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Abstract—Microscopy images are pervasive in biomedical re-
search publications, where images obtained through various mi-
croscopy modalities (light, fluorescence, scanning, transmission)
are often used to describe and summarize experiments and
contributions. Hence, there is growing interest in automatically
identifying these microscopy images’ modality and utilizing
this knowledge in automated search tools. However, identifying
microscopy images poses challenges due to a lack of extensive
collections of labeled images. We describe and evaluate two
alternative approaches to microscopy image classification. In
the first approach, we progressively fine-tuned layers of ResNet
models. The second approach uses shallow variants of ResNet
networks, where we leverage the outputs from previous convolu-
tional blocks. We compare these results against a Support Vector
Machine (SVM)-based baseline. Our results show that fine-tuning
specific layers yields better results than fine-tuning the whole
model. Furthermore, shallower variants produce competitive
results when compared to the entire fine-tuned model.

Index Terms—microscopy, image classification, deep learning

I. INTRODUCTION

Microscopy images are pervasive in biomedical research
papers. Researchers use microscopy images obtained through
a variety of techniques to describe and summarize experiments
and contributions. As such, there has been much interest
in recent years to obtain and classify images from within
publications [1]–[3].

Microscopes are ubiquitous in biomedical research; with the
right setup, microscopy images reveal details otherwise hidden
to the naked eye. Advanced microscopes come in a variety
of configurations, offering different magnification powers and
achievable resolutions. Yet, different types of microscopy are
needed to address the wide spectrum of tasks (Fig. 1). For
example, at a high level, in light microscopy, visible light
passes through the sample and one or several lenses. A key
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advantage of this modality is enabling the inspection of living
organisms, such as in rat surgery or cell analysis. A variation of
light microscopy is fluorescence microscopy and its subtypes
(confocal, photobleaching, etc.), where particular wavelengths
excite fluorophores to enable the subsequent detection of the
fluorescence signal. Last but not least, the electron microscopy
family, with its subtypes scanning and transmission, allows
researchers to obtain higher resolution images; however, these
modalities are restricted to in vitro (non-living) samples.

Classifying microscopy images by modality is a compli-
cated task. Labels specifying the image modality subclass are
seldom available. At a microscopic level, the imaging patterns
themselves are difficult to distinguish, unlike in radiomics [4],
[5]. Even for similar specimens, there are high inter-class
and intra-class structural image variations. For example, light
microscopy subclasses are similar to each other, as they all ex-
hibit similar color features and patterns. Electron microscopy
subclasses are also similar to each other, as they all exhibit
grey scale features and similar structures. In addition, when
producing a paper, the authors may edit the final illustrations.
For example, the researchers may choose to publish colored-
versions of gray-scale electron microscopy images in order
to enhance their message. These edits can cause unexpected
differences between images with similar image modalities and
specimens.

Despite the paucity of labeled datasets, deep learning ap-
proaches obtain better classification results on the modality
classification task than hand-crafted methods [6], [7]. Many
of the deep learning models use pre-trained weights from
ImageNet [8], which aims primarily natural photographs, de-
spite the difference between nature and biomedical images. As
a result, recent biomedical image classification work utilizes
deep networks with transfer learning and fine tuning [9], [10].
This phenomenon has lead to an explosion in the size and
number of parameters in the networks used for biomedical
image classification. Whereas these large network solutions



report accuracy in the range of 76.87% to 88.48% [3], [10]–
[13], those results focus on biomedical image datasets with
up to 30 classes, where the classes are often considerably
different from one another (e.g., X-Ray vs. microscopy). In
contrast, the classification of microscopy image modalities
within biomedical publications, where the challenge involves
reduced labeled datasets and similar image content, is neither
well-studied nor well-addressed.

In this paper, we propose and evaluate two alternative ap-
proaches to address microscopy image classification. Our work
builds on a combination of Machine Learning techniques and
thorough domain application. We investigate rigorously and
empirically shallow variants of deep learners in this domain,
along with the features to be used in classification. We analyze
the conditions under which these shallow models are beneficial
for modality classification tasks. The first approach follows
the traditional approach of applying transfer learning and
fine-tuning weights from pre-trained ResNet [14] models on
ImageNet. For the second approach, we progressively remove
the last convolutional block of ResNet models to create shal-
lower variants. Our results highlight the importance of careful
consideration of model depth when using small biomedical
datasets that do not resemble general image repositories.

Fig. 1. Four microscopy images from the ImageCLEF dataset showcasing
different modalities: (a) Electron microscopy (DMEL), (b) Transmission
microscopy (DMTR), (c) Light microscopy (DMLI), and (d) Fluorescence
microscopy (DMFL). As illustrated here, sample images retrieved from
publications may also contain annotations, either as overlays or as border
elements.

II. METHODS

A. Data

We obtained our dataset by selecting the microscopy
images from the ImageCLEF 2016 subfigure classification
task [7]: light microscopy (DMLI), electron microscopy
(DMEL), transmission microscopy (DMTR), and fluorescence
microscopy (DMFL). Under this taxonomy, transmission mi-
croscopy is not part of the electron group, whereas electron

microscopy encompasses scanning microscopy and other sub-
classes.

As the dataset is relatively small, we merged it with
the microscopy images from the ImageCLEF 2013 dataset
to obtain 2310 training images. We further performed data
augmentation by random horizontal flips (p=0.5), and random
rotations between 0 and 20 degrees. We chose the central
224x224 crop as our training sample. Besides, as the class
distribution was highly unbalanced (Fig. 2), we oversampled
from the DMEL and DMTR classes. To attain a similar
distribution for our validation set, we used stratified sampling
to gather 20% of the images. We further used for testing
the ImageCLEF16 test set. The dataset encompasses figures
extracted from biomedical literature; thus, the figures do not
necessarily have the resolution of a raw microscopy image.

Fig. 2. Class distribution of the microscopy modality dataset. The dataset is
unbalanced: fluorescence images (DMFL) are most common, followed by light
microscopy images (DMLI). In contrast, the dataset features few samples of
electron microscopy (DMEL) images and transmission microscopy (DMTR)
images.

B. Transfer Learning, Fine-Tuning and Shallower Models

Compared to traditional machine learning approaches like
Support Vector Machine (SVM), deep learning image clas-
sifiers rely on a considerable amount of training samples to
train models with millions of parameters. Such a requirement
is unfeasible in many domains; therefore, transfer learning and
fine-tuning strategies provide alternatives to leverage existing
trained models. In transfer learning, we reuse models pre-
trained on a different dataset and retarget the model head
(softmax layer) to match a new set of classes. We then train the
new model on the target dataset; however, as only training the
last layer may not yield the best performance, we can further
fine-tune previous layers by updating their parameters. Two
questions arise: what layers benefit from fine-tuning, and does
a deeper network provide the most useful learned concepts?

To answer these questions, we experiment on the
ResNet [14] family of models: ResNet18, ResNet34,
ResNet50, ResNet101, and ResNet152. At a high level, the
ResNet architecture is a stack of convolutional blocks with
skip connections called residual units that enable very deep



models. This architecture organizes the residual units in four
blocks (Fig. 3a); once starting a new block, each residual unit
doubles the number of feature maps. Then, we characterize
a base model, like ResNet50, by the number of residual
units per block. For instance, ResNet50 has 3, 4, 6, and 3
residual units per block, respectively, while ResNet152 has
the following configuration: 3, 8, 36, and 3. We chose the
ResNet architecture for our experiments for their capability
of creating deep models and for their competitive results in
image classification.

For our first approach, we used transfer learning and fine-
tuning for each ResNet variant. First, we updated the soft-
max layer to target our four microscopy classes. We created
different variants by unfreezing the residual units’ parameters
from the deeper layers backward until we fine-tuned the whole
model (Fig. 3b). For instance, the ResNet18 model has two
residual units per model block, yielding eight variants (without
including a fully-tuned model, and only updating the last
fully connected layer). We trained every parameter from the
softmax layer to the target residual for each variant, while
the previous layer’s parameters remained frozen. We used a
constant learning rate of 5e− 6 for each fine-tuned model as
it yielded more stable results than larger learning rates. We
ended training 10 ResNet18 models, 18 ResNet34 models, 18
ResNet50 models, 35 ResNet101 models, and 52 ResNet152
models. Although ResNet34 and ResNet50 have the same
number of residual units per block, from ResNet50, each
residual block is more complex 1; thus, there is an increase in
the number of trainable layers.

Our second approach explored the effects of augmenting the
number of residual units per block in the ResNet architecture.
Although ResNet18 could be considered a shallower version
of ResNet152, we shrank the architectures by removing the
deeper layers one by one. As such, our shallower models did
not yield the same configurations of the smaller base models.
We pre-loaded the ImageNet weights for each trained model
and fine-tuned the whole parameters with a constant learning
rate of 5e − 6. Larger learning rates produced bumpier loss
values during training.

In addition, we built an ensemble model by combining the
outputs of the six deeper residual units of a ResNet50 model.
We concatenated the outputs and fed them to a softmax layer
(learning rate=5e−6). Our intuition was that we could leverage
relevant features from different residual units, and potentially
increase the classifier performance.

We trained each model for 100 epochs, and compared
the model with the lowest validation loss value. We used a
cross-entropy loss with an Adam optimizer. Additionally, we
created a baseline based on a ResNet50 model pre-trained on
ImageNet as a feature extractor, and an SVM linear classifier
on top. We implemented our experiments using PyTorch and
Scikit-learn [15], using our laboratory resources [16], [17]; our
code and training reports [18] are available in this repository:

1Bottleneck module on torchivision ResNet model

github.com/jtrells/biomedical-image-classification2.

III. RESULTS

A. Fine-tuned models

Results of the fine-tuned models (Table I) show that a fine-
tuned ResNet18 obtained the highest test accuracy (89.00).
Compared to other ResNet18 models, the best performing
variant (block 1-1) was marginally better. Notably, this model
was 3.2 percentual points better than only fine-tuning the
softmax layer. When comparing the deeper models, we found
that the best ResNet50 and ResNet152 models obtained the
same accuracy. Notably, for each base model, fine-tuning the
whole model did not yield the highest accuracy. Still, on
average, these full models were only 0.87 percentual points
worse than the best performing variant.

Coefficients of the Pearson correlation between the number
of trainable parameters and test accuracy show decreasing
correlation as a model gets bigger. Smaller models like
ResNet18 and ResNet35 have a strong correlation (r = 0.81,
r = 0.75 respectively), the middle-sized ResNet50 has a
moderate correlation (r = 0.56), and the large ResNet101 and
ResNet152 have a moderate (r = 0.64) and weak correlation
(r = 0.27).

Arguably, fine-tuning a full ResNet model is more econom-
ical than looking for the specific layer that provides better
performance. To this end, Fig. 4 shows the variability in the
accuracy results, where for each line chart the number of
trainable parameters increases from left to right.

TABLE I
SUMMARY STATISTICS FOR FINE-TUNED MODELS GROUP BY BASE

MODEL. LAST COLUMN SHOWS THE ACCURACY DIFFERENCE BETWEEN
THE BEST PERFORMING MODEL (BLOCK IN BRACKETS) AND A

FULLY-TUNED MODEL.

Model avg std max min diff (best-full)
ResNet18 88.25 1.16 89.00 84.88 0.92 [b1-1]
ResNet34 86.86 0.31 87.29 86.03 0.57 [b3-2]
ResNet50 87.44 0.97 88.89 84.42 1.15 [b3-0]
ResNet101 88.11 0.54 88.77 86.14 0.69 [b3-3]
ResNet152 88.06 0.75 88.89 84.77 1.03 [b3-35

to b3-32, b1-2]

B. Shallower models

With respect to shallower models, the best performing
models were indeed a shallower version of a ResNet base
model. ResNet152 block 3-11 (block 3 has 36 residual units)
model yielded the highest accuracy, closely followed by the
ResNet101 block 3-18 and the ResNet34 block 3-0 models.
Compared to the fine-tuned model evaluation, the difference
between the best variant and the full model was higher, with
an average of 1.70 percentual points (Table II).

Shallowest variants led to the worst accuracy scores
among all base models. Yet, the shallowest models from
ResNet50, ResNet101, and ResNet152 are significantly worst

2GradCAM++ [19] implementation from the GitHub repository
1Konny/gradcam plus plus-pytorch



Fig. 3. (a) ResNet architecture blueprint. The number of residual blocks varies per ResNet base model. (b) Fine-tuning a base model from up to the first
residual unit of block 4. (c) Shallow model using the outputs from block 3-1. Grey boxes represent layers with frozen parameters; orange boxes represent
fine-tuned layers.

Fig. 4. Test accuracy for fine-tuned variants (y-axis limit between 84 and 90 percent). For each ResNet base model, the number of trainable parameters per
variant increases from left to right. Vertical lines divide the architectural blocks: softmax layer, block 4, block 3, block 2, and block 1 + fully-tuned model.

Fig. 5. Test accuracy for shallow variants (y-axis limit between 54 and 90 percent). For each ResNet base model, the number of trainable parameters per
variant decreases from left to right. Vertical lines divide the architectural blocks: block 4, block 3, block 2, and block 1. We note that the shallowest models
yielded the worst accuracy.



than ResNet18 and ResNet34 (Fig. 5). After reaching block
3 in the architecture, we start to obtain good accuracy results,
then a bottleneck becomes apparent (especially for ResNet101
and ResNet152).

TABLE II
SUMMARY STATISTICS FOR SHALLOWER RESNET MODELS GROUP, BY

BASE MODEL. LAST COLUMN SHOWS THE ACCURACY DIFFERENCE
BETWEEN THE BEST PERFORMING MODEL (IN BRACKETS) AND THE FULL

MODEL.

Model avg std max min diff (best-full)
ResNet18 86.96 1.89 88.89 82.59 0.69 [b4-0]
ResNet34 87.31 1.62 89.69 83.05 2.63 [b3-0]
ResNet50 85.27 5.46 88.80 68.04 1.95 [b4-0, b3-5]

ResNet101 86.21 7.10 89.69 58.19 1.03 [b3-18]
ResNet152 86.76 5.10 89.92 58.19 2.18 [b3-11]

C. Comparison with baseline

In Table III, we show the comparison of the SVM baseline,
our best fine-tuned and shallow models, our ensemble of
shallow ResNet50 variants, and two related models. We chose
these two last models [10], [13] for our comparison as the
authors provided precision, recall, and F1 scores per class,
although the authors trained on the 30 classes from Image-
CLEF instead of specifically the four microscopy classes.
These scores provide a better baseline than the SVM model
that uses extracted features from ImageNet.

Our results show that our models performed better than
the baseline. Our best accuracy score over this dataset was
89.92%. In general, we obtained lower scores with the electron
microscopy class (DMEL), for which we had the lowest
number of training samples.

D. Wrong predictions

Despite having trained a wide variety of models during
both approaches, we found that all models failed to correctly
predict a specific set of testing images. For instance, Fig. 6
shows an electron microscopy figure incorrectly classified as
a fluorescence image by the best ResNet50 fine-tuned variant.
The original figure, on the top left, presents an unusual red and
green coloring. To its right, we show the gradient activations
of two layers using GradCAM++ [19]. Activations on block
3-5 suggest a higher interest in the colored nuclei. Changing
the figure colormap to grayscale (bottom left) yields to a
correct prediction, and the interpretability approach indicates
that there is less focus on the colored elements. Yet, it is not
clear if the network focus was centered on color or textures.

We found that the shallowest models correctly predicted
some figures that their bigger counterparts failed to predict.
However, these models had the lowest training and test accu-
racy; an inspection of the training accuracy and loss charts
suggests that the models lack capacity, and thereby their
predictions are not trustworthy.

IV. DISCUSSION

Our results indicate that, as expected, fine-tuning deep
residual units on the microscopy dataset while keeping the

Fig. 6. Top left: Microscopy electron image incorrectly classified as a
fluorescence microscopy image. Bottom left: The same image in grayscale;
now, the classifier correctly predicted the image class. GradCam++ activation
maps for two different layers are shown to the right.

initial parameters frozen yields better results. Yet, finding the
right fine-tuning configuration is a tedious task that may only
worth the effort for small datasets (we spent between 15 and
30 minutes training each model). Compared to fine-tuning the
whole model, finding the best performing models yielded a
gain of 0.86 percentual points on average. Therefore, unless
that difference is a considerable gain, fine-tuning the whole
model is the recommended approach. Another interesting
avenue to explore on our dataset is the adaptive transfer
learning strategy where each layer is trained depending on
the input sample [20].

Given our dataset’s size, it is not surprising that the
fine-tuned ResNet18 model obtained competitive performance
compared to its deeper counterparts. ResNet18 block 1-
1 was only 0.92% worse than the best shallow ResNet152
block 3-11, but we spent much less time finding this model
configuration (ResNet152 had 52 different shallower variants).
The ResNet152 results showcase the effectiveness of residual
units.

Results from our second approach using shallow models
indicate that extracted features from previous residual units
contain relevant information. In part, we believe that this is
also related to our dataset’s small size; while shrinking its
capacity, the model is less prone to overfitting and can still
learn useful features. Fig. 5 suggests that the most valuable
features mostly appear from block 3, but it is still difficult to
determine the location quickly.

We believe that identifying previous layers with useful
features allows us to expand our classifier hierarchically. For
example, microscopy classes have experimental methods that
depend on the modality (e.g., In Situ Hybridization for light
microscopy). A hierarchical classifier can obtain information
from a previous layer to identify the modality while the deeper
layers learn features specialized in the methods.



TABLE III
PERFORMANCE METRICS FROM THE BASELINE (PRE-TRAINED MODEL ON IMAGENET + SVM), OUR BEST PERFORMING MODELS AND RELATED WORK.

Models Accuracy Metrics DMEL DMFL DMLI DMTR
Precision 54.51 91.07 90.74 67.07

Baseline: ResNet50 (pre-trained on ImageNet) + SVM 85.80 Recall 42.05 93.31 96.79 57.29
F1 47.44 92.17 93.67 61.80
Precision 61.90 93.10 93.13 76.53

Best Fine-Tuned: ResNet18 block 1-1 89.00 Recall 44.32 95.07 97.04 78.12
F1 51.66 94.08 95.04 77.32
Precision 72.88 94.33 92.31 77.67

Best Shallow: ResNet152 block 3-11 89.92 Recall 48.86 93.66 97.78 83.33
F1 58.50 93.99 94.96 80.40
Precision 64.52 93.71 93.63 76.24

Shallow ResNet50 Ensemble 89.58 Recall 45.45 94.37 98.02 80.21
F1 53.33 94.04 95.78 78.17
Precision 62.96 82.21 91.63 73.17

InceptionV4 Ensemble (Koitka and Friedrich [10]) – Recall 38.64 94.37 91.85 62.50
F1 47.89 87.87 91.74 67.42
Precision 31.46 91.97 86.93 48.38

AlexNet + GoogleLeNet Ensemble (Kumar et al. [13]) – Recall 31.82 88.73 80.49 62.50
F1 31.64 90.32 83.59 54.55

Fig. 7. Confusion matrix for model ResNet152 block 3-11

Our best performer model analysis confirms that specific
microscopy classes are harder to classify (Fig. 7). Most confu-
sion happened between the DMTR (transmission) and DMEL
(electron) microscopy classes. One explanation is the similar
color distribution (mostly gray-scale images), compared to the
abundance of color in DMLI (light) and DMFL (fluorescence)
microscopy classes. The second set of misclassifications hap-
pened between DMEL against DMLI. We suspect that the
main issue is that post-processed DMEL images for camera-
ready papers use colors initially not present in the original
DMEL class distribution (Fig. 6). Although we tried to di-
minish the unbalanced dataset’s effect, the two classes with
fewer samples (DMEL and DMTR) constrain our classifier’s
effectiveness.

In terms of limitations, our approach does not identify
the most recommended shallow variant without an extensive
search. In particular, we cannot conclude that adding more
layers (and trainable parameters) correlates linearly with the

model accuracy. A possible explanation is the ResNet residual
design, where the network connections do not strongly depend
on each other [21]. Consequently, removing layers from the
ResNet architecture does not necessarily degrade the network
performance as it happens with stacking architectures like
VGG [22]. Besides, although many biomedical classification
tasks suffer from the unbalanced dataset problem [23], we
cannot generalize our findings without further tests.

V. RELATED WORK

The ImageCLEF subfigure classification by image modal-
ity task boosted the development of modality classification
approaches. Since the task introduction, traditional methods
have focused on feature engineering [9], and deep learning
approaches have been used either in isolation or as part of
ensemble models [7]. For example, Koitka and Friedrich [9]
used a ResNet-152 model with transfer learning and an en-
semble of SVM and a ResNet-152 model. Kumar et al. [13]
also proposed an ensemble model of a fine-tuned AlexNet [24]
model, a fine-tuned InceptionV1 [25] model, and three one-vs-
one SVM models leveraging the outputs from the two network
models.

Notably, deep learning approaches dominate the modality
classification task [10]. Koitka and Friedrich [10] used an
ensemble model of fine-tuned InceptionV4 [26] models. Yu
et al. [11] evaluated an ensemble model of a VGG16 [22],
a ResNet-50 [14] fine-tuned model, and a six-layered CNN
model trained from scratch. Andrearczyk and Muller [3] used
a DenseNet-169 [27] model to perform multimodal training
using figures and captions. Finally, Zhang et al [12] leveraged
CNN features to feed a synergic network. Previous work,
however, leverages only the outputs from the last layers
of convolutional neural networks. Therefore, we focus on
previous layers to evaluate their benefits on an unbalanced
and small dataset.



VI. CONCLUSION

In this work, we described and evaluated two alternative
approaches to microscopy image classification. The first ap-
proach is based on progressively fine-tuning earlier layers
of ResNet networks. The second approach focuses on fine-
tuning shallower versions of ResNet models. When fine-tuning
ResNet variants, we found that a ResNet18 variant yielded the
highest accuracy. Also, we believe that fine-tuning the whole
model can be a good enough approach rather than finding the
right combination of fine-tuned layers.

In contrast, for shallow ResNet variants, we found that a
ResNet152 variant obtained the best performance. For shallow
variants, features from the third block produced higher accu-
racy scores. Finally, the best shallow model outperformed the
best-fine-tuned variant. Still, given the size of our dataset, the
margin was relatively small compared to the cost of training
multiple models.
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