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Visualization has proven its value in scientific advances by helping scientists gain insight 

from their data and verify scientific computations. The amount of scientific data collected from 

sensors and simulations can easily be on the order of petabytes of data. Visualization of this large-

scale data requires cluster computing, and more often than not distributed computing over high-speed 

networks, as the size of the data exceeds the capacity of the average computing clusters, and the data 

may not even reside locally. To view visualizations of large-scale data at or near native resolution, 

scalable tiled display walls are increasingly being used for scientific visualization. 

 

In this context, the Scalable Adaptive Graphics Environment (SAGE) has been developed to 

support large-scale data visualization in a distributed visualization environment that includes ultra-

high resolution scalable tiled displays. It is a specialized middleware that enables real-time streaming 

of extremely high-resolution graphics and high-definition video from remotely distributed rendering 

and storage clusters to scalable display walls over ultra high-speed networks. This dissertation 

extends SAGE to support distant collaboration between multiple endpoints. 

  

In the SAGE framework, each visualization application streams its rendered pixels to the 

virtual high-resolution frame buffer of SAGE, allowing users to freely move, resize and overlap the 

application windows on the display. Every window movement or resize operation requires dynamic 

and non-trivial reconfigurations of the involved graphics streams. These reconfigurations become 

even more complex when SAGE is required to support multiple collaboration endpoints with different 

tiled display configurations and application window layouts. 
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Visualcasting is a new SAGE network service to address this problem using a high-speed 

bridging system that receives pixel streams from rendering clusters and that duplicates and sends 

them to each end-point. This enables distant collaboration among international researchers in scalable 

display environments. Using the Visualcasting service, collaborators can share their visualizations 

and interact with each other through high-definition video conferencing in the SAGE Framework.  

 

Intellectual Merit: 

Visualcasting addresses the problem of high-performance graphics multicasting for tiled 

displays. Although a variety of techniques exist for supporting reliable multicasting, reliably 

multicasting graphics data onto remote tiled displays with heterogeneous display configurations is 

still a challenging, unsolved problem. Furthermore, Visualcasting addresses the problems of 

supporting heterogeneous endpoints in both network and display capacity as well as scaling the 

graphics multicasting with the number of endpoints and applications. 

 

Broader Impact: 

Visualcasting enables SAGE to multicast high-definition video and ultra-high resolution 

visualizations in scalable, real-time manner across globally distributed research centers. This 

capability will demonstrate a new way in which high-performance networking and visualization can 

be used in a broad range of research, academic and commercial applications. Furthermore, 

understanding the requirements, benefits and limitations of Visualcasting and alternative approaches 

will provide valuable input into the future of Internet system design. 
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Chapter 1 outlines the research areas investigated and summarizes the problems solved by 

this dissertation. Section 1.1 provides an overview of the research areas and introduces SAGE and 

Visualcasting. Section 1.2 describes the problems solved and articulates the approaches used to solve 

the problems. 

 

  

 

In a decade’s time, high-performance computing has proven its value in the fields of science, 

medicine, engineering, education, and filmmaking. These data-intensive domains rely on 

computational grid technology and high-quality visualizations to produce meaningful insights from 

terabytes of raw data. As research and development becomes increasingly global and 

multidisciplinary, the need for a computing infrastructure to support collaborative work among 

distributed users has grown dramatically [Leigh06]. Because the rate of decline of the cost of 

bandwidth far exceeds that of computing and storage [Stix01], it has recently become more cost-

effective for the domain users to connect to ultra-high-speed networks rather than for them to 

maintain their own large computing, storage and visualization systems. For this reason, it becomes 

more cost-effective for users to build low-cost, thin network clients than to have to purchase and 

maintain their own rendering farms, storage repositories, etc.  

 

In this context, the Electronic Visualization Laboratory (EVL) at University of Illinois at 

Chicago (UIC) and the California Institute for Telecommunications and Information Technology 

(Calit2) at University of California, San Diego (UCSD) have led the OptIPuter project [Smarr03, 
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Leigh03], a major NSF-funded initiative to design an advanced cyber-infrastructure for data-intensive 

science using optical networks. In order to develop the OptIPuter system, OptIPuter partners, who are 

primarily domain scientists have provided feedback about essential user requirements for the 

development of a collaborative scientific visualization system. One user requirement is that they want 

to view and interact with visualizations of multiple heterogeneous datasets simultaneously on ultra-

high resolution display walls. Secondly, they want to reduce cost by sharing remote visualization 

resources and storage servers in this cyber-infrastructure. Lastly, they want a system that supports 

human global collaboration across multiple sites that each contains ultra-high resolution display 

environments. 

 

EVL/UIC has developed the hardware and software systems to support these OptIPuter user 

requirements. LambdaVision (see Figure 1) is the hardware system, which is an 11x5 tiled display 

with a total resolution of 105 megapixels fed by network bandwidth on the order of tens of gigabits. 

A scalable high-resolution display like LambdaVision is essential to render complex geometric 

models without losing their details. Even though a geometric model has millions of triangles, if it is 

 

Figure 1. LambdaVision display driven by SAGE 



3 

rendered onto a single desktop display, only a small subset of those triangles could contribute to the 

final image [Klosowski02]. Also, geoscientists working with aerial and satellite imagery (365Kx365K 

pixel maps) and neurobiologists imaging the brain with montages consisting of thousands of pictures 

from high-resolution microscopes (4Kx4K pixel sensor) are good examples of LambdaVision users. 

 

The Scalable Adaptive Graphics Environment (SAGE) with the Visualcasting software 

system supports collaborative scientific visualization in scalable high-resolution display environments 

that include hardware such as LambdaVision. SAGE is an “operating system” for tiled-display 

environments, letting users launch distributed visualization applications on remote clusters of 

computers and stream the visualizations directly to their tiled displays, where they can be viewed and 

manipulated (see Figure 2). The uniqueness of SAGE lies in its ability to enable multiple parallel 

rendered applications that run on separate and distantly located computer clusters to stream the 

visualizations to any portion of a tiled display as individually managed windows. This ability allows 

multi-tasking on tiled displays. 

 

Figure 2. An example of SAGE session 
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A fundamental requirement of this high-resolution collaborative visualization system is the 

ability to broadcast or multicast visualizations to all collaborating sites so that all participants can 

simultaneously see and interact with the data. Multicasting in these high-resolution environments 

poses a significant challenge because potentially tens of gigabits of network bandwidth are needed to 

support collaborative visualization. This dissertation investigates this problem in detail and 

implements a scheme called Visualcasting that is specifically designed to provide the kind of image 

multicasting service needed for ultra-high definition visualization. Visualcasting enables SAGE-based 

global collaboration across multiple sites by allowing users to share their visualizations interacting 

with each other via multi-point high-definition (HD) videoconferencing in scalable tiled display 

environments. 

 

 

The essential problem this dissertation investigates is how to enable the scaling of a system 

that distributes extremely high-resolution visual content in real-time from multiple rendering clusters 

 

Figure 3. Distributed visualization 

 

Figure 4. Visualcasting scenario 
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to multiple tiled displays in order to enable distant collaboration with multiple endpoints using high-

resolution tiled displays. Figure 3 shows a distributed visualization scenario supported by SAGE, 

which involves running visualization applications at multiple remote rendering clusters and streaming 

their pixels to one big tiled display. Figure 4 shows a Visualcasting scenario including multiple 

collaboration endpoints and remote rendering clusters. 

 

To support dynamic resizing and repositioning of visualization application windows on the 

tiled display wall, SAGE needs to dynamically repartition image data and stream each partition to an 

appropriate tile or display node. This is called dynamic pixel stream reconfiguration and will be 

discussed in detail in Chapter 3 [Jeong06]. In the first scenario in Figure 3, each sender partitions 

application images in only one way. However, in the second model in Figure 4, since each endpoint 

individually manages application windows on its tiled display, each sender manages independent 

image partitions and streams for all endpoints. As more endpoints join and the required network 

bandwidth and computation increase, senders will begin to face a scalability problem. 

 

This problem is solved by transferring pixel data through a high-speed bridging system called 

SAGE Bridge, which is placed at a core network center in the middle of collaboration endpoints (see 

Figure 5). A SAGE Bridge acts as a pixel stream duplicator and splitter for Visualcasting. It 

decouples pixel data duplication and partitioning from pixel rendering so as to prevent rendering 

nodes from being overloaded by the addition of endpoints. This allows each rendering node to stream 

full image frames to a SAGE Bridge without considering the window layouts and tiled display 

configurations of multiple endpoints. The SAGE Bridge software is deployed on a high-performance 

PC cluster equipped with ten-gigabit network interfaces. The experimental results provided in 

Chapter 5 show that this approach can scale to support an increasing number of endpoints by 

allocating an increased number of cluster nodes for the SAGE Bridge. The traditional Internet 
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Protocol (IP) multicast could be an alternative approach, but it has several limitations that will be 

discussed in Section 2.2 [Deering91]. 

 

An obvious approach to partition the same image data differently for each tiled display 

(endpoint) involves creating a group of network buffers for each endpoint and copying the 

appropriate portions of the image to each buffer. However, in this approach, adding a new endpoint 

incurs a significant system overhead because the required memory capacity for network buffers and 

the memory bandwidth for copying the image data increas with the number of endpoints. An 

advanced approach to be used by Visualcasting is called pixel block based streaming. The approach 

partitions image data into equally sized pixel blocks and calculates their destinations (either tiles or 

display nodes) for each endpoint. In this approach, senders manage an independent grouping of pixel 

block pointers for each endpoint rather than a group of network buffers. No additional memory 

buffers or memory copies are required by the addition of a new endpoint.  

 

Figure 5. SAGE Bridge approach 
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Another important problem addressed by Visualcasting is handling the computational 

resource heterogeneity in network bandwidth and display resolution of endpoints. Due to this 

heterogeneity, endpoints consume (display) streamed data at different rates. For example, the 

maximum frame rate of an uncompressed 4Kx2K animation at an endpoint with 6 gigabits per second 

(Gbps) of network bandwidth is 30 frames per second (fps) while the maximum rate at another 

endpoint with a 1Gbps of network bandwidth is only 5fps. Visualcasting is able to support these 

heterogeneous endpoints independently by preventing a slow endpoint from degrading the overall 

Visualcasting performance. An approach to handle this problem is to drop image frames for slow 

endpoints at the SAGE Bridge. This technique allows a SAGE Bridge to adaptively stream pixel data 

at a rate that each endpoint can afford, which permits a different application frame rate at each 

endpoint. 

 

Visualcasting requires high-performance pixel streaming over wide-area network. User 

Datagram Protocol (UDP) is chosen as the network protocol for Visualcasting rather than 

Transmission Control Protocol (TCP) because the former shows much higher and more stable 

performance over wide-area networks with long round trip time than the latter. However, since UDP 

is an unreliable network protocol, safe delivery of pixel data is not guaranteed. Pixel data loss may 

result in significant visual artifacts on the displayed visualization. The SAGE pixel streaming 

architecture has to be designed to handle the possible data loss and to control pixel data flows so as to 

minimize data loss. Effective flow control of UDP pixel streams is vital for the heterogeneous 

endpoint support of Visualcasting because the data transfer rate for each endpoint is determined by 

the flow control mechanism. The SAGE Bridge decides whether or not to drop image frames based 

on this rate.   

 

The fundamental research questions that originated from these problems include: 

• How to arbitrarily scale simultaneous data distribution to multiple receivers? 
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• What parameters affect this ‘arbitrarily scaling’ and how do these parameters affect the 

distribution throughput? 

• What happens if the receivers are heterogeneous? Are any special considerations needed? 

These questions will be addressed in the following chapters.
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This chapter discusses a few of the prior works related to SAGE and Visualcasting. Section 

2.1 introduces other parallel and remote rendering systems, and compares them with SAGE. Section 

2.2 discusses possible Visualcasting approaches using the traditional IP multicasting technique, and 

compares them with the SAGE Bridge Visualcasting approach.  

 

 

 

There are several existing systems with parallel and remote rendering schemes related to 

SAGE. The simplest case of remote rendering uses remote desktop systems such as VNC 

[Richardson98], Remote Desktop Protocol [RDP08] and Xmove [Solomita94]. These systems were 

designed to transmit a single desktop to remote computers over slow networks and to operate on 

event-triggered streaming mechanisms. They are not suitable for real-time streaming of high-

resolution scientific visualizations or with collaborative applications. Access Grid [Childers00] is a 

system that supports distributed collaborative interactions over computational grids. Although it 

enables remote visualization sharing, the major focus of the Access Grid lies in enabling distributed 

meetings and conferences. Furthermore, the display resolution of remote desktop methods and Access 

Grid is limited to a single desktop resolution. On the other hand, SAGE can support scalable display 

walls with a 100-megapixel resolutions and include these systems as SAGE applications by adding 

the simple SAGE API to them. 

 

Perrine et al. and Klosowski et al. presented the merits of high-resolution display for various 

visualization applications using the Scalable Graphics Engine (SGE) developed by IBM [Perrine01, 
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Klosowski02]. SGE is a hardware frame buffer for parallel computers. Disjoint pixel fragments are 

joined within the SGE frame buffer and displayed as a contiguous image. SGE supports up to sixteen 

1GigE inputs and can drive up to eight displays with double-buffering to support display systems of 

up to 16 megapixels. SAGE and SGE are similar in that they both receive graphics data from multiple 

rendering nodes and route that data to high-resolution displays. 

 

However, SAGE differs from SGE in that the former is a software approach which is much 

more flexible and scalable than the latter. Since SAGE does not require any special hardware, new 

network technologies like 10GigE and other new protocols are easily applied to SAGE. SGE, on the 

other hand, is bound to 1GigE inputs and the SGE-specific network protocol. There is no theoretical 

limitation to scaling the performance of SAGE by adding more rendering and display nodes. 

Conversely, network bandwidth, number of inputs and memory capacity limit the performance of 

SGE.  

 

There are several parallel rendering systems that can benefit from SAGE or SGE. WireGL 

[Humphreys00] or parallel scene-graph rendering is a sort-first parallel rendering scheme from a 

single data source. This approach allows a single serial application to drive a tiled display by 

streaming graphics primitives that will be rendered in parallel on display nodes. However, it has 

limited data scalability due to its single data source bottleneck. Flexible scalable graphics systems 

such as Chromium [Humphreys02] or Aura [Germans01] are designed for distributing visualizations 

to and from cluster driven tiled-displays. However, since these systems enable only one application at 

a time with a static layout on a tiled display, they require a graphics streaming architecture such as 

SAGE or SGE to move, resize and overlap multiple application windows.  

 

XDMX (Distributed Multi-head X11) [DMX04] is another system that can drive a tiled 

display. It is a front-end proxy X server that controls multiple back-end X servers to make up a 
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unified large display. XDMX also can support Chromium to display multiple applications on a tiled 

display. However, XDMX does not support parallel applications. This limits its scalability with 

respect to large datasets. 

 

No other systems discussed so far were designed to stream graphics data over a high-speed 

wide-area network. In contrast, SAGE has a UDP-based high-speed pixel streaming architecture for 

wide-area networks that have multi-ten gigabits of network bandwidth. The architecture is open so 

that it may use new streaming protocols designed for high-bandwidth and high round-trip time 

networks that are not considered in the streaming architectures of SGE and Chromium. In addition, 

SAGE considers the mullions (borders) of each LCD panel of tiled displays when displaying 

application windows. Hence, the mullions appear to be placed on top of a large continuous image. 

This feature was considered neither in SGE or Chromium. 

 

TeraVision [Singh04] developed by EVL is a scalable platform-independent solution that is 

capable of transmitting multiple synchronized high-resolution video streams between single 

workstations and/or clusters. TeraVision can also stream graphics data over wide-area networks. 

However, it has a static application layout on a tiled display. It is suitable for streaming a single 

Table 1. Comparison between SAGE and other approaches 
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desktop to a high-resolution tiled display but not suitable for supporting parallel applications or 

multiple instances of applications.  

 

Table 1 compares SAGE with other systems. This table clearly shows that scalable image 

multicasting (Visualcasting), which is addressed in this thesis is the most unique feature of SAGE. No 

other approach solves this problem. 

 

 

 

Multicasting is the simultaneous transmission of data to a subset of hosts in the network using 

efficient strategies to send the data over the network only once. It provides data delivery to groups of 

hosts with lower network and host overhead than by broadcasting to all hosts or by unicasting to each 

host in a group [Deering91]. Visualcasting can be defined as a real-time image multicasting service 

from multiple rendering clusters to multiple display clusters. It is possible to implement Visualcasting 

exploiting existing multicast techniques, but there are several problems in this approach. 

 

First, generating and managing multicast groups is a complicated problem in Visualcasting 

because the number and membership of the group are dynamically changed whenever users move or 

resize visualization windows. A multicast group consists of the end-nodes that receive the same data, 

but since the visualization image is partitioned differently for each Visualcasting endpoint, the end-

nodes receiving the exact same image fragment are rarely found. To generate a multicast group, the 

system needs to find a group of end-nodes who have a non-empty intersection between the image 

fragments that they receive, and the image fragment intersections are found by overlapping different 

image partitions as shown in Figure 6. 
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Second, since every intersection generated by overlapping the image partitions produces a 

multicast group, the number of the multicast groups explosively increases with the addition of end-

points, the extension of the tiled display dimensions, or dynamic changes in display window layouts. 

This incurs a scalability problem because of the limited number of multicast IP addresses (i.e. a 

limited number of multicast groups) are provided for a network.  

 

The last problem with this approach is a long delay for both performing display window 

operations and the joining of a new endpoint, because dynamic changes of a multicast group 

membership incur significant latency.  For these reasons, a multicast approach is not appropriate for 

solving Visualcasting problem. 

 

In addition, multicast-based Visualcasting requires very expensive specialized routers or 

switches in order to support multicast service on the order of multi-ten gigabits/s. Conversely, a 

 

Figure 6. Image partition for multicasting 
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SAGE Bridge consists of commodity PCs running the SAGE Bridge software. Although a variety of 

reliable multicast techniques exist, low-latency reliable multicast on the order of tens of gigabits per 

second is an unsolved problem and an active area of research within the Grid community [Burger05].  

 

Layered multicast [McCanne96] is a possible approach to resolve heterogeneous endpoint 

issue discussed in Section 1.2. This idea consists of processing source images to generate multiple 

image versions with differing levels of image quality and streaming each version as a separate 

multicast layer. Then, each endpoint selectively chooses the layers of the stream that are appropriate 

to the endpoint considering its network bandwidth and display resolution. However, this approach 

may place an excessive computational load on senders, which may result in non-trivial system 

performance reduction.  

 

The SAGE Bridge Visualcasting approach is similar to application-layer multicast in its basic 

idea and advantages over IP multicast [Jannotti00, Banerjee02]. Since both Visualcasting and 

application-layer multicast duplicate data on the computing nodes instead of on multicast-enabled 

routers or switches, they can be easily deployed on conventional networks, while large parts of the 

Internet are still incapable of IP multicast. Application-layer multicast approaches, however, are 

typically designed for low-bandwidth data streaming applications with large receiver sets 

[Banerjee02].  On the other hand, SAGE Bridge Visualcasting software is designed for high-

bandwidth, large-scale data distribution for multiple tiled display clusters. 
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SAGE is the infrastructure for Visualcasting, which provides essential capabilities including 

high-performance real-time streaming of image data between visualization clusters, dynamic 

reconfiguration of the image streams, synchronization among visualization cluster nodes, centralized 

control of local and remote cluster nodes, and audio data streaming. This chapter describes the SAGE 

architecture to implement these essential capabilities for Visualcasting. Specifically, Section 3.1 

shows an overview of the SAGE architecture and introduces the hardware and software components 

of SAGE. Section 3.2 and 3.3 highlights the functions of SAGE components following the SAGE 

starting procedure and the pixel pipeline stages. Section 3.4 discusses the problem and approach of 

dynamic pixel stream reconfiguration. Section 3.5 discusses the user interaction with SAGE. Section 

3.6 describes the audio data streaming architecture in SAGE. 

 

 

 

The hardware environment where SAGE runs comprises a scalable tiled display cluster, 

distributed rendering clusters and high-speed networks that fully connects the cluster nodes. Figure 7 

illustrates a SAGE session running on this environment. Multiple visualization applications run on 

distributed rendering clusters. SAGE captures their output images and independently streams and 

displays them on a scalable tiled display. The Free Space Manager (FSManager) is the window 

manager of SAGE which is akin to a traditional desktop manager in a windowing system, except that 

it can scale from a single tablet PC screen to a desktop spanning a large tiled display. It controls 

image streams between rendering clusters and the tiled display cluster in response to various user 

commands such as a window move, a window resizing, or z-order change. The Application Launcher 
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(AppLauncher) allocates rendering cluster nodes to visualization applications and then launches them. 

The FSManager typically runs on the master (control) node of a tiled display cluster, and the 

AppLauncher runs on the master node of a rendering cluster. However, it is possible to run them on 

any machine that has network connectivity to all cluster nodes under their control. 

 

Figure 8 shows the software components of SAGE running on the hardware components. In 

addition to the FSManager and the AppLauncher introduced above, visualization applications use 

SAGE Application Interface Library (SAIL) to send their output pixel data to a tiled display. Any 

application with uncompressed pixel output can be easily ported to SAGE by adding ten to twenty 

lines of SAIL API code. In order to support parallel visualization applications where each rendering 

node will generate a portion of the whole picture, the SAIL API allows application programmers to 

describe output image buffers (width, height, pixel format and so on) and the position of the buffers 

in the whole application image. 

 

Figure 7. An example of SAGE session  
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Figure 8. Software components of SAGE 

 SAGE Display Manager is a pixel stream receiver running on each display node. It supports 

simultaneous display of multiple SAGE applications on a tiled display by receiving multiple 

independent pixel streams from each application. Whenever users move or resize an application 

window, the FSManager updates the new window information to SAIL and SAGE Display Managers 

so that the application imagery can be displayed on any part of the tiled display as users want. SAGE 

UI allows users to launch, move and resize SAGE applications by sending user interaction commands 

to other SAGE components and informs users of various application information including 

application name, window attributes, and performance data. The SAGE audio manager plays audio 

data streamed from SAIL that is synchronized with visual data. 

 

SAGE is developed on the Linux operating system and ported to Mac OS X, Sun Solaris and 

Microsoft Windows. OpenGL [Woo99] and Simple DirectMedia Layer (SDL) are used in order to 

display images on a screen [SDL06]. Posix Thread (pthread) is used for multi-threading in numerous 
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parts of SAGE. QUANTA, a cross-platform adaptive networking toolkit [He03], is used to deliver the 

control messages to other SAGE components. 

 

 

 

During the starting procedure, SAGE components are launched by users or another SAGE 

component and configured by user-defined parameters. The control channels are created between the 

FSManager and other components and the data channels are created and configured between the 

application (SAIL) and the receivers (SAGE Display Manager) so that SAGE becomes ready to 

stream high-resolution image frames. 

 

The first step of starting SAGE is launching the FSManager. It reads various configuration 

parameters from files, launches a SAGE Display Manager on each tiled display cluster node 

according to the parameters, establishes control channels to SAGE Display Managers, and distributes 

necessary configuration information to them. 

Table 2. SAGE tiled display configuration 
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The configuration read by the FSManager includes IP addresses and port numbers used for 

control and data connections, buffer sizes for image streaming, and tiled display parameters listed in 

Table 2. Figure 9 shows an example of a tiled display configuration and the virtual desktop generated 

from it. The FSManager retains the size and position of each screen in pixel coordinates with its 

origin at the lower-left corner of the whole tiled display. The mullion (screen border) width in inches 

is converted to the number of pixels. In this example, the mullion width in pixel numbers is 0.6 inch x 

90 ppi = 54 pixels. This number is used for calculating the coordinates of each screen in Figure 9. 

Based on the virtual desktop information, the FSManager launches SAGE Display Managers and 

sends them initialization messages. Once the initialization of all SAGE Display Managers is 

complete, the FSManager and SAGE Display Managers wait for connections from SAGE 

applications. 

 

The second step is starting the AppLauncher on a rendering cluster unless it is already 

running on it. The AppLauncher reads a user-defined SAGE application configuration file that 

includes the list of SAGE applications available on the cluster and various application parameters for 

SAGE in Table 3. An application can have many different configurations and the available 

application list is forwarded to the SAGE UI. 

 

 

Figure 9. An example of SAGE tiled display configuration 
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The third step is starting SAGE UI and connecting it to the FSManager and the AppLauncher. 

SAGE UI fetches the tiled display information from the FSManager and draws the outline of the 

display. According to the application list from the AppLauncher, the application icons are drawn 

below the display outline. When a user selects one of these icons, the list of available configurations 

for the application is displayed. By selecting a configuration, the application is launched by the 

AppLauncher. 

 

The fourth step is the starting and connecting of the application to the FSManager. In the 

initialization phase of the application, a SAIL object is created inside the application. The object is 

initialized by the application configuration selected by the users. The IP address and the port number 

of the FSManager are included in the configuration and used for creating a connection to the 

FSManager. It creates a data object for managing the application information and sends the receiver 

(SAGE Display Manager) information to the SAIL object. 

 

The fifth step is establishing pixel data channels and configuring pixel streams on them. The 

SAIL object connects to the receivers running on the tiled display using the information (IP addresses 

and port numbers) of the receivers from the FSManager. The new connections themselves work as 

Table 3. Application parameters for SAGE 
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pixel data channels when the TCP protocol is used, or the connections are used for creating pixel data 

channels when the UDP protocol is used. The FSManager generates stream information containing 

the image partitions and the destinations of the application. The stream information is delivered to 

SAIL and used to configure new streams on the pixel data channels. The details of the configuration 

are discussed in the following sections. 

 

After these five steps the pixel data streams are started from the application to the receivers, 

and the application imagery is shown on the tiled display. The next section discusses the pipeline 

stages for the pixel data delivery. 

 

 

 

Figure 10 shows the five pipeline stages of SAGE. In the data fetch stage, an application 

writes pixel data on a SAGE frame buffer in the SAIL object. Pixel blocks are generated from the 

SAGE frame buffer, and the blocks are grouped according to their destination (tiled display node) in 

the block generation stage. Grouped pixel blocks are streamed to a display node in the block transfer 

stage. The SAGE Display Manager running on the node receives the pixel blocks and inserts them 

into the pixel block buffer in the block read stage. The SAGE Display Manager also fetches and 

downloads the pixel blocks from the buffer into graphics hardware. Downloaded pixel data is updated 

 

Figure 10. SAGE pipeline 
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on a screen synchronized with the adjacent screens in the display stage. Each stage has its own thread 

and is connected to the next stage by various buffers: double frame buffers, pixel block buffers and 

network buffers. 

 

 

 

The SAGE Application Interface Library (SAIL) has double frame buffers to store 

application output images and to connect the data fetch stage and the block generation stage. One 

buffer is used at data fetch stage for storing new pixel data, and the other is used at the block 

generation stage for generating pixel blocks from it. Two buffers are swapped when both stages are 

ready to proceed to the next frame. This occurs when writing an image frame on one buffer is done at 

the data fetch stage, and pixel block generation from the other buffer is done at the block generation 

stage. 

 

There are two ways to fill the frame buffers. One is passing the address of an application 

output buffer to SAIL and copying data from the application buffer to a frame buffer. The other is 

providing the application with the address of a frame buffer so that the application directly writes 

image data on it. The recent version of SAGE uses the latter. It has an advantage of avoiding a 

memory copy inside SAIL and using less memory but requires more changes in application code. 

 

Let us call the two frame buffers as buffer A and buffer B. Once an application writes a full 

image frame on buffer A, it calls SAIL swapBuffer() which passes buffer A to the block generation 

stage and makes buffer B available to the application. But if buffer B is still in use at the block 

generation stage, the caller (application thread) is blocked inside the function call until the block 

generation thread releases buffer B. If the function was a non-blocking call (just return to the caller if 
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buffer B is still in use), the application would overwrite new frames on buffer A until buffer B is 

released. One advantage of this method is it does not interfere the execution of application and always 

sends the newest frame. But it arbitrarily skips application image frames. In the case of a parallel 

application, this arbitrary skipping ruins synchronization among application nodes. This is the reason 

why SAIL swapBuffer() call is designed as a blocking call. But it limits the performance of 

application to the network streaming performance of SAGE. 

 

 

 

An obvious approach to distribute image data over multiple tiles (screens) is to partition an 

image according to the application layout on each tile and stream partitioned image fragments to 

appropriate tiles. But, rather than sending exact image fragments, the recent version of SAGE 

generates regularly-sized pixel blocks from an application image and selectively streams them to each 

tile. The main reason SAGE uses pixel block-based streaming is to support Visualcasting. This is 

discussed in detail in Section 4.2. 

 

Once a frame buffer filled with new image is swapped into the Block Generation stage, SAIL 

reconfigures existing pixel streams if new application window layout information is received from the 

FSManager. A synchronization point is located here for parallel applications so that all application 

nodes have consistent pixel stream configuration. This synchronization is essential for seamless 

application window repositioning and resizing. Without this synchronization, parallel application 

streams may be reconfigured at a different image frame at each rendering node. This would result in 

broken imagery on the display during the window operation. To guarantee that the streams 

reconfigure in the same image frame, SAIL delivers a stream with a reconfiguration message attached 
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to a synchronization signal to each rendering node. Then pixel blocks are generated from the frame 

buffer, grouped according to the pixel stream configuration and passed to the block transfer stage.  

 

Figure 11 shows an example of pixel block generation and the data structure of a SAGE pixel 

block. A parallel application runs on four rendering nodes, and its output image stored on four frame 

buffers is partitioned into an MxN (5x5 in Figure 11) array of pixel blocks with uniform width and 

height, with the exception of blocks on the edges of the frame buffers. This pixel block array is 

consistent for every application frame. Each block has a unique ID called blockID that is determined 

by the location of the block in the application output image. It is calculated by the following equation. 

blockID = x _ index + y _ index M  

Here x_index and y_index are the x and y indices of the MxN pixel block array. X_index 

increases from left to right, and y_index increases from bottom to top. On the other hand, x_index and 

y_index can be calculated from blockID. A display node can calculate the position (x, y) of a pixel 

block in the application image from its blockID assuming it knows the value of M, the width and 

height of the pixel blocks, and the row order of the application image which is bottom to top. 

 

Figure 11. SAGE pixel block generation 
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x _ index = blockID mod  M

y_index =  
blockID

M
x = x _ index block _width

y = y _ index block _ height

 

 

The pixel block position is pre-calculated and stored in a table together with blockID. When a 

display node locates incoming pixel blocks on its frame buffer to be displayed, the block position in 

the table is referenced by blockID. The blockID to block position mapping is valid for every image 

frame of the application. In this way, the display node gets a pixel block position from the blockID 

without requiring additional runtime calculation.  

 

Also, the geometric calculation results for a pixel block are stored in a table with its blockID 

and reused later. A good example is the grouping of pixel blocks in order to distribute the pixel data 

over a tiled display. A lot of geometric calculation (e.g. coordinate comparison) is required to 

generate the pixel block groups. However, the grouping result is stored with a blockID and reused for 

many frames since the pixel block groups remain the same until the application window is 

repositioned or resized. Figure 12 shows an example of the pixel block grouping. 

 

Figure 12. Application image partition and pixel block group map 
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Reconfiguring a pixel stream means the regeneration of pixel block groups according to a 

new application window layout on a tiled display as shown in Figure 12. Once SAIL receives a 

window layout message from the FSManager, it regenerates pixel block groups and stores the result 

in a pixel block group map as shown on the right-hand side of Figure 12. Whenever a new block is 

generated, it is inserted into a block group according to the pixel block group map. The pixel blocks 

that are displayed on multiple tiles (e.g. block 7 in Figure 12) belong to multiple groups. This process 

is repeated for the following image frames until the pixel stream reconfiguration happens again. Each 

block group has a different destination (a tiled display node) and is sent over a separate stream in the 

block transfer stage. 

 

In the case of a parallel application, a special case happens in the pixel block generation. A 

pixel block can be located over multiple application nodes. For example, pixel block 13 in Figure 11 

is partially generated by every node. Each node sends a partially filled block to a display node. It 

receives four partial blocks covering a different portion of pixel block 13. In order to locate the partial 

blocks correctly, each block needs to carry additional information. The fields x_offset, y_offset, width 

and height (see Figure 11) in the pixel block header provide the necessary information. The frame ID 

in the header is used for synchronizing the display of pixel blocks over multiple tiles. 

 

 

 

Pixel block based streaming is suitable for dynamically distributing pixel data over a tiled 

display. However, sending one big data buffer at a time results in better network streaming 

performance than partitioning the data into smaller blocks and sending them one by one. In the block 

transfer stage, SAIL collects the pixel blocks to be sent over a network stream and creates pixel block 
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clusters. By using iovec
1
 data structure, a pixel block cluster is sent by a system call. This achieves 

higher network performance than streaming block by block. The size of a pixel block cluster is a user 

parameter that has a significant impact on SAGE network streaming performance. Since every pixel 

block in a cluster should have the same frame ID and the number of pixel blocks for an image frame 

is not always a multiple of the size of a pixel block cluster, some clusters can have lower than normal 

cluster size. Once a pixel block cluster is created, it is inserted into the network stream buffer. 

 

SAGE uses both TCP and UDP as its network streaming protocol. While TCP has its own 

flow control mechanism, application level flow control is required for UDP to prevent data loss. SAIL 

has a network streaming thread for UDP flow control.  This thread has a network transfer loop that 

fetches a pixel block cluster from a network steam buffer and sends it over a network. It monitors the 

average data transfer rate of every network stream. Each stream has a target data transfer rate derived 

from the frame rate of the application. The priority of a network stream is determined by the ratio of 

the target data transfer rate to the current average data transfer rate.  

 

The stream with the highest priority among the streams having at least one pixel block cluster 

in its network stream buffer is selected to send a pixel block cluster in each path of the network 

transfer loop. But if the average data transfer rate of the selected stream is larger than the target data 

transfer rate of the stream, no data is transferred for the path. This pixel data transfer algorithm 

achieves the fairness among network streams by giving the highest priority to the stream most lagging 

behind from its target data transfer rate. The algorithm controls the data flow of network streams so as 

not to exceed their target data transfer rate by temporarily suspending the flows. This reduces the 

possibility of data loss at the receiving ends and at network components in the middle. 

                                                        
1
 A Unix data structure to access scattered buffers in a system call. It has starting addresses and sizes of 

the scattered buffers. 
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At the end of the network transfer loop, the total data transfer rate from SAIL is checked at 

each global flow checking interval. If the rate exceeds the maximum network bandwidth of the 

application node, the loop is suspended until the rate goes down below the maximum network 

bandwidth in order to prevent data loss at the node. Table 3 shows pseudocode to implement this 

algorithm. 
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Table 4. Pixel data transfer algorithm 
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A SAGE Receiver in a SAGE Display Manager receives multiple independent pixel streams 

from each application at the block read stage. A SAGE Receiver is created for each application and it 

has its own thread. It is blocked until new data arrives in one of the incoming streams and also 

synchronizes those streams from a parallel application. It reads a pixel block cluster from an 

incoming stream and inserts it into the SAGE block buffer. The pixel block cluster is split into 

individual blocks in the next stage (the display stage). Another important roll of a SAGE Receiver is 

checking the last pixel block of an image frame and inserting a special control block into the SAGE 

block buffer. This helps the pixel downloader in the next stage easily detect the end of an image 

frame. 

 

 

The main problems in designing the display stage are how to efficiently display multiple 

application image streams at different rates on a screen and how to synchronize these streams with the 

associated streams displayed on neighboring screens. To address the first problem, a SAGE Display 

Manager creates a couple of OpenGL textures for each application, fetches pixel data from a SAGE 

block buffer, downloads it onto them and then draws a rectangle mapped with the textures for each 

application. While one of the textures (the front texture) is used for drawing the rectangle, the other 

texture (the back texture) becomes the target of newly downloaded pixels. Once a new image frame is 

fully downloaded on the back texture, two textures are swapped and the newly downloaded image is 

drawn on the screen.  

 

When a new application image is drawn on the screen, the back frame buffer of the graphics 

card is cleared completely, all application images on the buffer are redrawn and the frame buffer is 



31 

swapped onto the screen. Since the texture swapping happens at a different rate for each application, 

an application image often has to be redrawn not because the image itself is updated but because 

another application image on the same screen is updated. Though the overhead for redrawing the 

image that is already downloaded on a texture is minimal, the SAGE screen refresh rate can increase 

far exceeding that of a physical monitor.  

 

For example, if two applications are running at the frame rate of 60fps on a screen, the SAGE 

Display Manager may try to refresh the screen at the rate of 120Hz in the worst case though the 

physical screen refresh rate of the monitor is just 60Hz. If the swap buffering of the graphics card is 

synchronized with the screen refresh rate of the monitor, i.e. the swap buffering call is blocked until 

the screen is actually refreshed, a big performance overhead is incurred in the case of this example. 

To periodically check if any application image is updated and to refresh the screen if necessary is the 

more performance-efficient approach than to refresh a screen whenever an application image is 

updated.  

 

However, the texture swapping and screen refresh on a display node should be synchronous 

with those operations on its neighbor. So the periodical check for image updates should be performed 

globally at the synchronization server rather than locally on each node. The synchronization server 

periodically sends every display node synchronization signals together with a message that indicates 

whether each application is ready to swap the textures, i.e. whether the application image is updated. 

Each display node swaps the textures of the applications displayed on it or waits longer according to 

the message in the synchronization signal. 

 

A typical method to synchronize the texture swapping (image buffer update) and the screen 

refresh is to place one synchronization point before both the texture swapping and another 

synchronization point before the screen refresh. When the display thread reaches the texture swapping 
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synchronization point, it sends the first synchronization update to the synchronization server and 

waits for a synchronization signal from the server. It broadcasts the synchronization signals once it 

receives an update from the every display node. The same synchronization procedure is repeated at 

the screen refresh synchronization point. For the best synchronization result, the display thread has to 

be blocked while waiting for a synchronization signal. 

 

This method works fine for other tiled display applications that show a single visualization 

content at a time. In contrast, this method gives a big performance penalty to SAGE since frequently 

blocking the display thread prevents other application image streams from being downloaded to the 

graphics card. This frequent blocking is due to the texture swapping of an application stream.  To 

minimize this performance penalty, SAGE does not block the display thread on the texture swapping 

synchronization point. While waiting for the synchronization signal for an application, the display 

thread performs pixel data downloading for other applications. The SAGE Display Manager has a 

separate synchronization signal checking thread that sends a synchronization event to the display 

thread. Once it receives the synchronization event, it swaps the textures of the applications that are 

marked as ready for texture swapping in the message of the synchronization signal and proceeds to 

the screen refresh synchronization point.  

 

Here the display thread is blocked after sending the second synchronization update to the 

synchronization server and waits for the screen refresh synchronization signal from the 

synchronization server in order to achieve the best synchronization result. Since the display nodes are 

already synchronized at the texture swapping synchronization points, the expected blocking time at 

the screen refresh synchronization point is much shorter than the expected blocking time without the 

texture swapping synchronization. The minimization of this blocking time is essential for reducing a 

performance penalty incurred by this synchronization method. 
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Some synchronization jitter is expected at the texture swapping synchronization point since 

the response for a texture swapping synchronization signal can be delayed in the event queue of the 

display thread. However, this jitter is invisible on screens and is acceptable for the purpose of 

minimizing the blocking time at the screen refresh synchronization point. The synchronization jitter at 

the screen refresh point determines the result of this display synchronization algorithm. Table 4 

presents the pseudocode for the synchronization algorithm. Figure 13 shows the architecture of the 

SAGE Display Manager. In order to reduce synchronization signal latency and to increase its priority, 

the TCP out-of-band data channel
2
 is used for transferring synchronization signals among display 

nodes.  

 

 

 

                                                        
2
 This channel sends data without waiting for the socket buffer to be filled  

 

Figure 13. The internal architecture of SAGE Display Manager 
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Table 5. SAGE synchronization algorithm 
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Since SAGE pixel blocks are regularly sized, the display nodes on which they are displayed 

and their positions in the screens of the nodes are easily calculated once the application window 

layout that they belong to is given. This information is stored in a table on each SAGE Display 

Manager, and incoming pixel blocks are downloaded onto the textures in the SAGE Display Manager 

referencing this block position table. It needs to be updated whenever the application layout is 

changed, but the update should be consistent with the update on the pixel block group in the block 

generation stage. That is, the update should happen exactly when the pixel blocks that were regrouped 

by the new application window layout arrive at the SAGE Display Manager and are ready to be 

downloaded to the textures. 

 

In order to make sure that the update happens at the right time, the FSManager sends an 

application window layout together with a configuration ID to SAIL and SAGE Display Managers, 

and the pixel blocks streamed from SAIL carry the configuration ID of the application window layout 

by which they were grouped. SAGE Display Managers compare the configuration ID of the 

application window layout that it received and that of incoming pixel blocks. If the IDs are matched, 

it updates the block position table immediately; otherwise, it waits for following pixel blocks (in the 

case when the pixel block configuration ID is less than the configuration ID of the new application 

window layout) or newer application window layouts (in the case when the pixel block configuration 

ID is greater than the configuration ID of the new application window layout).  
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SAGE UI Clients can be a Graphical User Interface, text-based console or tracked devices 

[Krumbholz05], which launch applications using the Application Launcher, send user commands to 

the Free Space Manager and show the status of SAGE to the users. Any UI client can execute, 

shutdown, move, and resize SAGE applications in a manner very similar to a typical contemporary 

windowing system. Furthermore, UI clients can reside on any machine (laptop, tablet, desktop, etc.) 

connected to the Free Space Manager over any network. Since SAGE is well suited for use in 

collaborative environments, several tools have been incorporated into the SAGE GUI to facilitate 

collaborative work. Users could, for example, have discussions and meetings in front of a tiled 

display where each user is running an instance of the SAGE GUI connected to the same or even 

different displays. The SAGE GUI captures each user’s laptop screen using a VNC server, which 

pushes the screen over the display using a SAGE-enabled VNC viewer. Using this capability, users 

can present their problems or achievements to others and share useful information on the display 

during the discussion.  

 

For basic communication, a chat capability and a list of users currently connected to the 

display are available from the SAGE UI server managing user connections to every SAGE display. 

Every user could also be connected to multiple displays at the same time and control applications on 

any of them. This could prove especially useful when multiple sites are working together. At the end 

of a meeting, users could save the session and the state of the tiled display so that they can quickly 

resume their work at a later time.  



37 

 

Multipoint HD video conferencing is an essential part of Visualcasting. To enable HD video 

conferencing in the SAGE framework, audio streaming capability is added to the SAGE architecture. 

SAGE audio capturing capability was implemented as a part of SAIL. The audio enabled SAIL can 

read audio data from a sound card (microphone), an audio file, or a SAGE application using SAGE 

audio API functions. The same network streaming modules used for SAGE audio streams are the 

same as those for SAGE pixel streams. In order to capture and play audio data, an portable cross-

platform audio API called Port Audio [PortAudio07] was used. The display of SAGE pixel streams is 

synchronized with the playing of SAGE audio streams. 
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This chapter describes the approaches used to implement Visualcasting as well as to solve the 

problems with Visualcasting. In order to distribute high-resolution images to multiple tiled displays 

(Visualcasting endpoints) in real-time, a high-performance bridging system called SAGE Bridge was 

designed and implemented. In order to scale the service to an increasing number of endpoints, a 

SAGE Bridge requires the SAGE pixel block streaming and dynamic bridging resource allocation 

scheme. Since display size and network bandwidth can be heterogeneous across Visualcasting 

endpoints, a SAGE Bridge controls the pixel flows to each endpoint so that it can properly handle the 

incoming pixel data. For this purpose, a SAGE Bridge may drop image frames at lower-capacity 

endpoints if necessary. An analytical model for Visualcasting was built to predict the performance of 

these approaches and was validated by experiments.   

 

 

 

The SAGE Bridge is a new software component of SAGE running on a high-performance PC 

cluster. With the SAGE Bridge, the SAGE architecture is changed as shown in Figure 14. Multiple 

SAGE sessions exist in this architecture and each is controlled by a FSManager. The SAGE Bridge is 

introduced between SAIL and SAGE Display Managers. It intercepts pixel streams from SAIL and 

duplicates and distributes them for each SAGE session. 
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The introduction of the SAGE Bridge in the SAGE architecture requires a new procedure to 

execute applications. Figure 15 compares the old and new application launch procedures. The new 

procedure consists of following nine steps: 

 

(1) A SAGE UI sends commands with application parameters and information about the SAGE 

Bridge and the first FSManager to the Application Launcher. 

(2) The Application Launcher executes an application on the appropriate rendering nodes using 

information from the SAGE UI. 

(3) SAIL creates a control channel with the SAGE Bridge when the application is launched. The 

SAGE Bridge allocates SAGE Bridge nodes for the application and configures streams between 

SAIL and the SAGE Bridge.  

(4) The SAGE Bridge connects to the first FSManager in order to configure the streams between the 

SAGE Bridge and the SAGE Displays.  

 

Figure 14. The SAGE architecture with a SAGE Bridge 
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(5) SAIL starts streaming pixels once all configurations are completed. 

(6) Application images are displayed in the first SAGE session. 

(7) In order to make the second SAGE session join the Visualcasting session, a SAGE UI sends a 

message that has information about the second FSManager to the first FSManager.  

(8) The first FSManager directs the SAGE Bridge to connect to the second FSManager.  

(9) The pixel streams between the SAGE Bridge and the second SAGE session are configured and 

started.  

 

 

In addition to distributing pixel streams, the SAGE Bridge duplicates and sends SAGE audio 

streams to multiple endpoints. Each application and each endpoint are configured as to whether they 

are audio-enabled or not. Based on the configuration, the SAGE Bridge may or may not receive and 

send the audio stream of an application to each endpoint. 

 

 

The initial prototype of SAGE streams application images frame by frame. Each image frame 

is split into sub-images according to the application layout on the tiled display. Each sub-image is 

 

Figure 15. Old and new application launch procedures 
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copied to a network buffer and streamed to a tile. Since the generation of the sub-images depends on 

the application window layout on a tiled display, Visualcasting requires a different image partition for 

each endpoint as shown in Figure 16a. However, the required memory space for network buffers and 

the memory bandwidth for an image data copy continue increasing as the number of endpoints 

increase. This incurs a significant system overhead in Visualcasting. The approach to resolve this 

problem is pixel block streaming that was described in Section 3.3.2 

 

 

(a) Image Duplication and Partition for Multiple Endpoints 

 

 (b) Pixel Block Regrouping for Multiple Endpoints 

Figure 16. Pixel data distribution for multiple endpoints 
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With pixel block streaming, the duplication and partition of an image frame at the SAGE 

Bridge is changed to the grouping of pixel blocks as shown in Figure 16b, which does not require 

additional network buffers or memory copies when a new endpoint is added to a Visualcasting 

session. By eliminating these overhead constraints, a SAGE Bridge can scale pixel streaming to 

increasing number of endpoints until the total data bandwidth of the streams reaches the network or 

memory bandwidth limit of the bridge node. 

 

 

 

The number of SAGE Bridge cluster nodes is statically configured when the SAGE Bridge 

starts running. In order to balance the load on each bridge node, the pixel blocks of an image frame 

have to be equally or nearly equally distributed to each node. The grouping of the pixel blocks for 

each bridge node does not need to depend on their geometrical location in the image frame because 

every SAGE Bridge node can stream pixel blocks to an arbitrary location on any tiled display of all 

endpoints. The recent version of SAGE binds pixel blocks with continuous block IDs as a group. 

 

Though this bridge node allocation strategy is the best for load balancing, an application 

whose image frame rate is dynamically changing incurs jitters on Visualcasting streams of other 

applications on the same SAGE Bridge. Another SAGE Bridge node allocation strategy to avoid this 

problem is allocating a separate bridge node to each application. However, the number of applications 

to be supported by this strategy is limited to the number of SAGE Bridge nodes. In order to remove 

this limitation, the master node of the SAGE Bridge monitors the usage of all SAGE Bridge nodes 

and allocates a new application on the node that has the least usage. In the current implementation, 

users configure the SAGE Bridge node allocation strategy before they start a Visualcasting session. 
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Figure 17 shows an abstracted internal architecture of the SAGE Bridge. A SAGE Receiver 

receives single or multiple pixel block streams of an application and synchronizes them before 

pushing pixel blocks into a pixel block buffer. A bridge streamer for each endpoint is created. It reads 

pixel blocks from the buffer, generates block groups, and streams them to the tiled display at an 

associated endpoint. The method to be used for generating block groups and streaming them is 

exactly the same as the method used in the block generation stage described in Section 3.3.2. Once 

every bridge streamer reads and sends a pixel block, the block is returned to the pixel block buffer for 

reuse.  

 

 

 

In an ideal case, every endpoint has enough data bandwidth to afford the incoming pixel 

block streams. Then the SAGE Bridge’s pixel block sending rate to every endpoint is the same as its 

pixel block receiving rate. However, Visualcasting endpoints do not always have an ideal condition. 

Each bridge streamer may have a different pixel block transfer rate due to the heterogeneity in the 

data bandwidth of its endpoint. Since Visualcasting uses the UDP protocol, data loss happens at the 

endpoint that cannot afford incoming pixel block streams, and then SAGE Display Managers at the 

 

Figure 17. The SAGE Bridge architecture 
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endpoint send the SAGE Bridge a negative feedback. Then the network flow control loop in the 

SAGE Bridge reduces the pixel block transfer rate to the endpoint. The reduced pixel block transfer 

rate relieves the congestion on the network streams to the endpoint so as to reduce or stop the data 

loss. 

 

Each bridge streamer has its own read pointer in the pixel block buffer in order to handle 

temporary difference in the block transfer rate across the bridge streamers. However, the difference is 

bounded by the size of the pixel block buffer. If the pixel block transfer rate of a bridge streamer is 

reduced, all bridge streamers are eventually slowed down to match the rate of the slowest one. By 

dropping image frames, the slowest bridge streamer can catch up with other bridge streamers and 

stream pixel blocks at its own rate without interfering with other bridge streamers. The number of 

frames to be dropped is determined by the difference in the image frame transfer rate between the 

slowest one and the fastest one. The slowest bridge streamer moves its read pointer in the pixel block 

buffer as if it reads and sends the pixel blocks that belong to the image frames to be dropped. The 

heterogeneity of endpoints in data bandwidth is handled by this way. 

 

 

 

This section presents an analytic model of Visualcasting performance. The model represents 

Visualcasting performance in terms of available SAGE Bridge resources, the number of endpoints 

and applications, available network bandwidth at each stage of Visualcasting pipeline and so on. This 

model can be used not only for predicting the Visualcasting performance within given system 

parameters but also for guiding users who want to build a Visualcasting system. For example, the 

model can answer the following questions which are: (1) how many endpoints can be supported given 
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a number of SAGE Bridge nodes and the anticipated bandwidth usage of an application; (2) how 

many SAGE Bridge nodes are required in order to support a given number of endpoints?  

 

Figure 18 shows the abstracted pipeline stages of Visualcasting. The overall Visualcasting 

performance is determined by the pipeline component that has the minimum data bandwidth. BA is the 

bandwidth that an application uses when it runs at a desired frame rate. Bin and Bout are available 

network bandwidth to and from a SAGE Bridge cluster. The data bandwidth at the SAGE Bridge 

cluster is represented as uNBBH. For example, if a SAGE Bridge cluster has 5 nodes and each node 

has a 10Gbps limitation in its network bandwidth and a 70% maximum network bandwidth 

utilization, the data bandwidth of the SAGE Bridge cluster is 0.7x5x10Gbps = 35Gbps. The data 

bandwidth at the display stage is determined by the application window layout. For example, if an 

application window is placed over 4 tiles and each node that drives one of these tiles has 1Gbps of 

network bandwidth, the data bandwidth is 4Gbps in maximum. However, if the window is shrunk to a 

single tile, the bandwidth is reduced to 1Gbps. If another application window overlaps the window, 

the bandwidth decreases even more. In some cases, the bandwidth can be smaller than BA, and then 

the Visualcasting performance to the endpoint is limited by the bandwidth that is affected by the 

application window layout and represented as BA.  

 

 

BA: expected application bandwidth 

Bin: network bandwidth application to bridge 
Bout: network bandwidth bridge to display 

NB: number of bridge nodes 

BH: hardware bandwidth of each bridge node 
u : bandwidth utilization 

 : application window layout factor 

Figure 18. Visualcasting pipeline 
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Let us assume the network bandwidth to and from the SAGE Bridge cluster and the data 

bandwidth of every endpoint are enough to afford an application stream at the rate of BA i.e. 

  

Bin > BA, Bout > nBA, n is the number of endpoints,  = 1 for all endpoints. 

 

If a SAGE Bridge cluster scales the Visualcasting of an application up to n endpoints, the total 

Visualcasting traffic from the cluster is calculated by the following equation:   

 

T = nBA  

 

As the number of endpoints increases, the total Visualcasting traffic reaches the maximum data 

bandwidth of the SAGE Bridge cluster, and the Visualcasting performance is saturated. 

 

T = uNBBH  

 

The Visualcasting traffic to each endpoint is: 

 

Te =
uNBBH

n
 

 

Given the parameters of the SAGE Bridge cluster, the maximum number of endpoints that can be 

scaled by the SAGE Bridge cluster is: 

 

n
uNBBH

BA
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Given the number of endpoints, the minimum number of SAGE Bridge nodes in order to scale these 

endpoints is: 

 

NB

nBA

uBH

 

 

Pre-conditions Bin > BA and Bout > nBA provide users with additional guidance for the application 

performance and for the number of endpoints of a Visualcasting session given the available network 

bandwidth to and from the SAGE Bridge cluster. 

 

For example, let us say that one wants to visualcast a compressed 4K animation at 33fps to 10 

endpoints. A single stream of the animation uses 1Gbps network bandwidth i.e. BA= 1Gbps. If a 

SAGE Bridge cluster consists of machines having a ten-gigabit network interface with 50% of 

utilization, the minimum number of SAGE Bridge nodes needed in order to support the Visualcasting 

session is: 

 

NB

nBA

uBH

=
10nodes 1Gbps

0.5 10Gbps
= 2nodes  

 

The available network bandwidth from the application node to the SAGE Bridge cluster should be 

more than 1Gbps (Bin > BA). The available network bandwidth from the SAGE Bridge cluster to all 

endpoints should be more than 10Gbps (Bout > nBA). The analytical model that has been described in 

this section was verified by the Visualcasting experiments that will be discussed in the next chapter.  
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This chapter describes the Visualcasting tests used to evaluate the performance and to verify 

the analytic model of Visualcasting. The experimental results showed that the Visualcasting 

implementation could sustain high-performance pixel data streaming at the rate of multi-ten gigabits 

per second and scale the streams with an increasing number of endpoints as the analytic model 

predicted. 

 

 

 

For several years, the Electronic Visualization Laboratory (EVL) has spearheaded a 

cooperative effort to build the Global Lambda Visualization Facility (GLVF) [Leigh06], a persistent 

distributed facility aimed at enabling the synergistic research and development of next-generation 

end-user tools for scientific visualization and collaboration in ultra-high-resolution display 

environments. GLVF consists of globally distributed high-resolution tiled displays and rendering 

resources interconnected by a global LambdaGrid (a grid of deterministic high-speed networks). 

These internationally distributed display-rich environments provided the best testbed for 

Visualcasting. Figure 19 is the network diagram of the Visualcasting testbed that consists of the 

following institutions: 

 

- The Electronic Visualization Laboratory at University of Illinois at Chicago; 

- SARA Computing and Networking Services in Amsterdam, the Netherlands; 

- The School of Information at the University of Michigan; 

- Korean Institute of Science and Technology Information (KISTI) in Daejeon, South Korea; 
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- Gwang-ju Institute of Science and Technology (GIST) in Gwang-ju, South Korea; 

- The California Institute for Telecommunications and Information Technology (CALIT2). 

 

Most network links connecting these sites have a 10Gbps of network bandwidth except for 

two links in South Korea. Four SAGE Bridge nodes are located at a high-performance research 

network infrastructure called StarLight at downtown Chicago. Each node has a 10gigabit network 

interface and two dual-core AMD Opteron processors running at 2.2GHz with 4GB of main memory. 

The total network bandwidth to and from the SAGE Bridge cluster is 40Gbps. Each endpoint has a 

heterogeneous tiled display dimension and number of display nodes as noted in the network diagram. 

This provides a good environment to test the heterogeneous endpoint support of the Visualcasting 

service.  

 

 

Figure 19. Visualcasting testbed 
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Figure 20 shows a sustained performance test result of Visualcasting for several hours. Two 

SAGE Bridge nodes placed at StarLight were used for this test. Tiled displays at EVL and the 

University of Michigan were divided into multiple virtual endpoints to receive Visualcasting streams. 

Two instances of SAGE benchmark application called “Checker” that streams white pixel buffers ran 

on two rendering nodes at EVL. Each “Checker” stream used 0.8Gbps network bandwidth. Each 

SAGE Bridge node received a “Checker” stream and distributed to multiple virtual endpoints at EVL 

and University of Michigan. The total incoming traffic to the SAGE Bridge cluster was 1.6Gbps and 

the total outgoing traffic from the SAGE Bridge cluster was 12.4Gbps: 9.2Gbps to EVL and 3.2Gbps 

to University of Michigan. These results showed that the implemented Visualcasting service could 

support high-resolution image multicasting at the rate of multi-ten gigabits per second sustaining the 

rate over five hours. 

 
               (The unit of horizontal axis of these graphs is hours) 

Figure 20. Sustained Visualcasting performance 
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Figure 21 shows the result of a Visualcasting scalability test. Almost the same experimental 

setup was used as that of the sustained performance test. In this case, the tiled displays at EVL and 

University of Michigan were configured as 16 virtual endpoints. Full-HD (1920x1080) resolution 

images were streamed to the SAGE Bridge cluster at the rate of 16fps. A SAGE Bridge node was able 

to scale the Visualcasting streams up to 8 endpoints but was saturated for additional endpoints. By 

adding another SAGE Bridge node, the Visualcasting streams successfully scaled up to 16 endpoints. 

These results are consistent with the performance predicted by the analytic model discussed in 

Section 4.5. 

 

T = nBA = n 0.8Gbps

T1 = uNBBH = 0.7 1 10Gbps = 7Gbps

T2 = uNBBH = 0.7 2 10Gbps =14Gbps

 

 

The total outgoing traffic from the SAGE Bridge cluster T is scaled with the number of endpoints 

until it reaches T1 (one bridge node) or T2 (two bridge nodes). These results show that the 

 

Figure 21. Visualcasting throughput 
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implemented Visualcasting service can scale the distribution of visualization streams with the number 

of endpoints as predicted by the analytic model of Visualcasting. 

 

 

 

The multi-point full-HD video conferencing capability of Visualcasting was demonstrated 

over the Visualcasting testbed on April 18, 2008 (see Figure 22). The participants of this 

demonstration included EVL/UIC, SARA, University of Michigan, KISTI and GIST. This showed 

that Visualcasting enables casual conversation among every participant by its short-latency 

uncompressed HD video and audio distribution. Each endpoint sent a full-HD camera live-feed and 

an audio stream to two SAGE Bridge nodes located at StarLight. Whenever a new HD video stream is 

started, it is allocated to either bridge node according to the current load of each bridge node. 

 

Each HD video stream had a 1920x1080 image resolution and a frame rate of 17~18fps, and 

0.7Gbps network bandwidth utilization except for one video stream from SARA that had 6~7fps and 

 

Figure 22. Multi-point HD video conferencing using Visualcasting 
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having 0.2Gbps network bandwidth utilization. Each endpoint received multiple HD video streams 

according to its capacity. EVL, University of Michigan, and KISTI received four HD video streams 

from other endpoints (three 0.7Gbps streams and one 0.2Gbps stream). GIST received the streams 

from EVL and SARA (one 0.7Gbps stream and one 0.2Gbps stream). SARA received two 0.7Gbps 

HD video streams. Thus, the total Visualcasting throughput during this demonstration was calculated 

as follows: 

 

(0.7x3 + 0.2)x3 + (0.7+0.2) + (0.7x2) = 9.2Gbps 

 

During this demonstration GIST and SARA showed huge image artifacts if they received 

more HD video streams than the number of streams indicated in the equation above. Though the 

frame dropping for small-scale endpoints was enabled, the UDP flow control mechanism of 

Visualcasting was not able to remove data loss at these endpoints. This problem will be investigated 

more deeply in future research.  

 

At the Supercomputing 2008 (SC08) conference in Austin, Texas, EVL demonstrated the full 

capabilities of Visualcasting. During this demo, EVL, the University of Michigan, and Masaryk 

University (Czech Republic) were linked to Visualcasting servers in Chicago so that they were all 

able to share a 4K (4096x2048) pixel visualization stream as well as communicate over HD video 

conferencing (see Figure 23). 
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Figure 23. SC08 Visualcasting demonstration 
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Domain scientists need a collaborative visualization environment that enables them to see and 

interact with huge amounts of data together with remote collaborators. SAGE supports both wide-area 

distributed visualization and point-to-point collaboration, and Visualcasting extends SAGE to support 

global collaboration with multiple endpoints in scalable display environments by distributing high-

definition video and audio as well as scientific visualization.  

 

An analytic model of Visualcasting was built and verified by experiments using a 

Visualcasting implementation. The experimental results showed that the implementation could scale 

the Visualcasting service with an increasing number of endpoints, and various system parameters 

affect the Visualcasting performance as predicted by the analytic model. 

 

Frame dropping for a small-scale endpoint was implemented as an approach to address 

heterogeneity in data bandwidth across Visualcasting endpoints. However, it turned out that the 

approach required a more elaborate UDP network flow control mechanism or a new reliable network 

streaming protocol over high-speed wide area network. Another candidate approach to address 

heterogeneity of Visualcasting endpoints is multi-layered Visualcasting. The idea is to visualcast a 

different image quality or resolution of image data through each layer. Then each endpoint subscribes 

to a layer appropriate to its data bandwidth and display resolution. These problems and approaches 

will be investigated as the future works of this research. 
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