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SUMMARY 
 
 

State-of-the-art Virtual Reality technologies such as VarrierTM bring better 

interaction and comprehension into visualization experience. But VR applications are still 

limited in the area of large-scale scientific visualization mostly because of the intensive 

graphics computation for VR viewing.  

 

The goal of this thesis is to design and implement a distributed visualization 

framework which combines VR technologies and remote computing resources through a 

high speed network, so that large-scale scientific datasets can be visualized in real-time 

on local VR devices.  

 

The framework is designed to be a scalable distributed system with pipelined data 

retrieval, computation, and visualization for various datasets. Scalability makes the 

system adaptive to the available computing and visualizing resource configurations. Each 

subsystem of the distributed system can perform either cluster-based parallel computing 

or single workstation-based sequential computing. The pipeline configuration can be 

optimized based on a balanced granularity as the ratio of computation to communication. 

The pipeline is an MIMD design which explores computing and networking parallelism 

along with the data flow. 

 

 



 

 xii

SUMMARY (Continued) 
 

Special implementation features of the pipeline are presented in this thesis based 

on the requirements of interactive VR exploration. First of all, point samples are 

introduced as an intermediate format of data which flow through the pipeline. The 

conceptual simplicity and rendering performance of points make them a good choice as 

modeling and display primitives for efficient VR-end geometry caching and view 

reconstruction. Sampling, packing, and rendering algorithms are discussed in this thesis 

to transform the original dataset into point samples, cache the point geometry, and 

reconstruct seamless 2D viewing from the point geometry. Different implementations of 

these algorithms with different levels of computational complexity are studied and 

customized to match the various visualization requirements for specific VR applications. 

The straightforward functional decomposition of point-based graphics enables flexible 

and balanced workload distribution through the computation pipeline.  Secondly, 

different subsystem coupling schemes are discussed and can be selected to fit for 

different VR application requirements. Looser coupling of the VR client from the 

computation server means less waiting time inside the view construction cycle, but with 

possible viewing artifacts due to delayed view updating.  

 

 

 



 

 xiii

SUMMARY (Continued) 
 

As case studies to prove the feasibility of the proposed visualization strategy, 

datasets with different characteristics, such as triangle meshes and volumes, are used as 

customized visualization instances of the proposed framework. Several pipeline 

configurations, such as single server to single client, server cluster to single client, and 

server cluster to client cluster, are tested for different applications. Also, different point 

based algorithms and subsystem coupling schemes are selected in each case study and 

their functionalities can be merged together seamlessly for a specific application. All 

experiments show that VR interaction can be improved for various visualization tasks by 

utilizing the visualization framework presented in this thesis. 
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CHAPTER 1 INTRODUCTION 
 
 
 

1.1 Motivation  

Modern data acquisition techniques have produced huge datasets in high-

precision for real world objects and environments. These datasets may also be distributed 

among multiple data servers. The growth of the size and distribution of scientific data 

sets has been not only pushing the limits of computing resources and networking 

bandwidth, but also taxing the ability of scientists to understand them. Effective 

visualization systems must therefore be both efficient on large data retrieval and 

processing and comprehensible for the user. Visualization research has focused on 

developing techniques that address both of these criteria. 

 

Classically, a virtual reality (VR) application features a complex simulation using 

input and output devices to provide users with a sense of immersion in a synthetic world. 

One main expectation of VR is to maintain good quality stereo visualization and 

interaction with low latency and high refresh rates. VR brings immersive comprehension 

into scientific visualization for its users. Today’s VR device can not only be a single 

workstation, but also a scalable cluster-driven tiled display. Real-time large-scale dataset 

exploration in an immersive tiled-display VR environment is very promising for the 

future of scientific visualization. 
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There exist several large challenges in developing such a real-time VR 

visualization system for large-scale datasets. First of all, the size and distributed storage 

of large-scale datasets make it undesirable to download the original data completely into 

a local machine.  Secondly, graphics processing power is limited for commodity 

computing hardware without super computation power. Local visualization of large scale 

datasets with high frame rates is a challenge, especially for VR, because VR is generally 

graphics-intensive with stereo drawing. Furthermore, for some passive auto-stereo VR 

systems [Sandin05], the image interleaving overhead has proved to be a heavy load even 

with the newest GPU based solutions [Kooima07].  

 

Fortunately, new technologies such as parallel computing over a computer cluster 

have been brought in to solve large-scale problems. Moreover, the advent of high-speed 

networks, such as CAVEwave [Cavewave], is providing the potential for new approaches 

to real time organization, distribution, analysis, and visualization of large-scale scientific 

datasets. For example, it’s now possible to retrieve data in real-time from data sources 

distributed all around the world through a dedicated high speed high bandwidth network. 

Also, remote visualization techniques have been presented as a prototype distributed real-

time visualization pipeline, where a local visualization environment is connected to a 

scalable parallel computer via a high-speed network. The data are either computed in 

real-time or pre-computed on the parallel computer, and then are transferred to the local 

visualization environment where fast view reconstruction is accomplished.  
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In this thesis, a point-based real-time remote visualization pipeline for virtual 

reality is proposed to enable high speed exploration of large-scale datasets for VR 

devices from single workstations to cluster-driven tiled displays. A scalable parallel 

computer cluster, called the computation server, stands as a bridge to connect both the 

possibly distributed data servers and the local VR devices through high-speed network. 

Based on the VR client’s viewing demands, the computation server retrieves data from 

the data servers and samples the visible part of the original data into 3D point samples. 

3D point samples are chosen to be the intermediate data form flowing from the 

computation server to the VR visualization client because of their consistency with the 

output of conventional graphics rasterization, and their conceptual simplicity and 

efficient rendering performance as a display primitive.  Scalable remote visualization in 

client-server architecture brings together distributed data storage, high-performance 

computing and state-of-art VR techniques for better data exploration and analysis in 

various research areas. 

 

1.2 Terminology 

The important and commonly used terms in this thesis are listed below. These 

terms are mainly associated with Virtual Reality, scientific visualization, and parallel 

computing. Most of these will be discussed in more detail throughout the thesis.  
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Virtual Reality, Large-scale Virtual Reality 

A Virtual Reality (VR) application features a complex simulation using input and 

output devices to provide users with a sense of immersion in a synthetic world 

with stereo viewing. Smooth VR interaction generally needs fast view 

construction with frame rates of at least 15fps. A large-scale Virtual Reality 

problem indicates that the application navigates through a large-scale dataset.  

 

Autostereoscopy 

Autostereoscopy is a method of displaying three-dimensional images that can be 

viewed without the use of special headgear or glasses on the part of the user. 

These methods produce depth perception in the viewer even though the image is 

produced by a flat device. 

 

Image Interleaving 

Image interleaving is the stereo image compositing process at the end of passive 

autostereoscopic visualization. For example, in a static parallax barrier display 

like the VarrierTM, the left eye and right eye images are rendered in strips by a 

virtual linescreen occlusion, and finally interleaved together into the same frame 

buffer and directed into the correct eyes by the physical barrier attached to the 

LCD display. 
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Surface dataset and volumetric dataset 

Surface datasets represent exterior characteristics of an object. Volumetric 

datasets represent a 3D sampling of the interior structure of the objects, including 

amorphous and semi-transparent features, over a uniform/non-uniform 3D grid.  

 

Point Sample, sample rate, and sample resolution 

A point sample represents a type of modeling and display primitive of graphics 

datasets. For surface datasets, a point sample can be a surfel [Pfister00], which 

consists of spatial coordinate p, normal orientation n, color c, and information 

about its spatial extent in object-space. For volumetric datasets, a point sample 

can represent an ellipsoid or sphere which has 3D spatial expansion.  The term 

sample rate indicates the object-space point sample distribution; while the term 

sample resolution is used to indicate the sample density according to decimation.  

 

Pipeline, Parallel pipeline, and Distributed pipeline 

A pipeline consists of a sequence of stages through which computation and data 

flow. New data is input at the start of the pipeline while other data is being 

processed throughout the pipeline. Important issues are the interconnections and 

data paths between the stages of different pipelines. In a parallel pipeline each 

stage of the pipeline itself performs parallel computing too. A distributed pipeline 
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refers that different stages of the pipeline are executed on geographically 

distributed computing systems. 

 

Remote Visualization 

Remote visualization is a distributed pipeline whose purpose is to retrieve, 

analyze and visualize 3D scientific datasets. It usually involves distributed data 

storage, remote computation resources, and local visualization facilities. The 

different computing stages in the pipeline are executed by distributed resources 

connected by a high speed network.  

 

Data Partition 

Data partitioning is the basis of a parallel computing algorithm by unit repetition. 

The data associated with a problem is decomposed and each parallel task then 

works on a portion of the data. There are different ways to partition data over the 

processing units for a parallel visualization task, such as object-space data 

partition and image-space data partition.  

 

Workload Distribution 

Workload partitioning is the basis of pipeline computing. The computation 

functionalities are decomposed and distributed over the pipeline. Workload 

distribution lends itself well to problems that can be split into different tasks. 
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Load Balancing 

Load balancing refers to the practice of distributing work among tasks so that all 

tasks are kept busy all of the time. It can be considered a minimization of task idle 

time. Load balancing is important to parallel programs for performance reasons.  

 

Communication  

Parallel tasks typically need to exchange data. There are several ways this can be 

accomplished, such as through a shared memory bus or over a network, however 

the actual event of data exchange is commonly referred to as communication 

regardless of the method employed.  

 

Synchronization  

The coordination of parallel tasks in real time, very often associated with 

communication. Often implemented by establishing a synchronization point 

within an application where a task may not proceed further until other task(s) 

reaches the same or logically equivalent point. Synchronization usually involves 

waiting by at least one task, and can therefore cause a parallel application's overall 

execution time to increase.  
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Granularity  

In parallel computing, granularity is a qualitative measure of the ratio of 

computation to communication. A coarse granularity indicates that relatively 

large amounts of computational work are done between communication events. 

Similarly, a fine granularity indicates that relatively small amounts of 

computational work are done between communication events.  

 

Scalability  

Scalability refers to a parallel system's (hardware and/or software) ability to 

demonstrate a proportionate increase in parallel speedup with the addition of more 

processors.  

 

1.3 Problem Statement  

This thesis proposes to implement a real-time remote visualization pipeline to 

enable high speed exploration of large-scale datasets for VR devices from single 

workstations to cluster driven tiled displays. A remote visualization system is a 

distributed pipeline where the rendering process involves both remote and local resources. 

In this thesis, the remote resoures are called  server and the local resources are called 

client. For a typical remote visualization system, the implementation features include its 

work load distribution scheme, the server-client coupling mode, and the data caching 

scheme.  
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The work load distribution scheme between the server and the client usually 

falls into one of the two categories: 

 

• Remote rendering – local display. In this mode, rendering is performed by a 

remote server based on the client’s demand, and the resulting stream of pixels is 

sent over the network to the client for display. This image-based solution makes 

client visualization independent of scene complexity, but requires powerful server 

computation and high network bandwidth, especially when the client asks for 

large display resolution. 

 

• Remote geometry delivering – local rendering. In this mode, a remote server will 

send partial geometry data to the client on demand, and then the client can render 

the scene locally. This solution relies on server’s data retrieval and client’s 

rendering ability. Low-end clients are usually not capable of rendering very 

complex scenes in high speed.  

 

Because VR is graphics-intensive, it’s important to have a balanced workload 

distribution scheme between the server and client for better overall performance. For 

example, a passive auto-stereo VR rendering frame includes stereo rendering of the scene 

for both eyes and a final image interleaving. In the remote rendering – local display mode, 

the server needs to do stereo rendering for each frame and the client waits for the stereo 



 

 

10

images before executing the image interleaving. The server’s workload can easily 

become too heavy in this mode. On the other hand, in the remote geometry delivering – 

local rendering mode, the server does the geometry delivering for each frame, and the 

client needs to do both stereo rendering and image interleaving. The client’s workload 

can easily become too heavy in this mode. A more flexible workload distribution scheme 

is needed for VR in order to achieve better balance between the server and client’s 

processing. 

 

The work flow cycle for each frame in the remote computation pipeline includes 

view requesting from the client to server, server computation, data transfer from the 

server to the client, and client view construction. The relation among multiple work flow 

cycles defines the degree of server-client coupling, described as following: 

 

• Synchronous coupling. In this mode, the work flow is sequential. The server and 

the client both wait for the completion of the current data flow cycle before 

continuing to the next frame. Waiting happens at both server and client and 

aggravates the inter-frame delay.  

 

• Loose coupling. In this mode, adjacent work flow cycles can be interleaved with 

each other by introducing a circular buffering algorithm at the client side. Data 

coming from different server computation frames can be stored in different 
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buffers, thus avoiding unnecessary inter-waiting between the server and client. 

The looseness of the coupling depends on the number of buffers decides. Loose 

coupling need more data storage space at the client side, but also improves the 

view updating frame rate. 

 

For an interactive VR, the view reconstruction frame rate is very critical in order 

to reflect the free movement of a head tracked user. When the loose coupling of 

server/client can’t reach the frame rate requirement for a specific VR project, it’s 

desirable to introduce a different kind of server-client coupling scheme to achieve a 

higher view construction frame rate, even at the expense of possibly decreasing the 

viewing quality.  

 

In a remote visualization task, data is transferred every frame from the server to 

the client. Usually no data caching scheme is applied at the client side, especially when 

the data delivered to the client is view-dependent, such as the 2D pixel stream, as it’s not 

reusable after the display of the current frame. Still, data caching can be a beneficial 

option for more global analysis or future reuse. In a frame-rate critical visualization 

environment like VR, it may be desirable to have a sophisticated data caching scheme at 

both the server and the client side to enable more efficient and flexible view construction. 

 



 

 

12

As a summary, besides making use of the existing parallel graphics rendering and 

remote visualization techniques, new algorithms need to be developed to solve the 

aforementioned problems to implement a scalable remote visualization pipeline for the 

graphics-expansive yet frame-rate critical VR environment.  

 

1.3.1     Approaches  

The traditional graphics rendering algorithm takes the original dataset as input 

and rasterize it into 2D pixel stream(s) for a specific viewing. The key idea of a load-

balanced remote visualization is to split the traditional graphics rendering algorithm into 

a sequence of processing stages with decomposed functionalities and distribute the 

factorized functionalities over the pipeline. The rendering functionality decomposition 

enables flexible workload distribution over the pipeline which can be adaptive to the 

system configurations and computing performance.  

 

As to the data flow along the pipeline, usually an intermediate data format other 

than the original dataset setup or the 2D pixel stream is introduced as the output of the 

server processing and the input of the client processing. The introduction of an 

intermediate data format can improve the performance of a remote visualization system 

by: 
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• Intermediate data generation may reduce the amount of data needed to be 

transferred from the server to the client. 

 

• Intermediate data format may benefit the client end graphics processing 

performance compared to the graphics setup by rendering the original dataset.  

 

• Intermediate data format may improve the data reusability compared to the view 

dependent 2D pixel streams.  

 

A generalized workload distribution scheme, referred as remote computation – 

local view construction, is proposed in this thesis. In this mode, the data flow from the 

server to the client is not limited to the original geometry or 2D pixel stream. By 

introducing an intermediate primitive as the output of server computation and the basis of 

client visualization, the workload can be distributed in a more balanced way throughout 

the pipeline. In the current implementation, 3D point samples are chosen to be the 

intermediate primitive. The server computation stage of the pipeline is a 3D point-based 

sampling process of the original dataset, and the client view construction stage of the 

pipeline is a point-based splatting process. 

 

To meet the requirement of high-speed VR interaction with the free movement of 

a head tracking, an asynchronous coupling mode between the server and client is 
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introduced. In this mode, client view construction is isolated from the normal server 

computation – client visualization work flow cycle. The client continuously reconstructs 

interim views for arbitrary viewing conditions using available data cached in its local 

memory. The tradeoff is the possible visual artifacts, such as dis-occlusion, fuzziness, 

holes and gaps, due to inadequate data coverage and resolution of the currently cached 

geometry. The visual artifacts are expected to be diminished after a new view update 

within a short amount of waiting period. The asynchronous server-client coupling mode 

fits in a scenario where a VR explorer asks for fast navigation of a large-scale dataset and 

is willing to wait for 1-2 seconds for a complete view updating when s/he wants to 

examine a particular area of interest.   

 

A sophisticated dynamic data caching scheme is introduced to facilitate efficient 

interim view construction in an asynchronous server-client coupling mode. In the 

implementation of this thesis, the data caching scheme represents a dynamic point-based 

incremental data packing with spatial partition hierarchy structure. Based on the data 

packing, redundancy could be eliminated for each server-end view-updating frame so that 

the amount of data needed to be transferred from the server to the client is decreased. 

More algorithms are designed to keep a compact and clean geometry packing along the 

runtime.  
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1.3.2     Contributions 

A scalable remote visualization pipeline is presented in this thesis for large-scale 

scientific visualization in a graphics-intensive and frame-rate critical VR environment. 

Compared to traditional VR visualization systems, the main contributions of this thesis 

fall into the following categories: 

 

• Remote visualization strategy. This thesis presents a remote visualization strategy 

for VR, which combines distributed data storage, remote computation resources, 

and state-of-the-art VR techniques.  

 

• Feature implementations for VR. Feature implementations for the remote 

visualization pipeline, such as the generalized remote computation – local view 

construction workload distribution scheme, asynchronous client-server coupling, 

and dynamic data packing algorithm, are designed to meet the requirements of the 

VR interaction. 

 

• Flexible and extendable framework. Various datasets and related graphics 

algorithms can fit into the framework. Available feature functionalities can be 

switched on or off depending on dataset characteristics and visualization 

requirements. Missing functionality can be added and out-of-date algorithms can 
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be improved for better performance. Also, system configuration optimization can 

be calculated for different visualization tasks.  

 

1.4 Document Organization 

After this section, chapter 2 explains the conceptual framework of the proposed 

system as a scalable remote visualization pipeline, followed by a brief summarization of 

the functionalities of each component subsystem.  Chapter 3 elaborates on the point-

based graphics processing algorithms for the proposed remote visualization framework. 

Point-based processing, such as point sampling, packing and splatting techniques used in 

this thesis’s implementation will be explained in detail, for both surface datasets and 

volumetric datasets. In Chapter 4, the scalable configuration of the distributed pipeline is 

discussed, for both intra-subsystems computing and inter-subsystem communication. 

Chapter 5 discusses different client-server coupling schemes, the supporting algorithms 

behind them, and the resulting system characteristics.  Case studies and experimental 

results are reported in Chapter 6. Chapter 7 concludes the thesis and talks more about 

future work.  
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CHAPTER 2     RELATED WORK 
 
 
 

2.1    VR Technologies and Applications 
 

The term 'Virtual Reality' (VR) was initially coined by Jaron Lanier, founder of 

VPL Research (1989). More recent related terms are 'Virtual Worlds' and 'Virtual 

Environments' (1990s). In immersive VR, the user becomes fully immersed in an 

artificial, three-dimensional world that is completely generated by a computer.  

A variety of input devices like head trackers, data gloves, joysticks, and hand-held wands 

allow the user to navigate through a virtual environment and to interact with virtual 

objects. Directional sound, tactile and force feedback devices, voice recognition and other 

technologies are being employed to enrich the immersive experience and to create more 

"sensualized" interfaces. The unique characteristics of immersive virtual reality can be 

summarized as follows:  

 

• Head-referenced viewing. Head-referenced viewing provides a natural interface 

for navigation in three-dimensional space and allows for look-around, walk-

around, and fly-through capabilities in virtual environments.  

 

• Stereoscopic viewing. Stereoscopic viewing enhances the perception of depth and 

the sense of space.  
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• Realistic interaction. Realistic interactions with virtual objects via data glove and 

similar devices allow for manipulation, operation, and control of virtual worlds.  

 

VR technologies, such as the CAVE [Cruz-Neira92] and the VarrierTM [Sandin05], 

use active or passive stereo technologies to build up stereoscopic or autosterescopic 

virtual environments. Applications of virtual environments include games, exploration of 

virtual sites, simulation and training of situational awareness, etc. The automobile 

industry uses VR installations for design reviews as well as product design. Architectural 

walk-throughs are common as well. 

 

Unlike traditional VR environments where the world is completely synthetic, 

augmented reality [Wellner93] tries to enrich the real world with computer generated data. 

Collaborative environments [Papka97] are the future of virtual reality. These are 

networked worlds where many users can meet, communicate and work on shared data. 

One example is the blue-c project [Gross03] for real time collaboration, which combines 

simultaneous acquisition of multiple live video streams with advanced 3D projection 

technology in a CAVE™-like environment, creating the impression of total immersion. 

From multiple video streams, a 3D video representation of the user is computed in real 

time and streamed to other participants through a networked virtual environment. 
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Distributed algorithms have also been developed for large-scale VR problems. 

([Hudson96] [Huang96])  

 

2.2    Point-based Representation 

Recently, many researchers have developed point-based rendering systems where 

a point representation is generated from the original model and then rendered using 

splatting techniques to gain high quality and rendering speed.   

 

2.2.1     Model/display primitives: triangles, images and points 

Triangles are the most common primitive used in modeling and rendering. Its 

rendering is fully accelerated in popular graphics hardware. But rendering highly 

complex models can result in triangles whose projected area is less than a few pixels. 

Using standard scan-conversion methods for the rendering of these tiny triangles 

becomes inefficient because of the necessary overhead for the triangle setup. 

 

Images as a modeling/rendering primitive ([McMillan95][Levoy96][Gortler96]) 

have been used to render complex real world objects with rendering cost proportional to 

the number of pixels in the image rather than to scene complexity. [Chen95] presented an 

approach which uses 360-degree cylindrical panoramic images to compose a virtual 

environment. The image-based approach has been used in the commercial product 

QuickTime VR, a virtual reality extension to Apple Computer's QuickTime digital 
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multimedia framework. But still those techniques come with drawbacks such as large 

memory requirements, noticeable artifacts from many viewing directions, the inability to 

handle dynamic lighting, restricted position of the viewpoint, and others.  

 

Like image based rendering, point sample rendering makes use of today’s large 

memories to represent complex objects in a manner that avoids the large render-time 

computational costs of polygons. Unlike image based representations, which are view 

dependent and will therefore sample the same surface element multiple times, point 

sample representations contain very little redundancy, allowing memory to be used 

efficiently. Point based rendering is now used widely in very complex scene rendering 

where each polygon may only occupy less than one pixel [Rusikiewicz00], and in volume 

rendering. [Zwicher01b] 

 

Point rendering is in fact quite an old concept. [Csuri79] suggested the idea of 

using points as primitives to render 3D surfaces more than two decades ago. [Levoy85] 

used points to render differentiable surfaces. Points have also been used to model fuzzy 

objects such as clouds, fire, and plants ([Reeves83], [Blinn92], [Smith84]). Benefits of 

point-based geometry representation include: 

 

• Conceptual simplicity. Since no connectivity information exists, only a set of 

points has to be stored and processed. Hierarchical encoding schemes for point-
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based geometry provide compact storage and efficient progressive transmission of 

these datasets. Recently, several mesh processing algorithms have been 

reformulated for point-based surface representations, e.g. spectral processing 

[pauly01], geometry simplification [pauly02], surface editing [pauly03] and 

multi-resolution shape modeling [zwicker02]. 

 

• Rendering performance. Points can be rendered extremely quickly; there is no 

need for polygon clipping, scan conversion, texture mapping, or bump mapping.  

 

• Rendering quality. For Point Based Rendering (PBR) the lighting computations 

are performed on a per point basis, corresponding to high quality Phong shading 

in the surface case. For anti-aliased rendering, sophisticated splatting techniques 

assign a Gaussian filter kernel to the splats, resulting in an elliptically weighted 

average (EWA) filtering of the image similar to anisotropic texture filtering 

[Heckbert89]. 

 

• Hardware acceleration. The increasing availability and programmability of 

graphics hardware has lead to the development of very efficient hardware-

accelerated rendering methods, thus providing high visual quality as well as 

efficient rendering.  
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 PBR also has some problems which are inherent to point representation. 

 

• Discrete topology. Points as a primitive can’t provide a linear surface 

representation. Special splatting techniques are needed to fill the holes caused by 

under-sampling, occlusion and close range zooming.   

 

• Detailed representation. For large, flat surfaces with detailed texturing, point 

rendering becomes less efficient than polygon rendering when the gain of 

incremental rasterization of polygon rendering outweighs the extra setup required. 

Specifically, using large textured polygons provides better image quality at lower 

rendering cost than using a large number of textured points.  

 

[Chen01] presented a hybrid approach, coded POP, in which both points and 

polygons are used to represent scenes. Points or triangles are chosen during the rendering 

to guarantee the highest image quality while delivering the maximum rendering speedup. 

Switching between points and triangles is determined on-the-fly based on their screen 

projection size.  

 

2.2.2     Point sample acquisition 

Point sampling can be done by directly transforming the triangle mesh 

([Rusinkiewicz00], [chen01]), orthogonal or perspective projected imaging 
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([Grossman98], [Pfister00]), ray casting [Hart82] or 3D laser scanning. For different 

datasets, the term point sample can either be an abstract 3D point without a sense of 

spatial extent, a surfel [Pfister00] which represents a tangent-plane aligned 2-D surface 

primitive with certain size and shape, or a 3D volume primitive with a certain 3D spatial 

extent.     

 

The most basic attributes of a point sample usually consist of a spatial coordinate 

p, normal orientation n and color c. Furthermore, it is assumed that each point also 

contains information about its spatial extent in object-space. For example, the spatial 

extent of a surfel usually specifies a circular or elliptical tangent disk centered at p and 

perpendicular to n. Elliptical disk e consists of major and minor axis directions e1 and e2 

and their lengths. Figure 2.1 shows a surfel representation of a curved 3D surface. Other 

attributes optionally include a normal-cone semi-angle θ, or any additional information 

for further shading. 

 

Figure2.1: Elliptical surfels covering a smooth and curved 3D surface. 
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For correct visibility the point samples must cover the sampled object nicely 

without holes and thus overlap each other in object-space. An adequate point sampling 

means that the discrete point samples satisfy necessary sampling criteria such as the 

Nyquist condition, and fully define the object geometry and topology.  

 

Grossman and Wally [Grossman98] present a method for determining the side 

length of the sampling triangle grids that guarantees adequate sampling of the surface 

dataset and thus controls sampling density. In QSplat [Rusinkiewicz00] a point sample is 

a sphere which is created from each vertex of a triangular mesh representing the model. 

The size of the sphere at a vertex is equal to the maximum size of the bounding spheres 

of all triangles that touch that vertex. This is a conservative method – it may result in 

spheres that are too large, but is guaranteed not to leave any holes. Similarly in POP 

[chen01], each point sample is a bounding tangent disk which is created from each 

triangle from the triangle mesh. In [Pfister00] surfels are acquired by rasterizing the 

object on a regular three dimensional rectangular grid. The grid spacing is identical to the 

pixel spacing of the frame buffer thus controlling the sampling density. Other point based 

rendering systems [Dachsbacher03] assume a uniform point sampling of the surface. 

[Alexa01] uses local Least Squares approximations to adjust the point sampling for 

display. Their point set surfaces have been extended to a progressive representation in 

[Fleishman03]. 
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2.2.3      Point organization and multi-resolution representation 

2.2.3.1    Image space organization  

Point samples which are organized in image space use image-based 3D warping 

techniques to assign or interpolate pixels to new positions to form a new view.  

 

Layered depth image introduced by Shade in [Shade98] organize point samples in 

a view-dependent manner in image space. A fast incremental warping algorithm as well 

as a method for calculating the splat size is used to render LDI at a speed of multiple 

frames per second on a PC within a limited viewing range. In point sample rendering 

[Grossman98], the point samples from each projection (image) are grouped into blocks of 

8*8 samples and a greedy algorithm is used to collect a suitable subset of all blocks 

needed to represent the whole object while avoiding redundancy. Surfels [Pfister00] 

arrange point samples in three orthogonal LDIs by blocks. The rendering process can 

then be accelerated by using incremental calculations.  

 

A point model organized in image space is usually re-sampled at a lower 

resolution (bigger pixel spacing) to get multi-resolution samples [Grossman98, Pfister00]. 
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2.2.3.2    Object space organization  

Most point models in object space organization use some sort of a hierarchical 

space-partitioning data structure as multiresolution representation. The most often 

proposed structures are octrees in which the region-octree with regular subdivision has 

been favored in [Ren02, Botsch02, Botsch03]. In [Rusinkiewicz00] a midpoint-split kD-

tree and in [Pajarola03a, Pajarola04a] an adaptive point-octree are used. The latter two 

offer data-adaptive hierarchies with fewer nodes than regular subdivision approaches.  

 

Basically, a LOD point-hierarchy stores aggregate information in each node, such 

as centroid position, normal and bounding volume information about all points in its 

subtree. An extremely memory efficient point LOD-hierarchy is given in 

[Rusinkiewicz00]. Aggressive quantization techniques and look-up tables are used to 

reduce the cost to represent a point p and bounding sphere radius r in only 13 bits, and 

the normal n in 14 bits. The color c is quantized to 5-6-5 bit and the normal-cone semi-

angle θ to 2 bits. The tree structure uses 3 bits in each node to encode the number of 

children. The LOD-hierarchy is laid out in breadth-first order in an array with each group 

of siblings sharing one pointer (index) to their list of consecutive child nodes. In 

[Botsch02] an octree is proposed that implicitly encodes the point coordinates p as the 

center of a cell in the recursive octree subdivision. A byte-code of the subdivision 

provides the tree branching information at each node. The normal n and color c are 

quantized to less than 2bytes and 1byte respectively. No bounding sphere size is used as 
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it is implicit in the hierarchy and a normal-cone semi-angle is optionally maintained in 

non-leaf nodes only. During hierarchy traversal, due to the lack of explicit parent child 

links, back-tracking at a node is only supported by actively skipping its entire subtree 

without performing any operations. Such compact encodings of the LOD hierarchy and 

point attributes lead to storage costs of only a few bytes per point which in turn allows 

the representation of several 100 million points within the 4GB virtual memory 

addressing limit of 32bit systems. This is a significant benefit over methods with more 

complex node formats. 

 

2.2.4     Point-based Rendering: Surface Splatting 

Point splatting techniques are used for a hole-free view reconstruction when the 

contribution of one sample point is spread to multiple pixels in the frame buffer. Each 

point is associated with a 3-D rendering primitive that is projected onto the image plane. 

Splats provide a good compromise between the quality and complexity of the geometry 

representation. The choices of primitive to render a point sample include: 

 

Points: Several approaches (i.e. [Rusinkiewicz00, Dachsbacher03, Botsch02]) 

have proposed to use simple OpenGL point primitives, which have the advantage 

of a low cost per primitive (3D position, color and normal if lighting is required). 

The primitive is drawn on screen as a fixed sized square, or rounded point with 

GL_POINT_SMOOTH enabled, thus using a box reconstruction kernel. 
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Moreover, with the use of vertex and fragment programs and recent extensions, 

the size of points can be calculated on a per-primitive basis to be the actual 

screen-projected size of a point sample, improving the visual quality by avoiding 

conservatively large points and holes between rendered points.  

 

Sprites: Another choice for point primitives consists of using POINT SPRITES 

as promoted in [BK03] which can be considered textured points. This primitive 

combines the simplicity of points for geometry submission to the graphics card 

with the flexibility of texture mapping with blending kernels to support smooth 

interpolation of discrete points and hence visually higher-quality renderings. With 

POINT SPRITES a single coordinate is specified per point and the graphics card 

rasterization unit generates a quadrilateral with texture coordinates. As presented 

in [Botsch03], with some work these sprites can be modified to represent surface-

normal oriented disks, rendered with proper per-pixel depth values using graphics 

card programmability. Moreover, smooth blending can be achieved by computing 

a per-pixel α-value in the fragment program. 

 

Triangles: The third hardware supported primitive type is triangles and polygons. 

In [Ren02] and [Pajarola04a] polygonal faces are used with the α-texture which 

provides a disk or elliptical shape as desired (using α-tests). In fact, the α-texture 

can describe any desired blending kernel mapped onto the elliptical point splat 
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primitive. The system presented in [Rusinkiewicz00] also allows the use of 

oriented solid polygonal disks which tend to run significantly slower as they are 

made of many vertices. The use of more complex primitives than simple points 

has the advantage that α-texture mapping and blending kernels can be used to 

obtain smoothly blended points and more realistic rendered surfaces.  

 

Depending on the type of point-primitives chosen for display, different rendering 

strategies are necessary. The key factor for this is whether blending kernels are used on 

the points. If blending is performed then it is necessary to ensure that only the front-

facing points closest to the viewpoint are combined. If there exist front-facing points 

farther away, occluded from the viewpoint, it must be assured that these are not blended 

with the closest visible points. This can be achieved by carefully selecting just the closest 

overlapping points. Commonly a two-pass є-z-buffer rendering approach [Ren02, 

Pajarola03b, Botsch03, Pajarola04a] works efficiently: the first pass initializes the z-

buffer to generate a depth mask without rendering to the color buffer, and the second pass 

only performs z-buffer tests for each pixel fragment against some є offset of the z value 

from the first pass. Hence when rendering opaque point primitives with no blending, only 

a single pass over the data is performed, but when polygons or sprites are used with 

smooth blending a two-pass approach is required. Although the first pass is less 

expensive than the second one, it still requires the geometry to be processed twice by the 

graphics hardware. 
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Sophisticated high-quality splatting algorithms resolve aliasing issues. 

[Zwicker01] introduces surface splatting through image-based EWA filtering, resulting in 

high quality anti-aliased rendering, comparable to anisotropic texture filtering 

[Heckbert89]. While this software based approach is only able to process 250k splats per 

second, it provides the highest visual quality. An approximation using look-up tables has 

been presented by [Botsch02] which reduces the computational complexity of EWA 

splatting. Their method is able to process up to 14M points or 4M high quality filtered 

splats per second by using a quantization of splat shapes. [Ren02] reformulates the image 

based EWA filtering of [Zwicher01] to object-space filtering in order to map the surface 

splatting approach to graphics hardware, also using a two-pass rendering method. They 

render each splat as a textured rectangle in object-space. This concept causes the number 

of processed points to be multiplied by four, slowing down the rendering to about 2M-

3M splats per second. 

 

Many point based rendering techniques use modern programmable graphics 

hardware to rasterize a circular or elliptical reconstruction kernel for a point primitive. 

For example, a vertex shader can be designed to determine the OpenGL point size for 

each point primitive passed to the GPU [Dachsbacher03] and reports splatting 

performance at 50M splats per second. The points are rendered as unfiltered view-plane 

aligned small squares.  [Botsch03] uses programmable graphics hardware (vertex shader 

and fragment shader) to render up to 28M mid-quality surface splats per second on the 
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latest graphics hardware. They also use a two-pass splatting technique with Gaussian 

filtering to render up to 10M high-quality surface splats per second. In [Zwicker04], a 

perspective-accurate elliptical weighted average (EWA) splatting method is presented to 

rasterize elliptical splat kernels. The vertex shader can be used to compute the bounding 

box of the ellipse and the fragment shader to define the pixel color within the elliptical 

coverage This method is able to render up to 3M high-quality surface splats per second 

on the latest graphics hardware using a 3-pass algorithm. Phong splatting [Botsch04] 

enables Phong shading in point rendering by associating a linearly varying normal field 

with each splat instead of keeping the normal constant. They thereby achieve the same 

visual quality as Phong shaded polygons. Table 2.1 is a summary of different point based 

rendering method. 

 

Table 2.1: Point based surface splatting techniques 
 

Paper Reference Reconstruction kernal Speed 
(points/second) 

rendering requirement 

[Dachsbacher03] Solid square 50M  GL_POINTS + Vertex 
program 

[Botsch03] Solid  
circle/oriented ellipse 

28M POINT SPRITES with solid 
color texture + Vertex and 
fragment program 

[Rusinkiewicz00] Solid  
circle/oriented ellipse 

4-5M Polygon with solid color 
texture 

[Zwicker01] 250K software 
[Botsch02] 4M Lookup table for quantization 

of splat shapes 
[Botsch03] 

Screen space EWA  
(Gaussian filtered 
oriented ellipse) 

10M POINT SPRITES with 
Gaussian filtered texture + 
Vertex and fragment program 

[Ren02] Object-space EWA 2-3M α-textured polygon 
[Zwicker04] Screen space perspective-

accurate EWA 
3M Vertex and fragment program 
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2.2.5     Point-based Rendering: Volume Splatting 
 

Generally, volume rendering algorithms can be divided into two categories. One 

is the image-order method, as in ray casting [Kajiya84]. The other is the object-order 

method. Splatting is an object-order high-quality volume re-sampling and compositing 

technique, where each voxel’s contribution is accumulated in an image buffer using a 

projected reconstruction kernel called a footprint. It can incorporate a variety of 

reconstruction kernels without extra computational overhead, as well as reduce 

computation and storage costs using a sparse volume representation that holds only non-

transparent voxels. [Westover89] first presented the splatting technique for volume 

rendering. [Westover90] solved the inaccurate visibility problem using an axis-aligned 

sheet buffer. [Mueller98] proposed to align the sheet buffers parallel to the image plane 

instead of parallel to an axis of the volume data. This technique is similar to slice-based 

volume rendering [VanGelder96] [Cabral94] and does not suffer from popping artifacts. 

[Mueller96] combined splatting with ray casting techniques to accelerate rendering with 

perspective projection. [Laur91] describes a hierarchical splatting algorithm enabling 

progressive refinement during rendering. Furthermore, [Lippert95] introduced a splatting 

algorithm that directly uses a wavelet representation of the volume data. To render 

curvilinear grids, [Mao96] use a stochastic Poisson resampling to generate a set of new 

points whose kernels are spheres or ellipsoids. They compute the elliptical footprints very 

similar to [Westover90].  [Swan97] used a distance-dependent stretch of the footprints to 

make them act as low-pass filters. [Zwicker01b] developed EWA volume splatting along 



 

 

33

similar lines to [Heckbert89], who introduced EWA filtering to avoid aliasing of surface 

textures. The software-based volume splatting technique can achieve high image quality 

but is only able to process 250k splats per second.  

 

2.3      Parallel Computing  

During the past 10 years, the trends indicated by ever faster networks, distributed 

systems, and multi-processor computer architectures suggest that parallelism is the future 

of computing. Parallel computing is used widely today to solve large problems in real-

time by providing concurrency. Based on how parallel computing resources are 

geographically connected, a parallel system could be a supercomputer with multiple 

processors, a computing cluster, or a distributed system which connects either single 

computers or parallel computers. The primary advantages for using parallel computing 

include: 

 

• More computing resources. Use available compute resources on a high speed 

network when local compute resources are scarce.  

 

• Cost savings. Use multiple "cheap" computing resources instead of one expansive 

supercomputer.  
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• Overcoming memory constraints. For large problems, use the memories of 

multiple computers where a single computer has finite memory resources.  

 

2.3.1     Architecture Classification 

There are different ways to classify parallel computers. One of the more widely 

used classifications is called Flynn's Taxonomy [Flynn72]. Flynn's taxonomy 

distinguishes multi-processor computer architectures according to how they can be 

classified along the two independent dimensions of Instruction and Data. Each of these 

dimensions can have only one of two possible states: Single or Multiple. The below 

paragraphs explains the 4 possible classifications according to Flynn.  

 

• Single Instruction, Single Data (SISD). This architecture represents a serial 

computer which exploits single data stream against single instruction stream 

during any one clock cycle.  

 

• Single Instruction, Multiple Data (SIMD). This architecture represents unit 

repetition which exploits multiple data streams against a single instruction stream 

to perform operations which may be naturally parallelised.  
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• Multiple Instructions, Single Data (MISD). Single data stream is fed into multiple 

processing units. Each processing unit operates on the data independently via 

independent instruction streams.  

 

• Multiple Instructions, Multiple Data (MIMD). Multiple autonomous processors 

simultaneously execute different instructions on different data. Computing 

pipelines are generally recognised to be MIMD architectures.  

 

2.3.2    Parallel Rendering Algorithms 

Parallel rendering algorithms have been widely used in large-scale visualization 

problems. Generally, the key design concepts in a parallel program include data partition, 

communication, synchronization, and load balancing among parallel tasks. The 

combination of different implementations of these design concepts features different 

parallel algorithms. 

 

For example, for a cluster-parallel graphics rendering task, parallel rendering 

strategies fall within three main categories, depending on which stage of the rendering 

pipeline sorting for visible-surface determination takes place [Molnar94]. These 

categories are sort-first, sort-middle, and sort-last. Sort-first approaches divide the 2D 

screen into disjoint tiles, and assign each region to a different processor, which is 

responsible for all the rendering in its tile. Sort-middle approaches assign an arbitrary 
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subset of primitives to each geometry processor, and a portion of the screen to each 

rasterizer. A geometry processor transforms and lights its primitives, and then sends them 

to the appropriate rasterizers. Sort-last approaches assign an arbitrary subset of the 

primitives to each renderer. A renderer computes pixel values for its subset, no matter 

where they fall in the screen, and then transfer theses pixels (color and depth values) to 

the compositing processors.  

 

Most systems chose to use a sort-first approach, because sort-first processors 

implement the entire pipeline for a portion of the screen, which is exactly the case for 

which PC graphics cards are optimized. A sort-middle approach requires tight integration 

between the geometry processing and rasterization stages, which is not available in PC 

graphics cards. A sort-last approach requires high pixel bandwidth, which is also not 

available in graphics PC cards.  

 

Chromium [Humphreys02] is a system for manipulating streams of graphics API 

commands on clusters of workstations. Chromium's stream filters can be arranged to 

create sort-first and sort-last parallel graphics architectures that, in many cases, support 

the same applications while using only commodity graphics accelerators.  
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CHAPTER 3 CONCEPTUAL FRAMEWORK 
 
 
 

3.1 Chapter Organization 
 

In section 3.2, the design concepts of the scalable remote visualization pipeline 

are expatiated and a framework diagram is provided to show the pipeline design and data 

flow. The generalized functionality assignments for each subsystem are elaborated on in 

the section 3.3. Section 3.4 summarizes this chapter by emphasizing the contribution of 

the framework design to solve large-scale VR problems. 

 

3.2 Concept of the Framework Design 

The purpose of this thesis is to design a real-time remote visualization framework 

to solve large scale VR problems by taking advantage of remote computation resources. 

The structure of the framework is a distributed pipeline with a MIMD computing 

architecture. The data retrieving, generating, and consuming functionalities are executed 

by distributed computation modules, and data flow through these modules during the 

pipelined processing.   

 

The distributed remote visualization pipeline presented in this thesis involves four 

modules: the command master, the data server, the computation server, and the 

visualization client. The command master usually resides together with the visualization 
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client and its purpose is to send meta-data and workflow control commands to the other 

three modules. The other three modules are computation subsystems; each of them 

applies different functionalities to the data flow over the pipeline. Figure 3.1 shows the 

framework diagram and the data flow through the pipeline.  

 
 

Figure 3.1: The framework diagram of the distributed pipeline 
 

 

Each computation module is defined by the input data stream, the output data 

stream, and the data processing algorithm.  Communications among the modules are 

network transfer algorithms multiplexed with computation. The design concepts are:  

 

• Every computation module is a functionally independent data processing system 

with input and output data stream. Different data processing functionalities can be 

applied for different dataset and visualization characteristics, without affecting the 

data flow model of the pipeline. 
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• Each computation module is a scalable system. Different data partition schemes 

can be applied as part of the scalable computing. The scalability of data 

communication among the modules is adaptive to the scalability of the modules.  

 

• The design of the whole pipeline should achieve good load-balancing for real-

time large-scale VR visualization task. This means efficient workload distribution 

and data exchanging mode between the remote server computation and local VR 

view construction. 

 

• The design of the pipeline should maintain proper granularity, adaptive to the 

module computation performance and network condition.   

 

Later in this thesis, each computation module is referred to as a subsystem within 

the pipelined computing architecture. 

 

3.3 Subsystem Functionalities 

At the implementation level, each subsystem in the remote visualization 

framework represents a SIMD parallel rendering program in the distributed MIMD 

parallel pipeline. As an independent data processing unit with input and output data 
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stream, every computing subsystem has specific functionality assignments to serve in a 

generalized VR visualization pipeline for various types of scientific datasets. 

 

3.3.1 Data server 

The data server stores the original dataset and distributes data to another party 

upon authorized data request. Necessary pre-processing can be applied to the original 

dataset according to specific data requests before the actual data transfer.  For example, 

the data requesting party will send a transfer function to data server when a volumetric 

dataset is involved. The transfer function will be applied to the original volume data by 

the data server computation and only non-transparent voxels will be actually transferred 

over the network. 

 

A data scattering algorithm is used by the data server to transfer data to the data 

requesting party. The scalability of the data scattering algorithm is adaptive to the 

scalability of both the data server and data requester. The design of the data scattering 

algorithm depends on both the existing data partition at the data server and the desired 

data partition of the data requesting party. 

 

3.3.2 Computation server 

The computation server takes the data received from the data server as input and 

transforms them into an intermediate data form according to the VR client’s viewing 
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demand. As in this thesis, the data transformation is usually implemented by a point-

based sampling or re-sampling process. Other related data processing functionalities can 

be applied before data flow into the next stage in the pipeline. 

 

The intermediate data generated by the computation server are scattered to the 

client for view construction. A data scattering algorithm is used for efficient data 

transferring. The scalability of the data scattering algorithm is adaptive to the scalability 

of both the computation server and visualization client. The design of the data scattering 

algorithm depends on both the resulting data partition at the computation server and the 

required data partition at the visualization client. 

 

3.3.3 Visualization client 

The visualization client sends steering requests to the remote computation server 

and receives intermediate data from the computation server. The fact that the client 

actually requests the intermediate data generated by the server not only reduces the data 

communication compared to directly requesting data from the data server, but also 

improves the view construction performance than directly rendering the original dataset 

locally. Taking the intermediate data as input, 2D stereo viewings are reconstructed for 

the current viewing condition. As in this thesis, point-based splatting techniques are used 

for efficient and high-quality 2D view construction.  

 



 

 

42

If a data packing stage is included in the client-end subsystem implementation, 

view construction can be performed asynchronously with receiving data from the 

computation server. This is where the asynchronous client-server coupling stands. 

Asynchronous client-server coupling trades data flow integrity along the visualization 

pipeline for high frame rate interim view updating. 

 

3.4 Summary  

The distributed pipeline presented in this thesis serves as a remote visualization 

framework for large-scale VR problems. The pipeline design is suitable for different data 

types and is adaptive to various computation resources and network conditions. Scalable 

system configuration in combination with adaptive computation algorithms makes a 

flexible and efficient framework to serve the requirements of VR. 
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CHAPTER 4 POINT-BASED GRAPHICS FOR VR 
 

 

4.1 Chapter Organization 
 

In this thesis, point samples are introduced as the intermediate primitive through 

the server computation and client visualization pipeline. By using 3D point samples as an 

intermediate data format other than a triangle set or 2D pixel stream, the workload can be 

distributed in a more flexible and balanced way throughout the remote visualization 

pipeline. Different point sample representations, point-based graphics algorithms and 

other related functionalities are described in this thesis to facilitate various dataset 

visualizations for VR.  

 

For surface datasets which represent the exterior characteristics of an object, a 

point sampling function is provided first to sample the original surface into small surface 

areas called surfels. A point modeling function is also available to pack surfels into a 

compact point-based geometry representation. Surface splatting techniques are discussed 

in detail to splat surfels onto the screen for a final seamless view construction. Surface 

splatting is a re-sampling process from the surfel sampling space to the output screen 

space.  
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Volumetric datasets represent a 3D sampling of the interior structure of objects, 

including amorphous and semi-transparent features, over a uniform/non-uniform 3D grid. 

A volume is a compact point-based embodiment of an object with each voxel as a point 

sample. Volume splatting is a re-sampling process from the voxel sampling space to the 

output screen space. 

 

Section 4.2 and its subsections discuss the point-based sampling process for 

surface datasets. Section 4.3 and its subsections discuss the surfel packing process and its 

related function implementations. Section 4.4 elaborates on the surface splatting 

algorithms. Section 4.5 explains the volume splatting algorithm in the shear-warping 

context, and its parallel extension for a distributed system. Section 4.6 explains that the 

point-based graphics processing functions can be performed in a distributed computing 

architecture thus taking advantage of remote storage and computing resources. Section 

4.7 summarizes this chapter by pointing out that sophisticated point based graphics 

algorithms are studied and implemented to support the point-based VR visualization 

pipeline presented in this thesis.  

 

4.2 Point-based Sampling for Surface Datasets 

Point-based sampling of a surface dataset transforms the original continuous 3D 

surface into a discrete point sample (surfel) representation.  
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4.2.1    Point Sampling of the Mesh Dataset by Rasterization 

The most straightforward point sampling algorithm for a mesh dataset is 

performed through the traditional rendering pipeline by graphics hardware-based triangle 

setup and rasterization. A perspective sampling is produced by projecting the visible part 

of the dataset onto discrete 2D grids of color map and depth map as in perspective 

viewing. The color map and depth map are collectively henceforth termed “depth-image”. 

The Depth Image-Based Representations (DIBR) as a new family of 3D geometry 

representation [Ignatenko03] has been adopted into MPEG-4 Part16: Animation 

Framework eXtension (AFX).  

 

In this thesis, the term sample rate indicates the object-space point sample 

distribution. Perspective sampling causes non-uniform surfel distribution. Therefore, the 

output point sample rate of the same surface geometry differs under different viewing 

transformation. Figure 4.1 show that each pixel in screen space from different viewing 

transformations implies different surfel distribution in object space. 

 

 

 

 

Figure 4.1: Different sample rate of the same surface geometry 
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Beside the color map and depth map, a normal map can also be retrieved from the 

sampling process, thus a normal attribute can be assigned to each point sample for more 

sophisticated shading in later view reconstruction. Saito and Takahashi propose a general 

framework for image-space rendering algorithms called G-buffer [Saito90]. This buffer 

forms an enriched image space, also referred to as 2.5D image space, whereby each pixel 

of the image space holds arbitrary additional information, such as normal, depth, or 

texture coordinates. In order to fill the G-buffer with the required information, it is 

necessary to set the G-buffer as the current render target. Similar GPU-based G-buffer 

implementations can be inferred from deferred shading algorithms [Policarpo05]. 

 

For parallel point-sampling of a mesh dataset, the original transformation frustum 

is first divided into smaller portals and then one sampling process can rasterize the mesh 

inside one of the small portals in parallel with all other sampling processes. The parallel 

sampling algorithm by frustum-dividing is scalable.  

 

4.2.2    Point Sampling of the Mathematic dataset by Ray-tracing 

Some mathematical models can be visualized in the form of a 3D shape, such as 

the quaternion Julia sets [Nortan82]. The point sampling of the quaternion Julia set is 

computed by ray-tracing the intersection points on the Julia surface onto a 2D discrete 

grid. Each point sample has position and incident color attributes. The Julia coloring is 

determined by the distance from the sampled surface point to the center of the Julia set. A 
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surface normal determination algorithm is also used to assign a surface normal to a point 

sample on a non-differentiable surface.  

 

The ray-tracing based point sampling of a mathematical model is slow. 

Experimental results show that on a Linux machine with dual Intel Xeon 1.8 GHz 

processors, generating a ray-traced Julia set image with the resolution of 1024*640 

usually takes about 1 minute. Fortunately, the ray-tracing based Julia set computation is 

amenable to parallel processing because each point position on the Julia set surface hit by 

the ray for each pixel can be independently computed. The parallel ray-tracing algorithm 

is scalable. 

 

4.3    Point Sample Packing 

The point sampling process usually carries on through multiple or continuous 

sampling frames. Point sample packing is a dynamic modeling process which 

incrementally builds up a compact point model along the sampling frames. Real time 

point sample packing is important for a real-time visualization pipeline. Along with the 

packing process, related functions include redundancy elimination and obsolete data 

deletion. 
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4.3.1  Redundancy Elimination  

To maintain point geometry compactness, it may be desirable to delete repetitive 

sampling among multiple sampling frames during point packing.  

 

For surface sampling, an existing surfel becomes redundant when the 3D 

geometry it represents is sampled better by another surfel. The quality of a surfel sample 

on a continuous surface indicates how well a single-colored oriented small ellipse 

matches the geometry and illumination of the part of surface coverage it represents. There 

can be different ways to compute a quantified value indicating a surfel’s sampling quality.  

For example, for an elliptical surfel with long axis radius r0, short axis radius r1, color c 

and normal n.  A simple formula to compute a quantified value as surfel quality is:   

 

q = ( r1 / r0 ) * ( 1 / r0 )           (4.1) 

 

Here q is in direct proportion to the roundness of the ellipse, and in inverse 

proportion to the size of the ellipse. It means that a good surfel sample is expected to be 

in high resolution with a disk shape, so that the color and normal attributes of the surfel 

can be a more reasonable approximation to represent a small continuous surface area. 

 

For a new sampling frame, accurate redundant surfel elimination involves 

expensive sampling quality computation and possible surfel deletion inside both the 
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existing packed model and the current sampling. It’s difficult to implement real-time 

point packing for VR visualization with expensive surfel sampling quality computation 

every frame. Besides, data deletion of an existing point model can break the integrity of 

the current packing and involve a complicated data identification scheme. For simplicity, 

an approximate redundancy elimination algorithm can be applied instead by avoiding the 

sample quality computation and only deleting redundant points in current sampling. The 

algorithm is introduced below:  

 

Suppose a current surface sampling includes a color map C and a depth map Z. A 

normal map is not required since this algorithm will not involve the surfel computation. 

First, build reference color and depth maps by rendering the available point samples 

under the current viewing condition without splatting. Compare the current depth map Z 

and reference depth map refZ using the following pseudo code:  

 
for every pixel i in Z and refZ 
{ 

if ( Z(i) < refZ(i) – ε ) keep pixel i in current maps 
else discard pixel i in current maps 

} 
 

Here ε is a small threshold to remedy the possible difference of 
depth maps sampled from triangle meshes and previously extracted 
3D points.  

 

This algorithm is very simple because it only needs one map comparison 

operation per pixel. Also it ensures data integrity after the data is actually packed, 

because it only deletes redundancy in the current sampling map. The tradeoff is its 
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inability to delete previous low resolution data. Instead, some of the high-resolution data 

in current sampling is sparsely deleted. This will impair data integrity along the packing 

and cause problems in the final view construction stage. Discretion should be taken when 

applying this algorithm during the packing process.  

  

Figure 4.2 shows an example of the new color map, the reference color map and 

the resulting non-redundant color map after redundancy elimination. From the maps we 

can see that all the pixels in the current sampling map are deleted if they have already 

appeared in the reference map with same depth value. 

 

   

(a)             (b)                     (c) 
 

Figure 4.2: Example color maps during the redundancy elimination. 

(a) Reference map;     (b) Current map;      (c) Resulting non-redundant map 

 

4.3.2    Point Sample Packing with Spatial Partition Hierarchy 
 

Because of the conceptual simplicity of using points as the modeling primitives, 

the extracted point samples can be packed together without topological connection 
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enforcement to form a compact and photorealistic representation of the original 3D 

geometry.  For surface datasets, usually non-uniformly distributed point samples are 

extracted from the sampling process frames with overlapping geometry coverage. For 

example, a point sample will be exacted from each pixel in the sampled maps (color map 

+ depth map + normal map) and multiple sample rates are naturally introduced for 

perspective sampling projections. A surfel representation of a point sample usually 

consists of spatial coordinate p, normal orientation n, color c, and information about its 

spatial extent in object-space. There could also be abstract point samples which don’t 

assume a spatial extension. Furthermore, the simplest point sample representation may 

only include a spatial coordinate p and color c. 

 

A point-based geometry is composed of point patches and is reconstructed 

incrementally and dynamically during run time. A point patch is a collection of point 

samples extracted from each sampling frame. Compared to existing point patches, a new 

point patch has either new geometry coverage or different sample rate. The dynamic 

(real-time) patch definition differs from pre-processed geometry segmentation because it 

is completely view-dependent and will be different for different sampling sequence. If 

map decimation is applied as a pre-processing step before the actual point packing, a set 

of multi-resolution point patches will be produced from one sampling frame which 

represents the same data with different levels of detail. In this thesis, the term resolution 

is used to indicate the sample density because of decimation. The point packing is 
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naturally a multi-sample rate point packing if point patches are extracted from different 

perspective sampling projections. A multi-resolution point packing means that each 

point patch has multiple LOD levels from decimation.  

 

For local storage, the point model is partitioned into point clusters and organized 

into a level-limited octree, with each leaf node representing a point cluster inside its 

bounding box.  The point patches extracted from every sampling frame are partitioned 

into mosaics to fit into the octree leaf nodes bounding boxes, and every mosaic has 

sequential memory storage for fast data access. For a point cluster, its component point 

patch mosaics from different sampling frames are linked together. The octree-based space 

partition hierarchy of the point geometry enables fast frustum culling and efficient data 

access. For one point cluster, each of its component point patch mosaics has an attribute 

called pixel range which is a quantified indication of its data resolution. The term pixel 

range refers to the projected pixel coverage of a point cluster’s bounding box under a 

certain viewing condition. A normal cone [Shirman 93] attribute can also be added for 

each point patch mosaic as an extended normal vector for all of its component point 

samples. Back face culling functionality can be enabled by the normal cone attribute. 

Other attributes of a point patch include the point sample number and the center position 

as the average center position of its component point samples. The octree leaf node keeps 

the record of memory storage of its point cluster. Figure 4.3 shows the data structure of 

an octree leaf node.  
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Figure 4.3: Data structure of an octree leaf node in point packing 

 
 

Figure 4.4 shows an example of the component point patch and point cluster 

representation of a point-based geometry, both signified by different colors. In the 

example, the simplified redundancy elimination algorithm discussed in section 4.3.1 is 

applied in the creation of each point patch.  

 

   

    
Figure 4.4:  Point patch and point cluster representation of a point packing. 

Both images are signified by different colors. Left: Point patches; Right: Point clusters 
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4.3.3    Obsolete Data Deletion 

Usually an obsolete data deletion mechanism is based on a point cluster’s most 

recent access time, so that a most recent point model can always be maintained and fit 

into the client’s main memory. To facilitate the obsolete data identification, the access 

time attribute of a point cluster’s octree leaf node will be updated every time it’s selected 

for splatting. Below is the pseudo code of the obsolete data deletion algorithm: 

 

for every second, search each leaf node of the octree 
{ 
      Assume current time is t and the node’s latest access time 
is nt 
      if (t - nt) > є 
      { 
             Calculate the current node’s ID number; 
             Delete this node’s point cluster storage; 
      } 
} 

 
 

The threshold є indicates the no-access period beyond which the points will be 

considered to be obsolete. Obsolete data deletion is especially important when dealing 

with visualization with data animation or deformation, similar to the particle system 

implementations. [Reeves83]  

 

Other data deletion mechanism can also be applied to maintain the effectiveness 

of the point model. For example, the sample rate of the packed data can also be taken into 

consideration as part of data deletion, so that very detailed sampling can be deleted to 

maintain compact and complete geometry coverage.  
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4.4    Surface Splatting 

During view reconstruction, all the point samples are sent to the graphics card. 

The graphic hardware rasterizes the output re-sampling kernel for each point primitive, 

resulting in a final seamless image. 

 

The point rendering functionalities for surface splatting provided in this thesis 

incorporate the following features: 

 

• Rendering primitives: resizable GL_POINTS for fast yet low-quality splatting; 

oriented elliptical POINT SPRITES with solid color texture for medium-quality 

splatting; or oriented elliptical POINT SPRITES with Gaussian filtered texture for 

high-quality splatting. 

 

• One-pass rendering algorithm for opaque resizable points, and a two-pass 

rendering for blended primitives. 

 

• Vertex and fragment program for per-splat GPU programming. 

 

Other surface splatting techniques, such as polygon-based object space EWA 

splatting and screen space perspective-accurate EWA splatting, are not included because 

of their low speed for VR. 
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4.4.1    Point Sample Splatting: Input to Output Screen Space 

Resampling  

The combination of point-sampling and point-splatting can be expressed as a re-

sampling process from screen space to screen space, which is a concatenation of a 2D 

input screen space to 2D surfel space back-projective mapping, followed by 2D surfel 

space to 2D output screen space projective mapping.  Here the term surfel space refers to 

the 2D local surfel parameterization in 3D object space. Given a circular input screen 

space sampling kernel, the contour of the output screen space re-sampling kernel is a 

general ellipse.  Figure 4.5 shows the re-sampling kernel contour transformation from 

input screen-space to output screen-space. When rasterizing an oriented elliptical POINT 

SPRITE with either solid color or Gaussian filtered texture in a perspective splatting, it’s 

crucial to know the point sample’s 3D position and its projected contour in the final 2D 

view space.  

    

Figure 4.5: The screen-space to screen-space re-sampling transformation. 
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According to [Zwicker04], a contour-preserving 2D-to-2D projective mapping 

between two centric conics can be expressed by first applying a 3D affine mapping to the 

original conic in its homogeneous coordinates, and then transforming the projectively 

mapped homogeneous conic into its central form. A tight axis aligned bounding box can 

be calculated from the conic equation.  

 

Firstly, let’s consider the transformation for the input sampling process. A central 

conic in the input sampling’s 2D screen space can be expressed in matrix form by: 
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Q is the conic matrix. Rewrite the conic in homogeneous coordinates, also in 

matrix form: 
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The projective mapping from a 2D screen space conic to a 2D surfel space conic 

can be expressed in homogeneous coordinates as following: 
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Here ut  and vt  are the two basis vectors for the 2D surfel space, and kp  is the 

origin of the surfel.  Given the rotation matrix iR  and the translation matrix iT  from 

object space to input sampling camera space, iut  , ivt  and ikp  are the corresponding 3D 

vectors in input sampling camera space. 

 

The second transformation is another projective mapping between 2D surfel space 

to 2D output screen space. Again, the conic transformation in homogeneous coordinates 

can be expressed as following: 
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Similarly, given the rotation matrix oR  and the translation matrix oT  from object 

space to the output re-sampling’s camera space, out  , ovt  and okp  are the corresponding 

3D vectors in the output re-sampling’s camera space. 

 

So, by combining the two above projective mappings, we get the homogeneous 

matrix for the output re-sampling conic: 
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Finally, the homogeneous conic is transformed into a central conic: 
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This is the computation of re-sampling 2D contour conic from input to output 

screen-space. Usually the input screen-space sampling kernel is a disk, the object-space 

surfel kernel is a general ellipse and the output screen-space kernel is another ellipse. The 

exact computation is quite expensive, since it depends on two concatenated 2D-2D 
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projections, the surfel position, and the surfel normal. As for a point sampling by 

graphics hardware based rasterization, a normal map has to be computed for per-sample 

normal information. In ray-tracing based point sampling, a surface normal determination 

algorithm is also used to assign a surface normal to a point sample on a non-differentiable 

surface.  

 

4.4.2     Splatting Algorithms with Different Kernel Selection 

Applying different splat kernel for point-based view reconstruction directly 

affects the final image quality.  

 

For perspective projection, using point sprites with an elliptical Gaussian filtered 

texture as the output screen-space splat kernel has a high image reconstruction quality.  

The per-splat size and shape computation can be done by GPU programming. For each 

splat, a 2x2 contour mapping matrix is computed in a vertex program and multiplied to 

the texture coordinates of the proxy polygon of the sprite, so each sprite has the correct 

size and shape after projection. Two pass rendering is needed for correct blending. Even 

though it provides high-quality image in the final view reconstruction, the contour 

mapping computation is quite expensive, and only achieves about 10M splats/second 

rendering speed. This is not fast enough for a VR visualization requirement.  
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To trade quality for speed, approximations are made as for the splat kernel 

selection. Using GL_POINTS with a circular splat kernel for point primitives can avoid 

expensive computation of the projective elliptical contour mapping. Figure 4.6 shows the 

approximation of an elliptical splat kernel as a circular splat kernel and how it causes 

blurriness in the final view reconstruction. As an example, a correct view construction 

using elliptical splatting kernel is shown in (b) and the same view construction with 

approximated circular splatting kernel is shown in (c). Compared to (b), (c) looks fuzzier 

because the circular splats are fatter than needed and the overlapping area is enlarged. 

 

(a)    (b)    (c) 

Figure 4.6: Approximation of splat kernel in example view construction. 

(a) The elliptical splat kernels and their circular approximation 

(b) An example view construction using elliptical splatting kernels 

(c) Same view construction as (b) with circular splatting kernels   

 

Furthermore, instead of using a semi-transparent Gaussian filtering for the splat 

kernel, opaque kernels could be used to avoid the multi-pass process for correct blending. 

The final view-reconstruction is expected to be significantly faster. 
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4.4.3     Splat a Point Model onto Screen 

In this thesis, a point model is incrementally built as linked point patches with a 

level-limited octree-based spatial partition hierarchy. To splat such a point model onto 

screen under current viewing condition, the first step is to perform culling. The octree 

structure of the point geometry is traversed recursively for an efficient view culling. Only 

those point clusters which passed the culling stage will be further processed for the final 

view construction. For the following subsections, GL_POINTS with solid disk kernel is 

assumed in the splatting algorithms. 

 

4.4.3.1    LOD Control for a Multi-resolution Point Packing 

LOD control can be applied in multi-resolution packing. For a selected point 

cluster, each of its point patches has multiple resolution levels and a particular resolution 

level is chosen to be splatted during view construction. LOD control provides anti-

aliasing and higher rendering speed.  

 

The level of detail selection of a point patch is done by pixel range comparison. 

As introduced in section 4.2.2, the term pixel range refers to the projected pixel coverage 

of a point cluster’s bounding box under a certain viewing condition. For each chosen 

point cluster, the desired pixel range is computed based on its bounding box position and 

the current viewpoint and viewing matrices.  The point patch resolution level which has 

the closest pixel range to the desired pixel range is chosen. After that, a proper splat size 
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is calculated to splat the chosen point samples onto screen. Equation (4.8) shows how to 

calculate the splat-size:  

 

             (4.8) 

 

Here the scale factor is used to ensure that a 2D view reconstruction by point 

splatting is as seamless as possible. 

 

 

Figure 4.7: View reconstruction from multi-resolution point patches for one point cluster. 

Each colored line in the pyramid indicates a point patch with a certain resolution. Line 

length indicates the pixel range value. Point patches are signified by different colors. 

 

Figure 4.7 illustrates the view reconstruction algorithm for a point cluster which 

contains four point patches. Each point patch has three resolution levels, which are 

signified by their pixel ranges. The whole structure is illustrated by a pyramid filled with 

View reconstruction 
from available point 
patches 

Multi-resolution 
point patches with 
different pixel range 
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colored lines, where each line indicates a point patch resolution level and all lines with 

the same color are from the same point patch. The length of each line indicates the pixel 

range value. The bold dashed line simulates the current view-reconstruction with a 

desired pixel range. The colored arrow indicates that, from each point patch, the 

resolution level which has the closest pixel range to the desired pixel range value is 

chosen and then all the point samples from the chosen level of detail are either minified 

or magnified to form a new view reconstruction.  

 

Furthermore, for an interactive VR, the viewpoint’s moving velocity can also be 

taken into consideration in the LOD control algorithm. In this case, the desired pixel 

range in equation (4.8) will be divided by the moving velocity first for the splat size 

calculation. The viewpoint’s moving velocity is computed at every view construction 

frame as the head tracking position change divided by the time difference.  

 

4.3.3.2    Splat a Redundancy Eliminated Point Packing  

If redundancy elimination is applied during the packing process, then the point 

patches should have non-overlapping geometry coverage.  For a selected point cluster, all 

of its point patches should be splatted for the final view reconstruction. 

 

In Section 3.2.2.1, the drawback of the simplified redundancy elimination 

algorithm was discussed.  For the linked point patches, it is possible that some points 
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with lower sample rates in earlier patches are not deleted while some points with higher 

sample rates in more recent patches are deleted instead. Using the splat size calculated by 

equation (4.8), sometimes the new view reconstruction will be blurred even if there are 

high sample rate data available. This is because low sample rate points may have depth 

values smaller than or equal to high sample rate points, so the high sample rate data will 

actually be blocked by the depth test stage of graphics processing. To remedy this 

problem, the splat size determination algorithm is revised as follows:  

 

Let sp_size = splat size of the point patch with closest pixel 
range to the desired pixel range value; 

 
for each chosen point patch 
{ 
    compute its splat size cu_size; 
    if(cu_size > ratio * sp_size)  
    { 

cu_size = sp_size + ε * cu_size; 
    } 
} 

 
Here ratio > 1, and 0< ε <1. This algorithm means that when a low sample rate 

point patch may block out the higher sample rate data, its splat size should be set to a 

smaller value. 

 

4.4.3.3    Splat a Point Packing with Geometry Redundancy 

Point patches from sampling frames can be packed without performing 

redundancy elimination. In this case, point patches of a point cluster may introduce 

overlapping geometry coverage. Overlapping patches with different sample rates are 
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saved inside the packing so that a specific point patch with the best matching sample rate 

can be selected for an output screen-space re-sampling. Picking one point patch with the 

best matching sample rate for current view re-sampling can improve the viewing quality 

but can also introduce more artifacts such as gaps and holes. 

 

From a point patch’s center position and average normal vector attributes and its 

sampling matrix, a proxy surfel representation can be computed. Using the re-sampling 

contour calculation algorithm introduced in section 4.4.1, an output screen-space re-

sampling kernel contour for the proxy surfel can be calculated. Assume the computed 

output re-sampling kernel contour for a point patch is an ellipse with long axis radius r0 

and short axis radius r1, the splat quality is computed by equation (4.1). The point patch 

which has a maximum q value will be selected for final point splatting.  

 

4.5 Volumetric Splatting 

Volumetric datasets represent a 3D sampling of the interior structure of objects, 

including amorphous and semi-transparent features, over a uniform/non-uniform 3D grid. 

A volume is a compact point-based embodiment of an object with each voxel as a point 

sample. Volume splatting is a re-sampling process from voxel sampling space to output 

screen space. 
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4.5.1   Splatting in Shear-warping Context 

The shear-warp [Lacroute94] technique is one of the fastest software based 

volume rendering algorithms. The basic idea of shear-warp is a factorization of the 

viewing matrix into a 3D shear parallel to the slices of the volume data to form a 

distorted intermediate image, and a 2D warp to produce the final image. Applying the 

shear transformation to the volume means transforming each volume slice such that all 

viewing rays are parallel to the principal viewing axis. The coordinate system defined by 

this property is called sheared-object space. For parallel projections, this means a 

translation of every volume slice. For perspective projections, each slice has to be scaled 

as well.  

 

The shear-warp factorization in volume rendering has four stages: permutation, 

shearing, compositing and warping. The permutation stage changes the storage order of 

voxels in memory in order to maximize cache coherency. During the shearing stage the 

volume is treated as a set of slices which are re-sampled on a sheared grid. Figure 4.8 

show how a volume is transformed to sheared-object space for perspective projection by 

translating and scaling each slice. The quality of this re-sampling process depends on the 

filter used for the reconstruction. In the compositing stage all the slices are composted 

into an intermediate image. The final stage performs a 2D warping to form a correct 

projection consistent with the current view matrix. 
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Figure 4.8: Shear operation of a volume in perspective transformation 

      

A matrix representation of shear-warp factorization of the perspective viewing 

transformation is briefly reviewed below.  For more details, see [Lacroute94] and 

[Schulze03]. Here, viewM is the original view matrix, warpM  is the warp matrix, sM is the 

shear matrix, and pM  is the permutation matrix. 

 

pswarpview MMMM ∗∗=                     (4.9) 

 

Assume the object space eye position is oe , and then the permuted object space 

eye position is: 
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Let’s define:  
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The shear matrix is computed as: 
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It’s clear that the shear matrix is only determined by the permuted object space 

eye position. To transform a particular slice 0z  of voxel data from object space to sheared 

object space the slice must be translated by ),( yoxo szsz and then scaled uniformly 

by )1/(1 wosz+ . In the local object space of the volume, the slice plane with 0z =0 is the 

compositing plane where the intermediate image is generated and treated as a textured 

polygon in the final warping stage.  

 

In the software-based implementation described in [Lacroute94], the shear 

operation is performed by traversing the volume in a scanline-based scheme and 

resampling and compositing the volume slices into an intermediate image. Using 
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splatting in the shear-warp context is straightforward [Cai00] and provides hardware-

accelerated and high-quality re-sampling of the volume slices into sheared-object space. 

The splatting-based shear operation represents each voxel’s contribution in the 

intermediate image buffer as a sheared footprint. The factorization of the transformation 

matrix makes the sheared footprint’s shape and size remain the same for one slice of data 

for an arbitrary perspective viewing transformation. The size of a sheared footprint 

depends on the size of its reconstruction filter and the shear transformation matrix. The 

splatting-based shear algorithm is more efficient compared to the original software-based 

shearing algorithm, and has a higher re-sampling quality. After the shear operation, the 

intermediate image is warped by texture mapping hardware to form the final view. 

 

4.5.2    Parallel Shear Warping 

In shear-warp factorization, the transformation to sheared-object space is 

independent of the perspective projection plane.  This makes the shear operations 

amenable to parallel processing even if the final view projection actually has a non-planar 

configuration, such as the view configuration for a cylindrical tiled display. The parallel 

volume shear-warping algorithm presented in this thesis involves two stages. In the first 

stage, all of the processing nodes hold an object-space data partition of the original 

volume and perform parallel shearing to produce a set of intermediate slices. In the 

second stage, the intermediate slices are distributed over the processing nodes by an 
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image-space data partition scheme, and each node performs parallel shear-warping to 

reconstruct the final view for its own display configuration.  

 

An object-space data partition scheme prevents constant view-dependent data re-

transmission. A slab-based object-space data partition is used in this thesis, where each 

processing node holds a slab of the original volume. After setting up a local volume 

coordinate system, each node computes a shear matrix based on equation (4.12) and then 

shears and composites the volume slices into a distorted intermediate image. 

 

The intermediate volume is re-scattered among the processing nodes by an image-

space data partition scheme. No further data exchange is needed during the view 

construction. Similarly, each node computes the shear matrix, shears and composites its 

own sub-intermediate-volume into another distorted image, and then warps this distorted 

image into the final view. 

 

Figure 4.9 illustrates the two stages of the parallel volume shear-warping 

algorithm. 
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Figure 4.9: The parallel shear-warping algorithm 

(a) The original volume slices; (b) Parallel shear, with colored compositing plane; 

(c) The resulting intermediate volume; (d) Parallel shear-warping on intermediate volume. 

 

4.6 Point-based Visualization in Distributed Pipeline 

Because of the conceptual simplicity of point based graphics, point based 

visualization functionalities can be easily discomposed into several stages over the 

distributed remote computation pipeline presented in this thesis. Balanced computation 

and communication over the pipeline is the basic criteria for the functionality distribution. 

 

Typical point based visualization for surface datasets can break into three stages: 

point sampling, point packing and point splatting. Similarly, for volumetric datasets, the 
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shear-warping algorithm can be straightforwardly divided into a shear stage and a warp 

stage.   These sub-functions can be assigned to the computation server and the viewing 

client in a balanced way for a specific visualization task. 

 

4.7 Summary 

The conceptual simplicity and rendering performance of points make it a good 

choice as a modeling and display primitive for efficient VR-end geometry caching and 

view reconstruction. Sampling, packing and rendering algorithms are discussed in this 

thesis to transform the original dataset into point samples, cache the point geometry, and 

reconstruct seamless 2D viewing from the point geometry. Different implementations of 

these algorithms with different levels of computational complexity are studied and made 

available to fit various visualization requirements for specific VR applications. 
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CHAPTER 5      SCALABLE PIPELINE DESIGN: COMPUTING 
AND   COMMUNICATION 

 
 

5.1 Chapter Organization 
 

At the implementation level, each subsystem in the remote visualization 

framework represents a SIMD parallel rendering program in the distributed MIMD 

parallel pipeline. Each subsystem should have a scalable computing configuration.  From 

a functionality point of view, there is a communication module between two adjacent 

computing subsystems through which data flows. Each subsystem employs a specific 

scalable computing algorithm to implement its functionalities. The inter-subsystem 

communication algorithm is adaptive to the scalabilities of the connected computing 

subsystems.  It’s important to balance the computation complexity of the inter-subsystem 

communication algorithm along with the scalability of its connected subsystems. 

 

Section 4.2 and its subsections elaborate the parallel computing algorithms for 

each subsystem, including data partition, communication, and synchronization. Section 

4.3 and its subsections describe the inter-subsystem communication algorithm which 

guides the data flow through the pipeline. Section 4.4 discusses the system configuration 

optimization that balances the computing and communication complexity of the pipeline. 

Section 4.5 summarizes this chapter by restating the system scalability and computational 

complexity for the remote VR visualization framework. 
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5.2   Scalable Subsystem Computing 

In this distributed pipeline, each subsystem achieves parallelism by cluster 

computing and data partitioning. Local MPI (Message Passing Interface) communicator 

is established at startup time for intra-subsystem message passing and synchronization. A 

scalable computing algorithm includes local parallel computing, intra-system 

communication, and synchronization.  

 

5.2.1    Data Server 

The original dataset is distributed among the data server nodes. The computation 

server sends a data request to the data server indicating its required data partition scheme. 

Each data server node decides how to divide its own data storage and distribute different 

parts of data to different computation server nodes. Local computations are done in 

parallel for each node. In situations where information about global data storage is also 

needed for a final decision, intra-system communications are necessary.  Data server 

nodes communicate with each other using a local MPI communicator.    

 

5.2.2    Computation Server 

Usually an evenly-distributed object space data partition is desired at the 

computation server.  All server nodes perform parallel computation on their own data. 

Computing functionalities for each computation server node may include but are not 

limited to: 
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• Synchronize with other nodes to read the same viewing request from the client.  

• Generate the intermediate data for the request viewing condition on its own data. 

• Apply redundancy elimination and/or data packing if necessary. Intra-system 

communication may be involved, depending on the algorithm used to implement 

the function. 

• Divide the intermediate data by culling for each client node’s view frustum.  

• Call the inter-system communication module to scatter data to the client. 

   

5.2.3     Visualization Client  

An image-space data partition scheme is applied at the client-end and all client 

nodes perform parallel view construction. Computing functionalities for each client node 

may include but are not limited to: 

 

• Synchronize with other nodes to read from consistent data buffers for the same 

requested view.  

• Apply multi-resolution data packing if necessary. Intra-system communication 

may be involved, depending on the algorithm used to implement the function. 

• Reconstruct stereo view from the intermediate data for its own display 

configuration.  

• Post-processing to construct stereo/auto-stereo effects for VR. 
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5.3 Inter-subsystem Communication 

From a functionality point of view, each computing subsystem is attached to a 

communication module to exchange data with adjacent subsystems. Inter-subsystem 

communication is concurrent with subsystem data computing. For two scalable 

subsystems which communicate with each other, there is an all-to-all TCP connection 

among the computing nodes of those two subsystems. Theoretically all data sending 

nodes can send data in parallel to arbitrary data receiving nodes. But since all data that 

share the same network data link will eventually be transferred and processed in a 

sequential order, it’s desirable that the order of data communication between the two 

subsystem nodes be arranged to make the best overall throughput out of the available 

network bandwidth between them. For example, a typical data communication between 

subsystem A and subsystem B includes a request message from B to A and data flow 

from A to B. According to the data request, each data sending node of A will compute its 

data contribution to each data receiving node of B.  Then the root node of A will gather 

all the data contribution information and create a data transfer assignment sheet. A data 

transfer assignment sheet indicates the arrangement of the order of data communication 

from A to B.   

 

Figure 5.1 shows example arrangements of the order of data communication from 

system A to B, illustrated by the data transfer layout graph and the assignment sheet. In 

the example, system A has 4 nodes which can send data concurrently; system B has 3 
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nodes which can also receive data concurrently. Data links are available among all the 

nodes of A and B. Node A1 needs to send data to node B1 and B2; node A2 needs to 

send data to node B1, B2, and B3; node A3 needs to send data to node B1, B2, and B3; 

node A4 needs to send data to node B2 and B3. In the data communication arrangement 

illustrated by the layout graph (a) and its corresponding assignment sheet (c), the data 

transfer happens in three rounds. At the first round, data transfer relations are: A1 to B1, 

A2 to B1, A3 to B1, and A4 to B1. All the first round data transfers are indicated by 

directed red lines in graph (a) and the first and second rows in table (c). Similarly, data 

transfer relations at the second round are: A1 to B2, A2 to B2, A3 to B2, and A4 to B3. 

All the second round data transfers are indicated by directed blue lines in graph (a) and 

the first and third rows in table (c). Finally, data transfer relations at the last round are A2 

to B3 and A3 to B3. All the last round data transfers are indicated by directed orange 

lines in graph (a) and the first and last rows in table (c). Another data communication 

arrangement is illustrated by layout graph (b) and its corresponding assignment sheet (d), 

where the data transfer also happens in three rounds. At the first round, data transfer 

relations are: A1 to B2, A2 to B1, A3 to B3, and A4 to B2. At the second round, data 

transfer relations are: A2 to B2, A3 to B1, and A4 to B3. At the last round, data transfer 

relations are: A1 to B1, A2 to B3, and A3 to B2. In the first data transfer arrangement 

scheme, the order of data communication causes a lot of data link conflicts because 

multiple nodes in A will try to send data to the same node in B at the same time. On the 

other hand, the second arrangement scheme minimizes the data link conflicts by 
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1 A 2 3 4 

1 2 3 B 

(a) Data transfer layout 1 

1 A 2 3 4 

1 2 3 B 

(b) Data transfer layout 2 

staggering the data links for each round. It is clear that the data transfer represented by 

the second arrangement scheme is more efficient by making better use of the available 

networking capacity. To optimize the data transfer assignment, the data receiving node of 

system B should be as diverse as possible for each round of data transfer.  

 

 

 

 

 

 

 

 

   

 

       (c) Data transfer assignment sheet 1    (d) Data transfer assignment sheet 2  

Figure 5.1: Example data communication arrangements between subsystem A and B 

 

Before the actual data transfer, the data transfer assignment sheet is sent from the 

root node of A to the root node of B and broadcast inside B so every node will know how 

many data are expected at each of their data links and in which order. After each node of 

A 1 2 3 4 

B(round1) 1 1 1 2 

B(round2) 2 2 2 3 

B(round3)  3 3  

A 1 2 3 4 

B(round1) 2 1 3 2 

B(round2)  2 1 3 

B(round3) 1 3 2  
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B receives its expected data from A, a synchronization call will be issued and further 

processing based on the received data will be executed after the call returns.  

 

5.4 Pipeline Configuration Optimization 

Proper granularity is desirable for a best overall performance of a parallel 

computing system. In the distributed pipeline presented in this thesis, the inter-subsystem 

communication algorithm is adaptive to the scalabilities of the connected computing 

subsystems.  Generally the communication complexity grows by O(N2) when the 

connected subsystem’s process number scale at O(N).  It’s important to balance the inter-

subsystem communication complexity along with the scalability of its connected 

subsystems. 

 

The pipeline configuration optimization is visualization task-specific. Given a 

specific dataset, there exists a tradeoff between the server computation performance and 

the network transfer latency. Using more server nodes results in faster computation, but it 

also increases the data generating rate, thus introducing longer data transferring latency. 

There are two ways to alleviate the non-linear growth of communication complexity 

along with the linear growth of the subsystem configuration. One way is to design the 

server-end scalable computing algorithm so that the growth of data generating rate is 

slower than the growth of the number of processes. The other way is to limit the number 
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of overall data connections by avoiding the situation where every server node need to 

connect to every client node in each data flow cycle.  

 

Usually different server setups will be tested and a best configuration will be 

chosen for the most effective client visualization.  

 

5.5 Summary 

Scalability makes a visualization task adaptive to the available computing and 

visualizing resource configurations. Each subsystem of the distributed system can 

perform either cluster-based parallel computing or single workstation-based sequential 

computing. Synchronized intra-subsystem computing and inter-subsystem 

communication ensure consistent pipeline computing. The pipeline configuration can be 

optimized based on a balanced granularity as the ratio of computation to communication.  
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CHAPTER 6 SUBSYSTEM COUPLING SCHEMES 

 

6.1 Chapter Organization 

The term coupling refers to the connection between the subsystems inside a 

distributed pipeline. The degree of coupling defines the level at which a subsystem can 

work independently without waiting for data from another subsystem. In a remote 

visualization system, the coupling between the computation server and the visualization 

client usually means different inter-system communication rates, and may introduce 

different system characteristics. In this thesis, Virtual Reality interaction is more 

graphics-intensive and frame-rate critical than a normal graphics rendering task, so 

different client-server coupling schemes could be applied to meet the VR visualization 

requirements. 

 

Section 6.2 introduces the performance metrics used in this thesis to measure the 

effectiveness of the remote visualization system. Section 6.3, 6.4 and 6.5 discuss several 

subsystem coupling schemes and their implementation details. Section 6.6 summaries this 

chapter by restating the usage of various coupling schemes for VR applications. 
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6.2 System Performance Metrics 

 To measure the performance of the distributed visualization system, besides the 

image quality, the following performance metrics are introduced, similar to the 

performance metrics described in [Ma00].  

 

• Data generating rate is the actual bit rate the server generates data at given a 

specific server-client configuration. 

 

• Data transfer rate is the actual data transfer throughput during the run time. 

 

• Data consuming rate is the actual bit rate the client consumes data at given a 

specific server-client configuration. 

 

• Start-up latency is the time until the client receives data after it sends a steering 

request to the server. 

 

• View update latency is the time until the client gets the correct view construction 

for a requested tracker position.  

 

• View construction time is the time the client needs to reconstruct a view from the 

data received from the server.  
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• Inter-frame delay is the average time between the consecutive view 

reconstructions, or the reciprocal of the frame rate.  

 

For a specific visualization task, the computation server and visualization client 

would normally generate and consume data in a stable rate if executed independently. By 

working concurrently with the network communicating module in the pipeline, the data 

generating rate, the data consuming rate, and the data transfer rate should be balanced 

during run time.      

 

In a head-tracked VR visualization environment where interactive viewing is 

desired, image quality, coherency and frame rate are the key metrics to indicate the 

quality of the VR exploration. The dataset characteristics, subsystem computing and 

inter-system communication performance, network conditions, and the subsystem 

coupling scheme all play crucial roles to determine the effectiveness of the system.  

 

6.3    Synchronous Coupling 

Synchronous coupling of a computation server and a visualization client means 

that new frame of data can’t flow through the pipeline if the old data is not consumed yet. 

Synchronous coupling introduces a large amount of inter-system waiting between the 

server and the client, thus aggravating the inter-frame delay.  
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Figure 6.1 shows an example timeline diagram indicating how the server 

computation and the client view construction work together in a synchronized coupling 

mode.  Performance metrics such as the latencies and the view construction time and the 

inter-frame delay are indicated in the figure.  

 

Figure 6.1: Workflow timeline in a synchronized client-server coupling mode. 

 

6.4 Loose Coupling by Buffering Algorithm 

Loose coupling of a computation server and a visualization client means that 

adjacent work flow cycles can interleave with each other by introducing a circular 

buffering algorithm at the client side. Data coming from different server computation 

frames can be stored in different buffers, thus avoiding unnecessary inter-waiting 

between the server and client. The number of buffers determines the looseness of the 
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coupling. Loose coupling needs more data storage space at the client side, but also 

improves the view updating frame rate. 

 

Figure 6.2: Workflow timeline in a loose client-server coupling mode. 

 

Figure 6.2 shows an example timeline diagram indicating how the server 

computation and the client view construction work together in a loose coupling mode.  

Performance metrics such as the latencies and the view construction time and the inter-

frame delay are indicated in the figure. 

 

The order of data transfer needs to be maintained carefully in a loose coupling 

scheme. Even though new data may be generated concurrently with the current data 
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transfer, the new data will not be transferred before receiving an acknowledgment 

message indicating the completion of the current data transfer. 

 

6.5 Asynchronous Coupling 

In this mode, client view construction is isolated from the normal server 

computation – client visualization work flow cycle. Asynchronous coupling is enabled by 

data caching and packing at the client side. A client continuously reconstructs an 

intermediate view for arbitrary viewing conditions using the intermediate geometry 

constructed during runtime and cached in its local memory. Intermediate views may 

introduce visual artifacts such as holes and gaps and fuzziness due to insufficient 

geometry or resolution for current viewing condition. These visual artifacts are expected 

to decrease as new data comes in from the server, especially when smaller tracker 

movement is expected when users want to examine a particular area of interest. 

Asynchronous coupling needs a large amount of data storage space at the client side and 

introduces visual artifacts, but it can improve the interactive frame rate as much as 

possible by constructing intermediate views for the current tracker position without 

waiting for a corresponding data update from the server.  

 

Figure 6.3 shows an example timeline diagram indicating how the server 

computation and the client view construction work together in an asynchronous coupling 

mode.  In the example, the server end point sampling is much slower than the client end 
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view construction, and the client end intermediate visualization doesn’t wait for stereo 

sampling of the original dataset from the server. Performance metrics such as the 

latencies and the view construction time and the inter-frame delay are indicated in the 

figure.  

 

Figure 6.3: Workflow timeline in an asynchronous client-server coupling mode. 

6.6 Summary 

Several subsystems coupling schemes and their implementation details are 

discussed in this chapter.  The degree of coupling between the VR client and the 

computation server indicates the inter-waiting time inside the view construction cycle, 

but with possible viewing artifacts due to delayed view updating. A proper coupling 

scheme can be selected to fit specific VR application requirements. 
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CHAPTER 7   EXPERIMENTS AND RESULTS 

 

7.1 Chapter Organization 

In sections 7.2, 7.3 and 7.4, case studies using different type of datasets under the 

proposed visualization framework are discussed in detail. Experimental results are given 

for each case study. Section 7.5 summarizes this chapter by restating the system 

adaptability over different dataset characteristics.  

 

7.2 Case study for Mesh Dataset 

Several mesh datasets are experimented using the remote visualization framework 

presented in this thesis. The system configuration is in a one-one mode, which means 

there are one remote computer as the computation server and one local computer as the 

visualization client. For the experiments, the server computer is a Linux machine with an 

Intel Xeon 1.8 GHz CPU, Quadro4 900 XGL graphics card and 2 GB main memory. The 

client computer is also a Linux machine with dual 64 bit AMD Opteron 246 2 GHz 

processors, Quadro FX 4400 graphics card and 4 GB main memory. The client computer 

drives a VarrierTM autostereo VR display.  

 

To achieve the autostereo effect, the visualization scene needs to be drawn twice 

(once for each eye) and interleaved together in every frame [Sandin05]. When the size of 
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a mesh dataset reaches to several million triangles, visualizing it on a single auto-stereo 

VR workstation can only achieve roughly 1-2fps. This is too slow for smooth interaction 

in head-tracked VR. To solve the frame rate problem, instead of local rendering, the 

visualization is carried out through the remote computation-local view construction 

pipeline. Figure 7.1 shows the customized remote visualization pipeline for the mesh 

dataset in one-one mode. The pipeline includes a remote computation server which also 

serves as the data server, and a VR desktop (client). The server and client are connected 

through high-speed network. Both server and client processes are multi-threaded so that 

the functional modules, such as data communication, server-end point sampling and 

client-end point splatting can run concurrently, taking advantage of multi-processors if 

applicable. The server sampling is at 1280*800 resolution, and the client visualization is 

at 2560*1600 resolution. The client and server resolutions are independent; they do not 

need to be integral multiples of each other nor have the same aspect ratio. 

 

Figure 7.1: Pipeline diagram for case study on mesh dataset 
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Given a frustum request, server side computation includes sampling the visible 

part of the original mesh into a 2D sampling map (depth-image) of proper resolution and 

eliminating the redundant sampling before transmitting the sampling map to client. For 

each new view updating frame, the client will decimate the received sampling map, 

produce multi-resolution 3D points from the decimated maps and pack them into the 

level-limited octree-based geometry cache. The server also keeps a compact packing of 

the previous samplings for redundancy elimination’s purpose. To maintain a compact 

point model in both server and client’s main memory, obsolete points will be deleted 

regularly. Obsolete point deletion is originated by client and needs to be synchronized 

between server and client to ensure correct redundancy elimination.  

 

Networking between the server and client provides data communication, such as 

view-frustum demanding, map transmitting and obsolete data notification. After 

redundancy elimination, the updated map (depth-image) is compressed before 

transmission. A lossless LZW compression [Nelson89] is used for map compression. For 

a depth-image with resolution of 1280*800, the original data size is about 7MB; 

compression reduces the size to about 2MB. The compressed maps are sent to the client 

using the reliable TCP/IP protocol. Because the server sampling rate is expected to be 

low, e.g. one frame per second, the network traffic is small and bursty. 
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At every view construction frame, the client splats visible 3D points which are 

stored in the geometry cache into seamless 2D views. LOD control is applied when 

splatting the multi-resolution point model onto the screen. The server and client work 

together in an asynchronous coupling mode, which means that the view updating and 

view construction of the client don’t need to synchronize with each other at the frame 

level. The view updating frame rate is limited by the server computation and the client 

packing performance; the view construction frame rate is determined by the client’s data 

retrieval from the cached geometry and splatting performance.  

  

View reconstruction by splatting locally cached 3D points with constant head 

movement will introduce holes, gaps, and dis-occlusions because of data incompleteness, 

and splatting artifacts because of inconsistent data resolution. By replenishing new points 

every view updating frame, a better view will be constructed in exchange for a short 

waiting period.  The interactive VR visualization experience is expected to be quite 

smooth if the waiting time for the new view updating is no more than 2-3 seconds since 

the user can still move their head and see the existing splats at about 15fps. 

 

Figure 7.2 shows the 2D view reconstruction by point splatting for the Crater 

Lake dataset before and after a new view update from remote server. In image (a), the 

view reconstruction contains holes, gaps and fat splats, but they will disappear in image 

(b) after new view update without any noticeable artifacts.        
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Figure 7.2:  View reconstructions by point splatting for the Crater Lake  

Left:    View reconstruction by splatting available points;                                            

Right:    View reconstruction after new view update 

 

Besides the Crater Lake dataset, some classic medical datasets, such as the bone, 

skin, head, and skull, are also experimented. Table 7.1 lists the description of the 

experimental mesh datasets and the resulting performance under the remote visualization 

pipeline. All datasets are non-transparent surface triangle meshes. 

 

Table 7.1: Experimental mesh dataset description and visualization performance 

Dataset Name Dataset Size 
(triangles) 

Frame rate without 
remote visualization 

Frame rate with 
remote visualization 

Crater lake 5M 1 fps 17 fps 

Bone, skin, head 
together 

1.2 M 4 fps 18 fps 

Skull 0.45M 12fps 20fps 
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The overall performance of the client-end view reconstruction is more than 15 fps, 

independent of the original dataset complexity. And the average server-end view-

udpating rate is about 0.5 fps.  See figure 7.3 for the point-based visualization results of 

experimented datasets. 

 

   

(a) Crater Lake   (b)Bone         (c)Skin 

  

(d)Skull  (e)Head 

Figure 7.3: Point-based view construction of experimental mesh datasets. 

(a) The Crater Lake dataset is courtesy of USGS 

(b)(c) The bone and skin datasets are courtesy of the Visible Human Project, 2003 

(d)(e) The skull and head datasets are coutesy of the VR Medical Laboratory, University 

of Illinois at Chicago 



 

 

95

7.3    Case Study for Julia Sets 

The French mathematician Gaston Julia invented the Julia set in 1918. There was 

a renewed interest in this creation in the 80s when computers made possible the 

visualization of these fractal forms. Julia's idea was to observe the behavior of the orbit of 

a complex number under iteration of a function f .  That is, begin with a complex number 

z0 , visualized as a point in the plane, and apply f  to z0 .  The resulting value is fed back 

into the function f  to obtain a new complex number z1.  This in turn is fed back into f to 

obtain z2, and so on.  The resulting sequence of complex numbers {z0 ,  z1 , z2 , ...}  is 

called the orbit of z0 under f .  We will refer to a complex number z0 as a prisoner if its 

orbit under f is bounded, and an escapee if the orbit is unbounded -- that is, terms in the 

orbit get arbitrarily far away from 0.  The set of all prisoners for a given function f is 

called its prisoner set, and the set of all escapees is called the escape set. The prisoner set 

of function f is also called the filled-in Julia set. The Julia set for f  is defined to be the 

boundary between the prisoner set and the escape set of the function f. One very popular 

function is the quadratic: czzf += 2)( . Julia sets of quadratic functions, along with other 

deterministic fractals, exist in higher dimensional hypercomplex spaces. A hypercomplex 

number has multiple imaginary components. Our implementation uses quaternions which 

are four-dimensional extention of complex numbers. 

 

The common visualization techniques of the quaternion Julia sets include 

bounding tracking method [Nortan82], inverse iteration algorithm [Holbrook83], ray-
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tracing [Hart82], etc. Inverse iteration is the best method for quickly visualizing the 

global shape of the Julia set whereas ray tracing is the best method for investigating the 

finer details of the set. Boundary tracking also provides a global view that is significantly 

better than inverse iteration but at the expense of much more time and memory. John 

Holbrook computed the quaternion Julia sets by sampling every point in a 3-D grid and 

then rendered the resulting binary voxel array. John Hart [Hart90] used a quaternion 

square root function to adapt the classic inverse iteration algorithm to the quaternions. 

The augmented version produces a 3-D Julia set defined by a point cloud that can be 

interactively manipulated on a graphics workstation. Dan Sandin and Louis Kauffman 

have used iterative distance estimation techniques to ray trace 3D slices of the fractals, 

providing high quality 2D images of these sets at various levels of detail. Because of the 

long processing time to produce a high-quality image by ray-tracing, the animated Julia 

set visualization is achieved by pre-computing a huge number of high-quality images in 

advance and playing them back in high frame rate like a movie. Recently an auto-stereo 

playback version of their Julia set animation has been implemented in the Personal 

VarrierTM system, at Electronic Visualization Laboratory, University of Illinois at 

Chicago. While providing extremely smooth visualization experience of the Julia set 

animation, the shortcoming of this movie-style visualization is the fixed navigation path 

and lack of human interaction. 
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As an experiment, the remote visualization framework presented in this thesis is 

customized to visualize a high quality Julia set animation in VR, where free navigation 

and fast view reconstruction of at least 15 frames per second are required. The goal is to 

help scientists examine the 3D slice of the quaternion Julia sets by great detail in a stereo 

virtual reality mode, and be able to study the animation by varying Julia set’s parameters. 

Ray-tracing based Julia set generation technique is used here to get high-detailed images. 

The system configuration is in a many-one mode, which means there are a scalable 

computer cluster as the computation server and one local computer as the visualization 

client. In actual experiments, the client end of the Julia set visualization system is the 

Personal VarrierTM autostereo display. The net resolution of the display is 2560*1600, 

while the sampling resolution is 1024*640 for each eye before the auto-stereo image 

interleaving. The Varrier runs on a Linux machine with dual 64 bit AMD Opteron 246 2 

GHz processors, Quadro FX 4400 graphics card and 4 GB main memory. The 

experimental server is a Linux PC cluster with 32 nodes. Each node has dual Intel Xeon 

1.8 GHz processors, Quadro4 900 XGL graphics card and 2 GB main memory.  

 

Figure 7.4 is the diagram showing the customized functional framework of the 

point-based Julia set visualization system. Steered by the client-side interaction, the 

server produces view-dependent point sampling of the continuous Julia set surface by the 

perspective back-projection from a 2D grid input image space. The client caches point 

samples provided by the server sampling process with multiple sample rates and organize 
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them into an octree-based spatial partition structure. The client-end view reconstruction is 

another perspective projection to splat the cached point samples with a selected sample 

rate onto the output image space. 

 

Figure 7.4: Pipeline diagram for case study on the Julia set  

 
One of the key ideas of implementing the ray-tracing based real-time Julia set is 

to speed up the ray-tracer by parallel server processing. A load-balanced parallel ray-

tracing algorithm is implemented in a one-row-per-node computation mode. At first, all 

server computation nodes get the view frustum request and each node begins to sample 

one row for the image. After a server node finishes sampling the current row for the final 

image, it sends the point samples back to a compositing node and the compositing node 

assigns another sample-row to it until the last row of the final image is sampled. This 

one-row-per-node computation scheme can achieve good load balancing and make the 

parallel processing very scalable. Table 7.2 shows the ray-tracing time of producing the 

same Julia image with different number of server computation nodes. The data shows that 
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the performance boost by using more computation nodes is nearly linear. The parallel 

ray-tracing running on a computer cluster of 40 nodes can be almost 40 times faster than 

the single-computer ray-tracing. Each point sample from the ray-tracing has attributes of 

color c, spatial coordinate p, and normal n. 

 
Table 7.2: The parallel ray-tracing performance 

Cluster node number 1 2 4 8 16 32 40 

Ray-tracing time (seconds) 69.3 34.8 17.3 8.7 4.36 2.19 1.76 

 

The server and client work together in an asynchronous coupling mode. For each 

view updating frame, point patches from sampling frames are packed without performing 

redundancy elimination. Since the size of point packing grows fast without redundancy 

elimination, data deletion along the packing plays a more important role. Both access 

time and data sample rate can be the weighing factor for a data deletion decision. 

 

The view reconstruction works by picking one point patch with the closest 

matching sample rate for current view re-sampling and splat it onto screen, as discussed 

in chapter 4, section 4.4.3.3. Splatting artifacts, such as holes, gaps and aliasing, can 

appear in a constructed view because of data incompleteness and/or simplified re-

sampling process with circular splatting kernel. By replenishing new points every view 

updating frame, a better view will be constructed in exchange for a short waiting period.  
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The interactive VR visualization experience is expected to be quite smooth if the waiting 

time for the new view updating is no more than 2-3 seconds since the user can still move 

their head and see the existing splats at about 15fps. Figure 7.5 show the results of 

rotating the Julia set over y axis. Figure 7.6 shows some more experimental results when 

visualizing the Julia set animation. The cached point geometry for one animation step is 

completely deleted before visualizing the next animation step. A similar active data 

deletion mechanism can also be used in mesh dataset visualization when the old point 

model becomes large enough to slow down the client-end local view construction.  

 

   

   

   

Figure 7.5: A series of intermediate Julia images by remote visualization. 
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Figure 7.6: Julia animation by varying one of its parameters. 

 

7.4    Case Study for Volumetric Datasets 

Volumetric data sets are widely used in scientific and medical applications. They 

can arise both from scans of real-world phenomena (such as a CT or MRI scan of the 

brain) and from simulation (for example, fluid flow near an airplane engine intake). One 

of the key advantages of volumetric data is that, unlike surface-based representations, it 

can embody the interior structure of the objects, including amorphous and semi-

transparent features. Additionally, operations such as cutting, slicing, or tearing, while 

challenging for surface-based models, can be performed relatively easily with a 

volumetric representation. While volume rendering is a very popular visualization 

technique, the lack of interactive frame rates has limited its widespread use. Volume 

rendering is very memory and computation intensive even for the newest graphics 

hardware.  
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As an experiment, the remote visualization framework presented in this thesis is 

customized for a real-time VR system to visualize volumetric datasets. The system 

configuration is in a many-many mode, which means there is a scalable tiled-display 

virtual reality environment connected to a scaleable parallel server computer cluster via a 

high-speed network. The distributed shear-splat-warping volume rendering algorithm is 

used for the remote visualization pipeline. In the actual system configuration, the 

visualization client is a cluster-driven cylindrical tile-display with VarrierTM autostereo 

technology [Sandin05]. Every cluster node has a dual-head Nvidia Quadro FX3000 

graphics card which drives two screens, each with 1600x1200 pixel resolution. In such a 

hardware configuration, the upper limit frame rate for an autostereo viewing is about 

30fps. The computation server is also a PC cluster with the same graphic cards. The splat 

is rendered as graphics hardware accelerated point sprites with a Gaussian texture. The 

splatting performance for the graphics is about 60M splats per second. Figure 7.7 shows 

the customized functional framework for volume rendering.  

 

Figure 7.7: The distributed volume rendering pipeline  
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A slab-based object-space data partition is used at the server side, where each 

server node holds a slab of the original volume. An object-space data partition scheme 

prevents constant view-dependent data re-transmission. An even data load and back-to-

front sequence is easily maintained for balanced server computation and straightforward 

compositing. Each server process computes a shear matrix in its local coordinate system 

and then splats and composites its own volume slab into one distorted intermediate image. 

Off-screen rendering is used for the intermediate image rendering. The intermediate 

image is usually set to be larger than the original slice size to remedy the scaling and 

translation caused by the shear operation. Dynamic intermediate image sizes can also be 

used during runtime to speed up the performance of the intermediate image read-back 

from the graphics card texture memory to main memory. Loose coupling scheme is 

performed in the volume rendering pipeline. Up to three set of left and right data buffers 

can be allocated at the VR client side. New data frame can be received and saved into 

another buffer while data are consumed from the current buffer. It’s important to 

synchronize among all the client nodes before every draw frame to make sure all nodes 

get the same tracker position and read from consistent data buffers. 

 

The output of the server computation is an intermediate volume, and the server 

scatters the resulting intermediate volume to the client by an image-space data partition 

scheme. No further data exchange among the client nodes is needed during the view 

construction. Similarly, each client computes the shear matrix, splats and composites its 
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own sub-intermediate-volume into another distorted image, and then warps this distorted 

image into the final view. Figure 7.8 shows an example of the intermediate images 

produced by the server computation. The experimental dataset is a 2563 voxel foot, and 3 

server computation nodes are used, thus 3 intermediate images are produced. For the 

same experiment, figure 7.9 shows the client-end reconstructed viewing for a 4-screen 

tiled display driven by 2 compositing nodes. There are display side bands between the 4 

tiled screens.  

   

Figure 7.8: The intermediate images produced by 3 server nodes for the foot dataset 

 

 

 

 

        

 

 

Figure 7.9: The final viewing in a 4-screen tiled display for the foot dataset 



 

 

105

Different volumetric datasets are visualized under this remote computation 

architecture. Given a specific volume dataset, there exists a tradeoff between the server 

computation performance and the network transfer latency. Using more server nodes 

results in faster volume computation, but it also increases the data generating rate, thus 

introducing longer data transferring latency. Usually different server setups will be tested 

and a best configuration will be chosen for the most effective client visualization. 

 

Table 7.3 shows the view construction frame rate with different system 

configurations for the Foot dataset. The dataset is in courtesy of Philips Research, 

Hamburg, Germany. The volume dimension is 256x256x256 in 8 bits sample precision. 

In the experiment, about 1k non-transparent voxels are processed during the actual view 

construction after applying a transfer function to the volume. 

 

Table 7.3: View construction frame rate with different system configurations for the Foot 
dataset, volume size 256x256x256 

 
 Server number 
Client number Frame rate (fps) 

1 2 3 4 

1 27 25 21 18 

2 27 25 20 17 

3 27  24 20 17 

4 26 23 18 15 
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Table 7.4 shows the view construction frame rate with different system 

configurations for the Christmas dataset. The dataset is in courtesy of the Department of 

Radiology, University of Vienna and the Institute of Computer Graphics and Algorithms, 

Vienna University of Technology. The volume dimension is 512x499x512 in 16 bits 

sample precision. In the experiment, about 7k non-transparent voxels are processed 

during the actual view construction after applying a transfer function to the volume.  

 

Table 7.4: View construction frame rate with different system configurations for the 
Christmas tree dataset, volume size 512x499x512 

 
 Server number 
Client number Frame rate (fps) 

1 2 3 4 5 6 

1 4.2 6.8 9.3 12.3 8.6 5.4 

2 4.2 6.7 9.3 12.3 8.6 5.4 

3 3.4 6.2 9.2 12.1 8.4 5.4 

4 3.2 5.6 8.7 11.8 8.4 5.3 

 

Beside the foot dataset as shown in figure 7.9, Figure 7.10 shows the final view 

construction of some other the experimental datasets visualized using this distributed 

volume rendering pipeline. 

 

7.5 Summary 

As case studies to prove the feasibility of the proposed visualization strategy, 

datasets with different characteristics, such as triangle meshes and volumes, are used as 
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customized visualization instances of the proposed framework. Several pipeline 

configurations, such as single server to single client, server cluster to single client, and 

server cluster to client cluster, are tested for different applications. Also, different point 

based algorithms and subsystem coupling schemes are selected in each case study and 

their functionalities can be merged together seamlessly for a specific application. All 

experiments show improved VR interaction. 

 

   

(a)    (b)     (c) 

Figure 7.10: The final view reconstruction of some experimental datasets  

(a) 128x128x128 Hydrogen Atom dataset, in courtesy of SFB 382 of the German 

Research Council (DFG). 

(b) 512x499x512 Christmas Tree dataset, in courtesy of the Department of Radiology, 

University of Vienna and the Institute of Computer Graphics and Algorithms, Vienna 

University of Technology. 

(c) 512x512x512 Head Aneurism dataset, in courtesy of Philips Research, Hamburg, 

Germany 
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CHAPTER 8  CONCLUSIONS AND FUTURE WORK 

 

8.1 Summary 

State-of-the-art Virtual Reality technologies such as VarrierTM bring better 

interaction and comprehension into visualization experience. But VR applications are still 

limited in the area of large-scale scientific visualization mostly because of the intensive 

graphics computation for VR viewing.  

 

The goal of this thesis is to design and implement a distributed visualization 

framework which combines VR technologies and remote computing resources through a 

high speed network, so that large-scale scientific datasets can be visualized in real-time 

on local VR devices.  

 

The framework is designed to be a scalable distributed system with pipelined data 

retrieval, computation, and visualization for various datasets. Scalability makes the 

system adaptive to the available computing and visualizing resource configurations. Each 

subsystem of the distributed system can perform either cluster-based parallel computing 

or single workstation-based sequential computing. The pipeline configuration can be 

optimized based on a balanced granularity as the ratio of computation to communication. 
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The pipeline is an MIMD design which explores computing and networking parallelism 

along with the data flow. 

 

Special implementation features of the pipeline are presented in this thesis based 

on the requirements of interactive VR exploration. First of all, point samples are 

introduced as an intermediate format of data which flow through the pipeline. The 

conceptual simplicity and rendering performance of points make them a good choice as 

modeling and display primitives for efficient VR-end geometry caching and view 

reconstruction. Sampling, packing, and rendering algorithms are discussed in this thesis 

to transform the original dataset into point samples, cache the point geometry, and 

reconstruct seamless 2D viewing from the point geometry. Different implementations of 

these algorithms with different levels of computational complexity are studied and 

customized to match the various visualization requirements for specific VR applications. 

The straightforward functional decomposition of point-based graphics enables flexible 

and balanced workload distribution through the computation pipeline.  Secondly, 

different subsystem coupling schemes are discussed and can be selected to fit for 

different VR application requirements. Looser coupling of the VR client from the 

computation server means less waiting time inside the view construction cycle, but with 

possible viewing artifacts due to delayed view updating.  
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As case studies to prove the feasibility of the proposed visualization strategy, 

datasets with different characteristics, such as triangle meshes and volumes, are used as 

customized visualization instances of the proposed framework. Several pipeline 

configurations, such as single server to single client, server cluster to single client, and 

server cluster to client cluster, are tested for different applications. Also, different point 

based algorithms and subsystem coupling schemes are selected in each case study and 

their functionalities can be merged together seamlessly for a specific application. All 

experiments show that VR interaction can be improved for various visualization tasks by 

utilizing the visualization framework presented in this thesis. 

 

8.2 Future Work 

As a flexible and extendable visualization framework, the graphics-processing 

algorithms as well as pipeline configurations can always be enhanced based on the 

current implementation. Missing functionality can be added and out-of-date algorithms 

can be improved for new requirements of visualization tasks. Given the current 

implementation, the future work for this thesis may include: 

 

• Adding a new algorithm to get correct point sampling for transparent mesh 

datasets. 
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• Improving existing splatting algorithms to make better use of GPU programming, 

especially for faster blending of splats with semi-transparent Gaussian filters, and 

per-pixel shading. 

 

• Improving existing parallel processing algorithms, such as data partition, to 

balance the computational complexity of each scalable subsystem in the pipeline 

and the communication complexity between them.  

 

• Adding new algorithms for animated dataset visualization.  
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