
 1/30

Preliminary Prospectus

Visualcasting - Scalable Real-Time Image Distribution

in Ultra-High Resolution Display Environments

Byungil Jeong

bijeong@evl.uic.edu

July 15, 2006

Main Advisor:

Jason Leigh

Committee Members:

Jason Leigh

Andrew Johnson

Luc Renambot

Thomas A. DeFanti

Erik C. Hofer

 2/30

1 Executive Summary
The Scalable Adaptive Graphics Environment (SAGE) is a specialized middleware that enables real-time

streaming of extremely high-resolution graphics and high-definition video from remotely distributed

rendering and storage clusters to scalable display walls over ultra high-speed networks. I propose

Visualcasting in order to extend SAGE to support distant collaboration between multiple endpoints by

streaming visualization to all participants.

In the SAGE framework, each visualization application streams its rendered pixels to the virtual high-

resolution frame buffer of SAGE, allowing users to freely move, resize and overlap the application

windows on the display. Every window movement or resize operation requires dynamic and non-trivial

reconfigurations of the involved graphics streams. These reconfigurations become even more complex

when SAGE is required to support multiple collaboration endpoints with different tiled display

configurations and application window layouts.

Visualcasting is a scalable real-time image distribution service to address this problem. Visualcasting

includes a high-speed bridging system which receives pixel streams from rendering clusters to duplicate

and distribute pixels to each end-point. This approach will be compared with the traditional router-based

multicasting approach and the reliable layered multicasting approach. Several issues in optimizing

Visualcasting will be also addressed.

Intellectual Merit:

Visualcasting addresses the problem of reliable graphics multicasting for tiled displays. Although a variety

of techniques exist for supporting reliable multicasting, reliably multicasting graphics data onto remote

tiled displays with different display configurations is still an unsolved challenging problem. Furthermore,

Visualcasting addresses the heterogeneity and scalability problems. Since each Visualcasting endpoint has

heterogeneous network and display capacity, the Visualcasting service needs to adapt the resolution or

quality of images to the capacity of each endpoint to prevent it from being overloaded. Also, the

Visualcasting service should be scalable based on the number of endpoints and applications.

Broader Impact:

Visualcasting enables SAGE to scalably multicast real-time, high-definition video and ultra-definition

visualizations across globally distributed research centers. This capability will demonstrate new ways in

which high-performance networking and visualization can be used in a broad range of research, academic

and commercial applications. Furthermore, understanding the requirements, benefits and limits of

Visualcasting and alternative approaches will provide valuable input into future Internet system design.

 3/30

2 Table of Contents

1 EXECUTIVE SUMMARY .. 2

2 TABLE OF CONTENTS ... 3

3 INTRODUCTION .. 4

3.1 PRIOR ACCOMPLISHMENTS.. 7

3.1.1 The architecture of the SAGE Prototype .. 8

3.1.2 Dynamic Pixel Stream Reconfiguration.. 12

3.1.3 Pixel Block Based Streaming.. 14

3.1.4 Achieved Results ... 16

3.2 PRIOR WORK... 16

4 PROPOSED RESEARCH ... 19

4.1 RESEARCH AND DEVELOPMENT .. 19

4.1.1 The SAGE Architecture for Visualcasting .. 20

4.1.2 Candidate Approaches to Visualcasting... 21

4.1.3 Support for Heterogeneous Endpoints.. 22

4.1.4 Pixel Block Size and Network Protocol Interfaces ... 23

4.1.5 Pixel Stream Compression.. 24

4.1.6 Comparison with Other Approaches .. 25

4.2 METRIC FOR SUCCESS ... 26

4.3 TIMELINE .. 26

4.4 DEPLOYMENT PLAN .. 27

4.5 EXPERIMENT PLAN AND EQUIPMENT NEEDED .. 27

5 REFERENCES ... 29

 4/30

3 Introduction
In a decade’s time, high-performance computing has proven its value in Science, Homeland Security,

Medicine, Engineering, Education, and Filmmaking. These data-intensive domains rely on Grid technology

to process the terabytes of raw data so to produce meaningful insight, often enabled by high-quality

visualizations. As research and development become increasingly global and multidisciplinary, the need for

a computing infrastructure to support collaborative work among distributed users has grown dramatically

[Leigh06].

Up until the last five years, however, the predominant model for supporting data-intensive collaborative

science and engineering involved replicating expensive systems at each collaboration site to visualize the

highly distilled computation results from remote computing resources, because bandwidth was a scarce

commodity. Recently, it has become viable for scientists to connect to ultra-high-speed networks more

cheaply than they maintain large computing, storage and visualization systems, because the rate of decline

in the cost of bandwidth far exceeding that of computing and storage [Stix01]. This is the fundamental

premise behind the concept of shared cyber-infrastructure, and is being deeply researched by the

international partners of the OptIPuter project [Smarr03, Leigh03].

In this context, an increasingly important visualization model is to conduct visualization using large pools

of computing resources (such as clusters of powerful computers equipped with high-performance graphics

processors) and to stream the results to the collaborating end-points. These end-points may range from

PDAs to ultra-high-resolution display walls such as those built from stitching together dozens of LCD

panels. The image streams shown on these display devices may consist of offline rendered movies as well

as real-time visualizations, and high-definition video (see Figure 1). This enables users to collectively

interpret enormous data-sets in real-time at extremely high resolutions.

Figure 1. Collaborative Visualization on Tiled Display

 5/30

A fundamental requirement of these high-resolution collaborative visualization systems is an ability to

broadcast or multicast visualizations to all collaborating sites so that all participants can simultaneously see

and interact with the data. Multicasting in these high-resolution environments poses a significant challenge

because potentially tens of gigabits of network bandwidth are needed to support collaborative visualization.

This thesis will investigate this problem in detail and propose a scheme called Visualcasting that is

specifically designed to provide the kind of image multicasting service needed for ultra-definition

visualization. This service will be implemented on top of SAGE.

SAGE enables multiple visualization applications to be streamed to large tiled displays and viewed at the

same time (see Figure 1, 2). The application windows can be moved, resized and overlapped like any

standard desktop window manager. This approach can be scaled to support streaming on the LambdaVision

that is an 11x5 tiled display with a total resolution of 100 Mega-pixels (see Figure 2). SAGE and

LambdaVision can greatly support geoscientists working with aerial and satellite imagery (365Kx365K

pixels maps) and neurobiologists imaging the brain with montages consisting of thousands of pictures from

high-resolution microscopes (4Kx4K pixels sensor).

Two distributed visualization models are supported. One involves running visualization applications at

multiple remote rendering sites and streaming their pixels to one big tiled display (see Figure 3). The other

supports distance collaboration between multiple endpoints by streaming the same visualization to each

endpoint simultaneously (see Figure 4). The former model is already implemented as a SAGE prototype.

Visualcasting extends SAGE to support the latter or the combination of both models.

Figure 2. LambdaVision driven by SAGE

 6/30

As windows on the tiled display are resized or repositioned on the walls, SAGE must reconfigure multiple

streams from rendering sources to the display nodes. This problem becomes much more complex when

SAGE is required to support independent window operations (such as reposition or scaling) at each display

sites having different display configuration. For the first model, illustrated in the Figure 3, each sender can

calculate the final destination (display node) of each pixel based on the application window layout on the

tiled display. However, this approach is not scalable to the Visualcasting model in Figure 4, because the

required network bandwidth and computation keeps increasing with the number of display sites until the

senders become overloaded.

The approach to solve this problem is a high-speed bridging system called SAGE Bridge which duplicates

and splits pixel streams received from rendering clusters for each end-point. This allows each rendering

node to stream full image frames without considering the window layouts and tiled display configurations

of multiple end-points. The SAGE Bridge will be deployed on high-performance PCs equipped with

10gigabit network interfaces. When more capacity is needed, the SAGE Bridge can dynamically allocate

additional nodes to sustain the desired throughput. This approach will be compared with the traditional IP

multicast [Deering91] approach.

Another important issue in Visualcasting is dealing with the heterogeneity of display resolutions and

network bandwidth of the endpoints. Some endpoints may have a 100 megapixel tiled display and multi-ten

gigabit network bandwidth which are enough to support multi-ten megapixel visualizations. Such a high

resolution visualization, however, will not fit into other end-points with a small tiled display and only a

gigabit network. To resolve this issue, the SAGE Bridge has to control applications to adapt the

visualization to an appropriate resolution, or the SAGE Bridge itself must be able to adapt the resolution of

the pixel streams to each end-point. This requires an appropriate application interface that dynamically

Figure 4. Multiple Display Sites Figure 3. Multiple Rendering Sites

 7/30

changes the visualization resolution and the effective real-time pixel stream compression and sampling

techniques. Layered multicast [McCanne96] is an alternative to be compared with this approach.

In addition, two issues to enhance Visualcasting performance are discussed in this thesis: the investigation

of optimal pixel data block size and the design of an optimal interface between SAIL and network protocols.

Pixel data block size affects network streaming performance and pixel download performance to graphics

memory. On the other hand, it decides the flexibility in pixel data distribution over tiled displays.

Determining the requirements and options of the interface between SAIL and network protocols is critical

in designing the interface. I will evaluate network streaming performance with varying options in order to

find an optimal interface.

The major contribution of this research will include the following:

1. Proposing Visualcasting as a scalable solution for real-time image multicasting for tiled displays

supporting distant collaboration with multiple end-points.

2. Addressing the heterogeneity problem among collaboration end-points.

3. Identification of the metrics for Visualcasting performance and evaluation of a few possible

approaches to Visualcasting.

4. Approach selection strategy based on the given situation, such as available network bandwidth,

desirable resolution and affordable latency.

The fundamental research questions are:

1. How to arbitrarily scale simultaneous data distribution to multiple receivers?

2. What happens if the receivers are heterogeneous? Are any special considerations needed?

3. What parameters define ‘arbitrarily’ and how do those parameters affect the distribution

performance?

4. If multiple approaches are possible, how to decide the most appropriate approach based on the

parameters?

In the following sections, I will discuss latest prototype of SAGE, other related research, the details of

Visualcasting and the plans for completing this thesis.

3.1 Prior Accomplishments

I implemented a prototype of SAGE based on the distributed visualization model (multiple rendering sites)

in Figure 3. The feasibility of this visualization model was successfully demonstrated in iGrid2005 and

Supercomputing 2005 using the prototype. It has been successfully shown to scale to support streaming on

the LambdaVision 100-Megapixel display wall. The architecture, dynamic pixel stream reconfiguration,

pixel block based streaming and results of the prototype are to be discussed in this section.

 8/30

Figure 5. SAGE components

3.1.1 The architecture of the SAGE Prototype

The SAGE prototype consists of various components: Free Space Manager (FSManager), SAGE

Application Interface Library (SAIL), SAGE Receiver, synchronization channel, and SAGE UI as shown in

Figure 5. The FSManager communicates with all the components to control the procedure of dynamic pixel

stream reconfiguration. SAIL is a thin layer between an application and the network that captures the

output pixels of an application and stream them to the displays. A SAGE Receiver on each display node

enables the display of multiple applications at the same time by receiving independent pixel streams from

each application.

3.1.1.1 Free Space Manager (FSManager)

The Free Space Manager (FSManager) is the window manager for SAGE. This is akin to a traditional

desktop manager in a windowing system, except that it can scale from a single tablet PC screen to a

desktop spanning a large tiled display. The FSManager receives various user commands from UI clients

such as application execution, window move, resizing or z-order change (overlapping windows) and then

executes the commands by sending control messages to SAIL nodes or the SAGE Receivers. QUANTA, a

cross-platform adaptive networking toolkit [He03], is used for delivering control messages to SAGE

components.

The FSManager collects and maintains the information needed for dynamic pixel stream reconfiguration

from other SAGE components. The most important role of the FSManager is to control the reconfiguration

procedure based on the information whenever windows are repositioned or resized. Another important role

 9/30

of the FSManager is to execute applications based on user-defined configurations, including the number of

rendering nodes, the initial position and the window size, application parameters, the network protocol for

pixel streaming and the synchronization mode. Table 1 shows an example of a SAGE application

configuration. Users can execute multiple instances of an application with different configurations by

specifying different configuration entries.

3.1.1.2 SAGE Application Interface Library (SAIL)

SAGE applications communicate with the FSManager and stream pixels to SAGE Receivers through SAIL,

which provides application programmers with a very simple interface to the SAGE framework. The SAGE

API allows programmer to describe pixel buffers and the position of the buffers in the application output

image. The latter is needed when programming a parallel application where each processor will generate a

portion of the whole picture. This mode is used either to speed up the application (each processor generates

less pixels keeping the same total resolution) or to achieve higher resolution (increasing the number of

processors while each generates the same amount of pixels). The only SAIL function other than 'init()' in

the application is ‘sageSwapBuffer()’. Due to this minimal API, any application with uncompressed pixel

output can be easily ported to SAGE.

Table 2 shows an example of a minimal SAGE application. This application registers itself with the name

‘render’ to the FSManager. It is a sequential application, and the unique process will generate the whole

image as described in the ‘renderImageMap’ data structure. The application will generate 24-bit RGB

images in the ‘rgbBuffer’ where the pixels are laid out from bottom to top. After the initialization phase,

Table 2. Minimal SAGE application

sailConfig scfg;

scfg.cfgFile = "sage.conf";

scfg.appName = "render";

scfg.rank = 0;

sageRect renderImageMap;

renderImageMap.left = 0.0;

renderImageMap.right = 1.0;

renderImageMap.bottom = 0.0;

renderImageMap.top = 1.0;

scfg.imageMap = renderImageMap;

scfg.colorDepth = 24;

scfg.pixFmt = TVPIXFMT_888;

scfg.rowOrd = BOTTOM_TO_TOP;

sageInf.init(scfg);

while (1)

 sageInf.swapBuffer(rgbBuffer);

Table 1. SAGE application configuration

atlantis {

configName TCP

nodeNum 1

Init 100 100 1000 1000

exec 127.0.0.1 atlantis 0 127.0.0.1

nwProtocol tvTcpModule.so

syncMode 0

configName UDP

nodeNum 1

Init 1100 1100 2000 2000

exec 127.0.0.1 atlantis 0 127.0.0.1

nwProtocol tvUdpModule.so

syncMode 2

}

 10/30

the application sends the image contained in the ‘rgbBuffer’ to the SAIL library. Then SAIL splits the

image into sub-images and streams them to the proper SAGE Receivers based on the information given by

the FSManager. Partitioning and streaming of the images to the display using various protocols is

completely transparent to users.

3.1.1.3 SAGE Receiver

A SAGE Receiver receives multiple pixel streams from SAIL nodes to drive the screens attached to each

display node. The received streams may belong to different applications if multiple application windows

are overlapped on the display. To keep each application synchronized independently, the SAGE Receiver

should update each application window at different times. But we cannot use multi-threads to update the

windows independently because conventional display control libraries like GLUT or SDL are not designed

for multi-threading. Hence, we designed the SAGE Receiver as shown in Figure 6.

Each network thread receives a single pixel stream and store pixels in a circular buffer. If any

synchronization slaves receive a signal, the display thread updates the screen with new images and

downloads the next frames from the circular buffer to graphics card memory so that the next frames can be

instantly displayed on the screens by the next synchronization signal. The detailed synchronization

procedure will be discussed in the next section.

A SAGE Receiver can drive multiple tiles (monitor screens). The layout of the tiled display is specified in a

text configuration file which describes the association and the physical arrangement between displays and

computers. Table 3 describes a 2x2 display driven by two computers. Here we assume LCD panels have

Figure 6. Architecture of SAGE Receiver

 11/30

uniform mullion (border of LCD panels) widths.

PPI (pixels per inch) and mullion widths are used

to calculate how many pixels should be hidden by

the borders of screens.

3.1.1.4 Synchronization channels

When an application is displayed on a tiled

display, each tile needs to be synchronously

updated in order for the sub-images to be shown

as one large consistent image. From TeraVision

[Singh04], EVL researchers learned that not only

display nodes but also rendering nodes need to be

synchronized to yield better synchronization

results for parallel applications. Hence, two

synchronization channels were implemented: the

display synchronization channel between SAGE

Receivers and the rendering synchronization

channel between SAIL nodes. The rendering

synchronization is unnecessary, if a parallel

application synchronizes its outputs. Also, users

may want to turn off synchronization in order to

remove the overhead if synchronization is not

critical for the application. SAGE provides four

synchronization modes as shown in Table 4. This allows users to freely turn on or off synchronization on

each side per application instance.

Rendering synchronization is a very simple procedure. The synchronization master thread resides on one of

the SAIL nodes. Each SAIL node sends an update signal to the synchronization master when it finishes

transferring an image frame. Once the synchronization master receives an update signal from every node, it

sends then a synchronization signal to each SAIL node. Each SAIL node starts to transfer new frames as

soon as the frames are provided by the application.

For display synchronization, whenever an application is launched, SAGE creates a synchronization master

thread on one of the SAGE Receiver nodes and a synchronization slave object on each SAGE Receiver.

The detailed synchronization procedure is as follows.

Table 4. Four synchronization modes
Sync Mode Rendering Sync Display Sync

0 On On

1 On Off

2 Off On

3 Off Off

Table 3. Tiled display configuration
TileDisplay

Dimensions 2 2

Mullions 0.625 0.625 0.625 0.625

Resolution 1280 1024

PPI 90

Machines 2

DisplayNode

Name yorda1-10

IP 10.0.8.121

Monitors 2 (0,0) (1,0)

DisplayNode

Name yorda2-10

IP 10.0.8.122

Monitors 2 (1,0) (1,1)

 12/30

(1) The display thread waits until the images of frame N of application A have arrived in the circular

buffers.

(2) Once in the buffer, the display thread downloads the images into the graphics card memory.

(3) Synchronization slave A sends an update signal to its master (synchronization master A).

(4) Synchronization master A sends synchronization signals to all its slaves after receiving the update

signal from every node.

(5) When synchronization slave A receives a synchronization signal, the display thread clears screens

and draw frame N of application A and the current frame of the application B.

(6) Repeat steps (1) – (5) for frame N+1

In parallel the same procedure is repeated for application B. Even if only one application receives a

synchronization signal, current images of the other applications have to be redrawn. The redrawing

overhead is minimal, because drawing a rectangle with the texture already downloaded into the graphics

card is extremely fast. The TCP out-of-band data channel is used for transferring synchronization signals in

order to reduce latency and to increase priority.

3.1.1.5 User Interface

UI Clients can be a Graphical User Interface, text-based console or tracked devices [Krumbholz05], which

send user commands to the Free Space Manager and show the status of SAGE to the users. Any UI client

can execute, shutdown, move, and resize SAGE applications in a manner very similar to a typical

contemporary windowing system. Furthermore, UI clients can reside on any machine (laptop, tablet,

desktop etc.) connected to the Free Space Manager over any network. Since SAGE is well suited for use in

collaborative environments, several tools have been incorporated into the SAGE GUI to facilitate

collaborative work. Users could, for example, have discussions and meetings in front of a tiled display

where each user is running an instance of the SAGE GUI connected to the same or even different displays.

For basic communication, a chat capability and a list of users currently connected to the display are

available from a server managing user connections to every SAGE display. Every user could also be

connected to multiple displays at the same time and control applications on any of them. This could prove

especially useful when multiple sites are working together. At the end of a meeting, users could save the

session and the state of the tiled display so that they can quickly resume their work at a later time. SAGE

UI has been developed by other EVL researchers.

3.1.2 Dynamic Pixel Stream Reconfiguration

Multiple pixel streams of SAGE must be dynamically reconfigured whenever users order window resize or

reposition. This reconfiguration procedure consists of three phases: the initial phase, the configuration

 13/30

phase and the streaming phase. In the initial phase, an application is started, and network connections are

established.

(1) A SAGE application starts on a rendering cluster R.

(2) The application initializes a SAIL object per each node connected to the FSManager.

(3) The FSManager sends the SAIL objects the IP addresses and port numbers of the display nodes in

cluster D.

(4) Every SAIL object on R is connected to all the display nodes in D so that |R| x |D| pairs of

network connections are established (|R|,|D| is the number of nodes in each cluster).

In the configuration phase, the active connection set that will be used for pixel streaming is decided, and

the display and rendering nodes are reconfigured for streaming. Figure 7 explains the procedure with an

example. A parallel application is launched on rendering nodes A and B. The display cluster consisting of

nodes 1, 2, 3, 4, 5 and 6 is driving a six-tile display.

(1) Overlap the application layout and the tiled display layout as in Figure 7.

(2) Generate the set of all sub-images of the application divided by tile borders. In the example, {A1,

A2, A4, A5, B2, B5} (Mn : the intersection of the image rendered by M and the tile driven by n).

(3) Find the active connection set. Each sub-image generated in (2) corresponds to an active

connection. In the example, {A-1, A-2, A-4, A-5, B-2, B-5} (M-N : network connection between

M and N)

(4) Configure rendering nodes to split the application image into the sub-images generated in (2).

(5) Find the active display node set which will be used for showing application images. In the

example, { 1, 2, 4, 5 }.

(6) Configure active display nodes to draw streamed images within the boundary of the sub-images

generated in (2).

Figure 7. An example of application layout

 14/30

In the streaming phase, SAGE starts or resumes streaming using the configuration determined in the

previous phase. All streams are synchronized as described in 3.1.1.4.

(1) Grab the application image and split it as configured.

(2) Stream each sub-image over the corresponding active connection.

(3) Display the streamed images at the configured position on the tiles driven by the active display

nodes.

(4) When users perform window operations, the application pixel streams are paused and go to the

configuration phase.

3.1.3 Pixel Block Based Streaming

The prototype described so far streams application images frame by frame. Each image frame is split into

sub-images according to the application layout on the tiled display. The generated sub-images are copied to

a network buffer and streamed to a tile. Since the generation of the sub-images closely depends on the

application layout on the tiled display, this approach is unsuitable for Visualcasting where an application

may have different application layouts on tiled displays at each endpoint. Pixel block based streaming was

introduced to overcome this problem.

In the new approach, adjacent pixels in an application image are grouped as a pixel block and streamed

over networks. Pixel blocks are regularly sized sub-images irrespective to tile configuration and application

window layout. This allows SAGE to deliver the same pixel blocks to every Visualcasting endpoint and to

independently distribute them over tiled displays at each endpoint. Figure 8 illustrates pixel block

streaming compared with image frame streaming for a tiled display.

Figure 8. Pixel Data Streaming

 15/30

Other advantages lie in image buffer management and non-rectangular image streaming. Image resizing

requires freeing and reallocating buffers in the image frame streaming. On the other hand, it changes the

number of pixel blocks in the new approach. Moreover, it is now possible to stream non-rectangular images.

Selectively streaming a subset of pixel blocks generated from a rectangular image and combining the

streamed pixel blocks at receivers can result in streaming a non-rectangular image.

The configuration phase of the dynamic pixel streaming reconfiguration procedure was executed by control

messages sent from the FSManager to SAIL objects and SAGE Receivers. These control messages were

not synchronized with pixel streams. Asynchronous reconfiguration of active streams might cause system

crashes. Hence, the streams had to be paused until the reconfiguration was done safely, but this increased

the latency of the reconfiguration by up to two seconds.

Pixel block streaming was designed to incorporate stream control information into pixel block streams so

that SAGE can reconfigure the streams without stopping them. When the stream control message from the

FSManager arrives, SAIL objects wait until pixel blocks from the current image frame are completely

transferred and stream control blocks to SAGE Receivers. Then, SAIL objects reconfigure themselves and

resume pixel streaming. SAGE Receivers are reconfigured not by the messages from the FSManager but by

the control blocks inserted into pixel streams. In this way, both sides can be reconfigured synchronously

and safely.

Figure 9 shows the format of the SAGE block. It consists of a 36-byte header and pixel data of variable size.

The header contains the total size of a block in the beginning so that SAGE Receivers can get the size

information first and then read the rest of the block. The flag field specifies the function of the block as

listed in Figure 9. The fields x, y, width and height store the lower left corner and size of the pixel block in

the whole image. The frame ID is used for synchronizing pixel blocks to be drawn in a single image.

Figure 9. SAGE block format

 16/30

Pixel blocks (flag=0001) deliver pixel data, and control information for pixel streaming is delivered by

control blocks including:

(1) Init Block, flag=1000: sent before streaming begins to have SAGE Receivers ready to receive pixel

block streams. It initializes the screen layout, the color format and the displaying textures of the pixel

stream.

(2) Final Block, flag=1001: informing SAGE receivers that an image frame is completely transferred.

(3) Update Block, flag=1002: forcing SAGE Receivers to asynchronously update screens after window

move or resizing operations.

(4) Stop block, flag=1003: informing SAGE Receivers that the pixel stream will be stopped due to a

window move or resize.

(5) Clear Block, flag=1004: used for closing pixel streams before an application shutdown.

3.1.4 Achieved Results

The SAGE prototype could support scientific visualization at extremely high display resolutions with

interactive frame rates. The dynamic pixel stream reconfiguration capability enabled users to run multiple

applications and to move and resize application windows freely. Experimental results showed low latency,

high throughput and scalability of SAGE over local-area and wide-area networks [Jeong06]. The peak

performance of SAGE was 11.2Gbps on a local area network using UDP (without packet loss). 9.0Gbps

was achieved using a real-world application from San Diego to Chicago over a 10Gbps dedicated link. The

prototype successfully demonstrated wide-area distributed visualization at the highest resolution possible

while maintaining interactivity. It was enhanced by pixel block based streaming which is well suited for

Visualcasting. This new approach reduced dynamic pixel stream reconfiguration latency and increased

flexibility in pixel streaming. The success of the SAGE prototype gives much confidence in this approach.

3.2 Prior Work

There are several existing systems with parallel or remote rendering schemes related to SAGE. The

simplest case of remote rendering uses remote desktop methods such as VNC, Microsoft Remote Desktop

or Xmove. They were designed to transmit single desktops to remote computers over slow networks

operating on event triggered streaming mechanisms that are not suitable for real-time streaming of

scientific visualization or collaborative applications. AccessGrid [Childers00] is a system that supports

distributed collaborative interactions over Grids. Although it enables remote visualization sharing, the

major focus of AccessGrid lies in distributed meetings, conferences and collaborative work-sessions.

Furthermore, the display resolution of remote desktops and AccessGrid is limited to a single desktop

resolution (at most 1600x1200 usually). On the other hand, SAGE can support 100-Megapixel display

walls and include these systems in the SAGE framework by adding a simple SAGE API to them.

 17/30

Perrine et al and Klosowski et al presented the merits of high-resolution display for various visualization

applications [Perrine01], [Klosowski02]. They used the Scalable Graphics Engine (SGE) developed by

IBM to drive their high-resolution displays. SGE is a hardware frame buffer for parallel computers.

Disjoint pixel fragments are joined within the SGE frame buffer and displayed as a contiguous image

[Perrine01]. SGE supports up to sixteen 1GigE inputs and can drive up to eight displays with double

buffering for a total of 16 Megapixels. SAGE and SGE are similar in that they receive graphics data from

multiple rendering nodes and route that data to high-resolution displays.

However, SAGE differs from SGE in that the former is a software approach much more flexible and

scalable than the latter. SAGE does not require any special hardware. New network technology like 10GigE

and new protocols are easily applied to SAGE. SGE, on the other hand, is bound to 1GigE inputs and SGE-

specific network protocol. There is no theoretical limitation in scaling the performance of SAGE by adding

rendering and display nodes. Network bandwidth, number of inputs and memory capacity limit the

performance of SGE.

There are several parallel rendering systems that can benefit from SAGE or SGE. WireGL [Humphreys00]

or parallel scene-graph rendering is a sort-first parallel rendering scheme from a single data source. This

approach allows a single serial application to drive a tiled display by streaming graphics primitives that will

be rendered in parallel on display nodes. However, it has limited data scalability due to its single data

source bottleneck. Flexible scalable graphics systems such as Chromium [Humphreys02] or Aura

[Germans01] are designed for distributing visualizations to and from cluster driven tiled-displays. However,

these systems enable only one application at a time with a static layout on a tiled display. So they require a

graphics streaming architecture such as SAGE or SGE to move, resize and overlap multiple application

windows.

XDMX (Distributed Multi-head X11) [DMX] is another system that can drive a tiled display. It is a front-

end proxy X server that controls multiple back-end X servers to make up a unified large display. XDMX

also can support Chromium to display multiple applications on a tiled display. However, XDMX only

supports non-parallel applications. This limits its scalability with large datasets.

An unique feature of SAGE compared with SGE, XDMX or Chromium is its high-speed graphics

streaming capability over wide-area networks. SAGE can use various streaming protocols designed for

high-bandwidth and high round-trip time networks that are not considered in the streaming protocols of

SGE and Chromium. In addition, SAGE considers the mullions (borders) of each LCD panel of tiled

displays when displaying application windows. Hence, the mullions appear to be placed on top of a large

continuous image. This feature was also not considered in SGE and Chromium.

 18/30

TeraVision [Singh04] developed by EVL is a scalable platform-independent solution that is capable of

transmitting multiple synchronized high-resolution video streams between single workstations and/or

clusters. TeraVision can also stream graphics data over wide-area networks. However, it has a static

application layout on a tiled display. It is suitable for streaming a single desktop to a high-resolution tiled

display but not suitable for supporting parallel applications or multiple instances of applications.

Table 5 compares SAGE with other systems. This table clearly shows that scalable image multicasting

(Visualcasting) which will be addressed in this thesis is the most unique feature of SAGE. No other

approach solves the problem.

Table 5. Comparison between SAGE and other approaches

 SAGE SGE XDMX Chromium WireGL TeraVision

multitasking
(multiple windows) Y Y Y - - -

window reposition
and resizing Y Y Y - - -

display-rendering
decoupling Y Y - - - Y

high-performance
WAN support Y - - - - Y

scalable parallel
application support Y Y - Y - -

scalable image
multicasting Y - - - - -

 19/30

4 Proposed Research
I propose Visualcasting – a scalable real-time image distribution service for ultra-high resolution display

environments, which enables high-definition video and ultra-definition visualizations to be scalably

multicasted in real time across distributed sites. Although there are several possible approaches to solve the

same problem, this thesis will focus on SAGE Bridge, a high-speed bridging system. SAGE Bridge will be

deployed on a cluster of PCs to replicate the pixel streams at core hubs in the network. These replication

services can be dynamically scaled in proportion to the number of remote sites that are participating in a

collaborative session. The replicated visualization streams are then properly re-routed and resized to fit on

the tiled displays at the destinations. Figure 10 illustrates a Visualcasting session using SAGE Bridge.

4.1 Research and Development

This section presents the details of the proposed research including architecture, possible approaches,

heterogeneity support and optimization issues. Several alternative approaches are compared with

Visualcasting.

Figure 10. The SAGE Architecture for Visualcasting

 20/30

4.1.1 The SAGE Architecture for Visualcasting

Visualcasting requires significant changes in the SAGE architecture as shown in Figure 10. Multiple

FSManagers i.e. multiple SAGE sessions exist in this architecture. The SAGE Bridge is introduced

between SAIL and SAGE Displays to intercept pixel streams from SAIL and to duplicate them for each

SAGE session. These changes require a new procedure to execute applications as well. Figure 11 compares

the old and new application launch procedures. FSManagers no longer executes applications in the new

procedure. A new SAGE component, the Application Launcher, is introduced to launch applications

instead of FSManagers. The new procedure consists of nine steps:

(1) A SAGE UI sends commands with application parameters and information about the SAGE Bridge

and the first FSManager to the Application Launcher.

(2) The Application Launcher executes an application on appropriate rendering nodes using information

from the SAGE UI.

(3) SAIL creates a control channel with the SAGE Bridge when the application is launched. The SAGE

Bridge allocates SAGE Bridge nodes for the application and configures streams between SAIL and the

SAGE Bridge.

(4) The SAGE Bridge connects to the first FSManager in order to configure the streams between the

SAGE Bridge and the SAGE Displays.

(5) SAIL starts streaming pixels once all configurations are completed.

(6) Application images are displayed in the first SAGE session.

(7) In order to make the second SAGE session join the Visualcasting session, a SAGE UI sends a message

that has information about the second FSManager to the first FSManager.

(8) The first FSManager directs the SAGE Bridge to connect to the second FSManager.

(9) The pixel streams between the SAGE Bridge and the second SAGE session are configured and started.

Figure 11. Old and New Application Launch Procedures

 21/30

As the number of Visualcasting endpoints increases like this, initially assigned SAGE Bridge nodes

become overloaded. The SAGE Bridge allocates additional nodes for the Visualcasting session. SAIL re-

partitions images considering load balancing and streams to the SAGE Bridge nodes. This requires

establishing new network connections and dynamically reconfiguring existing streams. Two research

questions to be addressed are:

1. What are the conditions for adding or removing a SAGE Bridge node?

2. What SAGE Bridge architecture minimizes jitter on existing streams during this procedure?

If no additional nodes are available in the SAGE Bridge, it requests SAIL to reduce the rendering

resolution or to compress the pixel blocks at the expense of the image quality.

4.1.2 Candidate Approaches to Visualcasting

Figure 12 shows four possible approaches to distribute pixels from the SAGE Bridge to tiled displays.

(1) The SAGE Bridge directly distributes pixel blocks to their final destinations as SAIL does in the

latest SAGE prototype (see Figure 12-A).

(2) Placing a local bridge at each endpoint so that the SAGE Bridge duplicates pixel blocks and the local

bridge distributes them over the tiles according to the application window layout (see Figure 12-B).

(3) Equally distributing pixel blocks over all the SAGE display nodes. Each node works as a local

bridge node (see Figure 12-C). Some Visualcasting endpoints do not have enough nodes for a local

bridge. It is economical if SAGE display nodes also work as a local bridge.

(4) Only the selected nodes receive pixel blocks from the SAGE Bridge and distribute them over the

tiles (see Figure 12-D). The FSManager smartly chooses the local bridge nodes among the SAGE

display nodes based on the application window layout and directs the SAGE Bridge to stream pixel

Figure 12. Visualcasting Approaches

 22/30

blocks only to the selected nodes. This approach is useful for a large tiled display with multiple

applications.

The second and third approaches have an advantage over the first one (Direct Distribution) in window

operation latency because window reposition and resizing are performed locally. Direct Distribution, on the

other hand, requires the reconfiguration of wide-area network streams for the operations. But Direct

Distribution excels over other approaches in network streaming latency because indirect distribution

schemes introduce additional delay in the network streams. In view of load balancing, the third approach

excels beyond the others. But this approach may have huge re-routed traffic which affects the performance

of other applications, so the third and fourth approaches are suitable for display clusters with high

computing power or private network connections between the nodes.

The fourth approach is intended to be an optimal solution with a combination of the advantages of the other

approaches: less re-routed traffic (the first approach), less hindering display processes (the second

approach), load-balancing (the third approach) and avoiding reconfiguration of wide-area network streams

(the second and third approach). So the algorithm to decide local bridge nodes for each application has to

reflect the following strategies:

(1) Include the nodes now displaying the application on them (to reduce re-routed traffic).

(2) Exclude the nodes heavily used by other applications (for load balancing).

(3) Preferably include the nodes adjacent to the nodes selected by (1).

(4) Preferably avoid the change of the node set.

The purpose of (3) and (4) is to avoid reconfiguration of wide-area network streams. When application

windows are moved or resized, (1) may incur frequent changes of the local bridge node set. (3)

compensates this drawback by preventing node set changes due to small changes in the size or position of a

window. There is a conflict between (1) and (4), so their priorities should be decided according to the

current window position and size, and the amount of their changes relative to the total tiled display size.

4.1.3 Support for Heterogeneous Endpoints

As discussed in the introduction, each Visualcasting endpoint has heterogeneous network bandwidth,

computing capacity and display resolution. Figure 13 shows the diversity of the tiled displays used by the

international collaborators of EVL. An ultra-high-resolution visualization affordable by the 55-tile display

at UIC in Figure 13 may not fit into the four-tile display at TAMU. A simple solution for this problem is to

have the application adapt its resolution to the smallest tiled display. The latest prototype of SAGE assumes

the application statically configures its rendering resolution. An appropriate application interface to

dynamically change visualization resolution needs to be implemented for this solution. A more intelligent

solution is to have the SAGE Bridge adapt the resolution of image streaming to each endpoint. This

 23/30

requires the SAGE Bridge to resample received pixel blocks and to stream the new blocks with reduced

resolution to the endpoints with less display resolution. If an endpoint has insufficient network bandwidth

in spite of high display resolution, the compression of pixel blocks should be an appropriate solution. The

compression can be performed by SAIL or the SAGE Bridge.

In an ideal case, the SAGE Bridge distributes pixel data at the same rate as it receives data. But the

endpoints consume the data at different rates due to the heterogeneity discussed above. If the bridge

distributes the data as it is, the global data transfer rate will drop down to the rate of the slowest endpoint.

To avoid this the bridge needs to adaptively reduce the data size for slow endpoints by resampling or

dropping image frames while streaming whole image frames to fast endpoints. In summary, the SAGE

Bridge has to adaptively control the data transfer rate to each endpoint considering the display resolution,

network bandwidth and data consuming speed of the endpoint by resampling, compressing or dropping

image frames.

4.1.4 Pixel Block Size and Network Protocol Interfaces

As discussed in Section 3.1.3, pixel block based streaming will be used for Visualcasting. Since SAIL

delivers pixel data to a network protocol block by block, decreasing pixel block size increases network API

function calls which may incur network streaming overhead. It increases OpenGL API function calls in

SAGE Displays as well because SAGE Displays send pixel data to the graphics card block by block. This

may incur another overhead in the display process. However, increasing pixel block size incurs network

streaming overhead in the case of the first and second approaches in Section 4.1.2. Since a pixel block is

Figure 13. Various Tiled Displays at International Collaboration Sites

 24/30

regarded as an indivisible unit in Visualcasting, the whole pixel block is streamed even though it is partly

shown on the display (pixel blocks on the edges of the tiles). Using larger pixel blocks may have more

pixel data streamed that is not displayed. Using small pixel blocks also increases image splitting flexibility

which is preferable for the third and fourth approaches in Section 4.1.2 and non-rectangular image

streaming.

The trade-offs between large and small pixel blocks will be investigated more deeply. Some modifications

to the assumptions and the approaches used in Visualcasting may help resolve some of these issues. For

example, aggregating small pixel blocks to make a large block before streaming over networks or

downloading into the graphics card may increase the performance. Allowing a few exceptions to the

assumption of the indivisible pixel block also can reduce the network streaming overhead.

How to fetch pixel data from SAGE applications and pass it to network protocols is another problem. SAIL

currently uses double buffering – the applications fill one buffer while SAIL transports the other buffer

over the network. The two buffers are swapped once both sides are ready to go to the next frame. SAIL

generates pixel blocks from the fetched image frame and streams them using the blocking network send

function calls. The blocking send, however, may slow down wide area reliable network streaming because

it blocks the sender until it confirms that the receiver gets all the data. A non-blocking send using

LambdaStream (a new network protocol for high-performance wide area network streaming developed by

EVL) [Xiong05, Vishwanath06] can improve performance. It requires an interface between SAIL and the

network protocol to check if the pixel block buffers are ready to be overwritten before they are filled with

new pixel data. Another interface is needed to implement adaptive pixel data streaming for which SAIL

requests a desirable network bandwidth for an application from LambdaStream, and the available

bandwidth for the request is returned. SAIL adapts the data streaming rate to the available bandwidth by

reducing the frame rate or image resolution. These interfaces are very important to improve Visualcasting

performance and afford a large number of pixel streams.

4.1.5 Pixel Stream Compression

During SAGE performance evaluation, SAGE applications typically used around 600Mbps network

bandwidth per rendering node to stream their output to a remote tiled display (e.g. 1600 x 1200 x 24bit x

15fps = 691Mbps). The 1Gbit network interface on each node was easily saturated if multiple applications

run on one rendering cluster. One parallel application utilized over 9Gbps from 10Gbps available WAN

bandwidth when it streams extremely high resolution images such as 6400 x 4800 aerial photography. This

means 10Gbps WAN bandwidth is not enough for multiple users to share by running their own applications

in the SAGE frame work. Pixel stream compression is a very reasonable solution for this problem. Even if

the network interfaces are upgraded to 10Gbit Ethernet and the WAN evolves to a Terabit network, the

compression will allow more people to run more diverse applications in the SAGE frame work.

 25/30

However, it is almost impossible to generate pixel blocks from a compressed image. It cannot be split and

distributed over a tiled display. Hence, compressing an entire image is inappropriate for SAGE streaming.

Instead, the image data of each pixel block has to be compressed separately. This makes sense for

Visualcasting because the SAGE Bridge can send the compressed pixel blocks to the proper destinations by

just checking their header without decompressing them. Furthermore, the pixel block compression reduces

the load of the SAGE Bridge, though it increases the load on SAIL and SAGE Displays. It can be a good

solution when the SAGE Bridge is overloaded due to the increase of the number of Visualcasting endpoints.

A few real-time image compression techniques will be used including Run Length Encoding (RLE), the

color format transformation between RGB and YUV, DXT texture compression and Wavelet transforms.

4.1.6 Comparison with Other Approaches

Visualcasting can be implemented using conventional multicast techniques, such as traditional IP multicast,

photonic multicast or reliable layered multicast. These approaches, however, can be applied only on

multicast-enabled networks with special configurations. In contrast, the SAGE Bridge approach is

applicable on any network with a normal configuration. This is one straightforward advantage of the SAGE

Bridge approach over multicast approaches.

The SAGE Bridge approach is more flexible than multicast approaches in that it can perform various

operations on incoming pixel data including partitioning, resampling, compression and frame dropping as

needed by each endpoint. On the other hand, such intermediate pixel data processing and stream control

that considers the heterogeneity of endpoints is not feasible using conventional multicasting. All necessary

pixel data processing should be done at the sending side. Layered multicast [McCanne96] can address

heterogeneity of endpoints, but the source image has to be transformed appropriately for each layer. This

may place an excessive computational load on the rendering nodes.

In addition, the source image has to be partitioned considering the display configurations and window

layouts of all collaboration endpoints. Since each partitioned image should be streamed to a distinct

multicast address, the number of available multicast addresses restricts the precision of image partitioning.

An improper image partition may incur network streaming overhead. Window reposition or resize changes

the membership of the multicast groups. In some cases, this change takes so much time that SAGE cannot

perform window operations interactively.

I will survey those multicasting techniques more deeply and compare them with the SAGE Bridge

approach in their scalability, performance and functionality.

 26/30

4.2 Metric for Success

The proposed approach will support distant collaboration between heterogeneous endpoints by distributing

visualization at extremely high resolutions. The bandwidth and latency of this approach will be measured

as the number of collaborating sites increases. The limits of this approach will be identified as well.

Scalability, achievable bandwidth and latency as Visualcasting supports heterogeneous endpoints will

decide the success of this approach.

4.3 Timeline

Deadline Task Completed

June 29th, 2007 Submit all the paperwork needed to officially complete my thesis with UIC

June 15th, 2007 Thesis defense

May 25th, 2007 Hand in draft of thesis

April 27th, 2007 Real-world test over WAN, Schedule defense date with committee members

March 31st, 2007 Write a paper for JPDC or IEEE Visualization

March 15th, 2007 Optimization of Visualcasting (compression, network API)

Jan 15th, 2007 Write a paper for HPDC

Dec 31st, 2006 Evaluate performance and scalability and compare candidate approaches

Dec 15th, 2006 Implement a scalable version including all candidate approaches

Nov 11th, 2006 SC demo and paper presentation

Oct 31st, 2006 Write a paper for CG&A, Survey of multicast approaches

Oct 15th, 2006 Evaluate and analyze the performance of the first implementation

Sep 30th, 2006 Implement basic image distribution and heterogeneity support

Aug 24th, 2006 Preliminary Exam

2006 2007 Task Aug Sep Oct Nov Dec Jan Feb Mar Apr May June
Preliminary Exam

First Implementation
Preparing SC Demo

CG&A paper
Scalable Version

HPDC paper
Optimization/WAN test
JPDC or IEEE Viz paper

Writing Thesis
Preparing Defense

 27/30

4.4 Deployment Plan

The Visualcasting approaches will be implemented in future versions of SAGE. These versions will be

released at the SAGE web site: http://www.evl.uic.edu/cavern/sage.

4.5 Experiment Plan and Equipment Needed

An initial test bed of the SAGE Bridge will consist of four high-performance PCs each equipped with two

10Gbit network interfaces that are connected to a LambdaVision cluster through local 10Gbit networks.

The LambdaVision cluster will be configured as one rendering cluster and several display clusters. For

example, 28 cluster nodes each equipped with a gigabit interface can be configured as an 8-node rendering

cluster, and a 2-node (4-tile), 6-node (12-tile) and 12-node (24-tile) display cluster. A 10Gbit switch will

connect the rendering/display cluster and SAGE Bridge nodes (see Figure 14). This test bed will be used to

evaluate scalability and performance of Visualcasting supporting heterogeneous endpoints on local area

networks.

Once the basic capabilities of SAGE Bridge is fully tested on the local test bed, a SAGE Bridge cluster will

be placed at StarLight in downtown Chicago for real-world tests including remote collaboration sites. The

Figure 14. SAGE Bridge Test bed on a local network

 28/30

cluster can be the same as in the initial test bed, or considering the fact that outgoing traffic from the SAGE

Bridge is usually several times bigger than its incoming traffic the cluster may consist of four high-

performance PCs each equipped with a 10Gbit (output) and two gigabit (input) network interfaces. The

gigabit interfaces are connected to EVL/UIC through a 10Gbit network and the 10Gbit interfaces are

connected to remote collaboration sites including University of Michigan (over Internet2), Calit2/UCSD

(over CAVEWave/National Lambda Rail), SARA in Amsterdam (over SURFNet) and KISTI in Korea

(over KREONet2). This is a good test case for heterogeneity support because these collaboration sites have

tiled displays with various display resolutions, computing power, network latency and bandwidth.

 29/30

5 References
[Childers00] Childers, L, Disz, T., Olson, R., Papka, M. E., Stevens, R., and Udeshi, T., “Access Grid:

Immersive Group-to-group Collaborative Visualization,” Proceedings of Fourth International Immersive

Projection Technology Workshop, 2000.

[Deering91] Deering, S. E., “Multicast Routing in a Datagram Internetwork,” PhD thesis, Stanford

University, December 1991.

[DMX] “Distributed multi-head X project,” http://dmx.sourceforge.net/.

[Germans01] Germans, D., Spoelder, H.J.W., Renambot, L., and Bal, H. E., “VIRPI: a High-level Toolkit

for Interactive Scientific Visualization in Virtual Reality,” Proceedings of Immersive Projection

Technology/Eurographics Virtual Environments Workshop, 2001.

[He03] He, E., et al, “Quanta: a Toolkit for High Performance Data Delivery over Photonic Networks,”

Journal of Future Generation Computer Systems, Volume 19, Issue 6, August 2003, pp. 919-933.

[Humphreys00] Humphreys, G., Buck, I., Eldridge, M., and Hanrahan, P., “Distributed Rendering for

Scalable Displays,” Proceedings of ACM/IEEE Conference on Supercomputing, 2000.

[Humphreys02] Humphreys, G., et al, “Chromium: a Stream-processing Framework for Interactive

Rendering on Clusters,” Proceedings of SIGGRAPH, 2002.

[Jeong06] Jeong, B., Renambot, L., Jagodic, R., Singh, R., Aguilera, J., Johnson, A., and Leigh, J., “High-

Performance Dynamic Graphics Streaming for Scalable Adaptive Graphics Environment,” accepted by

ACM/IEEE Supercomputing 2006.

[Klosowski02] Klosowski, J. T., Kirchner, P., Valuyeva, J., Abram, G., Morris, C., Wolfe, R., and Jackman,

T., “Deep View: High-resolution Reality,” IEEE Computer Graphics and Applications, Volume 22, Issue 3,

May/June 2002, pp. 12–15.

[Krumbholz05] Krumbholz, C., Leigh, J., Johnson, A., Renambot, L., and Kooima, R., “Lambda table:

High Resolution Tiled Display Table for Interacting with Large Visualizations,” Proceedings of Fifth

Workshop on Advanced Collaborative Environments, 2005.

 30/30

[Leigh03] Leigh, J., Renambot, L., DeFanti, T. A., et al, “An Experimental OptIPuter Architecture for

Data-Intensive Collaborative Visualization”, Third Workshop on Advanced Collaborative Environments,

Seattle, WA, June 2003.

[Leigh06] Leigh, J., Renambot, L., Johnson, A., Jeong, B., et al, “The Global Lambda Visualization

Facility: An International Ultra-High-Definition Wide-Area Visualization Collaboratory,” Journal of Future

Generation Computer Systems, Volume 22, Issue 8, October 2006, pp. 964-971.

[McCanne96] McCanne, S., Jacobson, V., and Vetterli, M, “Receiver-driven Layered Multicast,” ACM

SIGCOMM, 1996.

[Perrine01] Perrine, K. A., Jones, D. R., and Wiley, W. R., “Parallel Graphics and Interactivity with the

Scaleable Graphics Engine,” Proceedings of ACM/IEEE Conference on Supercomputing, 2001.

[Renambot04] Renambot, L., Rao, A., Singh, R., Jeong, B., et al, “SAGE: the Scalable Adaptive Graphics

Environment,” Proceedings of WACE 2004, Nice, France, 09/23/2004 - 09/24/2004.

[Singh04] Singh, R., Jeong, B., Renambot, L., Johnson, A., and Leigh, J., “TeraVision: a Distributed,

Scalable, High resolution Graphics Streaming System,” Proceedings of IEEE Cluster, 2004.

[Smarr03] Smarr, L., Chien, A. A., DeFanti, T., Leigh, J., and Papadopoulos, P. M., “The OptIPuter”

Communications of the ACM, Volume 46, Issue 11, November 2003, pp. 58-67.

[Stix01] Stix, G., “The Triumph of the Light,” Scientific American, January 2001.

[Vishwanath06] Vishwanath, V., Leigh, J., He, E., Brown, M. D., Long, L., Renambot, L., Verlo, A., Wang,

X., DeFanti, T. A., “Wide-Area Experiments with LambdaStream over Dedicated High-bandwidth

Networks,” IEEE INFOCOM, April 2006.

[Xiong05] Xiong, C., Leigh, J., He, E., Vishwanath, V., Murata, T., Renambot, L., and DeFanti, T.,

“LambdaStream – a Data Transport Protocol for Streaming Network-intensive Applications over Photonic

Networks,” Proceedings of The Third International Workshop on Protocols for Fast Long-Distance

Networks, Lyon, France, Feb. 2005.

