Abilene interconnects with more than 20 other high-performance research and education backbone networks in the USA and around the world.

Abilene’s ongoing backbone upgrade to 10Gbps optical transport, its high-performance native IPv6 service, and a recently established 10Gbps connection between Abilene and StarLight in Chicago, are enabling those Abilene institutions participating in iGrid 2002 to leverage several newly established, high-performance transatlantic links. These links include a 10Gbps wavelength between Abilene’s New York City PoP and NetherLight in Amsterdam provisioned by Tyco Telecom through the IEEAF, the permanent 2.5Gbps SURFnet connection between StarLight and NetherLight, and a temporary 10Gbps wavelength provisioned by Level 3 between StarLight and NetherLight.

IEEAF

The Internet Educational Equal Access Foundation (IEEAF) is a non-profit organization whose mission is to obtain donations of telecommunications capacity and equipment and make them available for use by the global research and education community. IEEAF fosters global educational collaboration and equitable access to network resources – the Global Quilt.

IEEAF’s member institutions: Corporation for Education Network Initiatives in California (CENIC, represented by California State Univ. at Hayward, California Polytechnic Univ. at San Luis Obispo, and Univ. of Southern California), Pacific Northwest GigaPoP (Univ. of Washington), Pacific Internet2 Coalition (Univ. of Hawaii), Univ. of Maryland, UCAID, Indiana Univ. and GEOgraphic Network Affiliates, Inc. (GEO)

www.ieeaf.org

Caltech/CERN iGrid Wide Area Network

Equipment for the EU DataTAG 2.5Gbps circuit between StarLight (Chicago) and CERN (Geneva), including servers, switches and routers, is provided by Caltech (with USA Department of Energy funding) and StarLight/University of Illinois at Chicago (with USA National Science Foundation funding). Equipment in Europe is provided by the European Union in the framework of the EU DataTAG Project. To take advantage of the transatlantic OC-192 donation provided by Level 3, Cisco Systems loaned Caltech a 10GigE module and a 16-port GigE module.
Application Demonstrations

iGrid 2002 features applications from a number of disciplines: art, bioinformatics, chemistry, cosmology, cultural heritage, education, high-definition media streaming, medicine, neuroscience, physics and telesience. All these applications utilize underlying grid technologies, with major emphasis on grid middleware, data management grids, data replication grids, visualization grids, data/visualization grids, computational grids, access grids and grid portals. Additional technologies being demonstrated include distributed computing, visualization, tele-immersion, data mining, remote instrumentation control, collaboration, streaming media and human/computer interfaces. Participating researchers and resources are located worldwide: Australia, Canada, CERN/Switzerland, France, Finland, Germany, Greece, Italy, Japan, Netherlands, Singapore, Spain, Sweden, Taiwan, the United Kingdom and the USA.

SINGAPORE, AUSTRALIA, JAPAN

APBioGrid of APBioNet

DESCRIPTION

Bioinformatics is the study of the information content and information flow in biological processes and systems. Understanding gene and protein sequence information helps find new medical drug leads. Using BIC’s APBioGrid (the Asia Pacific Bioinformatics Grid, a collection of networked computational resources) and KOOP testbed technology, biologists can quickly build a complex series of computations and database management activities on top of computational grids to solve real-world problems.

APBioGrid represents an integrated workflow that mimics tasks typical of a bioinformatician across various machines. APBioGrid does resource discovery over the network, remotely distributing tasks that perform data acquisition, data transfer, data processing, data upload to databases, data analysis, computational calculations and visualizations. It utilizes Cray SV1 supercomputers in Singapore, Japan and Australia. To demonstrate its ease of use, iGrid attendees can create their own workflows to retrieve, analyze and view bioinformatics data.

ACKNOWLEDGMENT

APAN; SingAREN.

URL

www.bic.nus.edu.sg
www.bic.nus.edu.sg/biogrid
www.apbionet.org
http://s-star.org/main.htm

CONTACT

Tan Tin Wee, Bio Informatics Centre (BIC), National University of Singapore (NUS), Singapore
tinwee@bic.nus.edu.sg

COLLABORATORS

Tan Tin Wee, Guan Sin Ong, Mark De Silva, BIC, NUS, Singapore
Lim Teck Sin, Anwar Chan, Yu Chen, KOOPrime, Singapore
Dick Russell, Cray, Singapore

CANADA, CERN AND THE NETHERLANDS

ATLAS Canada LightPath Data Transfer Trial

URL

www.triumf.ca

CONTACT

Corrie Kost, TRIUMF, Canada
kost@triumf.ca

COLLABORATORS

Corrie Kost, Steve McDonald, Peter Gumplinger, Fred Jones, Mike Losty, Jack Chakhalian, Renee Poutissou, TRIUMF, Canada
Wade Hong, Carleton University, Canada
Randy Sobie, Dean Karlen, University of Victoria, British Columbia, Canada
Jim Pinfold, Bryan Caron, University of Alberta, Canada
Pekka Sinervo, University of Toronto, Canada
Mike Vetterli, Simon Fraser University, Canada
Mike Hrybyk, BCNet, British Columbia, Canada
Bill St. Arnaud, CANARIE, Canada
Olivier Martin, CERN, Switzerland
Leon Gommans, Bert Andree, Cees de Laat, Universiteit van Amsterdam, The Netherlands

“We are entering into a brave new world of research opportunities in advanced computing and networking as bandwidth moves from a world of scarcity to a world of abundance. This bandwidth tsunami will let us think about networks from an entirely new perspective beyond the current ‘telecommunication’ paradigm. Those research programs that are focused on exploring these new concepts promise to make significant contributions to our body of knowledge in next-generation computing and collaboration.”

— Bill St. Arnaud, Senior Director of Network Projects, CANARIE, October 2, 2001
DESCRIPTION

The Lightpath Trial is attempting to transmit 1 TeraByte (TB) of ATLAS data from TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics, to CERN at high speed. ATLAS (A Toroidal LHC ApparatuS) is one of the experiments being constructed for the Large Hadron Collider (LHC) at CERN.

Using SURFnet’s entire 2.5Gbps capacity between StarLight and NetherLight, as well as the planned 2.5Gbps links from Canada to StarLight, CERN to StarLight (EU DataTAG) and NetherLight to CERN, an end-to-end lightpath is being built between TRIUMF in Vancouver and CERN. The goal is to transfer a 1TB of Monte Carlo data between a cluster at TRIUMF and a cluster at CERN in under 2 hours.

ACKNOWLEDGMENT

CANARIE; BCnet; HEPnet Canada; Extreme Networks; Intel Corporation; EU DataGrid; EU DataTAG; The Globus Project.

URL

CONTACT

Antony Antony, Dutch National Institute for Nuclear Physics and High Energy Physics (NIKHEF), The Netherlands antony@nikhef.nl
R. Les Cottrell, Stanford Linear Accelerator Center (SLAC), USA cottrell@slac.stanford.edu

COLLABORATORS

Participating remote sites each have one or more UNIX hosts running iperf and BBFTP servers:

Ayumu Kubota, Asia Pacific Advanced Network (APAN) consortium, Japan
Linda Winkler, William E. Alcock, Argonne National Laboratory, USA
Dantong Yu, Brookhaven National Laboratory, USA
Harvey Newman, Julian J. Bunn, Suresh Singh, California Institute of Technology, USA
Olivier Martin, Sylvain Ravot, CERN, Switzerland
Robin Tasker, Paul Kummer, Daresbury Laboratory, UK
Jim Leighton, ESnet, USA
Ruth Pordes, Frank Nagy, Phil DeMar, Fermi National Accelerator Laboratory (Fermilab), USA
Andy Germain, George Uhl, NASA Goddard Space Flight Center, USA
Jerome Bernier, Dominique Boutigny, Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), France
Fabrizio Coccetti, Istituto Nazionale di Fisica Nucleare (INFN), Milan, Italy

Emanuele Leonardi, INFN, Rome, Italy
Guy Almes, Matt Zekauskas, Stanislav Shalunov, Ben Teitelbaum, Internet2, USA
Chip Watson, Robert Lukens, Thomas Jefferson National Accelerator Facility (JLab), USA
Yukio Karita, Teiji Nakamura, KEK High Energy Accelerator Research Organization, Japan
Wu-chun Fong, Mike Fisk, Los Alamos National Laboratory, USA
Bob Jacobsen, Lawrence Berkeley National Laboratory (LBNL), USA
Shane Canon, LBNL National Energy Research Scientific Computing Center (NERSC), USA
Richard Hughes-Jones, Manchester University, UK
Antony Antony, NIKHEF, The Netherlands
Tom Dunigan, Bill Wing, Oak Ridge National Laboratory, USA
Richard Baraniuk, Rolf Riedi, Rice University, USA
Takashi Ichihara, The Institute of Physical and Chemical Research (RIKEN)/ RIKEN Accelerator Research Facility, Japan
John Gordon, Tim Adye, Rutherford Appleton Laboratory, Oxford, UK
Reagan Moore, Kevin Walsh, Arcot Rajasekar, San Diego Supercomputer Center, University of California, San Diego, USA
Les Cottrell, Warren Matthews, Paola Grosso, Gary Buhrmaster, Connie Logg, Andy Hanushevsky, Jerrod Williams, Steffen Luitz, SLAC, USA
Warren Matthews, Milt Mallory, Stanford University, USA
The avalanche of data already being generated by and for new and future High Energy and Nuclear Physics (HENP) experiments demands new strategies for how the data is collected, shared, analyzed and presented. For example, the SLAC BaBar experiment and JLab are each already collecting over a TB/day, and BaBar expects to increase by a factor of two in the coming year. SLAC and Fermilab’s CDF (Collider Detector at Fermilab) and D0 experiments have already gathered well over a petabyte of data, and the CERN Large Hadron Collider (LHC) experiments expect to collect over 10-million terabytes. The strategies being adopted to analyze and store this unprecedented amount of data is the coordinated deployment of Grid technologies, such as those being developed for the Particle Physics Data Grid (PPDG) and the Grid Physics Network (GriPhyN). It is anticipated that these technologies will be deployed at hundreds of institutes that will be able to search out and analyze information from an interconnected worldwide grid of tens of thousands of computers and storage devices. This, in turn, will require the ability to sustain, over long periods, the transfer of large amounts of data among collaborating sites with relatively low latency. This project demonstrates the current data-transfer capabilities to several sites worldwide that have high-performance links. The iGrid 2002 site acts as a HENP Tier 0 or Tier 1 site (an accelerator or major computation site) in distributing copies of raw data to multiple replica sites. The demonstration is over real live production networks with no efforts to manually limit other traffic. The results are displayed in real time. Researchers investigate/demonstrate issues regarding TCP implementations for high-bandwidth long-latency links, and create a repository of trace files of a few interesting flows. These traces, valuable to projects like EU DataTAG, help explain the behavior of transport protocols over various production networks.

ACKNOWLEDGMENT
This demonstration uses SURFnet/StarLight, Internet2, ESnet, JANET, GARR, Renater2, Japanese wide-area networks and the EU DataTAG link between CERN and StarLight. Work is sponsored by the USA Department of Energy (DoE) HENP program; USA DoE Mathematics and Information Computing Sciences (MICS) office; USA National Science Foundation; Particle Physics Data Grid; International Committee for Future Accelerators; and, the International Union of Pure and Applied Physics.

“The major High-Energy Physics (HEP) experiments of the next 20 years will break new ground in our understanding of the fundamental interactions, structures and symmetries that govern the nature of matter and space-time. Among the principal goals are to find the mechanism responsible for mass in the universe and the ‘Higgs’ particles associated with mass generation, as well as the fundamental mechanism that led to the predominance of matter over antimatter in the observable cosmos. The largest collaborations today, such as the Compact Muon Spectrometer (CMS) and A Toroidal LHC ApparatuS (ATLAS) experiments for CERN’s Large Hadron Collider (LHC) program, each encompass 2000 physicists from 150 institutions in more than 30 countries. Each of these collaborations involves 300-400 physicists in the USA from more than 30 universities and major HEP laboratories. Realizing the scientific wealth of these experiments presents new problems in data access, processing and distribution, and collaboration across national and international networks, on a scale unprecedented in the history of science.

“Collaborations on this global scale would not have been attempted if the physicists could not plan on excellent networks – to interconnect the physics groups throughout the life cycle of the experiment, and to make possible the construction of Data Grids capable of accessing, processing and analyzing massive datasets. These datasets will increase in size from many petabytes by 2007 (1PB = 1015 Bytes) to exabytes (1018 Bytes) within the next decade. The current generation of operational experiments – BaBar at Stanford Linear Accelerator Center (SLAC), D0 and CDF at Fermi National Accelerator Laboratory, the Relativistic Heavy Ion Collider (RHIC) program at Brookhaven National Laboratory (BNL) – face similar challenges. BaBar in particular has already accumulated datasets approaching a petabyte.

“Handling data on this scale requires the use of Gbps data flows on the major continental backbones and intercontinental links now, rising to multi-Gbps flows on OC-192 links within the next couple of years. By 2007, we expect to be putting multiple-10Gbps wavelengths to use on the major routes and in some regional networks, to support ‘transactions’ that take only minutes to extract and/or disseminate terabyte subsets drawn from multi-petabyte data stores.

“iGrid 2002, with its state-of-the-art links at OC-48 and OC-192 connecting the USA and European network infrastructures, provides a unique opportunity for many physics groups engaged in meeting these challenges to take major steps forward in their development of the necessary network and computing technologies.”

– Harvey Newman, California Institute of Technology (Caltech) researcher and CERN collaborator, September 2002, personal communication.
Bandwidth Gluttony: Distributed Grid-Enabled Particle Physics Event Analysis

DESCRIPTION
Requests for remote virtual data collections are issued by Grid-based software that is itself triggered from a customized version of the High-Energy Physics (HEP) analysis tool called ROOT. These requests cause the data to be moved across a wide-area network using both striped and standard GridFTP servers.

For iGrid, distributed databases located at ANL, StarLight, Caltech, CERN and other HEP institutions are used. As the collections are instantiatated on the client machine in Amsterdam, ROOT analyzes the data, rendering the results in real time. The virtual data collections are catalogued using the Globus Replica Catalogue. This scheme is a preview of a general Grid-Enabled Analysis Environment that is being developed for CERN’s Large Hadron Collider (LHC) experiments.

In a closely related part of the demonstration, an attempt is made to saturate a 10Gbps (OC-192) link between Amsterdam, ANL and StarLight and a 2.5Gbps (OC-48) link between Amsterdam and CERN, by using striped GridFTP channels and specially tuned TCP/IP stacks. In this test, memorycached data, in contrast to the file-based ROOT part of the demonstration, is used.

ACKNOWLEDGMENT
Caltech wishes to acknowledge the following awards: USA Department of Energy DE-FC03-99ER25410 (PPDG) and DE-FG03-92-ER40701 (Caltech/CMS), and USA National Science Foundation 9002-48195 (ALDAP) and PHY-0122557 (iVDGL).

ANL efforts are supported by the Mathematical, Information, and Computational Science Division subprogram of the Office of Advanced Scientific Computing Research, USA Department of Energy, under Contract W-31-109-Eng-38.

Also acknowledged are The Globus Project, GriPhysN, PPDG, iVDGL, EU DataGrid and EU DataTAG.

Beat Box

DESCRIPTION
Beat Box presents networked CAVE participants with a playful environment of interactive virtual sound machines. Each machine acts as a sequencer and has a unique periodic duration. The machines control percussion sounds, ambient loops and bass sounds. Beat Box is virtual sonic chronometry as the environment develops visually and aurally by manipulating the sound machines. Participants cycle through sound selections and give voice to an interval by introducing it to a thoroughly odd indigenous head. Each head represents a distinct moment in a sequence that contributes to the resultant delivery of the collective instruments.

ACKNOWLEDGMENT
Indiana University/ Office of the Vice President for Information Technology, USA; University of Illinois at Chicago/ Electronic Visualization Laboratory, USA; University of Illinois at Champaign-Urbana/ National Center for Supercomputing Applications, USA; University of Buffalo/ New York State Center for Engineering Design and Industrial Innovation, New York, USA; USA National Science Foundation CDA-9601632; Ygdrasil (YG), a VR authoring system by Res Umbrae <http://resumbrae.com>; and, Quanta.
USA

Collaborative Visualization Over the Access Grid

DESCRIPTION
Using the Access Grid to collaborate with colleagues has gained widespread acceptance, with the collaborations commonly taking the form of shared audio, video and PowerPoint presentations. This demonstration shows next-generation Access Grid applications, where the Access Grid is coupled to high-speed networks and vast computational resources. Using the Globus Toolkit, MPICH-G2 and Access Grid technology, scientists can collaboratively and interactively analyze time-varying datasets that are multiple terabytes in size.

Users first collaborate over the Access Grid to explore low-resolution datasets in real time, in order to find areas of interest for detailed study. Then, using multiple distributed compute resources and a high-speed network, full-resolution high-quality images are produced and delivered to a tiled display. This demonstration shows how scientists can enhance their work environment by having easy access to worldwide resources.

ACKNOWLEDGMENT

This work is supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, USA Department of Energy, under Contract W-31-109-Eng-38, and in part by the USA National Science Foundation Middleware Initiative. Also acknowledged is the Globus Project.

THE NETHERLANDS AND USA

D0 Data Analysis

URL
www.d0.fnal.gov
www.nikhef.nl

CONTACT
Wim Heubers, NIKHEF, The Netherlands
wimh@nikhef.nl

COLLABORATORS
Kors Bos, Wim Heubers, David Groep, Willem van Leeuwen, Antony Antony, NIKHEF, The Netherlands
Ruth Pordes, Vicky White, Dane Skow, Fermi National Accelerator Lab (Fermilab), USA
Raymond Brock, Reiner Hauser, Michigan State University, USA

DESCRIPTION
The D0 Experiment, which relies on the Tevatron Collider at Fermilab, is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The research focuses on precise studies of interactions of protons and antiprotons at the highest available energies as part of an intense search for subatomic clues that reveal the character of the building blocks of the universe.

Currently, raw data from the D0 detector is processed at Fermilab’s computer farm and results are written to tape. At iGrid, researchers show that by using the transoceanic StarLight/NetherLight network, it is possible for Fermilab to send raw data to NIKHEF for processing and then have NIKHEF send the results back to Fermilab.

ACKNOWLEDGMENT

EU DataTAG; Amsterdam Virtual Laboratory.
Distributed, On-Demand, Data-Intensive and Collaborative Simulation Analysis

USA, GERMANY, JAPAN, TAIWAN, UK

Dynamic Load Balancing of SAMR Applications on Distributed Systems

USA AND UK

economical alternative to traditional parallel systems; however, the adaptive structure of AMR applications results in load imbalance among processors on distributed systems. Dynamic load balancing is an essential technique to solve this problem. ENZO is one of the successful parallel implementations of Structured Adaptive Mesh Refinement (SAMR) for use in astrophysics and cosmology. To sufficiently simulate the formation of galaxies, taking communication and latency issues into consideration, an estimated bandwidth of ~100Gbps would be required.

ACKNOWLEDGMENT

The Globus Project; USA National Science Foundation; NASA; Alliance/National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, USA.

CONTACT

Arthurine Breckenridge, Sandia National Laboratories (SNL), USA
arbreck@sandia.gov

Sergiu Sanielevici, Pittsburgh Supercomputing Center, USA

Satoshi Sekiguchi, Tsukuba Advanced Computing Center, Japan

Fang-Pang Lin, National Center for High-Performance Computing, Taiwan

Matthias Mueller, Uwe Wössner, High Performance Computing Center, Rechenzentrum Universität Stuttgart, Germany

John Brooke, Manchester Computing Centre, UK

DESCRIPTION

A typical Adaptive Mesh Refinement (AMR) application may require a large amount of computing power. For example, a simulation of the galaxy formation requires a few days to execute on a 128-node SGI Origin2000 machine and requires more than 100GB of memory. Distributed systems provide an economical alternative to traditional parallel systems; however, the adaptive structure of AMR applications results in load imbalance among processors on distributed systems. Dynamic load balancing is an essential technique to solve this problem. ENZO is one of the successful parallel implementations of Structured Adaptive Mesh Refinement (SAMR) for use in astrophysics and cosmology. To sufficiently simulate the formation of galaxies, taking communication and latency issues into consideration, an estimated bandwidth of ~100Gbps would be required.

ACKNOWLEDGMENT

The Globus Project; USA National Science Foundation; NASA; Alliance/National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, USA.
Fine Grained Authorization for GARA Automated Bandwidth Reservation

GARA modifications are demonstrated by reserving bandwidth for a videoconference application running between sites with distinct security domains. Traffic generators overload the router interface servicing the video receiver, degrading the video quality when bandwidth is not reserved. Successful reservation occurs only when the reservation parameters are within policy bounds, and when the requestor is a member of the required groups. At reservation start time, the end-domain Cisco ingress routers are configured with the appropriate Committed Access Rate (CAR) limit, which marks the packets and polices the flow. The participating routers are statically configured with Weighted Random Early Detection (WRED); Cisco’s implementation of the Random Early Detection class of congestion avoidance algorithms. The router configurations are removed at reservation end.

ACKNOWLEDGMENT

University of Michigan Department of Physics; University of Michigan College of Literature, Science, and the Arts; University of Michigan Center for Information Technology Integration (CITI); University of Michigan Office of the Vice President for Research; Merit; University Corporation for Advanced Internet Development (UCAID); European Organization for Nuclear Research (CERN); Argonne National Laboratory; The Globus Project; EU DataGrid; EU DataTAG.

GENIUS

The grid portal GENIUS (Grid Enabled web eNvironment for site Independent User job Submission) is an interactive data management tool being developed on the EU DataGrid testbed. At iGrid 2002, researchers are demonstrating GENIUS’s data movement and discovery, security mechanisms and system monitoring techniques, as well as optimization and fail-safe mechanisms — for example, how to find network optimized files and how to detect system failure.

ACKNOWLEDGMENT

GENIUS is a joint development project of INFN and NICE srl in the context of the EU DataGrid Project. Also acknowledged is the Globus Project.
USA, JAPAN AND TAIWAN

Global Telescience Featuring IPv6

COLLABORATORS
Mark Ellisman, Steven Peltier, David Lee, Abel W. Lin, Maryann Martone, NCMIR, UCSD, USA
Tom Hutton, San Diego Supercomputer Center, UCSD, USA
Fang-Pang Lin, National Center for High-Performance Computing (NCHC), Taiwan
Shimojo Shinji, Toyokazu Akiyama, Cybermedia Center, Osaka University, Japan
Hirotaro Mori, Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Japan

DESCRIPTION
NCMIR, in collaboration with Osaka University and NCHC, is demonstrating a real scientific application utilizing native IPv6 and a mixture of high bandwidth and low latency. This demonstration features a network-enabled end-to-end system for 3D electron tomography that utilizes richly connected resources to remotely control the intermediate-high-voltage electron microscope in San Diego and the ultra-high-voltage electron microscope in Osaka. To provide the highest possible video quality, the Telescience system features digital video over native IPv6 networks.

At iGrid, researchers use high-quality low-latency digital video to navigate around a specimen in a microscope. In addition, data is transferred to and from distributed storage resources, intensive distributed computational jobs are completed, and data-intensive visualizations are performed – all utilizing a Global Grid composed of heterogeneous resources located at: NCMIR, San Diego Supercomputer Center, NASA Ames’ Information Power Grid (USA); NCHC (Taiwan); and, Osaka University (Japan).

ACKNOWLEDGMENT
This work is supported in part by grants from the USA National Science Foundation (#DBI-9318180 and ASC-975249) and the USA National Institutes of Health (RR 04050 and DC 03192). Also acknowledged is the Globus Project.
Aura, a distributed parallel rendering toolkit, is used to remotely render data on available graphics resources (in Chicago and in Amsterdam) for local display at the iGrid conference. Aura is applied to real-world scientific problems; notably, the visualization of high-resolution isosurfaces of the Visible Human dataset and an interactive molecular dynamics simulation.

Interactive and collaborative applications have a near-real-time requirement. For interaction over long distances, network delay is a key factor. Optical networks seem to have a predictable latency, making near-real-time interactive behavior easier, and the higher bandwidth allows faster access to large datasets and remote visualization machines.

ACKNOWLEDGMENT
Data courtesy of the Visible Human Project, National Library of Medicine, USA; Quanta.

URL

CONTACT
Henri Bal, Vrije Universiteit, The Netherlands
bal@cs.vu.nl

COLLABORATORS
Henri Bal, Hans Spoelder, Luc Renambot, Desmond Germans, Tom van der Schaal, Vrije Universiteit, The Netherlands
Jason Leigh, Electronic Visualization Laboratory, University of Illinois at Chicago

“In the early ‘90s, Moore’s Law growth curves for CPU processing dominated the growth of storage and bandwidth. Instruction rates were the important metric, while storage and bandwidth were the tail of the computing dog. Computing carefully conserved scarce bandwidth and storage, since they were slow ‘peripherals’ to the computer. Now, in contrast, the growth rate of optical bandwidth and storage capacity is much higher than Moore’s Law. The fact that the bandwidth and storage exponentials are crossing Moore’s Law turns the old computing paradigm on its head: that which was scarce is now abundant and vice versa, as futurist George Gilder has repeatedly emphasized. Simply stated, the world is going from a processor-centric network to a lambda-centric processor. For this NSF ITR award, we focus on Grids that operate on single or multiple lambdas in a fiber-based network, or LambdaGrids. The OptIPuter will be built from PC clusters that are bandwidth-matched to rapidly increasing numbers of lambdas on the Grid. We will carry out the research to enable end-to-end lambda connectivity of data-intensive e-Science projects, building the on ramps and off ramps for the applications along the way.”

– Larry Smarr, University of California, San Diego, principal investigator of the NSF ITR proposal “The OptIPuter,” with Tom DeFanti, Mark Ellisman, Jason Leigh and Philip Papadopoulos (co-principal investigators).
HDTV Transmission Over IP of a Cultural TV Production

Cees de Laat, Universiteit van Amsterdam, The Netherlands
Paul Wielinga, SARA Computing and Networking Services, The Netherlands
Lennart Johnsson, Center for Parallel Computers, Royal Institute of Technology, Sweden

DESCRIPTION
DataSpace is a high-performance data web for the remote analysis, mining, and real-time interaction of scientific, engineering, business, and other complex data. DataSpace applications are designed to exploit the capabilities provided by emerging domestic and international high-performance networks so that gigabyte and terabyte datasets can be remotely explored in real time. This demonstration uses the Terra Wide Data Mining (TWDM) testbed, which consists of high-performance clusters worldwide linked by wide-area advanced networks, providing the data and compute services required.

DataSpace is an open, standards-based infrastructure that combines data web services, data grid services and semantic web services for remote data analysis and distributed data mining.

ACKNOWLEDGMENT
USA National Science Foundation awards ANI-9977868 and ANI-0129609.

URL
www.i2cat.net
www.researchchannel.com
www.washington.edu
www.icair.org

CONTACT
Sebastià Sallent and Artur Serra, i2CAT Project, Universitat Politècnica de Catalunya (UPC), Spain
sallent@mat.upc.es, artur@ac.upc.es

COLLABORATORS
Sebastià Sallent, Artur Serra, Jesus Alcober, Abel Navarro, Jose Andres Martin Rioja, UPC, Spain
Sergi Ovide Maudet, Ovide Broadcast Services, Barcelona, Spain
Jacqueline Brown, James DeRoest, Kathleen McMonigal, Amy Philipson, Michael Wellings, ResearchChannel, Pacific Northwest GigaPoP, USA
Joe Mambretti, International Center for Advanced Internet Research (iCAIR), Northwestern University, USA
Leo Grebot, Starmaze, Spain

DESCRIPTION
To demonstrate the first intercontinental transmission of studio quality HDTV productions via Internet technology, researchers are bi-directionally broadcasting footage of the Year Gaudí 2002 events, celebrating the famous architect’s 150th birthday. The UPC produced live HDTV cultural content at 1.5Gbps (HDSDI), and is compressing and transmitting it at 270Mbps (SDTI) over IP between Seattle, Chicago and Amsterdam using HD/IP transmission technologies.

The ResearchChannel Consortium and the University of Washington, who pioneered the real-time transport of HDTV over the Internet, are demonstrating uncompressed bi-directional HDTV/IP using prototype Tektronix hardware at 1.5Gbps (each direction), Sony HDCAM/IP software technology developed at the University of Washington at 270Mbps, MPEG-2 multicast up to 10 Mbps, VideoOnDemand at 5.6Mbps, and AudioOnDemand at 1.4Mbps.

ICAIR is streaming Barcelona content at 270Mbps over IP using technology specifically designed for high-performance digital video over IP and GigE.

The dual network paths supporting these demonstrations transit the Pacific NorthWest’s GigaPoP, StarLight in Chicago and SURFnet in The Netherlands via Internet2’s Abilene backbone and transatlantic links provided by SURFnet, Level 3 and Tyco Telecommunications. Tyco donated long term use of a 10Gbps optical circuit to the IEEAF for use by the international research and education community.

ACKNOWLEDGMENT
UPC receives funding from the Departament de Universitats Recerca i Societat de l’Informació (DURSI) de la Generalitat de Catalunya and members of Internet2 a CATalunya (i2CAT) Consortium.

Special thanks to the Pacific Northwest GigaPoP; NSF StarLight; Level 3; SURFnet/NetherLight; IEEAF; Tyco Telecommunications and Internet2 Abilene.
Taiwan and Germany

Image Feature Extraction on a Grid Testbed

URL
http://motif.nchc.gov.tw/DataGrid

CONTACT
Sang-Liang Chu and Fang-Pang Lin, National Center for High Performance Computing (NCHC), Taiwan
c00chu00@nchc.gov.tw, fplin@nchc.gov.tw

COLLABORATORS
Sang-Liang Chu, Chang Hsueh Hsieh, Fang-Pang Lin, Whey-Fone Tsai, Hsiu-Mei Chou, Yu-Chung Chen, Sun-In Lin, Grace Hong, NCHC, Taiwan
Chun-Ho Chen, Institute of Statistical Science Academia Sinica, Taiwan
Matthias Mueller, High Performance Computing Center, Rechenzentrum Universität Stuttgart, Germany

DESCRIPTION
For medical imagery (confocal laser-scanning microscopes, CT, MRI and PET), NCHC does image processing, analysis and 3D reconstruction. For biotechnology imagery (such as microarray biochips), NCHC uses a data clustering procedure for feature extraction that provides insight into an image, such as identifying diseases caused by some protein. Grid techniques enable the use of distributed computing resources and shared data. High-speed networks enable fast processing. For these technologies to be useful in daily medical activities, doctors need responses to procedures in typically five seconds.

USA, Canada, France, Japan, The Netherlands and Singapore

Kites Flying In and Out of Space

URL
http://calder.ncsa.uiuc.edu/ART/MATISSE

CONTACT
Tom Coffin, National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana-Champaign (UIUC), USA
tcoffin@ncsa.uiuc.edu

COLLABORATORS
Jacqueline Matisse-Monnier, independent artist, France, and visiting artist, Mountain Lake Workshop, Virginia Tech Foundation, USA
Tom Coffin, NCSA/UIUC, USA
Ray Kass, Mountain Lake Workshop, Virginia Tech Foundation, USA
Ron Kriz, Rob Strouse, Virginia Tech, USA
Francis Thompson, School of the Arts, Virginia Polytechnic Institute & State University, USA

DESCRIPTION
This virtual-reality art piece is a replication and study of the physical properties of the flying kinetic artwork of Jacqueline Matisse-Monnier. The complexity involved with calculating and rendering data is facilitated by distributed computing over high-speed networks. Because the calculations for these kinetic art pieces (kites) are so computationally intensive, a single PC can only support the simulation of one kite. To support the many kites flown at iGrid, collaborators with computing resources around the world are performing the physically-based kite simulations at their home institutions and then streaming the results of the calculations, in real time, to Amsterdam. In essence, this is grid computing for arts.

ACKNOWLEDGMENT
Shalini Venkataraman, Jason Leigh, Electronic Visualization Laboratory, University of Illinois at Chicago, USA
Paul Weilinga, SARA Computing and Networking Services, The Netherlands
Ulrike Kasper, Sorbonne and La Cité Museum de Musique Paris, France
Kukimoto Nobuyuki, Virtual Reality Development and Research Laboratory, Tohwa University, Japan
Kurichi Kumar, Jie Wei, Institute of High Performance Computing, Singapore
Brian Corrie, New Media Innovation Center, Vancouver, British Columbia, Canada

Quanta
GERMANY AND USA

Network Intensive Grid Computing and Visualization

URL
www.cactuscode.org
www.griksl.org

CONTACT
Ed Seidel, Max-Planck-Institut für Gravitationsphysik (MPG), Albert-Einstein-Institut (AEI)/Golm, Germany
eseidel@aei.mpg.de

COLLABORATORS
Ed Seidel, Gabrielle Allen, Thomas Radke, Thomas Dramlitsch, MPG, AEI/Golm, Germany

Christian Hege, Andre Merzky, Ralf Kaehler, Werner Benger, Konrad-Zuse-Zentrum für Informationstechnik/Berlin, Germany
John Shalf, Wes Bethel, Lawrence Berkeley National Laboratory/National Energy Research Scientific Computing Center (NERSC), USA

DESCRIPTION
Based on their SC’2001 work that won the Gordon Bell Prize and the Bandwidth Challenge, these scientists are running an astrophysics simulation at a USA supercomputing center and then computing detailed remote visualizations of the results. One part of the demo shows remote online visualization – as the simulation continues, each time step’s raw data is streamed in parallel from the USA over the transatlantic network connection to a Linux cluster in Amsterdam for parallel volume rendering. The other part demonstrates remote off-line visualization using advanced grid technologies to efficiently access data on remote data servers, as well as new rendering techniques for network-adaptive visualizations.

This application currently saturates any network given to it, so the scientists work around the limitations. 10Gbps networking can be utilized immediately.

ACKNOWLEDGMENT

The following people and projects are acknowledged: Frank Herrmann, Peter Diener, Denis Pollney, MPG, AEI/Golm, Germany; Helmut Heller, Isabel Campos, Leibniz Rechenzentrum, Munich, Germany; Werner Nagel, MPG Rechenzentrum Garching, Germany; GridLab Project, Work Package 5–Testbed Management <www.GridLab.org>; GriKSL Project, funded by Deutsche Forschungsgemeinschaft (DFG) <www.griksl.org>; the Globus Project.

“We read about Compute Grids, Data Grids, Science Grids, Access Grids, Knowledge Grids, Bio Grids, Sensor Grids, Cluster Grids, Campus Grids, Tera Grids, and Commodity Grids. The skeptic can be forgiven for wondering if there is more to the Grid than, as one wag put it, a ‘funding concept’ and, as industry becomes involved, a marketing slogan. If by deploying a scheduler on my local area network I create a ‘Cluster Grid,’ then doesn’t my Network File System deployment over that same network provide me with a ‘Storage Grid?’ Indeed, isn’t my workstation, coupling as it does processor, memory, disk, and network card, a ‘PC Grid?’ Is there any computer system that isn’t a Grid? Ultimately the Grid must be evaluated in terms of the applications, business value, and scientific results that it delivers, not its architecture… I suggest that the essence of the definitions above can be captured in a simple checklist, according to which a Grid is a system that: coordinates resources that are not subject to centralized control; uses standard, open, general-purpose protocols and interfaces; and, delivers nontrivial qualities of service.

“The three criteria apply most clearly to the various large-scale Grid deployments being undertaken within the scientific community, such as the distributed data processing system being deployed internationally by ‘Data Grid’ projects (GriPhyN, PPDG, EU DataGrid, IVDGL, EU DataTAG), NASA’s Information Power Grid, the Distributed ASCI Supercomputer (DAS-2) system that links clusters at five Dutch universities, the DOE Science Grid and DISCOM Grid that link systems at DOE laboratories, and the TeraGrid being constructed to link major USA academic sites. Each of these systems integrates resources from multiple institutions, each with their own policies and mechanisms; uses open, general-purpose (Globus Toolkit) protocols to negotiate and manage sharing; and, addresses multiple quality of service dimensions, including security, reliability and performance.”

PAAPAB

DESCRIPTION
PAAPAB (Pick An Avatar, Pick A Beat) is a shared virtual-reality disco environment inhabited by life-size puppets, animated by users in CAVES and ImmersaDesks around the globe. Users can tour the dance floor to see the puppets they animate, dance with the puppets, and dance with avatars of other users. This research focuses on creating interactive drama in virtual reality; that is, immersive stories. PAAPAB serves as a testbed for technology development as well as character and world design.

In addition to interacting with the PAAPAB demonstration, iGrid attendees are treated to performances with the Interactive Institute’s Incarnation of a Divine Being, an environment built using the same software infrastructure. Incarnation is a virtual-reality space based on ancient Greek theater, where people meet and together perform an improvised drama in cyberspace.

ACKNOWLEDGMENT
Ygdrasil (YG), a VR authoring system by Res Umbrae <http://resumbrae.com>;
Quanta

URL
http://resumbrae.com/projects/paapab
www.ccr.buffalo.edu/anstey/VR/PAAPAB
www.nyscedii.buffalo.edu

CONTACT
Dave Pape, Res Umbrae, USA
dave.pape@acm.org

COLLABORATORS
Josephine Anstey, Dan Neveu, Department of Media Study, University at Buffalo, USA
Dave Pape, Res Umbrae, USA
Christina Bloebaum, Eliot Winer, New York State Center for Engineering Design and Industrial Innovation, University at Buffalo, USA
Torbjorn Johansson, Annika Westergren, Kalle Jalkanen, Marcus Johansson, Fredrik Lindegren, Sol Morn, Jonas Nimrodsson, Jim Robertson, Jonas Westling, Tools for Creativity Studio, Interactive Institute, Sweden

USA AND THE NETHERLANDS

Photonic TeraStream

URL
www.icair.org/igrid2002
www.uva.nl
www.icair.org/omninet

CONTACT
Joe Mambretti, International Center for Advanced Internet Research (iCAIR), Northwestern University (NU), USA
j-mambretti@nwu.edu

COLLABORATORS
Joe Mambretti, Jeremy Weinberger, Jim Chen, Elizabeth Bacon, Fei Yeh, David Lilletun, iCAIR, NU, USA
Tom DeFanti, Jason Leigh, Oliver Yu, Electronic Visualization Laboratory (EVL), University of Illinois at Chicago, USA
Robert Chang, Materials Sciences Research Center, NU, USA
Cees de Laat, Leon Gommans, Bas v. Oudenaarde, Bert Andree, Universiteit van Amsterdam, The Netherlands
Linda Winkler, Bill Nickless, Caren Litvanyi, Argonne National Laboratory (ANL), USA

DESCRIPTION
iCAIR, in partnership with the Materials Sciences Research Center at Northwestern University, is developing an International Virtual Institute (IVI) for Materials Science. The IVI wants to be able to instantaneously discover, gather, integrate, and present information – whether large-scale datasets, scientific visualizations, streaming digital media, or computational processes – from resources worldwide. To accomplish this, iCAIR is developing “Global Services-on-Demand” technologies for optical networks.
The Photonic TeraStream is supported by OMNInet, the Chicago-area Optical Metro Network Initiative. OMNInet is designed and developed by SBC/Ameritech, Nortel Networks and iCAiR, in collaboration with EVL, CANARIE and ANL. It is an experimental networking testbed, enabling researchers to assess and validate next-generation optical technologies, architectures and applications in metropolitan networks. For iGrid 2002, however, the OMNInet testbed has been extended to Amsterdam through StarLight and NetherLight in order to demonstrate that photonic-enabled applications are possible, not only at the metro level, but also on a global scale (the global LambdaGrid).

Researchers are using OMNInet to prototype tools for intelligent application signaling, dynamic lambda provisioning, and extensions to lightpaths through dynamically provisioned Layer2 and Layer3 configurations, in part, to allow for access to multiple types of edge resources. In turn, these network-control capabilities are being incorporated into next-generation large-scale global applications, which include high-performance data transfer (based on GridFTP), digital media streaming (270Mbps encoding), and high-performance remote data-access methods (based on iSCSI).

At iGrid 2002, iCAiR is presenting its innovative dynamic lambda provisioning capability – the Optical Dynamic Intelligent Network (ODIN) service layer. Applications use intelligent signaling to provision their own lightpaths with ODIN in order to optimize network-based resource discovery and performance; for example, to access and to dynamically interact with very large amounts of distributed data. Applications supported by dynamic lambda switching provide for significantly more powerful capabilities than those based on today’s communication infrastructure.

ACKNOWLEDGMENT
Hal Edwards and Paul Daspit, Nortel Networks; Teresa Elliott, Carol Huss and Rachel Alarcon, SBC/Ameritech; USA National Science Foundation awards, including ANI-0123399 on intelligent signaling.

TACC Quantum Chemistry Grid/

Gaussian Portal
URL
http://unit.aist.go.jp/grid/GSA gaussian

CONTACT
Takeshi Nishikawa, Grid Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Japan
t.nishikawa@aist.go.jp

COLLABORATORS
Umpei Nagashima, Takeshi Nishikawa, Satoshi Sekiguchi, GTRC, AIST, Japan

DESCRIPTION
Gaussian code, used in computational chemistry, sometimes receives inadequate computational resources when run on large computers. The Tsukuba Advanced Computing Center (TACC) Gaussian Grid Portal efficiently utilizes costly computational resources without knowing the specifications of each system environment. It consists of a Web interface, meta-scheduler, computational resources, archival resources and Grid software. Grids allow one to compute from anywhere. Ultimate access to 10Gbps networking shall eliminate much of the latency incurred using the portal to obtain adequate resources.

ACKNOWLEDGMENT
This research was carried out at the Information Technology Research & Development Office, TACC, AIST. Special thanks to Dr. Terakura, a TACC director, for his help, for funding, and for access to computer resources. Researchers Nishikawa, Nagashima and Sekiguchi, are currently at GTRC but were previously at TACC.
TeraScope: Visual Tera Mining

TeraScope is a massively parallelized set of information visualization tools for Visual Data Mining that interactively queries and mines terabyte datasets, correlates the data, and then visualizes the data using parallelized rendering software on tiled displays. TeraScope’s main foci are to develop techniques to create TeraMaps (visualizations that summarize rather than plot enormous datasets) and to develop a distributed memory cache to collect pools of memory from optically connected clusters. These caches are used by TeraScope to bridge the impedance mismatch between large and slow distributed data stores and fast local memory. TeraScope currently works with Project DataSpace’s distributed data servers; however, it can be adapted to work with other database systems.

ACKNOWLEDGMENT

DataSpace, developed by UIC’s NCDM; USA National Science Foundation awards EIA-9802090, ANI-9730202, ANI-0129527 and ACI-9619019 (to the National Computational Science Alliance); and, Quanta.

TeraVision: Visualization Streaming Over Optical Networks

TeraVision is a hardware-assisted, high-resolution graphics streaming system for the Access Grid, enabling anyone to deliver a presentation without having to install or configure any software or distribute any data files in advance. A user giving a presentation on a laptop or showing output from a node of a graphics cluster simply plugs the VGA or DVI output of the computer into the TeraVision Box. The box captures the signal at its native resolution, and digitizes and broadcasts it to another networked TeraVision Box, which is connected to a PC and DLP projector. Two Boxes can be used to stream stereoscopic computer graphics. Multiple Boxes can be used for an entire tiled display. TeraVision synchronizes both image capture at the source and image display at the destination. By decoupling image generation from image capture and transmission, the host graphics system operates at optimal frame rates.

In five years, TeraVision will be like Television, enabling scientists to simply dial into their streamed visualizations. For a 20-node tiled display, they will need ~10Gbps without image compression. This provides a resolution of 5120 x 3072 in 24-bit color at 30 frames per second.

ACKNOWLEDGMENT

USA National Science Foundation EIA-9802090, ANI-9730202, ANI-0129527 and ACI-9619019 (to the National Computational Science Alliance); Microsoft Research; and, Quanta.
USA AND UK

The Universe: Distributed Virtual Collaboration and Visualization

URL
http://virdir.ncsa.uiuc.edu/virdir/virdir.html

CONTACT
Donna Cox, National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana-Champaign (UIUC), USA
cox@ncsa.uiuc.edu

COLLABORATORS
Donna Cox, Robert Patterson, Matt Hall, Stuart Levy, John Martirano, NCSA, UIUC, USA
Mike Norman, Pete James, University of California, San Diego, USA
Marcus Thiebaux, Information Sciences Institute, University of Southern California, USA
Arttu Rajantie, Paul Shellard, Stuart Rankin, Stephen Hawking Laboratory, Cambridge University, UK

DESCRIPTION
Virtual Director and related technologies enable multiple users to remotely collaborate in a shared, astrophysical virtual world. Users can collaborate via video, audio and 3D avatar representations, and through discrete interactions with the data. Multiple channels of dynamically scalable video allow the clients to trade off between video processing and scene rendering as appropriate. At iGrid, astrophysical scenes are rendered using several techniques, including an experimental renderer that creates time-series volume animations using pre-sorted points and billboard splats, allowing visualizations of very large datasets in real-time.

USA, FRANCE, GERMANY AND ITALY

Video IBPster

URL
http://loci.cs.utk.edu
http://nws.cs.ucsb.edu

CONTACT
Alessandro Bassi, Logistical Computing and Internetworking (LoCI) Lab, University of Tennessee (UTenn), USA
abassi@cs.utk.edu

COLLABORATORS
Micah Beck, Jim Plank, Terry Moore, Alex Bassi, Scott Atchley, Stephen Soltesz, LoCI Lab, UTenn, USA
Jack Dongarra, Innovative Computing Lab, UTenn, USA
Rich Wolski, University of California, Santa Barbara, USA
Fran Berman, Henri Cassanova, University of California, San Diego, USA
Pascale Primet, Laurent Lefèvre, ENS, Lyon, France
Cosimo Anglano, Università del Piemonte Orientale, Alessandria, Italy
Graham Fagg, High Performance Computing Center, Rechenzentrum Universität Stuttgart, Germany

DESCRIPTION
Logistical Networking is the global scheduling and optimization of data movement, storage and computation. At LoCI, scientists develop tools for fast data transfer, such as the Data Mover, using as much bandwidth as is available. At iGrid, a geographically distributed abstraction of a file is replicated, transported to depots that are closer according to network proximity values calculated in real time using the Network Weather Service (NWS), and downloaded from the nearest site in a completely transparent way for a high-level application.

ACKNOWLEDGMENT
USA DoE DE-FC02-01ER25465; USA NSF ANI-9980203, EIA-9975015 and EIA-9972889; UTenn Center for Information Technology Research; Internet2.
THE NETHERLANDS

Virtual Laboratory on a National Scale

URL
www.vl-e.nl/VLAM-G

CONTACT
Zeger Hendrikse, *Universiteit van Amsterdam (UvA), The Netherlands*
zegerh@science.uva.nl

COLLABORATORS
Zeger Hendrikse, Cees de Laat, Adam Belloum, Hamideh Afsarmanesh, Bob Hertzberger, *UvA, The Netherlands*
David Group, *NIKHEF, The Netherlands*

DESCRIPTION
This demonstration of upper middleware complements Grid services, enabling scientists to easily extract information from raw datasets utilizing multiple computing resources. The Virtual Laboratory develops a formal series of steps, or *process flow*, to solve a particular problem in a particular application domain. The process steps may generate raw data from instruments, may contain data processing, may retrieve and store either raw or processed data and may contain visualization steps. A Process Flow Template (PFT) represents a typical analysis and visualization cycle of some raw experiment data.

iGrid demonstrations include data cubes from the UvA Material Analysis of Complex Surfaces Lab and data cubes from an MRI brain scan. The Virtual Lab software assigns various clusters (using DAS-2, a wide-area distributed computer of 200 Dual Pentium-III nodes in The Netherlands) parts of a problem (retrieval, analysis, visualization, and so on). High bandwidth is a necessary prerequisite in order to do data analysis and visualization on a distributed system.

ACKNOWLEDGMENT
Globus Project

GREECE AND THE USA

Virtual Visit to the Site of Ancient Olympia

URL
www.fhw.gr/fhw/en/projects
www.grnet.gr/grnet2/index_en.htm

CONTACT
Fotis Karayannis, *Greek Research & Technology Network/GRNET S.A., Greece*
fkara@grnet.gr
Maria Roussou, *Foundation of the Hellenic World (FHW), Hellenic Cosmos Cultural Centre, Greece*
mr@fhw.gr

COLLABORATORS
Maria Roussou, *FHW, Greece*
Kostas Margaritis, *University of Macedonia, Greece*
Fotis Karayannis, *Greek Research & Technology Network, Greece*
Andrew Johnson, Jason Leigh, *Electronic Visualization Laboratory (EVL), University of Illinois at Chicago (UIC), USA*

DESCRIPTION
In preparation for the 2004 Olympic Games to be hosted by Greece, the FHW, a cultural heritage institution based in Athens, is developing an accurate 3D reconstruction of the site of Olympia as it used to be in antiquity. Through access to a high-performance network, the FHW’s museum can serve as a center of excellence, delivering educational and heritage content to a number of sites worldwide.

GRNET, the Greek Research and Technology Network, with its next-
VLBIGrid provides 1Gbps access to major universities and research institutions and a core network currently at 2.5Gbps delivering advanced services. The network is based on Gigabit routers interconnected through DWDM leased lambdas.

ACKNOWLEDGMENT

General Secretariat for Research and Technology, Ministry of Development, Greece; Project GRNET2, Operational Programme for the Information Society, 3rd Community Support Framework; and, IST Project Géant, the pan-European Gigabit research network, co-funded by the European Commission as part of Framework V Programme. Special thanks to EVL/UIC for providing the FHW with a TeraVision streaming video system for iGrid.
iGrid 2002 Enabling Technologies, Networking Projects and Activities

EU DataGrid Project

The EU-funded DataGrid Project aims to develop, implement and exploit a computational and data-intensive grid of resources for the analysis of scientific data. Next-generation scientific exploration will require coordinated resource sharing, collaborative processing and analysis of huge amounts of data produced and stored by many scientific laboratories.

The main goal of DataGrid is to develop a new hardware/software infrastructure to allow geographically distributed processing of such data. This will enable the implementation of scientific collaborations, where researchers can perform their activities regardless of geographical location, interacting with colleagues from sites all over the world and sharing data and instruments.

DataGrid members are developing the scalable software solutions and testbeds to handle petabytes of distributed data, tens of thousands of computing resources and thousands of simultaneous users from multiple research institutions. DataGrid is using real-world applications drawn from three scientific areas: High Energy Physics, Biology and Earth Observation.

DataGrid, led by CERN, brings together the following leading European research agencies: European Space Agency (ESA), France’s Centre National de la Recherche Scientifique (CNRS), Italy’s Istituto Nazionale di Fisica Nucleare (INFN), Dutch National Institute for Nuclear Physics and High Energy Physics (NIKHEF) and the UK’s Particle Physics and Astronomy Research Council (PPARC). The 15 associated partners are from the Czech Republic, Finland, France, Germany, Hungary, Italy, Netherlands, Spain, Sweden and the UK.

www.eu-datagrid.org

= EU DataGrid application

SURFnet Video and Documentary

For iGrid 2002, SURFnet is streaming live conference plenary sessions and demonstration material over the Internet using Real Surestream, IP multicast H.261, MPEG-1 and MPEG-2. SURFnet is also producing a documentary of the iGrid 2002 demonstrations. After the conference, all video, both plenary sessions and documentary, will be available for on-demand viewing through the iGrid 2002 website and the SURFnet A/V streaming service.

www.igrid2002.org/webcast.html

EU DataTAG Project

The EU-funded DataTAG Project is creating an intercontinental testbed (Trans-Atlantic Grid) for data-intensive grids, with a focus on networking techniques and interoperability issues among different grid domains.

Networking efforts are performed over a dedicated 2.5Gbps circuit between CERN (Geneva) and StarLight (Chicago). The project addresses all issues specific to high-performance inter-grid networking, including sustained and reliable high-performance data replication, end-to-end advanced network services, and novel monitoring techniques. It also addresses issues of interoperability between the grid middleware layers, such as information and security services.

Two European grid projects (DataGrid and CrossGrid) and three USA grid projects (International Virtual Data Grid Laboratory [IVDGL], Grid Physics Network [GriPhyN] and Particle Physics Data Grid [PPDG]) are involved in the EU DataTAG effort.

www.datatag.org

= EU DataTAG application

Globus Project

The Globus Project conducts research and development on Grid concepts to scientific and engineering computing. The Globus Project provides software tools that make it easier to build computational grids and grid-based applications. These tools are collectively known as the Globus Toolkit. The Toolkit is open architecture, open source software used by hundreds of scientific and engineering projects around the world. A growing number of companies have committed to support this open source activity, porting the software to their platforms or by other means.

The Globus Project is led by the Distributed Systems Laboratory at Argonne National Laboratory, the Information Sciences Institute at University of Southern California and the University of Chicago. Sponsors include USA Federal agencies such as DoE, DARPA, NASA and the NSF, along with commercial partners such as IBM and Microsoft.

www.globus.org

= The Globus Project application

Quanta

Quanta, the Quality of Service (QoS) Adaptive Networking Toolkit, is backward compatible with CAVERNsoft, and provides application developers with an easy-to-use system to efficiently utilize the extremely high bandwidth afforded by optical networks. Programmers specify their application’s data transfer characteristics, and then Quanta transparently translates these requirements into transmission protocols and network QoS services.

Quanta consists of a set of networking protocols designed for a variety of high-bandwidth application traffic flows, and a QoS architecture to flexibly control these protocols and support emerging techniques for lightpath reservations, such as GMPLS and OBOGP.

Quanta is being developed by the Electronic Visualization Laboratory at the University of Illinois at Chicago. It is funded by the USA National Science Foundation, ANI-0129527.

www.evl.uic.edu/cavern/teranode/quanta

= Quanta application
iGrid 2002 Acknowledgments

iGrid 2002 gratefully acknowledges the support of the following organizations and individuals, whose encouragement, enthusiasm and efforts made this event possible. Major support for iGrid 2002 is provided by the GigaPort Project, the Amsterdam Science & Technology Centre (WTCW) and the USA National Science Foundation (awards ANI-9980480 and ANI-9730202 to the University of Illinois at Chicago), with in-kind support by SARA Computing and Networking Services (with funding from the NWO/NCF) and the Universiteit van Amsterdam.

Sponsors
Amsterdam Internet Exchange
Amsterdam Science & Technology Centre
Cisco Systems, Inc.
City of Amsterdam
GEOgraphic Network Affiliates–International
GigaPort Project
Glimmerglass Networks
HP
IBM
Juniper Networks
Level 3 Communications, Inc.
National Computer Facilities (NWO/NCF), NL
National Science Foundation, USA
Royal Philips Electronics
SARA Computing and Networking Services
Stichting FOM Foundation for Fundamental Research on Matter
Stichting HGF
Stichting SURF
SURFnet
Tyco Telecommunications
Unilever NV
Universiteit van Amsterdam

Organizing Institutions
The Netherlands:
Amsterdam Science & Technology Centre
GigaPort Project
SARA Computing and Networking Services
SURFnet
Universiteit van Amsterdam/ Science Faculty

United States of America:
Argonne National Laboratory/ Mathematics and Computer Science Division (ANL/MCS)
Indiana University/ Office of the Vice President for Information Technology
Northwestern University/ International Center for Advanced Internet Research
University of Illinois at Chicago/ Electronic Visualization Laboratory (UIC/EVL)

Participating Organizations
CANARIE
Internet Educational Equal Access Foundation
Global Grid Forum
Globus Project
GRIDS Center
National Lab for Applied Network Research, Distributed Applications Support Team
Pacific Rim Applications and Grid Middleware Assembly (PRAGMA)
TERENA
UCAID/Internet2
University of California, San Diego/ California Institute for Telecommunications and Information Technology [Cal-(IT)2]

Scientific Advisory Committee
Bob Hertzberger, Universiteit van Amsterdam
Paul Messina, Argonne National Lab and CERN
David Williams, CERN

Organizing Committee Co-Chairs
Jan Langelaar, Amsterdam Science & Technology Centre
Maxine Brown, UIC/EVL

Organizing Committee
The Netherlands:
Jan Langerlaar, Johan Vos, Mieke van den Berg
Amsterdam Science & Technology Centre
Cees de Laat, Bert Andree, Liesbeth Orte
Universiteit van Amsterdam
Erik-Jan Bos, Kees Neggors, Dennis Paus, Erik Radius, Egon Verharen
SURFnet
Paul Wielinga, Anton Koning, Pieter de Boer
SARA Computing and Networking Services
Kees Huysers
National Institute for Nuclear Physics and High Energy Physics (NIKHEF)
Pieter Spohr, Ed Mos
GigaPort

United States of America:
Maxine Brown, Tom DeFanti, Greg Dawe, Jason Leigh, Dana Plepys, Alan Verlo, Laura Wolf
UIC/EVL
Linda Winkler
ANL/MCS

Computing Systems Committee
Paul Wielinga, Anton Koning, Pieter de Boer, Ron Trompert, Walter de Jong, Bram Stolk, Jeroen Akershoeck, Jerrie Adriane, Axel Berg
SARA Computing and Networking Services
Cees de Laat, Bert Andree, Zeger Hendrikse
Universiteit van Amsterdam
Alan Verlo, Greg Dawe
UIC/EVL

Additional support provided by:
Patrick Hallihan, Ka-Leung Jark, Lance Long
UIC/EVL
Bob Grossman, Marco Mazzucco
UIC/ Laboratory for Advanced Computing

Video Streaming & Access Grid Committee
Egon Verharen, Bart Kerter, Maarten Koopmans
SURFnet

Additional support provided by:
Allan Spale, Vikas Chowdhry
UIC/EVL

Networking Committee
Erik-Jan Bos, Dennis Paus, Erik Radius, Kees Neggors
SURFnet
Linda Winkler
ANL/MCS
Pieter de Boer
SARA Computing and Networking Services
Bert Andree
Universiteit van Amsterdam
Alan Verlo
UIC/EVL

Additional support provided by:
Bill Nickless and Caren Litvanyi
ANL/MCS
Bill St. Arnaud, René Hatem, Damir Pobric
CERN
Olivier Martin, Paolo Moroni, Sylvain Ravot
John Verduzuco, Sara Bleau, Geert-Jan Spelde
Level 3 Communications, Inc.

Tony Rimovsky, Patrick Dorn
University of Illinois at Urbana-Champaign, National Center for Supercomputing Applications
Antony Antony, Win Heubers
NIKHEF
Peter Vons, Ramon de Jong, Jim Jansen, Martien Bakker
SARA Computing and Networking Services
Joe Mambretti, David Carr, Tim Ward,
Vic Maiewski, Laura Grill, Andy Elble
StarLight @ Northwestern University
Niels den Otter, Jan Klotos
SURFnet
Steve Corbató
UCAID/Abilene
Cliff Nelson, William Marcyniuk
UIC

NLANR DAST Support
Tanya Brethour, Patrick Dom, Steve Engelhardt, John Estabrook, Jim Ferguson,
Mitch Kutkzo, Tony Rimovsky, John Towns
University of Illinois at Urbana-Champaign, National Center for Supercomputing Applications

iGrid 2002 Contact Information
University of Illinois at Chicago, Electronic Visualization Laboratory, USA
Tom DeFanti, tom@uic.edu
Maxine Brown, maxine@uic.edu

Amsterdam Science & Technology Centre (WTCW), The Netherlands
Jan Langerlaar, jan.langelaar@nikhef.nl
Mieke van den Berg, mieke.van.den.berg@wtcw.nl

Universiteit van Amsterdam, The Netherlands
Cees de Laat, dela@science.uva.nl