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Abstract. We introduce a web-based visual comparison approach1
for the systematic exploration of dynamic activation networks across2
biological datasets. Understanding the dynamics of such networks in3
the context of demographic factors like age is a fundamental problem4
in computational systems biology and neuroscience. We design5
visual encodings for the dynamic and community characteristics of6
these temporal networks. Our multi-scale approach blends nested7
mosaic matrices that capture temporal characteristics of the data,8
spatial views of the network data, Kiviat diagrams and mirror9
glyphs that detail the temporal behavior and community assignment10
of specific nodes. A top design specifically targeted at pairwise11
visual comparison further supports the comparative analysis of12
multiple dataset activations. We demonstrate the effectiveness of13
this approach through a case study on mouse brain network data.14
Domain expert feedback indicates this approach can help identify15
trends and anomalies in the data. c© 2017 Society for Imaging16
Science and Technology.17
[DOI: 10.2352/J.ImagingSci.Technol.2017.61.6.000000]18

19

INTRODUCTION20

Recent neuroscience research indicates that cognitive opera-21

tions are performed not by individual brain regions working22

in isolation, but by networks consisting of several discrete23

brain regions which act in synchrony.1 These networks24

share ‘‘functional connectivity,’’ meaning that activity in25

these regions is tightly coupled—in the sense of a statistical26

association or dependency among two or more anatomically27

distinct time-series events. Functional connectivity between28

brain regions can change rapidly over time,2,3 giving these29

networks a highly dynamic characteristic. Abnormalities30

in functional connectivity have been linked with various31
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degenerative and developmental affections. Evidence sug- 32

gests, for example, that Alzheimer’s disease spreads from 33

one brain region to a non-adjacent region within a specific 34

network, which is ‘‘activated when a person is recalling 35

recent autobiographical events.’’1 However, even for simple 36

networks, the subtle dynamics of these networks are not fully 37

understood. Therefore, techniques that are able to extract the 38

dynamics of functional connectivity from brain imaging data 39

have high potential value to the neuroscience community. 40

At the same time, advances in imaging technology 41

allow, at increasing pace, the comparative investigation of 42

functional connectivity dynamics at multiple scales, both at 43

the temporal level (time series, trials) and at the space level 44

(neurons, neurons grouped in pixels, regions of interest). 45

In computational neuroscience and computational systems 46

biology, each imaging snapshot captures one activation 47

pattern in the temporal behavior of a biological system. 48

The connectivity is then extracted from these images, 49

in the form of networks with large numbers of nodes 50

(over 20,000). Next, computational models are employed 51

to calculate the functional network dynamics. In order to 52

study the mechanisms of disease or aging, the process of 53

imaging andmodeling is performed repeatedly overmultiple 54

subjects, specimens or conditions, leading to a rich tapestry 55

of spatio-temporal imaging and computing data that need to 56

be analyzed. Visual analysis of such complex neuroimaging 57

data can help domain experts understand temporal features 58

along with their spatial references. 59

In this work, we present the design and implementation 60

of RemBrain, a novel visualization tool for the compara- 61

tive analysis and exploration of dynamic brain activation 62

networks. RemBrain (named after the intrepid Pixar rodent 63

Remy) is a multi-scale web-based application that supports 64
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(a) (b) (c)

Figure 1. Data processing. (a) Neuroscientists collect time series of biological imaging data (in this instance, mouse brain slices). Bright spots in each
image indicate activated (firing) neurons. (b) We use the Pearson correlation method to construct, from these images, an equivalent time series of correlation
networks (top, abstraction). The correlation networks (bottom, image overlay) correspond to three time steps; blue dots encode the active nodes and green
edges encode the links between correlated pairs. (c) We apply CommDy to these networks to infer dynamic communities (top, abstraction). Four communities
(blue, green, orange, red) are overlaid on mouse brain images, for three time steps, in the bottom image.

the tracking of temporal network behaviors. Responding to65

the novel data characteristics above, RemBrain integrates66

interactive, multi-scale 2D visualizations of imaging data;67

displays network connectivity data for each activation68

snapshot; captures the temporal behavior of a subregion of69

nodes using novel encodings; and supports pairwise visual70

comparison ofmultiple activations. This work, a follow-up to71

the award-winning Swordplots4 (published in JIST), enables72

the exploration and comparison of different activations at73

multiple levels in dynamic biological networks. The main74

contributions of the paper are:75

• A description of the domain data and problems in76

comparative neuroscience dynamic network analysis.77

• Anovelmulti-scale visual representation, which enables78

the exploration of networks at multiple levels: overview,79

regional, detail. Aggregate Slices (overview), Mosaic80

Matrices (regional), and Mirror Glyphs (detail) track81

community dynamics over time.82

• A flexible workflow for comparative visual analysis,83

which supports the pairwise comparison of activations.84

• An application to dynamic neurobiology mouse brain85

data, developed in collaboration with domain experts.86

• A demonstration through a case study and a summary87

of the feedback provided by domain experts.88

BACKGROUNDAND RELATEDWORK89

Domain Background90

In a typical project that seeks to analyze dynamic biological91

networks, data is collected through time-series imaging of92

the biological system as the system is stimulated in someway.93

Bright spots in the imaging data indicate neurons (or cell94

components) that are activated at that time step (Figure 1(a)).95

Correlation networks can be automatically constructed from96

these bright spots; over the time series, the correlation97

networks change dynamically (Fig. 1(b)).98

Algorithms—many originally developed for dynamic99

social network analysis5,6—can then be applied to the100

network data to infer groups of neurons that act as a101

community over time (Fig. 1(c)). In the context of brain102

network analysis, a ‘‘community’’ is analogous to a neural 103

assembly,7 which we define as a group of neurons that are 104

functionally connected and have similar temporal behaviors. 105

Brain Connectivity Visualization 106

Many techniques exist for visualizing brain connectivity 107

at either macroscopic (region level)8–12 or microscopic 108

(neuron) scale.13–17 In this work, we design a neural 109

encoding inspired by the Swordplots of Ma et al.4 However, 110

to the best of our knowledge, no other visualizations exist for 111

multi-scale biological connectivity data. 112

Our data further blends spatial and non-spatial features. 113

Marai18 identified two prevalent paradigms for integrating 114

spatial and non-spatial features: overlays andmultiple linked 115

views. In neuroscience studies, an overlay approach8,19,20 116

is commonly used when the non-spatial feature represents 117

only functional connections. However, as the non-spatial 118

data becomes more complex (activation levels, connectivity, 119

clusters, dynamic characteristics, and other statistics), the 120

linked-view paradigm15–17,21 becomes the default choice. 121

Nowke et al.14 use a hybrid approach that consists of 122

both overlays and linked views. We follow a similar hybrid 123

approach to support the exploration of dynamic biospatial 124

networks. 125

Dynamic Network Visualization 126

In static network visualization, the most common visual 127

representations are node-link diagrams22 and matrix-based 128

visualizations.23 Several projects24–26 use a hybrid approach 129

that combines both representations. 130

Dynamic networks and graphs are usually visualized 131

using either animation or a timeline-based representation.27 132

Several projects28–31 use animation to represent networks 133

with temporal components. To display dynamical changes 134

of networks into a single static view, Greilich et al.32 135

placed a sequence of graphs onto a timeline. Several other 136

projects33–35 use timeline-based representations to visualize 137

the evolution of communities in dynamic networks. Rufiange 138

and McGuffin36 presented a hybrid approach for visualizing 139

dynamic networks. In addition tomapping the time to the 2D 140

space, Bach et al.37 developed a Matrix Cube representation 141

J. Imaging Sci. Technol. 000000-2 Nov.-Dec. 2017



Ma et al.: RemBrain: Exploring dynamic biospatial networks with mosaic matrices and mirror glyphs

based on the space–time cube metaphor. The Matrix Cube142

shows the network structure using the 2D matrix and maps143

time to a third dimension. However, their technique is only144

scalable to networks that consist of a few nodes across short145

periods.146

While, as shown above, a large number of visualization147

techniques exist for static brain connectivity, as well as for148

dynamic non-spatial networks, to the best of our knowledge149

this novel domain is the first to require visualizing and150

integrating both types of data.151

Multi-scale and Comparative Visualization152

In the visual analysis of neuroscience data, VisNEST14 and153

NeuroLines16 integrate data at macroscopic level with mi-154

croscopic level.We similarly adopt amultiple views approach155

for different levels using both focus+context and details on156

demand.Visual comparison of brain spatial–non-spatial data157

is a relatively new research problem in neuroscience. Only158

a few tools38,39 can be found. Maries et al.38 introduced159

a comparative framework for mining brain geriatric data.160

Lindemann et al.39 presented a comparative visualization161

system that explicitly encodes changes of brain tumor162

segmentation volumes in shape and size before and after163

treatment. Outside the application domain, Gleicher et al.40164

proposed a general taxonomy that groups visual designs165

for comparison into three categories: juxtaposition (side by166

side), superposition (overlay) and explicit. Because of the167

complexity of our data, in our approach we use side-by-side168

linked views.169

DATA AND TASK ANALYSIS170

Data Analysis and Processing171

The input data consists of flavoprotein autofluorescence172

imaging data collected, in this case, from mice brain173

specimens captured in the TIFF format. A pixel contains174

roughly 100 neurons, and the image acquired at a specific175

time step has dimensions of 172× 130, leading to a file size176

of 24 KB. One activation cycle lasts about 100 time steps.177

Fig. 1(a) shows an example of a time-series data collected178

from mouse brain slices. The raw imaging data has two179

critical features: the pixel (node) signal value—pixel intensity180

(gray) value, which indicates the activation level, and the181

pixel (node) spatial location in the brain slice. This imaging182

data is processed in three steps: (1) infer a network model,183

(2) perform dynamic community analysis, and (3) compute184

community metrics.185

Network Model Creation186

To create a network model, we associate each pixel in187

the image with one network node. To capture internode188

interaction, we compute all pairwise correlations for the189

172 × 130 nodes over a given window using the Pearson190

product-moment correlation coefficient (PCC)41—a mea-191

surement of the strength of the linear relationship between192

signals of two nodes. This process leads to a weighted193

correlation network, represented by a list of weighted edges194

that connect pairs of nodes.Weighted edgesw(X,Y) represent195

the linear correlation coefficient between any pair of two 196

nodes (X and Y) over a time window t (Eq. (1)). 197

ω(X ,Y )= corr(X ,Y )=
1

t − 1

t∑
i=1

(
Xi−Xmean

SX

)
198

×

(
Yi−Ymean

SY

)
, corr(X ,Y ) ∈ [−1, 1], where 199

Xmean =
1
t

t∑
i=1

Xi and Sx =

√√√√ 1
t − 1

t∑
i=1

(Xi−Xmean)
2. 200

(1) 201

By repeating the computation of correlation while 202

shifting the window one time step for each iteration 203

over the entire timeline T, we obtain a time series of 204

weighted and thresholded correlation networks. Fig. 1(b) 205

bottom shows an example correlation network at three 206

time steps; blue dots represent active nodes and green 207

edges represent links between pairs of correlated nodes. 208

Summarized characteristics of each node, e.g., the node 209

degree, can yield insight into mechanisms underlying system 210

growth.42 211

To determine the appropriate time window and corre- 212

lation coefficient thresholds for applying dynamic network 213

analysis to brain imaging data, we tested the system with 214

an analysis window size of 25, 50, 100 and 200 frames. 215

The 50-frame window successfully yielded high temporal 216

resolution while not introducing spurious correlations, and 217

consequently was chosen for analysis. 218

Dynamic Community Analysis 219

In network analysis, a cluster or community is formed by a 220

group of nodes that have eithermore or stronger connections 221

with each other. Nodes belonging to different communities 222

have few and weaker connections. Community analysis can 223

be applied to a variety of fields from social networks to 224

biological networks.43 225

Because networks change their topological structure 226

dynamically, a dynamic community identification method 227

is needed. For example, a node may belong to a specific 228

community most of the time (Home community), but 229

also join temporarily a different community (Temporary 230

community), as shown in Figure 2. In brain network analysis, 231

neurons that belong to the same community likely have 232

similar functionality. Neurons visiting or joining another 233

community may indicate a change in their functionality. 234

We use the Dynamic Community Interface (CommDy) 235

method5,44–46 to analyze how the interactions and structures 236

of communities change over time in the dynamic brain 237

networks. CommDy produces two identification codes: a 238

Home community that identifies the community the node 239

belongs to by default, and a Temporary community that 240

identifies the community the node currently visits. The 241

visiting behavior means the node leaves its own community 242

temporarily but will return back very soon. Fig. 1(c) top 243

shows an example network of five nodes across three time 244

steps. In this illustration, the color of the inner circle 245
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Figure 2. Illustration of CommDy on an example data set that includes
five members, shown here over five time steps t1–t5.13 Colors encode
communities (circles for the Home community, and squares for the Visiting
community, if different). Members 0 and 1 stay permanently in the pink
community. Members 2 and 3 alternate their Home memberships from
the pink/green community to green/pink twice (at t2 and t5). Member
4 temporarily visits the pink community at t3, but maintains a Home
membership to the blue community.

represents the Home community identification code of the246

node, and the square surrounding the circle represents the247

Temporary community.248

Fig. 1(c) bottom shows the dynamic community analysis249

results of the example networks in Fig. 1(b) bottom. Because250

imaging noise can introduce small spurious communities of251

2–3 nodes, domain experts keep for analysis only the ten252

largest communities identified by the CommDy algorithm253

(where size is averaged over the entire timeline).254

Note that spatial relationships between nodes are255

not considered when detecting communities, to avoid the256

potential introduction of biased assumptions about the257

relationship between structural and functional connectivity.258

Metrics Computation259

Finally, the dynamic community characteristics are used260

to generate metrics that summarize the behavior of active261

nodes. CommDy quantitatively describes the characteristics262

of the inferred networks, at both node and structural level,263

based on network analysis theory.47 We use 10 relevant264

metrics to describe the interactions between nodes. These265

metrics include the average time spent by a node in266

a community, the number of jumps across communities267

executed by a node, the fraction of node peers who were268

its peers in the previous time step and so on. All these269

characteristics are normalized to a value within the range of270

0–1. Table A.1 summarizes the full list and definition of the271

nodemetrics. Based on the results produced from the current272

datasets, the number of active nodes varies with different273

activations of different subjects from approximately 5000 to274

nearly 10,000.275

Task Analysis276

Based on several interviews with a domain expert, we277

identified the following tasks for the comparative analysis of278

brain activations, and in particular for understanding how 279

aging impacts the auditory cortex (AC) of mice: 280

• Task 1: Explore the community spatial distributions at 281

multi-scale. Brain imaging data contain thousands of 282

nodes. Neuroscientists need to get an overview of the 283

entire dataset, but also to observe a subregion or even 284

an individual node in detail. 285

• Task 2: Track temporal changes at multiple levels. Be 286

able to observe the evolution of communities over 287

a user-defined time window, compare the temporal 288

behaviors of nodes in the same subregion, or track the 289

behavior of a particular node across the entire time 290

period. 291

• Task 3: Explore relationships between functional con- 292

nections and spatial structures. An interesting and 293

expected finding would be that specific nodes located 294

in different regions of the brain have similar temporal 295

behaviors. 296

• Task 4: Compare the differences in temporal and spatial 297

behaviors between young and aged animals at multiple 298

levels. 299

These tasks map to three groups in the visual data 300

analysis taxonomy:48 Explore: Task 1, Task 2, Task 3 and 301

Compare: Task 4. 302

Visual Design 303

The spatio-temporal datasets and comparison tasks captured 304

above are particularly complex. Furthermore, they feature 305

a mix of spatial and non-spatial data, and the experts 306

lack familiarity with complex visual encodings. Because of 307

these combined reasons, we follow a coordinated multi-view 308

top-level design, which has been shown to assist in visual 309

scaffolding.18 In this design, a set of multiple views at 310

different scales provides guidance to the domain expert when 311

exploring the data. In addition to the exploration tasks, 312

pairwise comparison is supported by side-by-side views 313

(Task 4). 314

Figure 3 shows the interface of RemBrain, which consists 315

of four main visual components: (1) an overview spatial 316

panel (Fig. 3(a) and (b)) that nests subregion temporal 317

information through a mosaic-matrix encoding; (2) an 318

individual behavior panel (Fig. 3(e) and (f)) that includes 319

a novel Mirror glyph to display in detail the dynamic 320

attributes for a particular node, and a Kiviat diagram for 321

the summarized characteristics of the corresponding node; 322

and (3) a timeline representation (Fig. 3(c) and (d)) that 323

controls the spatial panel and the mosaic-matrix view. These 324

multi-scale views are linked through interaction. Two sets of 325

each panel are placed side by side for visual comparison. 326

The side-by-side comparison design, in conjunction 327

with the multi-scale views, supports Task 4. The slice-based 328

panel displays the community distribution in space and thus 329

explicitly supports Task 3. The individual behavior view 330

enables exploration at the level of individual nodes (Task 2). 331

The mosaic matrix enables exploration at the level of 332
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Figure 3. RemBrain implements a visual approach for the analysis of spatio-temporal brain network data. Two aggregate panels (a) and (b) encode
the spatial distribution of neuron communities in mouse brains, overlaid with the medical imaging data. mosaic-matrix views (top left of panels) encode
temporal changes in a selected subregion. Two timeline views (c) and (d) show the number of active nodes over time; (c) shows that the activation has
8387 active nodes at time step 50, and (d) shows the activation has 6890 active nodes at time step 48. Two mirror glyphs and Kiviat diagrams (e)
and (f) allow tracking dynamic changes over time at a single node level. A control panel (g) enables filtering of node communities; colors are mapped to
community IDs.

subregions (Task 2,Task 1). The three views work together to333

support Task 1 through Task 3. Below we describe in detail334

each visual component. The web-based visualization tool is335

implemented in JavaScript using the D3 data visualization336

library.337

Aggregate Slice Panel338

The slice-based view shows the community distributionmap339

overlaid upon the brain slice image. In this distribution340

map, nodes are color-coded by their Home community ID.341

To enable multi-scale temporal analysis (Task 2), instead342

of displaying the community information at a single time343

point, we aggregate over a user-selected time period and344

color the active nodes by their most common community345

during that time period. We assign to each of the 10 largest346

communities a unique color (Fig. 3(g)) from a qualitative347

colormap from ColorBrewer2.org. Nodes colored in gray are348

either inactive or belong to a community not in the top ten.349

A control panel filters which communities are shown. The350

view is automatically updated according to the selection in351

the timeline widget (Fig. 3(c) and (d)).352

Individual Panel: Mirror glyphs and Kiviats353

The aggregate slice-based view shows the spatial distribution354

of communities. However, it is also important to display355

the temporal distribution of communities, along with other356

temporal attributes. To this end, the individual behavior357

panel combines in a novel design time-dependent numerical 358

and categorical data. This detail view allows users to explore 359

in detail the dynamic behavior of individual nodes through 360

a timeline-based representation. The panel (Fig. 3(e) and 361

(f)) integrates a mirror glyph for analyzing the temporal 362

node data and a Kiviat diagram for visualizing multiple 363

summarized characteristics. 364

Mirror Glyph 365

The mirror glyph supports tracking the characteristics of 366

a particular node over time. These dynamic characteristics 367

include raw signal values, node degrees, and two community 368

identification codes over time, the Home community and 369

the Temporary community (Table A.1). A preliminary 370

illustration of dynamic community analysis results is shown 371

in Fig. 2, in which circles are individual nodes labeled with 372

their identification numbers, and rectangles correspond to 373

communities. Communities are identified throughmatching 374

colors. However, this visual encoding does not scale well to 375

a large number of nodes. Additionally, it is hard to track an 376

individual’s community behavior over a long time period, 377

and there is no reference to the spatial location of the nodes. 378

Because a timeline-based representation was an intuitive and 379

simple way to track temporal changes, we design a mirror 380

glyph to visualize an individual node’s temporal behavior 381

(Task 2). 382
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Figure 4. Mirror glyph showing a node that belongs predominantly
and consistently to the green community, as its signal increases over
time, without much visiting or switching. The only temporary visiting event
happens at t1, when the node briefly visits the blue community. Two
switching events happen at times t2 and t3, when the node joins the
orange community, followed by the blue, just as the node signal is about
to peak (middle trunk). The node degree (chart height and content) is
almost symmetric: the Temporary community (upper chart) almost mirrors
the Home community (lower chart).

Each mirror glyph (Figure 4) has three components:383

middle black trunk, upper bar chart, and a mirror-like384

lower bar chart. The height of the upper and lower385

bar charts represents the node degree over time, because386

domain experts indicated the degree evolution over time387

was the important quality in this context, next to the Home388

and Temporary IDs. The upper chart color encodes the389

Temporary community while the lower chart color encodes390

the Home community. The color of bars in the charts391

indicates the community ID of the node over time. Mouse392

interaction further shows the type of community represented393

by a bar. While the upper and lower charts are often394

almost symmetric (hence the ‘‘mirror’’ aspect), they can also395

be asymmetric. Frequent horizontal color changes in this396

composite glyph indicate node instability. Similarly, a vertical397

asymmetry between the upper and lower charts indicates398

high instability.399

The line plot in the middle black trunk of the mirror400

glyph encodes the variation in raw signal intensity over the401

activation period, from 0 to 100, which is the maximum402

number of time steps in our datasets. The trunk’s gray403

segment highlights the user-selected time period. The404

vertical axis indicates the maximum node degree during405

the entire timeline. Fig. 4 illustrates how this composite406

glyph can capture dynamic node behaviors. The end mirror407

glyph result captures a high temporal resolution of the node408

behavior. The spatial location of the corresponding node is409

highlighted in the aggregate slice-base view.410

We converged toward this streamlined mirror glyph411

design through parallel prototyping with multiple iterations;412

some prototypes were completed on paper, and some in413

software. Driven by the experts’ preference for clarity over414

compactness, the glyph design converged toward this dual415

layout, as opposed to stacked graphs or a non-flipped layout.416

To this end, we note that the data itself was extremely417

complex and that detecting brief community visits was418

relevant to the tasks. Similarly, the raw signal intensity and its419

Figure 5. Kiviat diagrams for two nodes that reside most time in the
green, respectively blue community. The Kiviat shapes indicate that the
green node has longer activation duration, stays in particular communities
for longer periods, and is more consistent with its Home community.
Conversely, the blue node switches its Home communities and visits other
communities more often. Note the details on demand and index indirection
dictated by real-estate constraints.

evolution over time in relation to the community distribution 420

and degree were task-relevant. In this case, the trunk design 421

favored the signal charts that the experts were familiar with. 422

Kiviat Diagram 423

To encapsulate the 10 summarized attributes (e.g., observed, 424

time span, switching, etc.) shown in Table A.1, either parallel 425

coordinates or star plots are natural choices. However, in the 426

parallel prototyping stage, PCPs were overruled due to low 427

visual literacy among the domain experts and to their less 428

compact appearance. The experts’ specific goals, in this case, 429

were detecting significant differences and similarities in the 430

data, to be later analyzed quantitatively (as opposed to precise 431

visual comparison). In fact, one of our two experts remarked 432

on the imprecise nature of measurements computed at 433

the single node scale. Because the experts further favored 434

legibility over precise comparison, we converged toward a 435

star-based Kiviat diagram encoding (Figure 5), as opposed to 436

a line-based star plot, or simple dots on axes. Nevertheless, 437

the Kiviat representations can be optionally superimposed 438

(with transparency) to better support comparison. Each axis 439

of the Kiviat diagram represents one of the ten node metrics. 440

The most common community of a node is encoded in the 441

color of the Kiviat diagram. 442

Mosaic-Matrix View 443

The aggregate slice-based view shows the community spatial 444

distribution at an overview level with high spatial resolution, 445

but low temporal resolution. On the other hand, the 446

individual panel shows the community temporal distribution 447

per node with high temporal resolution but low spatial 448

resolution.While each of these representations has strengths, 449

our task analysis indicates that visual exploration at a level 450

with both reasonable temporal and spatial resolution was 451

important. To support this type of analysis, we design a 452

mosaic-matrix encoding. The encoding captures temporal 453

and regional changes and integrates them into the commu- 454

nity spatial distribution map. 455

Because nodes are densely located in brain slices, using 456

1D timeline-based representations was not feasible. Instead, 457

we adopt a compact two dimensional layout to encode 458

time-dependent behavior. The layout is composed of a set 459

of cells that define a mosaic matrix. The set corresponds to 460

a node region, and each cell encodes the temporal behavior 461
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Figure 6. Integration of temporal community characteristics into the brain slice of an aged mouse, across 64 time steps.

of an individual node in that region (Figure 6). Each cell, in462

its turn, is a 2D dense pixel layout that wraps time into 2D.463

The sub-cells encode with color the set of communities that464

node belongs to during the selected time period. Figure 7465

shows two mosaic matrices for a subregion of 9 nodes466

across 33 time steps (top), respectively 64 nodes across 12467

time steps (bottom). Fig. 6 further demonstrates the nesting468

of community temporal information across 64 time steps469

into the brain slice of an aged mouse. The selected area470

highlighted in the black circle is a region of 9 nodes. Each471

of the nine nodes within the selected region is represented in472

the mosaic matrix as a cell. The 64 (8× 8) sub-cells encode473

temporal behavior, with time increasing from left to right and474

top to bottom.475

However, the integrated temporal features may not476

be easily observed when displaying the entire brain slice.477

Additionally, zooming into a small region loses the relevant478

spatial references. Therefore, we enabled a detailed region479

view without losing the context of the slice. The resulting480

mosaic-matrix view is composed of several sets of cells.481

Fig. 7(a) displays the temporal behavior across 33 time482

steps, while Fig. 7(b) displays 12 time steps. In Fig. 7(a),483

the node in the top-left corner of the mosaic matrix is484

initially part of the green community, then moves to the485

orange community, and finally joins the pink and blue486

communities in the last two time steps. Unlike the traditional487

timeline-based (one dimension) visualization for time-series488

data, the mosaic-matrix view allows us to effectively nest the489

temporal features into the spatial structures.490

Users can both interactively translate a selection lens in491

the slice-based view and drag the zoom size slider in the492

control panel (Fig. 3(g)) to adjust the region size (number493

of nodes) selected. The mosaic matrix can flexibly capture494

from one node to 100 nodes, as well as from one to 100 time495

(a)

(b)

Figure 7. Two mosaic-matrix views representing two regions (at different
zoom levels) across different time periods: (a) a region of 9 nodes across
33 time steps; (b) a region of 64 nodes across 12 time steps. In (a), the
node in the top-left corner of the mosaic matrix is initially part of the green
community, then moves to the orange community, and finally joins the pink
and blue communities in the last two time steps. In (b), the mosaic captures
instability (frequent changes) in the region selected.
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steps, the length of the entire timeline in this study. Because496

in this study more than half of the brain slice was inactive at497

all times, we overlay the mosaic-matrix view on the top half498

of the slice, to efficiently use space. In cases where the image499

activation data may become obscured by the mosaic-matrix500

view, the mosaic-matrix window can be moved by dragging501

the upper gray bar.502

Timeline Widget503

The timeline widget enables navigation over time in the504

slice-based view andmosaic-matrix view. Using the widget, a505

user can click and drag to select the time window. To further506

help identify the time window during which each slice is507

most active, the timeline widget also encodes as a plot the508

total number of active nodes over time (Fig. 3(c) and (d)).509

Two dashed lines mark peak activity—the time step with the510

largest number of active nodes.511

Synchronization and Comparison Support512

To support the pairwise comparison of activations (Task 4),513

we adopt a coordinated side-by-side dual layout (Fig. 3(a)–514

(f)). This layout integrates multiple views at different levels:515

two slice-based views, two timeline views, twomosaic-matrix516

views, and two individual behavior panels. In our experience,517

because of the data complexity and a large number of518

differences in the datasets that are typically compared, the use519

of juxtaposed views effectively reduced visual clutter when520

compared to superposition. Moreover, the domain experts521

valued raw data and strongly objected to the superposition522

of brain slices (via registration) from different specimens.523

Although the individual behavior panel does lend itself524

to superposition, and we do support Kiviat overlays, the525

designers and the domain experts converged to a side-by-side526

layout for all views, in order to maintain consistency. As527

in other studies that involve domain scientists and require528

visual scaffolding,18,38 we found that design clarity and529

consistency principles take precedence over expressiveness.530

Because domain experts perform the comparison in531

both the spatial and temporal domain, we implement two532

default options for synchronization: a timeline synchro-533

nization (timeline widget) and a region synchronization534

(aggregate slice view). However, when comparing different535

specimens, the activations and spatial structures may not be536

completely aligned. Because of this constraint, we provide an537

asynchronization option as well, which allows the domain538

experts to manually align temporal or spatial features.539

RESULTS ANDDISCUSSIONS540

We evaluated RemBrain through a combination of multiple541

demonstrations and case studies (real data, real tasks, real542

users) with our collaborators: an established neuroscientist543

researcher (DL) who specializes in computational biology,544

neuroimaging and neurobiology, and a senior researcher545

in sensory-motor performance (RK), who has a broad546

background in studying the adaptation of motor systems and547

imaging data from physiological systems. Both experts have548

been working together on dynamic brain network analysis549

for several years. Throughout the evaluation process, we used550

a ‘‘think-aloud’’ technique,49 which asks users to verbalize 551

their thoughts as they interact with the system, and we 552

collected feedback at the end. 553

Here we report a case study performed separately by the 554

two scientists, in separate sessions. In this study, the domain 555

experts seek to understand the impact of aging on the AC in 556

mouse brains. To this end, they had collected imaging data 557

from a young mouse and an old mouse. Brain slices from 558

each specimen were artificially stimulated, and the resulting 559

activation levels were imaged as a time series. The case study 560

and verbiage reported below have been simplified for a lay 561

audience. 562

Case Study: Aging analysis in mouse brains 563

The domain experts wished to investigate how aging relates 564

to auditory processing changes, through the comparison of 565

network activity in the AC from young and aged mice, at 566

multiple scales (Task 1 through 4). Each expert started by 567

loading the dataset of the first activation of young mouse 568

No.40 (5.5 months) and the dataset of the first activation of 569

agedmouseNo.38 (22months) in the two side-by-side views. 570

Overview spatial, multi-scale in time exploration 571

The analysis started at the high overview level of the 572

entire AC. The community distribution differences were 573

immediately noticed in the slice-based panels (Figure 8(a) 574

and (b)): over the same time window, the young mouse 575

AC features an additional community, shown in green. 576

The young mouse AC (Fig. 8(a)), in particular, featured 577

a ring-type structure of community distributions. That 578

structure was stable even as the experts translated and 579

scaled their time window selection in the widget (Task 580

T2, T4). In contrast, the community distributions in the 581

aged mouse AC (Fig. 8(b)) were less structured. In fact, the 582

neuroscientist expert noted that no contiguous region in 583

this brain image was associated with one single community. 584

The second expert noted that in the timeline views the 585

activations from the two specimens decayed at different rates 586

after reaching their peak. The timeline also captured a higher 587

total number of active nodes for the younger specimen, 588

which was expected. The domain experts concluded that the 589

connectivity between neurons diminishes with age, which 590

‘‘probably correlates with a particular receptor [decay].’’ 591

Regional Spatial, Multi-scale Time Exploration 592

Themulti-scale analysismoved next smoothly to the regional 593

scale captured by the mosaic-matrix views (Task T1, T3, 594

T4). For this analysis, the experts disabled synchronization, 595

and manually selected two regions (marked by red boxes) 596

in roughly the same area of each AC. The difference 597

in the dynamic community behavior between the two 598

regions was striking. The cleaner and predominantly blue 599

mosaic-matrix view in Fig. 8(a) captured a homogeneous 600

dynamic behavior in the young mouse AC region. Most 601

nodes in this brain region spend their time in only one 602

community, blue. In contrast, the mosaic matrix for the 603

aged brain in Fig. 8(b) indicates significant instability, which 604

revealed the heterogeneity of the aged mouse AC. Only a few 605
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Figure 8. Case Study: Aging Analysis. The slice-based views (a) and (b) capture a difference in the community spatial distributions between young and
aged mice. The mosaic-matrix views in (a) and (b) present both the spatial and temporal features of communities in two similar regions of young and
aged mice. The timeline views (c) and (d) show a higher total number of active nodes for the younger specimen. While the (a) (d) views compare the
two specimens at a high and regional level, the individual behavior views (e) and (f) allow for comparison at the individual node level, both spatially and
temporally.

nodes stayed in a single community during the user-selected606

time. Furthermore, the aged AC network was significantly607

more fragmented over time, especially as the experts enlarged608

the time window size. The experts moved their attention609

repeatedly between the regional scale and the overview scale.610

611

Individual Spatial, Multi-scale in Time Exploration.612

In the final analysis stage, the dynamic behavior at the613

scale of a single node was taken into consideration, in614

addition to the previously examined spatial scales (Task615

T1, T4). In several iterations, the experts selected specific616

cells in the mosaic matrix, one at a time, and examined617

them through the individual panel (Fig. 8(e) and (f)). The618

nodes examined in this figure are located in the bottom left619

corner of the mosaic-matrix views. Surprisingly, both young620

and old nodes exhibited symmetric behavior with respect621

to their Home and Temporary distribution. However, the622

node degree over time was almost double for the young623

neuron, when compared to the old. Furthermore, the mirror624

glyph encoding quickly showed, for example, that sample625

nodes in the young mouse brain featured few major changes626

in dynamic communities over the entire time window. In627

Fig. 8(e), the selected node switches only twice closed to the628

start of the window, from green to blue and from blue to 629

purple. In contrast, the aged mouse node shown in Fig. 8(f) 630

switches much more frequently at the start of the activation. 631

The difference noted above was reinforced by the Kiviat 632

diagrams, where the two Kiviat shapes were notably similar 633

in many respects. In the example shown, both nodes score 634

along the normalized average time span of communities 635

(axis 1), but only the aged neuron has a non-zero normalized 636

switching cost (axis 2). Furthermore, the agedmouse also had 637

a shorter activation time (axis-0), and fewer connections than 638

the young mouse. At this point, the neuroscientist expressed 639

interest in seeing the raw signal data. To this end, the experts 640

examined the raw signal plots in the behavior mirror glyphs, 641

and discovered that the old mouse rising time is generally 642

slower and that the curve during the rising time is less 643

smooth for the old mouse. 644

Case Findings 645

This multi-scale analysis indicated that aging is associated 646

with a series of changes in node metrics, such as community 647

size and switching cost, and also with temporal changes in in- 648

dividual behavior, such as dynamic community distribution. 649

These changes are consistent atmultiple spatial and temporal 650

scales. Together, the domain experts hypothesized that those 651
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aging-related changes at multiple scales might be related652

to changes in intracortical connectivity (Task T4). Using653

the insight from the multi-scale visual exploration, they are654

designing methodology to capture and quantitatively report655

these correlations.656

Domain Expert Feedback657

The domain expert feedback included comments such658

as ‘‘very cool, interesting tool,’’ ‘‘fantastic,’’ and ‘‘useful to659

generate hypotheses.’’ Since everything in biology is ‘‘so tied660

to spatial location,’’ the experts found that the integration661

of the spatial layout and non-spatial network attributes was662

far more useful than analyses based only on the non-spatial663

data. In addition, the mosaic matrix provided the ability664

to explore temporal relationships between nodes with close665

proximity in the same region, and thus preserved a useful666

spatial context. While originally unfamiliar to the experts,667

the mirror glyphs and Kiviats were later praised for their668

potential to drive hypotheses at the neuron level, once669

crisper node data become available through the next imaging670

project. Overall, the experts found that RemBrain augmented671

their ability to analyze the heterogeneous and multifaceted672

datasets common in dynamic bionetwork analysis.673

Compared to prior analyses of the data, whichwere done674

directly with data files and relied on the experts’ mental675

model of the node location within an image, our visual676

approach succeeded in communicating the spatial findings677

to others. Also, the experts noted that interactively exploring678

the imaging data to identify an interesting time step was679

far more efficient than manually searching an image from a680

repository.681

DISCUSSIONS682

Meeting the Original Goals683

The case study and expert feedback demonstrate the684

effectiveness of this multi-scale visualization approach to685

the comparative exploration of dynamic activation networks686

across multiple brain imaging datasets at multiple levels.687

Experts were able to find new, interesting patterns in datasets688

they had explored using different tools before. They both689

are eager to adopt the tool for research purposes, both in690

an exploratory setting and in an explanatory setting (for691

publication purposes).692

The overall design was successful at supporting com-693

parative analysis in a variety of dataset combinations. We694

note that few guidelines exist in visual comparison design.695

In most instances in our design we favored juxtaposed696

(side-by-side) layouts, to attain better clarity and consistency,697

and to circumvent alignment issues. One exception is the698

star panel, where the lack of a physical structure supports699

superposition. Overall, we found that a hybrid approach best700

supported the tasks revealed by the domain analysis.701

The experts considered the inclusion of the spatial con-702

text a most valuable feature, and reported the approach was703

far more useful than analyses based only on the non-spatial704

data. The chosen visual encodings showed complementary705

strengths in supportingmulti-scale spatio-temporal analyses.706

When coupled with a coordinated multi-view approach, 707

these encodings enabled visual analysis across the entire 708

pipeline for dynamic bionetwork data analysis: raw data, 709

network results (node degree), dynamic community analysis 710

based on the results of dynamic networks, and summarized 711

node metrics based on the dynamic community analysis. 712

The experts were able to navigate smoothly betweenmultiple 713

scales in both space and time. 714

Novelty 715

The mirror glyphs and the embedding of temporal features 716

in a spatial context through the mosaic-matrix views 717

are novel contributions. The composite mirror glyphs, 718

in particular, are not restricted to the presentation of 719

dynamic node behavior in neuroscience. These glyphs can 720

also be applied to general temporal data with multiple 721

variables that include both numerical (height) and cate- 722

gorical data (color). Such datasets exist in other domains 723

where symmetric/asymmetric time-dependent behavior is of 724

interest, for instance in the analysis of spectrograph data 725

in astronomy,50 in the analysis of financial data, or in the 726

analysis of Electronic Health Records. The mosaic-matrix 727

nesting approach may find application in other spatially 728

dense temporal datasets. 729

The combination of visual encodings in a tool to handle 730

multivariate data in dynamic bionetwork analysis and the 731

side-by-side multi-scale design that supports pairwise com- 732

parison for spatio-temporal data are also novel. The approach 733

has direct application to the analysis of other spatially 734

dependent dynamic biological networks, for instance in 735

computational systems biology. 736

Design Lessons and Issues 737

One of the most important lessons from this work relates 738

to limitations arising from increasing model scales and 739

complexity. As scientific models move from static to 740

dynamic, and single model analysis shifts to the comparison 741

ofmultiplemodels with spatial and non-spatial features, even 742

known integration paradigms break down with scale: one 743

cannot keep track effectively of tens of coordinated views. 744

Overlaysmay similarly fail, and in some instancesmay not be 745

applicable (in our case, due to domain restrictions related to 746

alignment and the importance of raw data). In the approach 747

illustrated here, we have successfully nested the time-driven 748

behavior into spatial structures and used overlaying and 749

details on demand where possible, to overcome space 750

limitations. Still, the resulting interface is information-dense; 751

on a large tiled display, there was still too little space to attach 752

legible Kiviat labels directly to axes. As the range of data 753

acquisition instruments keeps expanding, these issues will 754

only become more stringent in the visualization field. 755

The second important lessons arising from this expe- 756

rience relate to the necessity of visual scaffolding18 when 757

dealing with domain experts who are not familiar with 758

sophisticated visual encodings. In our design experience, the 759

application of HCI principles such as clarity and consistency, 760

and the careful consideration of the overall application gestalt 761

were particularly important. For instance, the final design 762
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includes dual views for all representations, even though we763

do support superpositions where possible. We furthermore764

found success by building upon domain-specific encodings,765

such as the slice-based views and the timeline widgets. Using766

those familiar encodings within a linked-view framework767

served as a visual scaffold, allowing the domain experts to768

harness and expand their previous analysis experience.769

Limitations770

In terms of limitations, one of our two domain experts771

noted that interpreting individual node behavior could be772

too daring given the current imaging done on the datasets.773

Nevertheless, he did see the future utility of the behavior774

glyphs in the context of their next imaging project, whichwill775

capture node identity more crisply. Another limitation is that776

RemBrain can currently be used only as a post hoc analysis777

tool, due to the data preprocessing load. The dynamic778

correlation networks computation for each activation costs779

roughly ten hours. Depending on the size of such networks,780

the computation cost of dynamic communities identification781

and network metrics analysis is between one and two hours.782

This limitation is due primarily to the network metric783

computation load. Last but not least, matching precisely784

communities between different experiments (beyond the785

size proxy for the ten largest communities) is an open786

research issue, not just in this work, but in dynamic787

community analysis in general. This limitation is mainly788

because dynamic analysis methods currently do not consider789

the spatial relationship of nodes in different experiments. In790

this case, the domain experts are well aware of and willing to791

accept this current limitation.792

CONCLUSION 793

In conclusion, we have presented a web-based visual 794

comparison approach for the systematic exploration of 795

dynamic activation networks across biological datasets. As 796

part of this work, we have proposed visual encodings 797

for the dynamic and community characteristics of these 798

temporal networks. Our approach blends multi-scale, nested 799

overviews of the biological data and their temporal behavior, 800

mirror glyph descriptors of network metrics for describing 801

node behaviors, and widgets which detail the temporal 802

behavior and community assignment of specific nodes. A 803

case study on mouse brain network data and the domain 804

expert feedback indicate our approach is effective in the 805

comparative visual analysis of dynamic excitable bionet- 806

works. Last but not least, we have characterized the novel 807

and complex data arriving from the application domain and 808

summarized the lessons learned from visualizing these data, 809

which are spatio-temporal and multi-scale. We believe these 810

lessons transfer across application domains. Futureworkmay 811

apply this multi-scale visual approach to imaging data that 812

has higher spatial resolution, e.g., calcium imaging, or extend 813

these techniques to other biological or geospatial networks. 814
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APPENDIX 820

Table A.1. Data descriptors for dynamic bionetwork analysis.

Static/Dynamic Node Attribute Attribute Descriptors

Static Spatial Location Coordinates in the grayscale image of a brain slice
Dynamic Signal Value Pixel (node) intensity value: 0–255 (8 bit)
Dynamic Node Degree Number of connections a node has
Dynamic Home Community The community a node belongs to
Dynamic Temporary Community The community a node currently visits
Static Observed Number of time steps a node is active or observed (normalized by the entire time steps)
Static Time Span Average span of the communities (the last time step minus the first time step of the communitys existence) with

which an individual is affiliated (as a member or absent)
Static Switching Number of community switches made by an individual (normalized by the entire time steps)
Static Absence Number of absences of an individual from a community (normalized by the entire time steps)
Static Visiting Number of visits made by an individual to another community (normalized by the entire time steps)
Static Homing Fraction of individual’s current peers, at each time step, who were peers in the previous time step
Static Avg Group Size Average size of group of which an individual is a member
Static Avg Community Size Average size of community of which an individual is affiliated (as a member or absent)
Static Avg Community Stay Average number of consecutive time steps an individual stays as a member of the same community (normalized

by the entire time steps)
Static Max Community Stay Maximum number of consecutive time steps an individual stays as a member of the same community

(normalized by the entire time steps)
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