
Accelerating Iterative Relational Algebra Operations with WebGPU
Jiaxin Lu, Sidharth Kumar

University of Illinois Chicago, Department of Computer Science

jlu73@uic.edu, sidharth@uic.edu

Bottom‐up logic programming (e.g., Datalog) runs via repeated
relational‐algebra kernels—selection, projection, join, and reorder—until
no new facts emerge. While GPUs promise massive parallelism for these
primitives, existing engines remain CPU-bound (8–16 threads) and
struggle with deduplication and growing result sets.

We introduce a WebGPU-based hash-join pipeline that:
• Maps each RA primitive (hash‐join, GPU radix sort, deduplication, set

difference, insertion into the full relation) to its own WGSL compute
shader

• Uses dynamic, growable GPU buffers and load-factor-tuned hash
tables for memory management

• Drives a delta-only fixed-point loop, processing only newly discovered
tuples each iteration

1. Array-Based Transitive Closure Computation Algorithm:
Starting from an initial graph, each round performs four stages in order:
• Join to compute new entries.
• Count to determine how many new entries are generated after joining.
• Filter to remove duplicates and retain only new entries.
• Merge to incorporate them into the full result relation.

Relation operations in a fixed-point setting (Iteration 1)

2. Hash Table-Based Transitive Closure Computation Algorithm:
WebGPU does not currently offer a built-in hash table data structure.
Consequently, it is necessary to develop an appropriate hash table
implementation within the WebGPU framework.
• Build a GPU-resident hash table in parallel. Populate the table and

handle collisions (using Linear probing). Commencing with an initial
graph, we utilize a hash table for the effective storage of the graph.

• Iterate through the processes of joining, counting, filtering, and merging
until no additional entries are produced.

We evaluated our method on small datasets and large datasets against
the state-of-the-art CPU Datalog solver (Soufflé) and CUDA Hashjoin.

Array-Based WebGPU

Hash Table-Based WebGPU without Sorting

Hash Table-Based WebGPU with Radix Sort

1 2

1 4

2 3

2 4

2 5

4 5

Initial Graph

⨝
1 3

1 5

1 4

1 5

2 5

G

1 2

1 4

2 3

2 4

2 5

4 5

Duplications on
join results

Exists in the
Initial Graph

G ⨝ G

1 3

1 5

Delta

Filter
1 2

1 4

2 3

2 4

2 5

4 5

1 3

1 5

Full

Merge

Our Problem:
To enhance the efficiency of the deduplication process, it is essential to
conduct a sorting operation on the results derived from the join
operation. By implementing this sorting technique, we can compare
adjacent tuples rather than requiring each thread to examine every tuple
in the join result individually. We have implemented a high-
performance, four-way parallel radix sorting algorithm, which is
expected to significantly reduce execution time compared to executing
the program without this sorting approach. Unfortunately, following the
implementation of the radix sort, the outcomes did not meet
expectations, and we are currently working to identify the underlying
issues.

Transitive closure computation (single iteration)

Key Value

Hash Table

⨝
Key Value

newT

Hash

Join

Radix

Sort

Filter

Key Value

Delta

Merge

Key Value

Full

Efficient deduplication

Dataset Type Rows TC size Iterations
WebGPU

(s)

GPUJoin

(s)

Soufflé

(s)

TG.cedge U 23,874 481,121 58 10.8864 0.198 0.219

OL.cedge U 7,035 146,120 64 5.4399 0.148 0.181

Small U 10 18 3 0.1836 0.0342 0.007

Extra small U 5 9 3 0.1893 0.0317 0.007

Dataset Type Rows TC size Iterations
WebGPU

(s)

GPUJoin

(s)

Soufflé

(s)

TG.cedge U 23,874 481,121 58 7.7704 0.198 0.219

OL.cedge U 7,035 146,120 64 3.0614 0.148 0.181

Small U 10 18 3 0.0809 0.0342 0.007

Extra small U 5 9 3 0.0565 0.0317 0.007

Dataset Type Rows TC size Iterations
WebGPU

(s)

Sorting

Time

(s)

GPUJoin

(s)

Soufflé

(s)

TG.cedge U 23,874 481,121 58 99.63 69.1417 0.198 0.219

OL.cedge U 7,035 146,120 64 40.644 30.764 0.148 0.181

Small U 10 18 3 2.872 2.637 0.0342 0.007

Extra small U 5 9 3 0.2170 0 0.0317 0.007

Runtime Performance Comparison of GPU-Accelerated
and CPU-Based Relational Analytics

Introduction

Implementation

Implementation (Continue)

Experiments

Conclusion

WebGPU Example: Matrix multiplication

WebGPU is an API specifically designed to expose modern GPU
capabilities to web developers. It is designed to facilitate not only the
rendering of graphics but also the execution of GPU computations within
the browser environment.
Browser Computing Benefits:
• Instant accessibility; no installation
• Reduced server dependency; lower latency
• Enhanced data privacy and security
• Real-time interactivity and rich visualization
Matrix multiplication in WebGPU utilizes a compute shader to dispatch
numerous parallel threads. Each thread computes the dot product of a
row from the first matrix and a column from the second matrix. This
process involves reading from input buffers and writing results to a GPU
buffer, all in a single GPU pass, similar to the approach used in CUDA
code.

WGSL Compute Shader Code
@compute @workgroup_size(16, 16)
fn main(@builtin(global_invocation_id) global_id:
vec3<u32>) {

let row = global_id.y;
let col = global_id.x;
if((row < Width) && (col < Width)) {

var Pvalue: u32 = 0;
for(var i: u32 = 0u; i < Width; i++) {

let m = M[row * Width + i];
let n = N[i * Width + col];
Pvalue = Pvalue + m * n;}

P[row * Width + col] = Pvalue;}}

CUDA Code
__global__ void matrixMul(int *a, int *b, int *c, int N){

int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;

int temp_sum = 0;
if(row < N && col < N){

for(int i = 0; i < N; i++){
temp_sum += a[row * N + i] * b[i * N + col];}

c[row * N + col] = temp_sum;}}

A hash-table-based WebGPU pipeline
without sorting optimally balances
performance and correctness, reducing
array-scan time by 30% to 45% for large
graphs and keeping small graphs'
overhead under 0.1 seconds. However,
adding a GPU radix sort incurs costs
that exceed its benefits.

	Slide 1: Accelerating Iterative Relational Algebra Operations with WebGPU Jiaxin Lu, Sidharth Kumar University of Illinois Chicago, Department of Computer Science jlu73@uic.edu, sidharth@uic.edu

