

BY

BYUNGIL JEONG

B.S., Seoul National University, 1997

M.S., Seoul National University, 1999

THESIS

Submitted as partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of Illinois at Chicago, 2009

Chicago, Illinois

iii

I greatly appreciate the assistance and support of the following individuals:

• Jason Leigh, Andrew Johnson, Luc Renambot for advising my PhD research throughout my

tenure at EVL, for serving on the dissertation committee, and for providing the opportunity to

work on SAGE and Visualcasting

• Tom DeFanti for making time to serve on my dissertation committee and for providing the

network infrastructure on which I developed and tested SAGE and Visualcasting

• Larry Smarr for leading the OptIPuter that has sponsored my PhD research and for supporting the

deployment of SAGE and Visualcasting on the international OptIPuter community

• Erik Hofer for taking time and effort to travel to Chicago to serve on my dissertation committee

and for providing valuable feedback

• SAGE team members: Ratko Jagodic, Hyejung Hur, and Sungwon Nam for their effort in

designing and implementing SAGE UI, SAGE audio, and SAGE sync algorithm

• Alan Verlo, Lance Long and Pat Hallihan for providing great support for SAGE and

Visualcasting tests

• Venkatram Vishwanath for providing valuable input for my research and for helping with

submitting this dissertation and the required paperwork.

• Allan Spale and Nicholas Schwarz for reviewing and editing this dissertation

Finally, I will always be grateful to my family, my wife Sarah, and my son Joshua for

encouraging me with endless love and support and to my God for His amazing grace throughout my

PhD study.

BJ

iv

CHAPTER PAGE

CHAPTER 1 INTRODUCTION .. 1

1. 1 Overview.. 1

1. 2 Problem and Approach... 4

CHAPTER 2 RELATED WORKS... 9

2. 1 Parallel and Remote Rendering Systems ... 9

2. 2 Multicasting Approach... 12

CHAPTER 3 SAGE ARCHITECTURE.. 15

3. 1 Overview.. 15

3. 2 Starting Procedure.. 18

3. 3 SAGE Pixel Pipeline .. 21

3.3.1 Data Fetch stage ... 22

3.3.2 Block Generation stage .. 23

3.3.3 Block Transfer Stage.. 26

3.3.4 Block Read Stage ... 30

3.3.5 Display Stage ... 30

3. 4 Dynamic Pixel Stream Reconfiguration .. 35

3. 5 User Interface ... 36

3. 6 Audio Streaming .. 37

CHAPTER 4 APPROACH AND IMPLEMENTATION... 38

4. 1 A New SAGE Architecture with SAGE Bridge .. 38

4. 2 Pixel Block Streaming ... 40

4. 3 Bridge Node Allocation ... 42

4. 4 Supporting Heterogeneous Endpoints.. 43

4. 5 Analytic Model of Visualcasting ... 44

CHAPTER 5 EVALUATION ... 48

5. 1 Visualcasting Testbed .. 48

5. 2 Performance Evaluation ... 50

5. 3 Visualcasting Demonstration ... 52

CHAPTER 6 CONCLUSION AND FUTURE WORK.. 55

CITED LITERATURE.. 56

VITA.. 59

v

TABLE PAGE

Table 1. Comparison between SAGE and other approaches ..11

Table 2. SAGE tiled display configuration ...18

Table 3. Application parameters for SAGE ..20

Table 4. Pixel data transfer algorithm ...29

Table 5. SAGE synchronization algorithm ...34

vi

FIGURE PAGE

Figure 1. LambdaVision display driven by SAGE ...2

Figure 2. An example of SAGE session..3

Figure 3. Distributed visualization ..4

Figure 4. Visualcasting scenario ...4

Figure 5. SAGE Bridge approach ...6

Figure 6. Image partition for multicasting ..13

Figure 7. An example of SAGE session..16

Figure 8. Software components of SAGE...17

Figure 9. An example of SAGE tiled display configuration ...19

Figure 10. SAGE pipeline ...21

Figure 11. SAGE pixel block generation ..24

Figure 12. Application image partition and pixel block group map ...25

Figure 13. The internal architecture of SAGE Display Manager..33

Figure 14. The SAGE architecture with a SAGE Bridge..39

Figure 15. Old and new application launch procedures ..40

Figure 16. Pixel data distribution for multiple endpoints ...41

Figure 17. The SAGE Bridge architecture ..43

Figure 18. Visualcasting pipeline..45

Figure 19. Visualcasting testbed ...49

Figure 20. Sustained Visualcasting performance..50

Figure 21. Visualcasting throughput ...51

Figure 22. Multi-point HD video conferencing using Visualcasting ..52

Figure 23. SC08 Visualcasting demonstration..54

vii

viii

Visualization has proven its value in scientific advances by helping scientists gain insight

from their data and verify scientific computations. The amount of scientific data collected from

sensors and simulations can easily be on the order of petabytes of data. Visualization of this large-

scale data requires cluster computing, and more often than not distributed computing over high-speed

networks, as the size of the data exceeds the capacity of the average computing clusters, and the data

may not even reside locally. To view visualizations of large-scale data at or near native resolution,

scalable tiled display walls are increasingly being used for scientific visualization.

In this context, the Scalable Adaptive Graphics Environment (SAGE) has been developed to

support large-scale data visualization in a distributed visualization environment that includes ultra-

high resolution scalable tiled displays. It is a specialized middleware that enables real-time streaming

of extremely high-resolution graphics and high-definition video from remotely distributed rendering

and storage clusters to scalable display walls over ultra high-speed networks. This dissertation

extends SAGE to support distant collaboration between multiple endpoints.

In the SAGE framework, each visualization application streams its rendered pixels to the

virtual high-resolution frame buffer of SAGE, allowing users to freely move, resize and overlap the

application windows on the display. Every window movement or resize operation requires dynamic

and non-trivial reconfigurations of the involved graphics streams. These reconfigurations become

even more complex when SAGE is required to support multiple collaboration endpoints with different

tiled display configurations and application window layouts.

ix

Visualcasting is a new SAGE network service to address this problem using a high-speed

bridging system that receives pixel streams from rendering clusters and that duplicates and sends

them to each end-point. This enables distant collaboration among international researchers in scalable

display environments. Using the Visualcasting service, collaborators can share their visualizations

and interact with each other through high-definition video conferencing in the SAGE Framework.

Intellectual Merit:

Visualcasting addresses the problem of high-performance graphics multicasting for tiled

displays. Although a variety of techniques exist for supporting reliable multicasting, reliably

multicasting graphics data onto remote tiled displays with heterogeneous display configurations is

still a challenging, unsolved problem. Furthermore, Visualcasting addresses the problems of

supporting heterogeneous endpoints in both network and display capacity as well as scaling the

graphics multicasting with the number of endpoints and applications.

Broader Impact:

Visualcasting enables SAGE to multicast high-definition video and ultra-high resolution

visualizations in scalable, real-time manner across globally distributed research centers. This

capability will demonstrate a new way in which high-performance networking and visualization can

be used in a broad range of research, academic and commercial applications. Furthermore,

understanding the requirements, benefits and limitations of Visualcasting and alternative approaches

will provide valuable input into the future of Internet system design.

 1

Chapter 1 outlines the research areas investigated and summarizes the problems solved by

this dissertation. Section 1.1 provides an overview of the research areas and introduces SAGE and

Visualcasting. Section 1.2 describes the problems solved and articulates the approaches used to solve

the problems.

In a decade’s time, high-performance computing has proven its value in the fields of science,

medicine, engineering, education, and filmmaking. These data-intensive domains rely on

computational grid technology and high-quality visualizations to produce meaningful insights from

terabytes of raw data. As research and development becomes increasingly global and

multidisciplinary, the need for a computing infrastructure to support collaborative work among

distributed users has grown dramatically [Leigh06]. Because the rate of decline of the cost of

bandwidth far exceeds that of computing and storage [Stix01], it has recently become more cost-

effective for the domain users to connect to ultra-high-speed networks rather than for them to

maintain their own large computing, storage and visualization systems. For this reason, it becomes

more cost-effective for users to build low-cost, thin network clients than to have to purchase and

maintain their own rendering farms, storage repositories, etc.

In this context, the Electronic Visualization Laboratory (EVL) at University of Illinois at

Chicago (UIC) and the California Institute for Telecommunications and Information Technology

(Calit2) at University of California, San Diego (UCSD) have led the OptIPuter project [Smarr03,

2

Leigh03], a major NSF-funded initiative to design an advanced cyber-infrastructure for data-intensive

science using optical networks. In order to develop the OptIPuter system, OptIPuter partners, who are

primarily domain scientists have provided feedback about essential user requirements for the

development of a collaborative scientific visualization system. One user requirement is that they want

to view and interact with visualizations of multiple heterogeneous datasets simultaneously on ultra-

high resolution display walls. Secondly, they want to reduce cost by sharing remote visualization

resources and storage servers in this cyber-infrastructure. Lastly, they want a system that supports

human global collaboration across multiple sites that each contains ultra-high resolution display

environments.

EVL/UIC has developed the hardware and software systems to support these OptIPuter user

requirements. LambdaVision (see Figure 1) is the hardware system, which is an 11x5 tiled display

with a total resolution of 105 megapixels fed by network bandwidth on the order of tens of gigabits.

A scalable high-resolution display like LambdaVision is essential to render complex geometric

models without losing their details. Even though a geometric model has millions of triangles, if it is

Figure 1. LambdaVision display driven by SAGE

3

rendered onto a single desktop display, only a small subset of those triangles could contribute to the

final image [Klosowski02]. Also, geoscientists working with aerial and satellite imagery (365Kx365K

pixel maps) and neurobiologists imaging the brain with montages consisting of thousands of pictures

from high-resolution microscopes (4Kx4K pixel sensor) are good examples of LambdaVision users.

The Scalable Adaptive Graphics Environment (SAGE) with the Visualcasting software

system supports collaborative scientific visualization in scalable high-resolution display environments

that include hardware such as LambdaVision. SAGE is an “operating system” for tiled-display

environments, letting users launch distributed visualization applications on remote clusters of

computers and stream the visualizations directly to their tiled displays, where they can be viewed and

manipulated (see Figure 2). The uniqueness of SAGE lies in its ability to enable multiple parallel

rendered applications that run on separate and distantly located computer clusters to stream the

visualizations to any portion of a tiled display as individually managed windows. This ability allows

multi-tasking on tiled displays.

Figure 2. An example of SAGE session

4

A fundamental requirement of this high-resolution collaborative visualization system is the

ability to broadcast or multicast visualizations to all collaborating sites so that all participants can

simultaneously see and interact with the data. Multicasting in these high-resolution environments

poses a significant challenge because potentially tens of gigabits of network bandwidth are needed to

support collaborative visualization. This dissertation investigates this problem in detail and

implements a scheme called Visualcasting that is specifically designed to provide the kind of image

multicasting service needed for ultra-high definition visualization. Visualcasting enables SAGE-based

global collaboration across multiple sites by allowing users to share their visualizations interacting

with each other via multi-point high-definition (HD) videoconferencing in scalable tiled display

environments.

The essential problem this dissertation investigates is how to enable the scaling of a system

that distributes extremely high-resolution visual content in real-time from multiple rendering clusters

Figure 3. Distributed visualization

Figure 4. Visualcasting scenario

5

to multiple tiled displays in order to enable distant collaboration with multiple endpoints using high-

resolution tiled displays. Figure 3 shows a distributed visualization scenario supported by SAGE,

which involves running visualization applications at multiple remote rendering clusters and streaming

their pixels to one big tiled display. Figure 4 shows a Visualcasting scenario including multiple

collaboration endpoints and remote rendering clusters.

To support dynamic resizing and repositioning of visualization application windows on the

tiled display wall, SAGE needs to dynamically repartition image data and stream each partition to an

appropriate tile or display node. This is called dynamic pixel stream reconfiguration and will be

discussed in detail in Chapter 3 [Jeong06]. In the first scenario in Figure 3, each sender partitions

application images in only one way. However, in the second model in Figure 4, since each endpoint

individually manages application windows on its tiled display, each sender manages independent

image partitions and streams for all endpoints. As more endpoints join and the required network

bandwidth and computation increase, senders will begin to face a scalability problem.

This problem is solved by transferring pixel data through a high-speed bridging system called

SAGE Bridge, which is placed at a core network center in the middle of collaboration endpoints (see

Figure 5). A SAGE Bridge acts as a pixel stream duplicator and splitter for Visualcasting. It

decouples pixel data duplication and partitioning from pixel rendering so as to prevent rendering

nodes from being overloaded by the addition of endpoints. This allows each rendering node to stream

full image frames to a SAGE Bridge without considering the window layouts and tiled display

configurations of multiple endpoints. The SAGE Bridge software is deployed on a high-performance

PC cluster equipped with ten-gigabit network interfaces. The experimental results provided in

Chapter 5 show that this approach can scale to support an increasing number of endpoints by

allocating an increased number of cluster nodes for the SAGE Bridge. The traditional Internet

6

Protocol (IP) multicast could be an alternative approach, but it has several limitations that will be

discussed in Section 2.2 [Deering91].

An obvious approach to partition the same image data differently for each tiled display

(endpoint) involves creating a group of network buffers for each endpoint and copying the

appropriate portions of the image to each buffer. However, in this approach, adding a new endpoint

incurs a significant system overhead because the required memory capacity for network buffers and

the memory bandwidth for copying the image data increas with the number of endpoints. An

advanced approach to be used by Visualcasting is called pixel block based streaming. The approach

partitions image data into equally sized pixel blocks and calculates their destinations (either tiles or

display nodes) for each endpoint. In this approach, senders manage an independent grouping of pixel

block pointers for each endpoint rather than a group of network buffers. No additional memory

buffers or memory copies are required by the addition of a new endpoint.

Figure 5. SAGE Bridge approach

7

Another important problem addressed by Visualcasting is handling the computational

resource heterogeneity in network bandwidth and display resolution of endpoints. Due to this

heterogeneity, endpoints consume (display) streamed data at different rates. For example, the

maximum frame rate of an uncompressed 4Kx2K animation at an endpoint with 6 gigabits per second

(Gbps) of network bandwidth is 30 frames per second (fps) while the maximum rate at another

endpoint with a 1Gbps of network bandwidth is only 5fps. Visualcasting is able to support these

heterogeneous endpoints independently by preventing a slow endpoint from degrading the overall

Visualcasting performance. An approach to handle this problem is to drop image frames for slow

endpoints at the SAGE Bridge. This technique allows a SAGE Bridge to adaptively stream pixel data

at a rate that each endpoint can afford, which permits a different application frame rate at each

endpoint.

Visualcasting requires high-performance pixel streaming over wide-area network. User

Datagram Protocol (UDP) is chosen as the network protocol for Visualcasting rather than

Transmission Control Protocol (TCP) because the former shows much higher and more stable

performance over wide-area networks with long round trip time than the latter. However, since UDP

is an unreliable network protocol, safe delivery of pixel data is not guaranteed. Pixel data loss may

result in significant visual artifacts on the displayed visualization. The SAGE pixel streaming

architecture has to be designed to handle the possible data loss and to control pixel data flows so as to

minimize data loss. Effective flow control of UDP pixel streams is vital for the heterogeneous

endpoint support of Visualcasting because the data transfer rate for each endpoint is determined by

the flow control mechanism. The SAGE Bridge decides whether or not to drop image frames based

on this rate.

The fundamental research questions that originated from these problems include:

• How to arbitrarily scale simultaneous data distribution to multiple receivers?

8

• What parameters affect this ‘arbitrarily scaling’ and how do these parameters affect the

distribution throughput?

• What happens if the receivers are heterogeneous? Are any special considerations needed?

These questions will be addressed in the following chapters.

 9

This chapter discusses a few of the prior works related to SAGE and Visualcasting. Section

2.1 introduces other parallel and remote rendering systems, and compares them with SAGE. Section

2.2 discusses possible Visualcasting approaches using the traditional IP multicasting technique, and

compares them with the SAGE Bridge Visualcasting approach.

There are several existing systems with parallel and remote rendering schemes related to

SAGE. The simplest case of remote rendering uses remote desktop systems such as VNC

[Richardson98], Remote Desktop Protocol [RDP08] and Xmove [Solomita94]. These systems were

designed to transmit a single desktop to remote computers over slow networks and to operate on

event-triggered streaming mechanisms. They are not suitable for real-time streaming of high-

resolution scientific visualizations or with collaborative applications. Access Grid [Childers00] is a

system that supports distributed collaborative interactions over computational grids. Although it

enables remote visualization sharing, the major focus of the Access Grid lies in enabling distributed

meetings and conferences. Furthermore, the display resolution of remote desktop methods and Access

Grid is limited to a single desktop resolution. On the other hand, SAGE can support scalable display

walls with a 100-megapixel resolutions and include these systems as SAGE applications by adding

the simple SAGE API to them.

Perrine et al. and Klosowski et al. presented the merits of high-resolution display for various

visualization applications using the Scalable Graphics Engine (SGE) developed by IBM [Perrine01,

10

Klosowski02]. SGE is a hardware frame buffer for parallel computers. Disjoint pixel fragments are

joined within the SGE frame buffer and displayed as a contiguous image. SGE supports up to sixteen

1GigE inputs and can drive up to eight displays with double-buffering to support display systems of

up to 16 megapixels. SAGE and SGE are similar in that they both receive graphics data from multiple

rendering nodes and route that data to high-resolution displays.

However, SAGE differs from SGE in that the former is a software approach which is much

more flexible and scalable than the latter. Since SAGE does not require any special hardware, new

network technologies like 10GigE and other new protocols are easily applied to SAGE. SGE, on the

other hand, is bound to 1GigE inputs and the SGE-specific network protocol. There is no theoretical

limitation to scaling the performance of SAGE by adding more rendering and display nodes.

Conversely, network bandwidth, number of inputs and memory capacity limit the performance of

SGE.

There are several parallel rendering systems that can benefit from SAGE or SGE. WireGL

[Humphreys00] or parallel scene-graph rendering is a sort-first parallel rendering scheme from a

single data source. This approach allows a single serial application to drive a tiled display by

streaming graphics primitives that will be rendered in parallel on display nodes. However, it has

limited data scalability due to its single data source bottleneck. Flexible scalable graphics systems

such as Chromium [Humphreys02] or Aura [Germans01] are designed for distributing visualizations

to and from cluster driven tiled-displays. However, since these systems enable only one application at

a time with a static layout on a tiled display, they require a graphics streaming architecture such as

SAGE or SGE to move, resize and overlap multiple application windows.

XDMX (Distributed Multi-head X11) [DMX04] is another system that can drive a tiled

display. It is a front-end proxy X server that controls multiple back-end X servers to make up a

11

unified large display. XDMX also can support Chromium to display multiple applications on a tiled

display. However, XDMX does not support parallel applications. This limits its scalability with

respect to large datasets.

No other systems discussed so far were designed to stream graphics data over a high-speed

wide-area network. In contrast, SAGE has a UDP-based high-speed pixel streaming architecture for

wide-area networks that have multi-ten gigabits of network bandwidth. The architecture is open so

that it may use new streaming protocols designed for high-bandwidth and high round-trip time

networks that are not considered in the streaming architectures of SGE and Chromium. In addition,

SAGE considers the mullions (borders) of each LCD panel of tiled displays when displaying

application windows. Hence, the mullions appear to be placed on top of a large continuous image.

This feature was considered neither in SGE or Chromium.

TeraVision [Singh04] developed by EVL is a scalable platform-independent solution that is

capable of transmitting multiple synchronized high-resolution video streams between single

workstations and/or clusters. TeraVision can also stream graphics data over wide-area networks.

However, it has a static application layout on a tiled display. It is suitable for streaming a single

Table 1. Comparison between SAGE and other approaches

12

desktop to a high-resolution tiled display but not suitable for supporting parallel applications or

multiple instances of applications.

Table 1 compares SAGE with other systems. This table clearly shows that scalable image

multicasting (Visualcasting), which is addressed in this thesis is the most unique feature of SAGE. No

other approach solves this problem.

Multicasting is the simultaneous transmission of data to a subset of hosts in the network using

efficient strategies to send the data over the network only once. It provides data delivery to groups of

hosts with lower network and host overhead than by broadcasting to all hosts or by unicasting to each

host in a group [Deering91]. Visualcasting can be defined as a real-time image multicasting service

from multiple rendering clusters to multiple display clusters. It is possible to implement Visualcasting

exploiting existing multicast techniques, but there are several problems in this approach.

First, generating and managing multicast groups is a complicated problem in Visualcasting

because the number and membership of the group are dynamically changed whenever users move or

resize visualization windows. A multicast group consists of the end-nodes that receive the same data,

but since the visualization image is partitioned differently for each Visualcasting endpoint, the end-

nodes receiving the exact same image fragment are rarely found. To generate a multicast group, the

system needs to find a group of end-nodes who have a non-empty intersection between the image

fragments that they receive, and the image fragment intersections are found by overlapping different

image partitions as shown in Figure 6.

13

Second, since every intersection generated by overlapping the image partitions produces a

multicast group, the number of the multicast groups explosively increases with the addition of end-

points, the extension of the tiled display dimensions, or dynamic changes in display window layouts.

This incurs a scalability problem because of the limited number of multicast IP addresses (i.e. a

limited number of multicast groups) are provided for a network.

The last problem with this approach is a long delay for both performing display window

operations and the joining of a new endpoint, because dynamic changes of a multicast group

membership incur significant latency. For these reasons, a multicast approach is not appropriate for

solving Visualcasting problem.

In addition, multicast-based Visualcasting requires very expensive specialized routers or

switches in order to support multicast service on the order of multi-ten gigabits/s. Conversely, a

Figure 6. Image partition for multicasting

14

SAGE Bridge consists of commodity PCs running the SAGE Bridge software. Although a variety of

reliable multicast techniques exist, low-latency reliable multicast on the order of tens of gigabits per

second is an unsolved problem and an active area of research within the Grid community [Burger05].

Layered multicast [McCanne96] is a possible approach to resolve heterogeneous endpoint

issue discussed in Section 1.2. This idea consists of processing source images to generate multiple

image versions with differing levels of image quality and streaming each version as a separate

multicast layer. Then, each endpoint selectively chooses the layers of the stream that are appropriate

to the endpoint considering its network bandwidth and display resolution. However, this approach

may place an excessive computational load on senders, which may result in non-trivial system

performance reduction.

The SAGE Bridge Visualcasting approach is similar to application-layer multicast in its basic

idea and advantages over IP multicast [Jannotti00, Banerjee02]. Since both Visualcasting and

application-layer multicast duplicate data on the computing nodes instead of on multicast-enabled

routers or switches, they can be easily deployed on conventional networks, while large parts of the

Internet are still incapable of IP multicast. Application-layer multicast approaches, however, are

typically designed for low-bandwidth data streaming applications with large receiver sets

[Banerjee02]. On the other hand, SAGE Bridge Visualcasting software is designed for high-

bandwidth, large-scale data distribution for multiple tiled display clusters.

 15

SAGE is the infrastructure for Visualcasting, which provides essential capabilities including

high-performance real-time streaming of image data between visualization clusters, dynamic

reconfiguration of the image streams, synchronization among visualization cluster nodes, centralized

control of local and remote cluster nodes, and audio data streaming. This chapter describes the SAGE

architecture to implement these essential capabilities for Visualcasting. Specifically, Section 3.1

shows an overview of the SAGE architecture and introduces the hardware and software components

of SAGE. Section 3.2 and 3.3 highlights the functions of SAGE components following the SAGE

starting procedure and the pixel pipeline stages. Section 3.4 discusses the problem and approach of

dynamic pixel stream reconfiguration. Section 3.5 discusses the user interaction with SAGE. Section

3.6 describes the audio data streaming architecture in SAGE.

The hardware environment where SAGE runs comprises a scalable tiled display cluster,

distributed rendering clusters and high-speed networks that fully connects the cluster nodes. Figure 7

illustrates a SAGE session running on this environment. Multiple visualization applications run on

distributed rendering clusters. SAGE captures their output images and independently streams and

displays them on a scalable tiled display. The Free Space Manager (FSManager) is the window

manager of SAGE which is akin to a traditional desktop manager in a windowing system, except that

it can scale from a single tablet PC screen to a desktop spanning a large tiled display. It controls

image streams between rendering clusters and the tiled display cluster in response to various user

commands such as a window move, a window resizing, or z-order change. The Application Launcher

16

(AppLauncher) allocates rendering cluster nodes to visualization applications and then launches them.

The FSManager typically runs on the master (control) node of a tiled display cluster, and the

AppLauncher runs on the master node of a rendering cluster. However, it is possible to run them on

any machine that has network connectivity to all cluster nodes under their control.

Figure 8 shows the software components of SAGE running on the hardware components. In

addition to the FSManager and the AppLauncher introduced above, visualization applications use

SAGE Application Interface Library (SAIL) to send their output pixel data to a tiled display. Any

application with uncompressed pixel output can be easily ported to SAGE by adding ten to twenty

lines of SAIL API code. In order to support parallel visualization applications where each rendering

node will generate a portion of the whole picture, the SAIL API allows application programmers to

describe output image buffers (width, height, pixel format and so on) and the position of the buffers

in the whole application image.

Figure 7. An example of SAGE session

17

Figure 8. Software components of SAGE

 SAGE Display Manager is a pixel stream receiver running on each display node. It supports

simultaneous display of multiple SAGE applications on a tiled display by receiving multiple

independent pixel streams from each application. Whenever users move or resize an application

window, the FSManager updates the new window information to SAIL and SAGE Display Managers

so that the application imagery can be displayed on any part of the tiled display as users want. SAGE

UI allows users to launch, move and resize SAGE applications by sending user interaction commands

to other SAGE components and informs users of various application information including

application name, window attributes, and performance data. The SAGE audio manager plays audio

data streamed from SAIL that is synchronized with visual data.

SAGE is developed on the Linux operating system and ported to Mac OS X, Sun Solaris and

Microsoft Windows. OpenGL [Woo99] and Simple DirectMedia Layer (SDL) are used in order to

display images on a screen [SDL06]. Posix Thread (pthread) is used for multi-threading in numerous

18

parts of SAGE. QUANTA, a cross-platform adaptive networking toolkit [He03], is used to deliver the

control messages to other SAGE components.

During the starting procedure, SAGE components are launched by users or another SAGE

component and configured by user-defined parameters. The control channels are created between the

FSManager and other components and the data channels are created and configured between the

application (SAIL) and the receivers (SAGE Display Manager) so that SAGE becomes ready to

stream high-resolution image frames.

The first step of starting SAGE is launching the FSManager. It reads various configuration

parameters from files, launches a SAGE Display Manager on each tiled display cluster node

according to the parameters, establishes control channels to SAGE Display Managers, and distributes

necessary configuration information to them.

Table 2. SAGE tiled display configuration

19

The configuration read by the FSManager includes IP addresses and port numbers used for

control and data connections, buffer sizes for image streaming, and tiled display parameters listed in

Table 2. Figure 9 shows an example of a tiled display configuration and the virtual desktop generated

from it. The FSManager retains the size and position of each screen in pixel coordinates with its

origin at the lower-left corner of the whole tiled display. The mullion (screen border) width in inches

is converted to the number of pixels. In this example, the mullion width in pixel numbers is 0.6 inch x

90 ppi = 54 pixels. This number is used for calculating the coordinates of each screen in Figure 9.

Based on the virtual desktop information, the FSManager launches SAGE Display Managers and

sends them initialization messages. Once the initialization of all SAGE Display Managers is

complete, the FSManager and SAGE Display Managers wait for connections from SAGE

applications.

The second step is starting the AppLauncher on a rendering cluster unless it is already

running on it. The AppLauncher reads a user-defined SAGE application configuration file that

includes the list of SAGE applications available on the cluster and various application parameters for

SAGE in Table 3. An application can have many different configurations and the available

application list is forwarded to the SAGE UI.

Figure 9. An example of SAGE tiled display configuration

20

The third step is starting SAGE UI and connecting it to the FSManager and the AppLauncher.

SAGE UI fetches the tiled display information from the FSManager and draws the outline of the

display. According to the application list from the AppLauncher, the application icons are drawn

below the display outline. When a user selects one of these icons, the list of available configurations

for the application is displayed. By selecting a configuration, the application is launched by the

AppLauncher.

The fourth step is the starting and connecting of the application to the FSManager. In the

initialization phase of the application, a SAIL object is created inside the application. The object is

initialized by the application configuration selected by the users. The IP address and the port number

of the FSManager are included in the configuration and used for creating a connection to the

FSManager. It creates a data object for managing the application information and sends the receiver

(SAGE Display Manager) information to the SAIL object.

The fifth step is establishing pixel data channels and configuring pixel streams on them. The

SAIL object connects to the receivers running on the tiled display using the information (IP addresses

and port numbers) of the receivers from the FSManager. The new connections themselves work as

Table 3. Application parameters for SAGE

21

pixel data channels when the TCP protocol is used, or the connections are used for creating pixel data

channels when the UDP protocol is used. The FSManager generates stream information containing

the image partitions and the destinations of the application. The stream information is delivered to

SAIL and used to configure new streams on the pixel data channels. The details of the configuration

are discussed in the following sections.

After these five steps the pixel data streams are started from the application to the receivers,

and the application imagery is shown on the tiled display. The next section discusses the pipeline

stages for the pixel data delivery.

Figure 10 shows the five pipeline stages of SAGE. In the data fetch stage, an application

writes pixel data on a SAGE frame buffer in the SAIL object. Pixel blocks are generated from the

SAGE frame buffer, and the blocks are grouped according to their destination (tiled display node) in

the block generation stage. Grouped pixel blocks are streamed to a display node in the block transfer

stage. The SAGE Display Manager running on the node receives the pixel blocks and inserts them

into the pixel block buffer in the block read stage. The SAGE Display Manager also fetches and

downloads the pixel blocks from the buffer into graphics hardware. Downloaded pixel data is updated

Figure 10. SAGE pipeline

22

on a screen synchronized with the adjacent screens in the display stage. Each stage has its own thread

and is connected to the next stage by various buffers: double frame buffers, pixel block buffers and

network buffers.

The SAGE Application Interface Library (SAIL) has double frame buffers to store

application output images and to connect the data fetch stage and the block generation stage. One

buffer is used at data fetch stage for storing new pixel data, and the other is used at the block

generation stage for generating pixel blocks from it. Two buffers are swapped when both stages are

ready to proceed to the next frame. This occurs when writing an image frame on one buffer is done at

the data fetch stage, and pixel block generation from the other buffer is done at the block generation

stage.

There are two ways to fill the frame buffers. One is passing the address of an application

output buffer to SAIL and copying data from the application buffer to a frame buffer. The other is

providing the application with the address of a frame buffer so that the application directly writes

image data on it. The recent version of SAGE uses the latter. It has an advantage of avoiding a

memory copy inside SAIL and using less memory but requires more changes in application code.

Let us call the two frame buffers as buffer A and buffer B. Once an application writes a full

image frame on buffer A, it calls SAIL swapBuffer() which passes buffer A to the block generation

stage and makes buffer B available to the application. But if buffer B is still in use at the block

generation stage, the caller (application thread) is blocked inside the function call until the block

generation thread releases buffer B. If the function was a non-blocking call (just return to the caller if

23

buffer B is still in use), the application would overwrite new frames on buffer A until buffer B is

released. One advantage of this method is it does not interfere the execution of application and always

sends the newest frame. But it arbitrarily skips application image frames. In the case of a parallel

application, this arbitrary skipping ruins synchronization among application nodes. This is the reason

why SAIL swapBuffer() call is designed as a blocking call. But it limits the performance of

application to the network streaming performance of SAGE.

An obvious approach to distribute image data over multiple tiles (screens) is to partition an

image according to the application layout on each tile and stream partitioned image fragments to

appropriate tiles. But, rather than sending exact image fragments, the recent version of SAGE

generates regularly-sized pixel blocks from an application image and selectively streams them to each

tile. The main reason SAGE uses pixel block-based streaming is to support Visualcasting. This is

discussed in detail in Section 4.2.

Once a frame buffer filled with new image is swapped into the Block Generation stage, SAIL

reconfigures existing pixel streams if new application window layout information is received from the

FSManager. A synchronization point is located here for parallel applications so that all application

nodes have consistent pixel stream configuration. This synchronization is essential for seamless

application window repositioning and resizing. Without this synchronization, parallel application

streams may be reconfigured at a different image frame at each rendering node. This would result in

broken imagery on the display during the window operation. To guarantee that the streams

reconfigure in the same image frame, SAIL delivers a stream with a reconfiguration message attached

24

to a synchronization signal to each rendering node. Then pixel blocks are generated from the frame

buffer, grouped according to the pixel stream configuration and passed to the block transfer stage.

Figure 11 shows an example of pixel block generation and the data structure of a SAGE pixel

block. A parallel application runs on four rendering nodes, and its output image stored on four frame

buffers is partitioned into an MxN (5x5 in Figure 11) array of pixel blocks with uniform width and

height, with the exception of blocks on the edges of the frame buffers. This pixel block array is

consistent for every application frame. Each block has a unique ID called blockID that is determined

by the location of the block in the application output image. It is calculated by the following equation.

blockID = x _ index + y _ index M

Here x_index and y_index are the x and y indices of the MxN pixel block array. X_index

increases from left to right, and y_index increases from bottom to top. On the other hand, x_index and

y_index can be calculated from blockID. A display node can calculate the position (x, y) of a pixel

block in the application image from its blockID assuming it knows the value of M, the width and

height of the pixel blocks, and the row order of the application image which is bottom to top.

Figure 11. SAGE pixel block generation

25

x _ index = blockID mod M

y_index =
blockID

M
x = x _ index block _width

y = y _ index block _ height

The pixel block position is pre-calculated and stored in a table together with blockID. When a

display node locates incoming pixel blocks on its frame buffer to be displayed, the block position in

the table is referenced by blockID. The blockID to block position mapping is valid for every image

frame of the application. In this way, the display node gets a pixel block position from the blockID

without requiring additional runtime calculation.

Also, the geometric calculation results for a pixel block are stored in a table with its blockID

and reused later. A good example is the grouping of pixel blocks in order to distribute the pixel data

over a tiled display. A lot of geometric calculation (e.g. coordinate comparison) is required to

generate the pixel block groups. However, the grouping result is stored with a blockID and reused for

many frames since the pixel block groups remain the same until the application window is

repositioned or resized. Figure 12 shows an example of the pixel block grouping.

Figure 12. Application image partition and pixel block group map

26

Reconfiguring a pixel stream means the regeneration of pixel block groups according to a

new application window layout on a tiled display as shown in Figure 12. Once SAIL receives a

window layout message from the FSManager, it regenerates pixel block groups and stores the result

in a pixel block group map as shown on the right-hand side of Figure 12. Whenever a new block is

generated, it is inserted into a block group according to the pixel block group map. The pixel blocks

that are displayed on multiple tiles (e.g. block 7 in Figure 12) belong to multiple groups. This process

is repeated for the following image frames until the pixel stream reconfiguration happens again. Each

block group has a different destination (a tiled display node) and is sent over a separate stream in the

block transfer stage.

In the case of a parallel application, a special case happens in the pixel block generation. A

pixel block can be located over multiple application nodes. For example, pixel block 13 in Figure 11

is partially generated by every node. Each node sends a partially filled block to a display node. It

receives four partial blocks covering a different portion of pixel block 13. In order to locate the partial

blocks correctly, each block needs to carry additional information. The fields x_offset, y_offset, width

and height (see Figure 11) in the pixel block header provide the necessary information. The frame ID

in the header is used for synchronizing the display of pixel blocks over multiple tiles.

Pixel block based streaming is suitable for dynamically distributing pixel data over a tiled

display. However, sending one big data buffer at a time results in better network streaming

performance than partitioning the data into smaller blocks and sending them one by one. In the block

transfer stage, SAIL collects the pixel blocks to be sent over a network stream and creates pixel block

27

clusters. By using iovec
1
 data structure, a pixel block cluster is sent by a system call. This achieves

higher network performance than streaming block by block. The size of a pixel block cluster is a user

parameter that has a significant impact on SAGE network streaming performance. Since every pixel

block in a cluster should have the same frame ID and the number of pixel blocks for an image frame

is not always a multiple of the size of a pixel block cluster, some clusters can have lower than normal

cluster size. Once a pixel block cluster is created, it is inserted into the network stream buffer.

SAGE uses both TCP and UDP as its network streaming protocol. While TCP has its own

flow control mechanism, application level flow control is required for UDP to prevent data loss. SAIL

has a network streaming thread for UDP flow control. This thread has a network transfer loop that

fetches a pixel block cluster from a network steam buffer and sends it over a network. It monitors the

average data transfer rate of every network stream. Each stream has a target data transfer rate derived

from the frame rate of the application. The priority of a network stream is determined by the ratio of

the target data transfer rate to the current average data transfer rate.

The stream with the highest priority among the streams having at least one pixel block cluster

in its network stream buffer is selected to send a pixel block cluster in each path of the network

transfer loop. But if the average data transfer rate of the selected stream is larger than the target data

transfer rate of the stream, no data is transferred for the path. This pixel data transfer algorithm

achieves the fairness among network streams by giving the highest priority to the stream most lagging

behind from its target data transfer rate. The algorithm controls the data flow of network streams so as

not to exceed their target data transfer rate by temporarily suspending the flows. This reduces the

possibility of data loss at the receiving ends and at network components in the middle.

1
 A Unix data structure to access scattered buffers in a system call. It has starting addresses and sizes of

the scattered buffers.

28

At the end of the network transfer loop, the total data transfer rate from SAIL is checked at

each global flow checking interval. If the rate exceeds the maximum network bandwidth of the

application node, the loop is suspended until the rate goes down below the maximum network

bandwidth in order to prevent data loss at the node. Table 3 shows pseudocode to implement this

algorithm.

29

Table 4. Pixel data transfer algorithm

30

A SAGE Receiver in a SAGE Display Manager receives multiple independent pixel streams

from each application at the block read stage. A SAGE Receiver is created for each application and it

has its own thread. It is blocked until new data arrives in one of the incoming streams and also

synchronizes those streams from a parallel application. It reads a pixel block cluster from an

incoming stream and inserts it into the SAGE block buffer. The pixel block cluster is split into

individual blocks in the next stage (the display stage). Another important roll of a SAGE Receiver is

checking the last pixel block of an image frame and inserting a special control block into the SAGE

block buffer. This helps the pixel downloader in the next stage easily detect the end of an image

frame.

The main problems in designing the display stage are how to efficiently display multiple

application image streams at different rates on a screen and how to synchronize these streams with the

associated streams displayed on neighboring screens. To address the first problem, a SAGE Display

Manager creates a couple of OpenGL textures for each application, fetches pixel data from a SAGE

block buffer, downloads it onto them and then draws a rectangle mapped with the textures for each

application. While one of the textures (the front texture) is used for drawing the rectangle, the other

texture (the back texture) becomes the target of newly downloaded pixels. Once a new image frame is

fully downloaded on the back texture, two textures are swapped and the newly downloaded image is

drawn on the screen.

When a new application image is drawn on the screen, the back frame buffer of the graphics

card is cleared completely, all application images on the buffer are redrawn and the frame buffer is

31

swapped onto the screen. Since the texture swapping happens at a different rate for each application,

an application image often has to be redrawn not because the image itself is updated but because

another application image on the same screen is updated. Though the overhead for redrawing the

image that is already downloaded on a texture is minimal, the SAGE screen refresh rate can increase

far exceeding that of a physical monitor.

For example, if two applications are running at the frame rate of 60fps on a screen, the SAGE

Display Manager may try to refresh the screen at the rate of 120Hz in the worst case though the

physical screen refresh rate of the monitor is just 60Hz. If the swap buffering of the graphics card is

synchronized with the screen refresh rate of the monitor, i.e. the swap buffering call is blocked until

the screen is actually refreshed, a big performance overhead is incurred in the case of this example.

To periodically check if any application image is updated and to refresh the screen if necessary is the

more performance-efficient approach than to refresh a screen whenever an application image is

updated.

However, the texture swapping and screen refresh on a display node should be synchronous

with those operations on its neighbor. So the periodical check for image updates should be performed

globally at the synchronization server rather than locally on each node. The synchronization server

periodically sends every display node synchronization signals together with a message that indicates

whether each application is ready to swap the textures, i.e. whether the application image is updated.

Each display node swaps the textures of the applications displayed on it or waits longer according to

the message in the synchronization signal.

A typical method to synchronize the texture swapping (image buffer update) and the screen

refresh is to place one synchronization point before both the texture swapping and another

synchronization point before the screen refresh. When the display thread reaches the texture swapping

32

synchronization point, it sends the first synchronization update to the synchronization server and

waits for a synchronization signal from the server. It broadcasts the synchronization signals once it

receives an update from the every display node. The same synchronization procedure is repeated at

the screen refresh synchronization point. For the best synchronization result, the display thread has to

be blocked while waiting for a synchronization signal.

This method works fine for other tiled display applications that show a single visualization

content at a time. In contrast, this method gives a big performance penalty to SAGE since frequently

blocking the display thread prevents other application image streams from being downloaded to the

graphics card. This frequent blocking is due to the texture swapping of an application stream. To

minimize this performance penalty, SAGE does not block the display thread on the texture swapping

synchronization point. While waiting for the synchronization signal for an application, the display

thread performs pixel data downloading for other applications. The SAGE Display Manager has a

separate synchronization signal checking thread that sends a synchronization event to the display

thread. Once it receives the synchronization event, it swaps the textures of the applications that are

marked as ready for texture swapping in the message of the synchronization signal and proceeds to

the screen refresh synchronization point.

Here the display thread is blocked after sending the second synchronization update to the

synchronization server and waits for the screen refresh synchronization signal from the

synchronization server in order to achieve the best synchronization result. Since the display nodes are

already synchronized at the texture swapping synchronization points, the expected blocking time at

the screen refresh synchronization point is much shorter than the expected blocking time without the

texture swapping synchronization. The minimization of this blocking time is essential for reducing a

performance penalty incurred by this synchronization method.

33

Some synchronization jitter is expected at the texture swapping synchronization point since

the response for a texture swapping synchronization signal can be delayed in the event queue of the

display thread. However, this jitter is invisible on screens and is acceptable for the purpose of

minimizing the blocking time at the screen refresh synchronization point. The synchronization jitter at

the screen refresh point determines the result of this display synchronization algorithm. Table 4

presents the pseudocode for the synchronization algorithm. Figure 13 shows the architecture of the

SAGE Display Manager. In order to reduce synchronization signal latency and to increase its priority,

the TCP out-of-band data channel
2
 is used for transferring synchronization signals among display

nodes.

2
 This channel sends data without waiting for the socket buffer to be filled

Figure 13. The internal architecture of SAGE Display Manager

34

Table 5. SAGE synchronization algorithm

35

Since SAGE pixel blocks are regularly sized, the display nodes on which they are displayed

and their positions in the screens of the nodes are easily calculated once the application window

layout that they belong to is given. This information is stored in a table on each SAGE Display

Manager, and incoming pixel blocks are downloaded onto the textures in the SAGE Display Manager

referencing this block position table. It needs to be updated whenever the application layout is

changed, but the update should be consistent with the update on the pixel block group in the block

generation stage. That is, the update should happen exactly when the pixel blocks that were regrouped

by the new application window layout arrive at the SAGE Display Manager and are ready to be

downloaded to the textures.

In order to make sure that the update happens at the right time, the FSManager sends an

application window layout together with a configuration ID to SAIL and SAGE Display Managers,

and the pixel blocks streamed from SAIL carry the configuration ID of the application window layout

by which they were grouped. SAGE Display Managers compare the configuration ID of the

application window layout that it received and that of incoming pixel blocks. If the IDs are matched,

it updates the block position table immediately; otherwise, it waits for following pixel blocks (in the

case when the pixel block configuration ID is less than the configuration ID of the new application

window layout) or newer application window layouts (in the case when the pixel block configuration

ID is greater than the configuration ID of the new application window layout).

36

SAGE UI Clients can be a Graphical User Interface, text-based console or tracked devices

[Krumbholz05], which launch applications using the Application Launcher, send user commands to

the Free Space Manager and show the status of SAGE to the users. Any UI client can execute,

shutdown, move, and resize SAGE applications in a manner very similar to a typical contemporary

windowing system. Furthermore, UI clients can reside on any machine (laptop, tablet, desktop, etc.)

connected to the Free Space Manager over any network. Since SAGE is well suited for use in

collaborative environments, several tools have been incorporated into the SAGE GUI to facilitate

collaborative work. Users could, for example, have discussions and meetings in front of a tiled

display where each user is running an instance of the SAGE GUI connected to the same or even

different displays. The SAGE GUI captures each user’s laptop screen using a VNC server, which

pushes the screen over the display using a SAGE-enabled VNC viewer. Using this capability, users

can present their problems or achievements to others and share useful information on the display

during the discussion.

For basic communication, a chat capability and a list of users currently connected to the

display are available from the SAGE UI server managing user connections to every SAGE display.

Every user could also be connected to multiple displays at the same time and control applications on

any of them. This could prove especially useful when multiple sites are working together. At the end

of a meeting, users could save the session and the state of the tiled display so that they can quickly

resume their work at a later time.

37

Multipoint HD video conferencing is an essential part of Visualcasting. To enable HD video

conferencing in the SAGE framework, audio streaming capability is added to the SAGE architecture.

SAGE audio capturing capability was implemented as a part of SAIL. The audio enabled SAIL can

read audio data from a sound card (microphone), an audio file, or a SAGE application using SAGE

audio API functions. The same network streaming modules used for SAGE audio streams are the

same as those for SAGE pixel streams. In order to capture and play audio data, an portable cross-

platform audio API called Port Audio [PortAudio07] was used. The display of SAGE pixel streams is

synchronized with the playing of SAGE audio streams.

 38

This chapter describes the approaches used to implement Visualcasting as well as to solve the

problems with Visualcasting. In order to distribute high-resolution images to multiple tiled displays

(Visualcasting endpoints) in real-time, a high-performance bridging system called SAGE Bridge was

designed and implemented. In order to scale the service to an increasing number of endpoints, a

SAGE Bridge requires the SAGE pixel block streaming and dynamic bridging resource allocation

scheme. Since display size and network bandwidth can be heterogeneous across Visualcasting

endpoints, a SAGE Bridge controls the pixel flows to each endpoint so that it can properly handle the

incoming pixel data. For this purpose, a SAGE Bridge may drop image frames at lower-capacity

endpoints if necessary. An analytical model for Visualcasting was built to predict the performance of

these approaches and was validated by experiments.

The SAGE Bridge is a new software component of SAGE running on a high-performance PC

cluster. With the SAGE Bridge, the SAGE architecture is changed as shown in Figure 14. Multiple

SAGE sessions exist in this architecture and each is controlled by a FSManager. The SAGE Bridge is

introduced between SAIL and SAGE Display Managers. It intercepts pixel streams from SAIL and

duplicates and distributes them for each SAGE session.

39

The introduction of the SAGE Bridge in the SAGE architecture requires a new procedure to

execute applications. Figure 15 compares the old and new application launch procedures. The new

procedure consists of following nine steps:

(1) A SAGE UI sends commands with application parameters and information about the SAGE

Bridge and the first FSManager to the Application Launcher.

(2) The Application Launcher executes an application on the appropriate rendering nodes using

information from the SAGE UI.

(3) SAIL creates a control channel with the SAGE Bridge when the application is launched. The

SAGE Bridge allocates SAGE Bridge nodes for the application and configures streams between

SAIL and the SAGE Bridge.

(4) The SAGE Bridge connects to the first FSManager in order to configure the streams between the

SAGE Bridge and the SAGE Displays.

Figure 14. The SAGE architecture with a SAGE Bridge

40

(5) SAIL starts streaming pixels once all configurations are completed.

(6) Application images are displayed in the first SAGE session.

(7) In order to make the second SAGE session join the Visualcasting session, a SAGE UI sends a

message that has information about the second FSManager to the first FSManager.

(8) The first FSManager directs the SAGE Bridge to connect to the second FSManager.

(9) The pixel streams between the SAGE Bridge and the second SAGE session are configured and

started.

In addition to distributing pixel streams, the SAGE Bridge duplicates and sends SAGE audio

streams to multiple endpoints. Each application and each endpoint are configured as to whether they

are audio-enabled or not. Based on the configuration, the SAGE Bridge may or may not receive and

send the audio stream of an application to each endpoint.

The initial prototype of SAGE streams application images frame by frame. Each image frame

is split into sub-images according to the application layout on the tiled display. Each sub-image is

Figure 15. Old and new application launch procedures

41

copied to a network buffer and streamed to a tile. Since the generation of the sub-images depends on

the application window layout on a tiled display, Visualcasting requires a different image partition for

each endpoint as shown in Figure 16a. However, the required memory space for network buffers and

the memory bandwidth for an image data copy continue increasing as the number of endpoints

increase. This incurs a significant system overhead in Visualcasting. The approach to resolve this

problem is pixel block streaming that was described in Section 3.3.2

(a) Image Duplication and Partition for Multiple Endpoints

 (b) Pixel Block Regrouping for Multiple Endpoints

Figure 16. Pixel data distribution for multiple endpoints

42

With pixel block streaming, the duplication and partition of an image frame at the SAGE

Bridge is changed to the grouping of pixel blocks as shown in Figure 16b, which does not require

additional network buffers or memory copies when a new endpoint is added to a Visualcasting

session. By eliminating these overhead constraints, a SAGE Bridge can scale pixel streaming to

increasing number of endpoints until the total data bandwidth of the streams reaches the network or

memory bandwidth limit of the bridge node.

The number of SAGE Bridge cluster nodes is statically configured when the SAGE Bridge

starts running. In order to balance the load on each bridge node, the pixel blocks of an image frame

have to be equally or nearly equally distributed to each node. The grouping of the pixel blocks for

each bridge node does not need to depend on their geometrical location in the image frame because

every SAGE Bridge node can stream pixel blocks to an arbitrary location on any tiled display of all

endpoints. The recent version of SAGE binds pixel blocks with continuous block IDs as a group.

Though this bridge node allocation strategy is the best for load balancing, an application

whose image frame rate is dynamically changing incurs jitters on Visualcasting streams of other

applications on the same SAGE Bridge. Another SAGE Bridge node allocation strategy to avoid this

problem is allocating a separate bridge node to each application. However, the number of applications

to be supported by this strategy is limited to the number of SAGE Bridge nodes. In order to remove

this limitation, the master node of the SAGE Bridge monitors the usage of all SAGE Bridge nodes

and allocates a new application on the node that has the least usage. In the current implementation,

users configure the SAGE Bridge node allocation strategy before they start a Visualcasting session.

43

Figure 17 shows an abstracted internal architecture of the SAGE Bridge. A SAGE Receiver

receives single or multiple pixel block streams of an application and synchronizes them before

pushing pixel blocks into a pixel block buffer. A bridge streamer for each endpoint is created. It reads

pixel blocks from the buffer, generates block groups, and streams them to the tiled display at an

associated endpoint. The method to be used for generating block groups and streaming them is

exactly the same as the method used in the block generation stage described in Section 3.3.2. Once

every bridge streamer reads and sends a pixel block, the block is returned to the pixel block buffer for

reuse.

In an ideal case, every endpoint has enough data bandwidth to afford the incoming pixel

block streams. Then the SAGE Bridge’s pixel block sending rate to every endpoint is the same as its

pixel block receiving rate. However, Visualcasting endpoints do not always have an ideal condition.

Each bridge streamer may have a different pixel block transfer rate due to the heterogeneity in the

data bandwidth of its endpoint. Since Visualcasting uses the UDP protocol, data loss happens at the

endpoint that cannot afford incoming pixel block streams, and then SAGE Display Managers at the

Figure 17. The SAGE Bridge architecture

44

endpoint send the SAGE Bridge a negative feedback. Then the network flow control loop in the

SAGE Bridge reduces the pixel block transfer rate to the endpoint. The reduced pixel block transfer

rate relieves the congestion on the network streams to the endpoint so as to reduce or stop the data

loss.

Each bridge streamer has its own read pointer in the pixel block buffer in order to handle

temporary difference in the block transfer rate across the bridge streamers. However, the difference is

bounded by the size of the pixel block buffer. If the pixel block transfer rate of a bridge streamer is

reduced, all bridge streamers are eventually slowed down to match the rate of the slowest one. By

dropping image frames, the slowest bridge streamer can catch up with other bridge streamers and

stream pixel blocks at its own rate without interfering with other bridge streamers. The number of

frames to be dropped is determined by the difference in the image frame transfer rate between the

slowest one and the fastest one. The slowest bridge streamer moves its read pointer in the pixel block

buffer as if it reads and sends the pixel blocks that belong to the image frames to be dropped. The

heterogeneity of endpoints in data bandwidth is handled by this way.

This section presents an analytic model of Visualcasting performance. The model represents

Visualcasting performance in terms of available SAGE Bridge resources, the number of endpoints

and applications, available network bandwidth at each stage of Visualcasting pipeline and so on. This

model can be used not only for predicting the Visualcasting performance within given system

parameters but also for guiding users who want to build a Visualcasting system. For example, the

model can answer the following questions which are: (1) how many endpoints can be supported given

45

a number of SAGE Bridge nodes and the anticipated bandwidth usage of an application; (2) how

many SAGE Bridge nodes are required in order to support a given number of endpoints?

Figure 18 shows the abstracted pipeline stages of Visualcasting. The overall Visualcasting

performance is determined by the pipeline component that has the minimum data bandwidth. BA is the

bandwidth that an application uses when it runs at a desired frame rate. Bin and Bout are available

network bandwidth to and from a SAGE Bridge cluster. The data bandwidth at the SAGE Bridge

cluster is represented as uNBBH. For example, if a SAGE Bridge cluster has 5 nodes and each node

has a 10Gbps limitation in its network bandwidth and a 70% maximum network bandwidth

utilization, the data bandwidth of the SAGE Bridge cluster is 0.7x5x10Gbps = 35Gbps. The data

bandwidth at the display stage is determined by the application window layout. For example, if an

application window is placed over 4 tiles and each node that drives one of these tiles has 1Gbps of

network bandwidth, the data bandwidth is 4Gbps in maximum. However, if the window is shrunk to a

single tile, the bandwidth is reduced to 1Gbps. If another application window overlaps the window,

the bandwidth decreases even more. In some cases, the bandwidth can be smaller than BA, and then

the Visualcasting performance to the endpoint is limited by the bandwidth that is affected by the

application window layout and represented as BA.

BA: expected application bandwidth

Bin: network bandwidth application to bridge
Bout: network bandwidth bridge to display

NB: number of bridge nodes

BH: hardware bandwidth of each bridge node
u : bandwidth utilization

 : application window layout factor

Figure 18. Visualcasting pipeline

46

Let us assume the network bandwidth to and from the SAGE Bridge cluster and the data

bandwidth of every endpoint are enough to afford an application stream at the rate of BA i.e.

Bin > BA, Bout > nBA, n is the number of endpoints, = 1 for all endpoints.

If a SAGE Bridge cluster scales the Visualcasting of an application up to n endpoints, the total

Visualcasting traffic from the cluster is calculated by the following equation:

T = nBA

As the number of endpoints increases, the total Visualcasting traffic reaches the maximum data

bandwidth of the SAGE Bridge cluster, and the Visualcasting performance is saturated.

T = uNBBH

The Visualcasting traffic to each endpoint is:

Te =
uNBBH

n

Given the parameters of the SAGE Bridge cluster, the maximum number of endpoints that can be

scaled by the SAGE Bridge cluster is:

n
uNBBH

BA

47

Given the number of endpoints, the minimum number of SAGE Bridge nodes in order to scale these

endpoints is:

NB

nBA

uBH

Pre-conditions Bin > BA and Bout > nBA provide users with additional guidance for the application

performance and for the number of endpoints of a Visualcasting session given the available network

bandwidth to and from the SAGE Bridge cluster.

For example, let us say that one wants to visualcast a compressed 4K animation at 33fps to 10

endpoints. A single stream of the animation uses 1Gbps network bandwidth i.e. BA= 1Gbps. If a

SAGE Bridge cluster consists of machines having a ten-gigabit network interface with 50% of

utilization, the minimum number of SAGE Bridge nodes needed in order to support the Visualcasting

session is:

NB

nBA

uBH

=
10nodes 1Gbps

0.5 10Gbps
= 2nodes

The available network bandwidth from the application node to the SAGE Bridge cluster should be

more than 1Gbps (Bin > BA). The available network bandwidth from the SAGE Bridge cluster to all

endpoints should be more than 10Gbps (Bout > nBA). The analytical model that has been described in

this section was verified by the Visualcasting experiments that will be discussed in the next chapter.

 48

This chapter describes the Visualcasting tests used to evaluate the performance and to verify

the analytic model of Visualcasting. The experimental results showed that the Visualcasting

implementation could sustain high-performance pixel data streaming at the rate of multi-ten gigabits

per second and scale the streams with an increasing number of endpoints as the analytic model

predicted.

For several years, the Electronic Visualization Laboratory (EVL) has spearheaded a

cooperative effort to build the Global Lambda Visualization Facility (GLVF) [Leigh06], a persistent

distributed facility aimed at enabling the synergistic research and development of next-generation

end-user tools for scientific visualization and collaboration in ultra-high-resolution display

environments. GLVF consists of globally distributed high-resolution tiled displays and rendering

resources interconnected by a global LambdaGrid (a grid of deterministic high-speed networks).

These internationally distributed display-rich environments provided the best testbed for

Visualcasting. Figure 19 is the network diagram of the Visualcasting testbed that consists of the

following institutions:

- The Electronic Visualization Laboratory at University of Illinois at Chicago;

- SARA Computing and Networking Services in Amsterdam, the Netherlands;

- The School of Information at the University of Michigan;

- Korean Institute of Science and Technology Information (KISTI) in Daejeon, South Korea;

49

- Gwang-ju Institute of Science and Technology (GIST) in Gwang-ju, South Korea;

- The California Institute for Telecommunications and Information Technology (CALIT2).

Most network links connecting these sites have a 10Gbps of network bandwidth except for

two links in South Korea. Four SAGE Bridge nodes are located at a high-performance research

network infrastructure called StarLight at downtown Chicago. Each node has a 10gigabit network

interface and two dual-core AMD Opteron processors running at 2.2GHz with 4GB of main memory.

The total network bandwidth to and from the SAGE Bridge cluster is 40Gbps. Each endpoint has a

heterogeneous tiled display dimension and number of display nodes as noted in the network diagram.

This provides a good environment to test the heterogeneous endpoint support of the Visualcasting

service.

Figure 19. Visualcasting testbed

50

Figure 20 shows a sustained performance test result of Visualcasting for several hours. Two

SAGE Bridge nodes placed at StarLight were used for this test. Tiled displays at EVL and the

University of Michigan were divided into multiple virtual endpoints to receive Visualcasting streams.

Two instances of SAGE benchmark application called “Checker” that streams white pixel buffers ran

on two rendering nodes at EVL. Each “Checker” stream used 0.8Gbps network bandwidth. Each

SAGE Bridge node received a “Checker” stream and distributed to multiple virtual endpoints at EVL

and University of Michigan. The total incoming traffic to the SAGE Bridge cluster was 1.6Gbps and

the total outgoing traffic from the SAGE Bridge cluster was 12.4Gbps: 9.2Gbps to EVL and 3.2Gbps

to University of Michigan. These results showed that the implemented Visualcasting service could

support high-resolution image multicasting at the rate of multi-ten gigabits per second sustaining the

rate over five hours.

 (The unit of horizontal axis of these graphs is hours)

Figure 20. Sustained Visualcasting performance

51

Figure 21 shows the result of a Visualcasting scalability test. Almost the same experimental

setup was used as that of the sustained performance test. In this case, the tiled displays at EVL and

University of Michigan were configured as 16 virtual endpoints. Full-HD (1920x1080) resolution

images were streamed to the SAGE Bridge cluster at the rate of 16fps. A SAGE Bridge node was able

to scale the Visualcasting streams up to 8 endpoints but was saturated for additional endpoints. By

adding another SAGE Bridge node, the Visualcasting streams successfully scaled up to 16 endpoints.

These results are consistent with the performance predicted by the analytic model discussed in

Section 4.5.

T = nBA = n 0.8Gbps

T1 = uNBBH = 0.7 1 10Gbps = 7Gbps

T2 = uNBBH = 0.7 2 10Gbps =14Gbps

The total outgoing traffic from the SAGE Bridge cluster T is scaled with the number of endpoints

until it reaches T1 (one bridge node) or T2 (two bridge nodes). These results show that the

Figure 21. Visualcasting throughput

52

implemented Visualcasting service can scale the distribution of visualization streams with the number

of endpoints as predicted by the analytic model of Visualcasting.

The multi-point full-HD video conferencing capability of Visualcasting was demonstrated

over the Visualcasting testbed on April 18, 2008 (see Figure 22). The participants of this

demonstration included EVL/UIC, SARA, University of Michigan, KISTI and GIST. This showed

that Visualcasting enables casual conversation among every participant by its short-latency

uncompressed HD video and audio distribution. Each endpoint sent a full-HD camera live-feed and

an audio stream to two SAGE Bridge nodes located at StarLight. Whenever a new HD video stream is

started, it is allocated to either bridge node according to the current load of each bridge node.

Each HD video stream had a 1920x1080 image resolution and a frame rate of 17~18fps, and

0.7Gbps network bandwidth utilization except for one video stream from SARA that had 6~7fps and

Figure 22. Multi-point HD video conferencing using Visualcasting

53

having 0.2Gbps network bandwidth utilization. Each endpoint received multiple HD video streams

according to its capacity. EVL, University of Michigan, and KISTI received four HD video streams

from other endpoints (three 0.7Gbps streams and one 0.2Gbps stream). GIST received the streams

from EVL and SARA (one 0.7Gbps stream and one 0.2Gbps stream). SARA received two 0.7Gbps

HD video streams. Thus, the total Visualcasting throughput during this demonstration was calculated

as follows:

(0.7x3 + 0.2)x3 + (0.7+0.2) + (0.7x2) = 9.2Gbps

During this demonstration GIST and SARA showed huge image artifacts if they received

more HD video streams than the number of streams indicated in the equation above. Though the

frame dropping for small-scale endpoints was enabled, the UDP flow control mechanism of

Visualcasting was not able to remove data loss at these endpoints. This problem will be investigated

more deeply in future research.

At the Supercomputing 2008 (SC08) conference in Austin, Texas, EVL demonstrated the full

capabilities of Visualcasting. During this demo, EVL, the University of Michigan, and Masaryk

University (Czech Republic) were linked to Visualcasting servers in Chicago so that they were all

able to share a 4K (4096x2048) pixel visualization stream as well as communicate over HD video

conferencing (see Figure 23).

54

Figure 23. SC08 Visualcasting demonstration

 55

Domain scientists need a collaborative visualization environment that enables them to see and

interact with huge amounts of data together with remote collaborators. SAGE supports both wide-area

distributed visualization and point-to-point collaboration, and Visualcasting extends SAGE to support

global collaboration with multiple endpoints in scalable display environments by distributing high-

definition video and audio as well as scientific visualization.

An analytic model of Visualcasting was built and verified by experiments using a

Visualcasting implementation. The experimental results showed that the implementation could scale

the Visualcasting service with an increasing number of endpoints, and various system parameters

affect the Visualcasting performance as predicted by the analytic model.

Frame dropping for a small-scale endpoint was implemented as an approach to address

heterogeneity in data bandwidth across Visualcasting endpoints. However, it turned out that the

approach required a more elaborate UDP network flow control mechanism or a new reliable network

streaming protocol over high-speed wide area network. Another candidate approach to address

heterogeneity of Visualcasting endpoints is multi-layered Visualcasting. The idea is to visualcast a

different image quality or resolution of image data through each layer. Then each endpoint subscribes

to a layer appropriate to its data bandwidth and display resolution. These problems and approaches

will be investigated as the future works of this research.

 56

[Banerjee02] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. “Scalable application layer

multicast,” Technical report, UMIACS TR-2002. 2002

[Burger05] Mathijs den Burger, Thilo Kielmann, Henri E. Bal, “Balanced Multicasting: High-

throughput Communication for Grid Applications”, SC'05, Seattle, WA, 12-18 Nov. 2005.

[Childers00] Childers, L, Disz, T., Olson, R., Papka, M. E., Stevens, R., and Udeshi, T., “Access

Grid: Immersive Group-to-group Collaborative Visualization,” Proceedings of Fourth International

Immersive Projection Technology Workshop, 2000.

[Deering91] Deering, S. E., “Multicast Routing in a Datagram Internetwork,” PhD thesis, Stanford

University, December 1991.

[DMX04] “Distributed multi-head X project,” http://www.x.org/archive/X11R6.8.2/doc/dmx.html.

[Germans01] Germans, D., Spoelder, H.J.W., Renambot, L., and Bal, H. E., “VIRPI: a High-level

Toolkit for Interactive Scientific Visualization in Virtual Reality,” Proceedings of Immersive

Projection Technology/Eurographics Virtual Environments Workshop, 2001.

[He03] He, E., et al, “Quanta: a Toolkit for High Performance Data Delivery over Photonic

Networks,” Journal of Future Generation Computer Systems, Volume 19, Issue 6, August 2003, pp.

919-933.

[Humphreys00] Humphreys, G., Buck, I., Eldridge, M., and Hanrahan, P., “Distributed Rendering for

Scalable Displays,” Proceedings of ACM/IEEE Conference on Supercomputing, 2000.

[Humphreys02] Humphreys, G., et al, “Chromium: a Stream-processing Framework for Interactive

Rendering on Clusters,” Proceedings of SIGGRAPH, 2002.

57

[Jannotti00] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O'Toole Jr.

Overcast: Reliable multicasting with an overlay network. In Proceedings of the Fourth Symposium on

Operating System Design and Implementation (OSDI), October 2000.

[Jeong06] Jeong, B., Renambot, L., Jagodic, R., Singh, R., Aguilera, J., Johnson, A., and Leigh, J.,

“High-Performance Dynamic Graphics Streaming for Scalable Adaptive Graphics Environment,”

accepted by ACM/IEEE Supercomputing 2006.

[Klosowski02] Klosowski, J. T., Kirchner, P., Valuyeva, J., Abram, G., Morris, C., Wolfe, R., and

Jackman, T., “Deep View: High-resolution Reality,” IEEE Computer Graphics and Applications,

Volume 22, Issue 3, May/June 2002, pp. 12–15.

[Krumbholz05] Krumbholz, C., Leigh, J., Johnson, A., Renambot, L., and Kooima, R., “Lambda

table: High Resolution Tiled Display Table for Interacting with Large Visualizations,” Proceedings of

Fifth Workshop on Advanced Collaborative Environments, 2005.

[Leigh03] Leigh, J., Renambot, L., DeFanti, T. A., et al, “An Experimental OptIPuter Architecture for

Data-Intensive Collaborative Visualization”, Third Workshop on Advanced Collaborative

Environments, Seattle, WA, June 2003.

[Leigh06] Leigh, J., Renambot, L., Johnson, A., Jeong, B., et al, “The Global Lambda Visualization

Facility: An International Ultra-High-Definition Wide-Area Visualization Collaboratory,” Journal of

Future Generation Computer Systems, Volume 22, Issue 8, October 2006, pp. 964-971.

[McCanne96] McCanne, S., Jacobson, V., and Vetterli, M, “Receiver-driven Layered Multicast,”

ACM SIGCOMM, 1996.

[Perrine01] Perrine, K. A., Jones, D. R., and Wiley, W. R., “Parallel Graphics and Interactivity with

the Scaleable Graphics Engine,” Proceedings of ACM/IEEE Conference on Supercomputing, 2001.

[PortAudio07] “PortAudio – portable cross-platform Audio API,” http://www.portaudio.com

58

[RDP08] “Remote Desktop Protocol,” http://msdn2.microsoft.com/en-us/library/aa383015.aspx

[Renambot04] Renambot, L., Rao, A., Singh, R., Jeong, B., et al, “SAGE: the Scalable Adaptive

Graphics Environment,” Proceedings of WACE 2004, Nice, France, 09/23/2004 - 09/24/2004.

[Richardson98] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood & Andy Hopper,

"Virtual Network Computing", IEEE Internet Computing, Vol.2 No.1, Jan/Feb 1998 pp33-38.

[SDL06] “Simple Directmedia Layer,” http://www.libsdl.org

[Singh04] Singh, R., Jeong, B., Renambot, L., Johnson, A., and Leigh, J., “TeraVision: a Distributed,

Scalable, High resolution Graphics Streaming System,” Proceedings of IEEE Cluster, 2004.

[Smarr03] Smarr, L., Chien, A. A., DeFanti, T., Leigh, J., and Papadopoulos, P. M., “The OptIPuter”

Communications of the ACM, Volume 46, Issue 11, November 2003, pp. 58-67.

[Solomita94] Solomita, E., Kempf, J., and Duchamp, D. 1994. XMOVE: a pseudoserver for X

window movement. X Resource issue 11 (Jul. 1994), p143-170.

[Stix01] Stix, G., “The Triumph of the Light,” Scientific American, January 2001.

[Vishwanath06] Vishwanath, V., Leigh, J., He, E., Brown, M. D., Long, L., Renambot, L., Verlo, A.,

Wang, X., DeFanti, T. A., “Wide-Area Experiments with LambdaStream over Dedicated High-

bandwidth Networks,” IEEE INFOCOM, April 2006.

[Woo99] Woo, M., Neider, J., Davis, T., and Shreiner, D., “OpenGL Programming Guide,” Reading,

MA, Addison Wesley Longman, 1999.

[Xiong05] Xiong, C., Leigh, J., He, E., Vishwanath, V., Murata, T., Renambot, L., and DeFanti, T.,

“LambdaStream – a Data Transport Protocol for Streaming Network-intensive Applications over

Photonic Networks,” Proceedings of The Third International Workshop on Protocols for Fast Long-

Distance Networks, Lyon, France, Feb. 2005.

59

NAME Byungil Jeong

EDUCATION

2003 – 2009 Ph.D., Computer Science, University of Illinois at Chicago, Chicago, Illinois

1997 – 1999 M.S., Electrical Engineering, Seoul National University, Seoul, Korea

1993 – 1997 B.S., Electrical Engineering, Seoul National University, Seoul, Korea

PUBLICATIONS

JOURNAL PAPERS

[1] Renambot, L., Jeong, B., Hur, H., Johnson, A., Leigh, J., “ Enabling High Resolution

Collaborative Visualization in Display Rich Virtual Organizations,” Future Generation

Computer Systems, Volume 25, Feb. 2009.

[2] DeFanti, T., Leigh, J., Renambot, L., Jeong, B., et al., “The OptIPortal, a scalable

visualization, storage, and computing interface device for the OptiPuter ,” Future Generation

Computer Systems 25, Feb. 2009.

[3] Leigh, J., Renambot, L., Johnson, A., Jeong, B., et al., “The Global Lambda Visualization

Facility: An International Ultra-High-Definition Wide-Area Visualization Collaboratory,”

Future Generation Computer Systems, Volume 22, Oct. 2006.

[4] Singh, R., Schwarz, N., Taesombut, N., Lee, D., Jeong, B., et al, “Real-time Multi-scale Brain

Data Acquisition, Assembly, and Analysis using an End to End OptIPuter,” Future Generation

Computer Systems, Volume 22, Oct. 2006.

[5] Hirano, A., Renambot, L., Jeong, B., Leigh, J., Verlo, A., et al, “The First Functional

Demonstration of Optical Virtual Concatenation as a Technique for Achieving Terabit

Networking,” Future Generation Computer Systems, Volume 22, Oct. 2006.

CONFERENCE PAPERS

[1] Tsukishima, Y., Hirano, A., Nagatsu, N., Imajuku, W., Jinno, M., Hibino, Y., Takigawa, Y.,

Hagimoto, K., Wang, X., Renambot, L., Jeong, B., Leigh, J., DeFanti, T., Verlo, A., “Lambda

Sharing Demonstration via Traffic-Driven Lambda-on-Demand,” Proceedings of the 33rd

European Conference and Exhibition on Optical Communication (ECOC 2007), Sep. 2007.

60

[2] Leigh, J., Johnson, A., Renambot, L., DeFanti, T., Brown, M., Jeong, B., Jagodic, R.,

Krumbholz, C., Svistula, D., Hur, H., Kooima, R., Peterka, T., Ge, J., Falk, C, “Emerging

from the CAVE: Collaboration in Ultra High Resolution Environments,” Proceedings of the

First International Symposium on Universal Communication, Jun. 2007.

[3] Venkataraman, S., Benger, W., Long, A., Jeong, B., Renambot, L., “Visualizing Hurricane

Katrina: large data management, rendering and display challenges,” Proceedings of the 4th

International Conference on Computer Graphics and Interactive Techniques in Australasia and

Southeast Asia 2006, Nov. 2006

[4] Jeong, B., Renambot, L., Jagodic, R., Singh, R., Aguilera, J., Johnson, A., and Leigh, J.,

“High-Performance Dynamic Graphics Streaming for Scalable Adaptive Graphics

Environment,” ACM/IEEE Supercomputing, Nov. 2006.

[5] Wang, X., Vishwanath, V., Jeong, B., Jagodic, R., He, E., Renambot, L., Johnson, A., and

Leigh J., “LambdaBridge: A Scalable Architecture for Future Generation Terabit

Applications,” Broadnets 2006 - Third International Conference on Broadband

Communications, Networks, and Systems, Oct. 2006.

[6] Renambot, L., Jeong, B., Jagodic, R., Johnson, A., Aguilera, J., and Leigh, J., “Collaborative

Visualization using High-Resolution Tiled Displays,” CHI 06 Workshop on Information

Visualization and Interaction Techniques for Collaboration Across Multiple Displays, Apr.

2006.

[7] Tsukinama, Y., Hirano, A., Nagatsu, N., Ohara, T., Imajuku, W., Jinno, M., Takigawa, Y.,

Hagimoto, K., Renambot, L., Jeong, B., Leigh, J., DeFanti, T., Verlo, A., Winkler, L., “The

First Application-Driven Lambda-on-Demand Field Trial over a US Nationwide Network,”

Proceedings of OFC/NFOEC 2006 (Optical Fiber Communication/ National Fiber Optic

Enginners Conference), Mar. 2006.

[8] Jeong, B., Jagodic, R., Renambot, L., Singh, R., Johnson, A., and Leigh, J., “Scalable Graphics

Architecture for High-Resolution Displays,” IEEE Information Visualization Workshop on

Using Large, High-Resolution Displays for Information Visualization, Oct. 2005.

[9] Renambot, L., Rao, A., Singh, R., Jeong, B., et al., “SAGE: the Scalable Adaptive Graphics

Environment,” WACE 2004, Sep. 2004.

[10] Singh, R., Jeong, B., Renambot, L., Johnson, A., and Leigh, J., “TeraVision: a Distributed,

Scalable, High resolution Graphics Streaming System,” IEEE Cluster, Sep. 2004.

[11] Jeong, B., Yoo, S., Lee, S., and Choi, K, “Hardware-Software Co-synthesis for Run-time

Incrementally Reconfigurable FPGAs", in Proceedings of the Asia South Pacific Design

Automation Conference (ASPDAC), pp.169-174, Jan. 2000.

[12] Jeong, B., Yoo, S., and Choi, K, “Exploiting early partial reconfiguration of run-time

reconfigurable FPGAs in embedded systems design”, in Proceedings of the 1999

ACM/SIGDA Seventh International Symposium on Field Programmable Gate Arrays (FPGA

’99), pp.247-250, Feb. 1999.

