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Abstract

The optical virtual concatenation (OVC) function of The Terabit LAN was demonstrated for the first time at the iGrid 2005 workshop in San
Diego, California. The TERAbit-LAN establishes a lambda group path (LGP) for an application where the number of lambdas/L2 connections
in a LGP can be specified by the application. Each LGP is logically treated as one end-to-end optical path, so during parallel transport, the
LGP channels have no relative latency deviation. However, optical path diversity (e.g. restoration) can cause LGP relative latency deviations
and negatively affect quality of service. OVC hardware developed by NTT compensates for relative latency deviations to achieve a virtual bulk
transport for the Electronic Visualization Laboratory’s (EVL) Scalable Adaptive Graphics Environment application.
c© 2006 Elsevier B.V. All rights reserved.
1. Introduction

Parallelism is now penetrating into cutting edge applica-
tions, computers, and photonic networks to overcome the per-
formance limitations resulting from using a single machine,
single chip, or single lambda. The Scalable Adaptive Graphics
Environment (SAGE) application developed at EVL accommo-
dates 55 LCD displays driven by a 30 node cluster of PCs with
the graphics rendering capacity approaching nearly a Tb/s. The
high-end Linux cluster BlueGene, installed at Lawrence Liver-
more National Laboratories (LLNL) and developed by IBM has
65 536 PowerPC processors and 1152 GbE ports to communi-
cate to other clusters. It is clear therefore that high-end applica-
tions and clusters need Tb/s capacity for their interconnections.
We propose that an OXC-enabled photonic network will be the
most promising way to realize a TERAbit-LAN [1–3]. There
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is a large number of on-going activities [4–6] evaluating and
promoting photonic networking. The OMNInet testbeds cover
various kinds of applications including actual production ser-
vices [5]. We can find a sophisticated classification of such pho-
tonic network solutions in [6]. Among various kinds of users,
the TERAbit-LAN project aims to meet high-end interconnec-
tion requirements with high reliability and reasonable cost.

To meet high-end Tb/s class demand, parallelism as
mentioned above will play an important role. Currently, the
I/O capacity of a PC is limited to 10 GbE. Thus multiple
Network Interface Cards (NICs) will inevitably be required to
support such demand. Even in a single PC, the PCI Express
x32 interface which has 32 parallel lanes (each lane supports
about 2 Gb/s) supports 64 Gb/s of capacity that exceeds the
capacity of a conventional 10 GbE NIC. On the other hand, the
number of parallel wavelengths in a DWDM transport system
is approaching and will exceed 100 channels. This suggests that
new schemes or mechanisms to manage multiple parallel NICs
and transport through photonic networks will be essential to
ensuring high throughput over LAN or WAN.
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The TERAbit-LAN project aims to develop such schemes
or mechanisms to realize photonic networks that are tuned to
accommodate terabit capacity communications which consist
of a large number of parallel channels.

2. The TERAbit-LAN project

Fig. 1 shows a conceptual diagram of TERAbit-LAN. Three
key components are needed: core optical cross connect switches
(OXCs), transmission links, and end-interfaces. In this figure,
we have shown a star-topology as the simplest example;
this is by no means a constraint on the overall framework.
In this configuration, parallelism plays an important role in
photonic switching and transport. The end-systems generate
flows of traffic in parallel and request parallel connections to
target remote interfaces. The TERAbit-LAN accepts parallel
connection requests and allocates parallel lambdas or parallel
L2 connections and configures the OXC to establish dedicated
parallel connections between these two end-interfaces.

The first of the three key components is the OXC. We
have developed an OXC prototype to serve as a core switch
for TERAbit-LAN as shown in Fig. 2 [7], in which an
8 × 8 Planar Lightwave Circuit (PLC) optical switch is
equipped [7]. It supports various kinds of interface for both
Network Node Interface (NNI) and User-Network Interface
(UNI), and has a supervisory and control unit for management
and signaling communication with Generalized Multi-Protocol
Label Switching (GMPLS) capability within the Control-plane
(C-plane). The interface cards can accommodate both 10 GbE
LAN-PHY, OC-192 (10 GbE WAN-PHY). These incoming
signals will be converted into 10 G OTN signal (OTU2) format
in the cards and launched into the PLC optical switch. So all the
optical switching will be done in OTN format.

In order to realize 1 Tb/s capacity switching on an OXC
based on 10 GbE channels, we have to handle 100 channels
or lambdas at the same time, and switch these lambdas
individually. However, it appears impractical to extend the
switching matrix to such high dimensions as it would be
expensive, difficult to control, and unreliable.

Fig. 3 shows a hypothetical TERAbit-LAN application
represented on a simplified OSI layer diagram from the
viewpoint of future high-end applications. As we have
described in the introduction, some high-end Grid applications
(large-scale cluster computing, high-end visualization, etc.)
require bandwidth which exceeds the maximum capacity of a
single NIC. Inevitably, multiple NICs have to work together to
meet such requirements. Since these NICs serve from a single
application, we believe they should be concatenated to ensure
the best performance for the application. These NICs will
generate multiple lambdas for a single application. Therefore,
these lambdas will be expected to be used as a group of lambdas
in a limited number of optical paths. These grouped lambdas
should hence be switched and transported as a single path to
simplify the switching complexity and to reduce cost.

The TERAbit-LAN/WAN project focuses on this parallelism
in switching and transport of multiple lambdas. To realize
parallel switching of these multiple lambda, TERAbit-
LAN/WAN adopts lambda group switching and establishes the
Fig. 1. Conceptual diagram of TERAbit-LAN.

Fig. 2. OXC prototype.

Fig. 3. An example of a Terabit application.

notion of a lambda group path (LGP). High-end application
users would require multiple lambdas as a whole for their
clusters, so a TERAbit-LAN/WAN switch would provision
and establish an LGP upon request of these applications. The
number of lambdas in each LGP will be determined and
provisioned by such applications. The TERAbit-LAN/WAN
switches these LGPs as a single end-to-end optical path.
In comparison with the case where one would switch all
the lambdas individually, LGP-based optical switching only
requires a switching matrix dimension no larger than the
number of LGPs. For example, when we switch 100 lambdas
individually, we need roughly a 100 × 100-dimension optical
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Fig. 4. An OVC circuit configuration.

switch. However, when we assume 10 lambdas can be grouped
as an LGP, we need only a 10 × 10-dimension optical switch.
The LGP scheme could therefore reduce switching complexity,
the load of the operating system, and consequently Capex/Opex
of the photonic network system.

The second key component is a transport or link system
to support parallel lambdas. From the viewpoint of parallel
transport of 10 GbE/GbE lambdas over TERAbit-LAN/WAN,
relative latency deviations in each LGP could be a serious
hindrance towards achieving high quality of service. This
relative latency can arise for numerous reasons such as optical
path diversity or group velocity dispersion in optical fibers.
To overcome such issues, we have developed OVC (Optical
Virtual Concatenation) [1]. The schematic configuration of an
OVC circuit is shown in Fig. 4. It consists of serializer/de-
serializer circuits, memory buffers, and a latency controller.
The latency controller detects relative latency deviation among
OTN frame arrival times for L2 implementation or Ethernet
packet arrival times for L3 implementation. It is analogous to
virtual concatenation in SDH/Sonet. We have extended it to
multiple lambdas with the aid of ITU-T G.709 OTN [8]. OVC
can be realized in L2 by an OTN (Optical Transport Network)
function as defined in ITU-T Recommendation G.709. OVC
can completely compensate for the aforementioned relative
latency deviations to achieve virtual terabit bulk transport. We
can achieve OVC accuracy of a single bit or timeslot (e.g. 0.1 ns
for 10 Gb/s). OVC functionality can be realized also in L3. For
this implementation, relative deviation of packet arrival time
could be used to de-skew each channel to provide virtual bulk
transport. However, the accuracy of OVC in L3 will degrade to
milliseconds. With the help of OVC, visualization applications,
clusters, and high-end PCs will not suffer any impairment
that could result from the relative latency deviation in a
single LGP.

The third key component of TERAbit-LAN consists of
the end-interfaces. Currently, GbE/10 GbE interface cards are
a popular interconnect for PCs or clusters, and of course
these cards can be used to connect to TERAbit-LAN. OVC
functionality can be achieved in L3 by monitoring the relative
latency deviation of packet arrival or Round-Trip Time.
However we also hope to develop a TERAbit-LAN card
solution (Fig. 3). The solution accepts L2 connections or
lambdas into one TERAbit-LAN card and can generate a WDM
signal intended for an OXC node.

The capacity of a single channel is approaching 40 Gb/s,
and we have developed a 40 Gb/s link system which is
Fig. 5. SAGE framework.

fully compliant with the ITU-T G.709 standard [8]. The
system can accept both GbE and 10 GbE clients and transport
by using advanced modulation schemes [9] with automatic
group velocity dispersion (GVD) compensation [10,11] which
ensures highly reliable operation of the system. In the near
future, TERAbit-LAN will employ LGP-enabled OXC, 40
Gb/s/ch links with OVC, and will accept multiple 10 GbE
channels as a single link.

3. The Scalable Adaptive Graphics Environment (SAGE)

The Scalable Adaptive Graphics Environment (SAGE) [12–
14] is a middleware system for managing visualization
and high-definition video streams for viewing on ultra-
high-resolution displays such as EVL’s 100 megapixel
LambdaVision tiled LCD display wall. SAGE consists of Free
Space Manager, SAGE Application Interface Library (SAIL),
SAGE Receiver, and User Interface (UI client) as shown
in Fig. 5. The Free Space Manager gets user commands
from UI clients and controls pixel streams between SAIL
and the SAGE Receivers. SAIL captures output pixels from
applications, and streams them to appropriate SAGE Receivers.
A SAGE Receiver can get multiple pixel streams from different
applications, and displays streamed pixels on multiple tiles.
Remote visualization applications (such as 3D rendering,
remote desktop, video streams, and large 2D maps) stream their
rendered pixels (or graphics primitives) to SAGE, allowing for
any given layout onto the displays (e.g. the output of arbitrary
M by N pixel rendering cluster nodes can be streamed to X by
Y pixel display screens).

4. The technology and iGrid experiences

4.1. Network configuration

Fig. 6 shows the network configuration for the demonstra-
tion. The SAGE sender PC is placed in EVL/Chicago and gen-
erates two parallel GbE video streams from its two GbE NICs.
Each stream consists of half of a 3200 × 1200 graphics anima-
tion. GbE vlans were set up from EVL to iGrid so that each of
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Fig. 6. Network configuration.

the streams followed decidedly different network paths to reach
their destination. To demonstrate OVC functionality in an LGP,
and to demonstrate its path restoration capability, we installed
our OXC system at EVL. The L2 switch accepts GbE chan-
nels and maps them into 10 GbE LAN-PHY signals. Then the
10 GbE signals were converted to G.709 OTU2. Optical switch-
ing is performed on the OTN signal. The switched OTN signal
was converted back into 10 GbE LAN-PHY and then into GbE
signals.

Under normal conditions, these two GbEs would be
transported to iGrid on two vlans (3707 and 3708) over
CAVEWave. Thus there is no relative latency difference
between the two links. The SAGE receiver PC would then stitch
together the two halves of the image for display.

In the event of a fault in a GbE link, the OXC could
switch to a restoration path to save the channel (the restoration
path is provisioned in advance.) For this demonstration, we
prepared entirely different paths (one through Amsterdam, but
both originating from EVL) with significantly differing latency
to show that OVC was able to transparently resynchronize the
two flows. We also installed a network emulator which was
kindly provided by Anue Systems Inc. for our demonstration
to simulate expected latency from Amsterdam, should the real
link fail during the workshop.

4.2. OXC system

The configuration of the OXC system used in the demon-
stration is shown in Fig. 7. It consists of an 8 × 8 switch-
ing unit, 10 GbE LAN-PHY interface cards, GMPLS-enabled
control unit, and a L2 switching unit. The L2 switch accepted
GbE client signals and mapped them into 10 GbE LAN-PHY
signals. Then the 10 GbE signal was passed to the OXC
I/F card which converted the incoming 10 GbE LAN-PHY
signal into a 10 G OTU2 signal which is compliant with the
ITU-T G.709 standard. All the optical switching was carried
out as an OTN standard signal.

4.3. OVC implementation

There are two possible implementations for OVC function
as discussed in The TERAbit-LAN section. These include L2
solution by OTN frame or L3 solution by Ethernet packet.
Fig. 7. Configuration of OXC system used in the demo.

As for the scale of latency deviations, we are supposing
about 200 ms at maximum. It could be the case when a path
restoration in global scale occurred. In our OVC hardware,
we have implemented 1 GB of buffer that can sufficiently
support around 500 ms of latency which is enough to meet
with global scale path diversity. In the demonstration, OVC
functionality was realized in L3 by integrating a latency
detection module and a latency controller as shown in Fig. 4.
Ideally OVC function should be implemented in L2 to realize
highest accuracy. For such a purpose, all the networking
equipment including L2 switches, routers, and repeaters must
be compliant with the G.709 standard. But unfortunately, not
all the equipment was ready to conform to the standard. Thus
we adopted an L3 OVC configuration in the demonstration.
The latency detection module detected RTT for each channel
in a LGP. Then the differences in relative latency that were
calculated by the obtained RTT times were used to control the
latency control unit. The restored path had excessive latency
of about 175 ms which has significantly impaired quality
of streaming from EVL. To ensure keeping the quality of
streaming, we have to compensate the latency deviation to less
than about several tens of ms to avoid visible deterioration.
The OVC circuit we have implemented has less than 1 ms
of accuracy of compensation which is sufficient for this
purpose. For L2 implementation, absolute latency determined
by a change of geographical distance is a main component.
In global scale systems, some small latency induced by
electrical regeneration in link systems will also be needed to
be considered. For L3 implementation, we need to consider
store and forward latency to route packets. Usually, this latency
component will be the second largest next to the absolute
latency, and it will be statistically distributed. So we have
averaged over 3 s to get a stable value for compensation.
In other words, we have compensated at a fixed averaged
value instead of packet by packet compensation. The averaging
time could be optimized depending on network condition.
We will be able to decrease it when we have no congestion,
since we can expect stable, not scattered, latency deviation.
However, when we faced severe congestion and large numbers
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Fig. 8. SAGE with multi-network support.

of packet loss, we can hardly get stable averaged latency to
compensate. When the congestion had cleared, we can get
a stable latency deviation and OVC will re-start within 3 s
as we mentioned above. In our demo, we developed TCL
scripts on Windows OS to measure RTT and average, and to
control the latency controller. In the demonstration problems
occurred in the loop-back connection through Amsterdam, so
the equivalent relative latency of 180 ms was provided by
the network emulator placed between a port of the OXC and
a port in Cisco 6509 which was connected to StarLight’s
E1200.

4.4. SAGE with multi-network support

SAGE was improved to accommodate multiple network
connections to demonstrate OVC functionality in the TERAbit-
LAN project. Fig. 8 shows a schematic of SAGE’s new multi-
network capability. A single SAGE application can use multiple
IP addresses or multiple NICs and the bandwidth allocation or
splitting on the SAGE window can be arbitrary configured. On
the sender side, traffic of an application running on a SAGE
window was split into two streams depending on the location
of the application on the window. When the application ran on
only the left half of the SAGE window, the traffic was pushed
out from only one NIC which corresponds to the window.
In the actual demonstration, we placed a real-time streaming
application at the center of a SAGE window. Therefore, almost
equal amounts of traffic were output from both NICs and
received in the receiver side in Calit2.

4.5. LIVE streaming from EVL

Fig. 9 shows a snapshot of the demonstration station. We
had placed a moving toy in front of the HD camera which
was located in EVL/Chicago so that the audience could easily
see tearing between the two video streams in real-time. In the
control condition where there is no relative latency deviation in
two constituent channels in a LGP, there was no tearing noticed
on the display screen. Then, when an intentional fault occurred
in a channel, audiences could clearly notice tearing in the video
feed. The tearing resulted from additional latency induced by
a change in optical route restored by the OXC system. When
we turned the OVC circuit ON, the tearing was suppressed
immediately. The recovery time needed was on the order of a
few seconds, due to some time needed to detect and determine
Fig. 9. LIVE double-width video streaming from EVL/Chicago.

relative latency differences between the two GbE channels. We
have encountered severe bandwidth fluctuation and sometimes
intermittent connection to EVL/Chicago in the former part
of our demo timeslot. But in the last 30 min, the network
performance recovered well and showed good throughput. We
achieved 320–400 Mb/s of peak bandwidth used for each vlan
in the demo.

5. Conclusions

We have successfully demonstrated OVC functionality in a
TERAbit-LAN LGP with a high-performance graphics stream
application. An OXC placed in EVL/Chicago established an
LGP between EVL/Chicago and Calit2/San Diego. In the
demonstration, OVC was realized in L3 by simple latency
detection and control, since an OTN-enabled transport layer
was not available in end-to-end. But we are anticipating that the
G.709 OTN standard will penetrate into the transport network
and fully realize the TERAbit-LAN concept. In our demo,
we have investigated a live streaming application. To collect
information concerning the accuracy of latency compensation
needed for applications, we will investigate similar kinds of
tests for a wider extent of applications such as tightly interactive
ones. In addition, we have tested OVC in a LGP with two
parallel vlans in the demo, and they were static, since we
were focusing on OVC in this time. We plan to implement a
novel c-plane network which can accept a required number of
lambdas in a LGP from end-hosts and can configure end-hosts
and optical switches to establish a LGP dynamically.
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