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Abstract
Motivation: Figures in biomedical papers communicate essential information with the potential to identify relevant documents in biomedical
and clinical settings. However, academic search interfaces mainly search over text fields.

Results: We describe a search system for biomedical documents that leverages image modalities and an existing index server. We integrate a
problem-specific taxonomy of image modalities and image-based data into a custom search system. Our solution features a front-end interface to
enhance classical document search results with image-related data, including page thumbnails, figures, captions and image-modality information.
We demonstrate the system on a subset of the CORD-19 document collection. A quantitative evaluation demonstrates higher precision and recall
for biomedical document retrieval. A qualitative evaluation with domain experts further highlights our solution’s benefits to biomedical search.

Availability and implementation: A demonstration is available at https://runachay.evl.uic.edu/scholar. Our code and image models can be
accessed via github.com/uic-evl/bio-search. The dataset is continuously expanded.

Contact: gmarai@uic.edu

1 Introduction

Figures in biomedical papers convey evidence of discoveries,
present results and outline experimental methods (Cohen
et al., 2003; Shatkay et al., 2006; Yu et al., 2009). These
images also support identifying documents of interest in bio-
medical research and clinical practice (Li et al., 2021). For ex-
ample, clinicians interested in pulmonary fibrosis and its
relationship with COVID-19 may wish to filter extensive col-
lections, such as the CORD-19 collection provided by the
Allen Institute (Wang et al., 2020), for those papers contain-
ing ultrasound figures. The information retrieved can be rele-
vant to patient cases, in particular in emerging situations
where a population with the same characteristics is not readily
available to clinicians.

Although searching for relevant publications is a prevalent
research activity, most state-of-the-art search systems do not
leverage publication figures. For example, both Google
Scholar and PubMed Central (PMC), two of the most popular
engines, only leverage text and citation data. A few systems
support searching over images and captions separately
(Demner-Fushman et al., 2012; Divoli et al., 2010; Lee et al.,
2017), but provide limited support for filtering by image-
derived data. Likewise, Google Images allows faceted search
by classifying some types of biomedical images, but Google
Scholar lacks this feature. Similarly, searching over captions
and full text improves retrieval (Divoli et al., 2010), but we
do not know whether presenting image data in publication
search supports identifying relevant content.

Several challenges hinder the incorporation of images into
academic paper searches. First, a lack of understanding of

which image data enhances document retrieval can drive
efforts in the wrong direction. For instance, content-based im-
age retrieval, as provided by Google Images, requires an input
figure, but in biomedical domains like biocuration, targeting
one image at a time is counterproductive. Alternatively, cate-
gorizing the image data into meaningful imaging modality
categories improves identifying relevant documents for the
biocuration of mice gene expression (Li et al., 2021; Shatkay
et al., 2006). However, while there is work in categorizing
general medical images (Demner-Fushman et al., 2012; Lee
et al., 2017), there is no work organizing biomodalities into a
taxonomy meaningful to, e.g. COVID-19 biocuration.

The second set of challenges concerns the efforts required
to integrate such data and taxonomy. Since figures reside in-
side the PDF documents, preprocessing tools need to extract
the figures and identify regions to annotate based on taxo-
nomic categories. Even if future scientific publication stand-
ards will require authors to separately upload each paper
figure, there are millions of existing documents that will still
require preprocessing. Consequently, the image data needs to
be automatically extracted, identified and tagged according to
the proposed taxonomy. This requirement argues for models
to correctly tag the figure content.

There are also many challenges related to designing and
evaluating a search system to support figures. On the front
end, complex user interface designs can affect negatively the
search experience (Hearst, 2009). Existing search solutions
range from showing images in isolation to showing text data
alone, but not both. In addition, while several studies ana-
lyzed the integration of images and text for simple web search
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(Capra et al., 2013; Dziadosz and Chandrasekar, 2002), few
studies (Divoli et al., 2010) evaluate the presentation of
results for academic search. On the back end, a scalable sys-
tem would need to manage indexes, store database records
and image content and provide scalable interfaces to access
such data.

In this work, we describe a search system for biomedical
documents that leverages image modalities as a proxy for im-
age content. These image modalities are organized in a
COVID-19 taxonomy that we derived and validated through
a multi-year collaboration with biocurators. The modalities
describe a figure’s acquisition methods, e.g. whether the im-
age was generated by a microscope. We then describe the de-
sign and implementation of such a search system, from
integrating a document preprocessing pipeline, to document
indexing, and to presentation. Overall, we combine into a
novel product existing extraction and classification techni-
ques. We furthermore propose an innovative search interface
to support the integration of figure modality information. We
report the usability results of a formal evaluation with bio-
medical researchers. Last but not least, we report lessons
learned and validate the efficiency of the components of our
system.

2 Methods

Academic search systems index diverse fields, such as titles,
abstracts, captions, and even the full text to achieve their re-
trieval goals. On the front end, user interfaces show this con-
tent using summaries of a search result (i.e. document
surrogate), which display data from the document and ex-
plain why it was retrieved (Hearst, 2009). This section
explains how we integrate image modalities into document
search and expand document surrogates with image content.
The project was developed over 3 years, from the taxonomy
derivation to the interface design, testing and evaluation.

2.1 Taxonomy of image modalities and models

In order to tackle figure information, search systems mainly
use two categories of figure surrogates. In the first approach,
the figures and the captions are extracted and displayed in
brick-wall layouts (Demner-Fushman et al., 2012; Lee et al.,
2017) or in grid patterns (Divoli et al., 2010). The document
information is not shown unless available on demand. In the
second approach, hybrid document surrogates consisting of
figures and basic document metadata are shown next to each
other, displaying either all figures in the document (Divoli
et al., 2010; Lee et al., 2017) or displaying only one figure at
a time (Demner-Fushman et al., 2012). While recent
approaches use image modalities as search filters (Demner-
Fushman et al., 2012; Lee et al., 2017), these systems do not
identify directly the location of images.

In practice, a publication figure can contain many subfig-
ures (Li et al., 2021). Moreover, each subfigure can belong to
a different image modality or submodality. Subcategories can,
in turn, influence the document retrieval results. For example,
grouping images only in coarse categories [e.g. considering ra-
diology and microscopy images as photographs (Lee et al.,
2017)] does not allow users to distinguish between radiology
and microscopy. Taxonomies are thus necessary in order to
properly identify and tag subfigures into meaningful subcate-
gories. In fact, results from document classification experi-
ments show that such taxonomies serve as an essential proxy

for estimating document relevance in biocuration (Li et al.,
2021; Shatkay et al., 2006).

This work leverages a taxonomy initially developed to help
label image modalities in the CORD-19 dataset (Trelles et al.,
2021). Our interdisciplinary group features expertise from
biocuration, text-mining and visual computing researchers at
three institutions with experience in developing biocuration
tools (Garc�ıa Seco de Herrera et al., 2016; Shatkay et al.,
2006): the Protein Information Resource at the University of
Delaware, WormBase at the California Institute of
Technology and the University of Illinois Chicago. We de-
rived this taxonomy starting from an existing ImageCLEF
taxonomy (Garc�ıa Seco de Herrera et al., 2016), and ex-
panded and further subdivided categories via monthly meet-
ings and discussions over 2 years. Using this expert-provided
taxonomy to label biomedical images is essential in biocura-
tion because it provides the necessary high-level abstraction
of the image content and cues for document relevance. We
validated the evolving taxonomy through several design itera-
tions of a labeling tool and repeated application to the images
in the CORD-19 dataset. This process also yielded a set of la-
beled images, which we then used to train classifiers for tag-
ging other image data.

The resulting taxonomy (Fig. 1) includes seven main cate-
gories: experimental, graphics, microscopy, molecular struc-
ture, photography, radiology and others. The experimental
category encompasses gels and plates. We further divided gels
into western blots, northern blots, RT–PCRs and others. The
graphics category includes flowcharts, histograms (and bar-
based charts), line charts, scatterplots, signals/waves, 3D
reconstructions and others. The microscopy category com-
prises light, fluorescence, and electron microscopy.
Subcategories in light and fluorescence microscopy include
experimental methods like in situ hybridization, reporter
genes & immunohistochemistry, whole mounts and others.
For fluorescence microscopy, we also include the EFIC
method. The electron microscopy class includes scanning,
transmission and other subcategories. The molecular structure
category comprises chemical structures, 3D structures and
nucleotides & protein sequences. Photography includes der-
matology, organs & body parts, whole organisms and others.
Finally, radiology includes X-ray, CT-scan/MRI/PET, ultra-
sound, angiography and others. The search system leverages
only the first two taxonomy levels due to the current scarcity
of labeled samples at lower levels.

2.2 System architecture

The architecture consists of online components to process
queries, and offline components to parse document data
(Fig. 2). The front end uses a web interface developed in
React, hosted in an Nginx web server. It communicates with a
Flask server, which accesses the content stored in a
PostgreSQL database (metadata) and local storage (image
content). It also interacts with an Apache Lucene engine to
delegate queries.

Because we aim to integrate a taxonomy to index figure
data, offline components take the taxonomy as input and con-
nect such taxonomy definitions across our solution. On the
back end, we train image classification models. The prepro-
cessing pipeline uses these models and state-of-the-art image
processing tools to transform the input PDFs and metadata
into database records, figures, subfigures, modality predic-
tions and search indexes. The taxonomy of modalities acts as
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a connecting tissue between these components by setting the
classifier classes and available indexes.

2.3 Dataset preprocessing

The dataset comprises a subset of documents from the
January 2021 release of the Allen Institute CORD-19 collec-
tion (Wang et al., 2020), which matched the project target au-
dience of clinicians and biomedical researchers. The CORD-

19 metadata includes information for document surrogates,
such as title, publication year, abstracts, authors, journal and
abstract. Because the PDF documents, and thus, the figures,
were not available as part of the release, we limited the set to
CORD-19 publications also indexed in the PMC open-access
repository. We used the PMC FTP service to download
12 708 documents.

Our preprocessing pipeline comprises document and image
processing tools (Fig. 2). First, we used PDFigCapX (Li et al.,
2019) to extract each figure from the PDF and match it with
each caption. Then, we processed the figures with FigSplit (Li
et al., 2018) to find the constituent subfigures. These two
tools have reported state-of-the-art results in extraction and
segmentation tasks for biomedical documents. Next, we used
image classification models customized to our taxonomy to
identify the image modality. Finally, we indexed the docu-
ment and modality information. At each step, we populated
the database with the metadata from the processed data, in-
cluding bounding boxes for figures, subfigures, modality pre-
dictions and prediction probabilities. Furthermore, we stored
local copies of the figures and subfigures in a network drive.

We modeled our image classification components as
ResNet18 convolutional networks, given its competitive per-
formance compared to larger ResNet (He et al., 2016) archi-
tectures. To train the models, we used biomedical images
from the ImageCLEF13&16 subfigure classification task
(Garc�ıa Seco de Herrera et al., 2016). We further used chart
images from CHART-ICPR-2020 (Adobe Research, 2019),
primarily synthetic samples. Next, our biocurator collabora-
tors helped us generate the remaining labeled images:
�15 500 images predicted as gels or plates by an older classi-
fier, around 2000 images collected and manually labeled from
Open-I and around 6000 images labeled by biocurators
(Trelles et al., 2021) (Fig. 2, top right). Finally, we matched
every label to match our taxonomy, and validated the match
through sampling.

Because the labeled data did not completely match our tax-
onomy hierarchy (e.g. we knew some images were from the
microscopy modality but did not know the microscopy sub-
modality), we trained a collection of classifiers targeting each
parent node in the taxonomy; thus building a hierarchy of im-
age classifiers. This approach allowed us to use images with
complete labels on models with sub-classes (e.g. gel classifier)
and images with incomplete labels on parent classifiers (e.g.
experimental classifier). To keep the data consistent across

Figure 1. Taxonomy of modalities derived for a collection of COVID-19

papers. Dashed lines indicate modalities not included in the current

release of the search system. Colors differentiate each modality branch

Figure 2. The system architecture. The online components include a web interface, an application server to retrieve data from local storage, and an

Apache Lucene search engine to process queries. The offline components are responsible for labeling, model training and document preprocessing
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training, validation and test sets, we started dividing the sub-
sets in a stratified manner bottom-up. As a consequence, an
image must pass through several classifiers to get submodality
details. We trained these classifiers using a 70/10/20 partition,
a learning rate of 1e� 4, and early stopping. We implemented
these models using Pytorch.

2.4 Indexing

We used Apache Lucene for the search engine, and integrated
our front and back end using the PyLucene python library.
For each document, we indexed the title, abstract, publication
date, journal, authors, DOI, pmcid, number of figures, full
text and a list of all the modalities within the document.
Following expert feedback during the evaluation, we also
indexed figure captions. Although we do not currently search
over all fields, we indexed the document fields for conve-
nience during retrieval. In addition, we did not have weights
for any indexed fields and thus used Lucene’s default scoring
model, which weighs each query term equally. While the
Lucene server provided the information for surrogates, we
stored the image information on a PostgreSQL database. Our
API allowed retrieving the location of every image extracted
from the document, the bounding boxes for each subfigure
and the predicted modality. Along with the image, we
returned the source page thumbnail, an artifact created by our
image extraction module. These image elements are used to
enhance surrogates.

2.5 Interface design

We derived our interface design through several discussion
meetings and testing sessions with collaborators, and we in-
corporated feedback from domain experts. Our top design
includes a search panel, and a results panel with a card design
for figures (Fig. 3).

To keep the design simple and consistent with the users’
previous experiences, our interface design emulates existing

popular interfaces, such as Google Scholar and PMC. Our de-
sign adds modality information to the document surrogate
and extends the search bar to allow filtering by modalities.
Also, the search box allows users to input more complex
Boolean expressions, although it does not include a faceted
search.

To support learnability and minimize errors, we rely on
consistent color coding, example queries, and detailed instruc-
tions available on demand. We provide visual feedback and
text highlighting to familiarize users with the enhanced docu-
ment surrogates, and to help them infer result relevance with-
out needing to open an additional link. When a modality
filter is specified, we rank the figures in the document to prior-
itize the images containing the larger number of subfigures of
the requested modality. Finally, following lessons from web
search (Aula et al., 2010), result cards have a height of 300 px
to avoid harming the visual content.

In terms of the document surrogate information shown,
while the proposed card designs varied between design itera-
tions, every prototype card included a document page thumb-
nail, at least one extracted figure from that page and the
corresponding caption. These three elements per card pro-
vided, according to the tester feedback, focus and context.
During a first iteration, we discarded the idea of stacking the
cards visually because the arrangement wasted space. Also,
we noticed that displaying separate subfigures was less desired
than showing bounding boxes over the original figure.
Alternative designs included an embedded PDF page reader.
However, we discarded the idea after discussion, and priori-
tized showing results in the list format more familiar to our
collaborators, and targeting the relevance prediction task.

2.5.1 Search bar

The search bar is the entry point to the system. On the left
side, the search box allows performing a keyword-based
search on the text fields: titles, abstracts, captions and full

Figure 3. Search interface displaying the results of a Boolean query. (A) The color-coded legend displays the image modalities in the first level of the

taxonomy. (B) The search bar, with a keyword box showing a Boolean query, a time filter and an image modalities filter limiting results to documents

containing radiology or fluorescence microscopy figures. (C) The metadata of a result includes the document title, year, venue, authors and the hits on the

abstract and full text. Below is the count of figures and modalities in the document. (D) The enhanced document surrogate shows the image content,

including the page thumbnail, extracted figure, subfigures and modalities and caption
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text. Simple keywords (e.g. avian influenza) trigger searches
in any of the text fields using an OR operator. Words can be
encased in apostrophes to perform exact matching. Key-value
pairs following the syntax <titlejabstractjfull_textjcaption:
keyword> limit the search to specific fields. For instance,
title: influenza triggers a search for the keyword influenza on
the title field. Boolean operators compose more than one key-
value pair with AND or OR operators. The remaining two fil-
ters limit the results by publication year and modalities in the
paper. Above the search bar, the interface lists the categories
from the first level of the taxonomy and their corresponding
colors as a legend. The whole taxonomy can be displayed as
details on demand.

2.5.2 Search results

The search results follow a vertical list layout, where each
row contains an enhanced document surrogate. Up to 10
results are shown per page of results, and pagination options
at the bottom can be used to inspect more results.

On the left of each result panel, a simple document surro-
gate shows the title, year of publication and the query hits on
the abstract and full text with term highlighting. We limit the
number of matching lines to three and five, respectively.
Below, a black badge indicates the number of figures in the
document, followed by color-coded badges indicating the
type of modalities found and the number of subfigures per
modality.

The image content appears to the right. We show the docu-
ment page thumbnail, one extracted figure and the caption if
it exists. Also, we highlight matching terms in the captions.
Overlay color frames surround the subfigures identified in the
preprocessing steps, and we show their predicted and color-
coded image modality. Hovering over the figure scales the
content for better visibility. Controls support navigating be-
tween the rest of the figures, subfigures and corresponding
page thumbnails. By default, figures are displayed in their or-
der of appearance in the document. However, when users ap-
ply modality filters, the interface sorts the figures based on the
count of subfigures matching, per figure, the specified
modality.

2.6 Experiments and results

We evaluate the system’s performance and usefulness through
a quantitative and qualitative approach. First, we perform a
quantitative evaluation of the image classifiers, to estimate the
performance of the system’s modality predictions during re-
trieval, when the retrieved images would not be pre-labeled.
Second, we perform a quantitative evaluation of the system
retrieval results against text-only retrieval. Finally, we

perform a quantitative and qualitative evaluation of the sys-
tem capabilities with nine researchers.

2.7 Image classifiers

To account for the quality of the modality predictions, we re-
port first the performance of the classifiers used in the prepro-
cessing pipeline, on the training, validation and test labeled
data (70/10/20). Table 1 shows the accuracy and F1 scores
for the validation and test sets for the parent node in the tax-
onomy (higher-modality), and for each of the classifiers at the
first level of the taxonomy: experimental, graphics, micros-
copy, molecular, radiology and others. In addition, we show
the number of labeled images used for training each classifier,
to illustrate the impact of these numbers on the classifier per-
formance. The rightmost column displays the number of pre-
dictions made on the unlabeled images extracted from the
CORD-19 subset and indexed in our system. Accuracy and
F1 scores are calculated as: Accuracy ¼ ðTPþ TNÞ=ðTPþ
TN þ FPþ FNÞ and F1 ¼ 2� TP=ð2TPþ FPþ FNÞ, where
TP, FP, TN and FN are true/false positive/negative.

2.8 Retrieval results

Due to the lack of ground-truth retrieval data for this prob-
lem, and the fact that search scenarios suffer from computa-
tional complexity due to the vast list of possible use case
scenarios (‘one cannot enumerate the other scenarios’), we fo-
cused on a number of scenarios generated by biocurators with
the explicit aim of creating sufficient and representative cover-
age of the query space. Some of the scenarios target the
COVID-19 problem, and some target more general problems.
The inputs were Boolean queries over the full text searching
for keywords like chest, or kidney inflammation. The first sce-
nario looked for (i) COVID-19 papers with the chest key-
word and radiology images, (ii) then restricted the modality
to only one radiology submodality: x-ray. The next scenario
(iii) looked for avian influenza papers with CT scans, fol-
lowed by a search for (iv) interactomes and blots (a proxy for
experimental gel images). Finally, we looked for (v) kidney in-
flammation papers that included microscopy images.

Each scenario consisted of two conditions aiming to re-
trieve documents containing images of particular modalities.
The first condition (text-only) used keywords only to filter the
content and one keyword as a proxy for the image modality.
The second condition (textþimage) used the exact content
keywords but included a modality filter based on our taxon-
omy. The results were manually inspected and reviewed dur-
ing several team meetings to calculate the number of relevant
documents. We report the number of documents retrieved
(documents retrieved by both the text-only and text-image

Table 1. Classifier performance along with the number of labeled images used for training, validation and testing, and the number of image label

predictions generated for the search system

Validation Test Number of images

Classifier Accuracy F1 Accuracy F1 Labeleda Predicted

Higher-modality 98.77 98.60 98.79 98.63 333 998 199 168
Experimental 98.92 98.89 98.98 98.97 23 873 28 754
Graphics 99.48 99.48 99.46 99.46 241 075 260 896
Microscopy 93.60 93.71 94.20 94.20 11 831 20 705
Molecular 95.20 95.23 92.81 92.82 1170 9306
Radiology 93.64 93.31 95.76 95.70 3023 4468

Note: The higher-modality classifier accounts for the top classes in the hierarchy.
a Total number of images in the training, validation, and test sets.
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queries), the overlap between the two sets of retrieved docu-
ments, the precision and recall and the number of images
returned for each condition, where: Precision ¼ TP=ðTPþ
FPÞ and Recall ¼ TP/(TPþFN), where TP, FP and FN are
relevant/non-relevant documents retrieved/not retrieved.

Table 2 shows the retrieval results for text-only and textþ
image queries for each scenario. In Scenario 1, the textþimage
query retrieves all the relevant documents (13/13), while the
text-only query retrieves less than a third (4/13) of the rele-
vant documents (recall 0.31 compared to 1.0 for textþimage).
In Scenario 2, the textþimage query retrieves all (7/7) of the
relevant documents. In contrast, the text-only query also
retrieves seven documents, but only three of those are rele-
vant, leading to worse text-only recall and precision. In
Scenario 3, the text-only query retrieves more documents
than the textþimage query (116 versus 47), but most of those
documents are not relevant (precision 0.08), whereas the
textþimage query retrieves most of the relevant documents
(recall 0.91). In Scenario 4, the text-only query retrieves fewer
documents than the textþimage query, and a larger number
of relevant documents (precision 0.79 versus 0.60). However,
the textþimage query retrieves all the relevant documents
compared to the textþimage query (recall 1.0 versus 0.68).
Finally, in Scenario 5, the text-only retrieves again fewer
documents (191) than the textþimage query (340), but the
textþimage query provides a higher precision (0.80 versus
0.63) and recall (0.99 versus 0.44). The higher recall in each
textþimage scenario shows that modality tags support the re-
trieval of relevant documents.

Overall, for most scenarios, both the text-only and the
textþimage queries returned more documents than the total
number of relevant documents, reflected in the precision
scores. In particular, the avian influenza query, for both con-
ditions, retrieved mostly non-relevant documents. Analyzing
the overlap between the results under the two conditions pro-
vides further insight. Scenarios 3 and 4 capture minor differ-
ences in the total number of relevant documents retrieved in
the two conditions (11/11 and 21/28, respectively). In con-
trast, text-only retrieves less than half the relevant documents
in Scenario 1 (4/13), Scenario 2 (3/7) and Scenario 5 (130/
274).

Upon further analysis, we found that the lower precision
(0.21) for the textþimage query in Scenario 3 is due to several
grayscale images erroneously predicted as CT scans. The pre-
cision is still much higher than the text-only query (0.08); the
recall is still 0.91. The lower precision (0.6 textþimage com-
pared to 0.79 text-only) in Scenario 4 is, likewise, due to sev-
eral images mispredicted as gels, which increased the number
of false positives. Finally, textþimage queries harvested signif-
icantly more figures in every scenario than in the text-only

condition. These results were expected because the figures
matched the specified modality filter, although mispredictions
may lead to higher numbers.

2.9 Expert evaluation

We asked nine researchers with significant biomedical exper-
tise to evaluate the system. Four of the nine researchers are se-
nior biocurators at North American institutions, three are
biomedical researchers at different US institutions (e.g. cancer
treatment centers), and two are senior doctoral researchers at
a US institution. We did not collect any personal data or fur-
ther information about the evaluators.

The evaluation protocol consisted of four steps, inspired by
the evaluation structure proposed at the Bio-Creative VII
demonstration for COVID-19 tools (Chatr-Aryamontri et al.,
2022). First, participants were required to read a brief intro-
duction tutorial. Next, a guided activity listed a set of actions,
to highlight the differences between text-only and textþimage
queries, and to introduce Boolean queries. Participants
were directed to assess the system’s potential instead of minor
limitations, such as occasional errors in figure extraction or
mispredictions. Then, the exploratory activity required partic-
ipants to try their own queries. For this exploration and the
previous guided activity, participants were instructed to take
notes to document their query experience.

The last step consisted of one questionnaire divided into
three sections. The first section aimed to collect feedback,
as well as suggestions for improvement. In accordance with
the system usability score (SUS) (Brooke, 1996) guidelines,
the following section provided 10 questions on a Likert scale
(1–5), and one follow-up question on a scale (1–10). The
third section asked seven additional questions, on a Likert
scale (1–5), to further quantify the usefulness of specific inter-
face elements (e.g. showing thumbnails).

Overall, the participants expressed high satisfaction with
the system response to their queries. The resulting usability
score (SUS score) was 87.22, equivalent to a grade of A,
Excellent (>80.3). Participants agreed that they would use the
system frequently (4.25/5), that the system was easy to use
(4.75/5), and that it provided a low learning curve (4.87/5).
Likewise, they did not find the system unnecessarily complex
(1.5/5) and did not think they needed support from a devel-
oper to use the system (1.88/5). In addition, most expectations
were satisfied (4.25/5), and they felt confident using the sys-
tem (4.37/5). Overall, most participants would recommend
the system to colleagues performing COVID-19 or biomedical
related research (8.88/10), and participants agreed that the
system supported their expectations (4.22/5).

Most participants (6/9) liked best the capability of seeing
the document figures next to the search results. Some

Table 2. Retrieval results

Documents Text-only Textþimage

Scenario Relevant Overlap Docs Prec. Rec. Images Docs Prec. Rec. Images

1. COVID19 lung radiology 13 4 4 1.00 0.31 19 13 1.00 1.00 50
2. COVID19 lung x-ray 7 3 7 0.43 0.43 7 7 1.00 1.00 14
3. Avian influenza CT 11 11 116 0.08 0.82 55 47 0.21 0.91 106
4. Interactome blot 28 21 24 0.79 0.68 197 47 0.60 1.00 316
5. Kidney inflammation

microscopy
274 130 191 0.63 0.44 1722 340 0.80 0.99 1029

Note: Best precision and recall scores are bolded. Relevant documents were counted manually.
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participants liked filtering papers by modality (experimental
evidence) the most (3/9), and all participants praised its ease
of use. One participant commented: ‘PubMed and Google
Scholar do not display figures like this (system). Oftentimes
all I do is scan the figures. This quick way to peruse articles is
a huge improvement’. One participant suggested applying our
pipeline to all open-access corpora.

While participants found the system functions well inte-
grated (4.12/5), they also included several points for improve-
ment. Three participants suggested indexing captions and
highlighting matching terms on them. In particular, one par-
ticipant identified a helpful use case for her workflow: ‘I have
a list of genes whose expression pattern has not been curated
in the reference database. I want to browse the literature
(images) to see mentions of that gene in the figure caption’.
The current version of our system now supports this require-
ment. Three participants requested displaying zoomed images
with higher resolution, possibly on a separate panel. Three
participants wished to export data from the system, including
downloading citations, the list of results (including PMIDs),
or even the full papers for further annotations. One partici-
pant wanted to copy figures for work-related presentations.
Furthermore, two participants wanted to sort results by publi-
cation date. Other minor suggestions referred to various pipe-
line components.

Figure 4 shows the results for the usability questions by
feature. All participants considered showing captions and fil-
tering by image modalities very useful features. Most partici-
pants further considered all features as very useful. However,
one user found the count of modalities counterproductive.
Likewise, one participant found the bounding boxes for sub-
figures not useful. This last opinion contrasted with another
participant who listed the bounding boxes as the feature he
liked the most.

3 Discussion and conclusion

Interacting with academic search interfaces is a prevalent re-
search activity. Many search systems support rich query for-
mulations on full text and faceted filtering on document

metadata. In addition, search results appear in vertical lists of
cards that display metadata and highlight sentences matching
the input queries. However, while most academic websites
like Google Scholar, PubMed, IEEE Xplore, ACM Digital
Library and Semantic Scholar adopt this design, none display
or provide alternatives to search for images within the docu-
ments based on modalities, as we do.

The evaluation shows that our solution effectively leverages
the figure content to improve searching for relevant biomedi-
cal papers. We successfully demonstrated that categorizing
the image data into meaningful imaging modality categories
yields good results. The quantitative evaluation of the taxon-
omy classifiers yielded excellent accuracy and F1 scores, indi-
cating the strengths of the taxonomy approach. The
quantitative evaluation against text-only search further dem-
onstrates that this textþimage approach yields stronger
results in terms of document retrieval precision and recall.
Lastly, the excellent feedback from domain experts further
highlights the benefits of including figures in the search. The
high scores regarding potential adoption and frequency of
use, and regarding recommending the system to other peers
are particularly important measures of the potential of this
approach.

Our solution successfully met the challenge of incorporat-
ing publication image data into queries. Pioneer systems
[BioText (Divoli et al., 2010) and Yale Image Finder (Xu
et al., 2008)] have searched only captions. Several other inter-
faces (Demner-Fushman et al., 2012; Deng et al., 2022; Lee
et al., 2017) use a variety of taxonomies to refine the same
strategy. Compared to searching over captions, using more
complex and powerful image-modality information requires
developing a relevant taxonomy, extracting images from PDF
documents, identifying subfigures and developing models to
predict modalities, as we do.

Our solution also met a number of challenges in designing
the front end for such a search system. The questionnaire
feedback indicates we succeeded in adding significantly more
visual content than other search interfaces, without creating
friction in the user experience (Hearst, 2009). Our enhanced
document surrogates differ from similar search interfaces.
Compared to Viziometrics (Lee et al., 2017) and BioText
(Divoli et al., 2010), we have found positive feedback on our
compact design, which shows a page thumbnail, one figure
and its captions at a time, compared to displaying all the fig-
ures in the document. Surprisingly, we found that only one
participant was familiar with similar image and text search
interfaces, and those interfaces were from the data visualiza-
tion domain. One possibility is that the benefits offered by
images in search tools like Open-I (Demner-Fushman et al.,
2012) and Viziometrics (Lee et al., 2017) need to be better ad-
vertised. For example, none of the 39 systems mining the
COVID-19 literature (Wang and Lo, 2021) use image
content.

All participants agreed that showing the caption next to the
document surrogate was a significant feature. This result is
consistent with recent data visualization studies highlighting
the importance of text (Sultanum et al., 2023). Second, filter-
ing by modalities obtained the second highest usefulness aver-
age score (4.8), supporting the primary goal of our system.
Third, displaying page thumbnails (4.4) was preferred over
displaying details of subfigures or a summary of modalities.
Although the page thumbnail might waste space showing il-
legible textual content, it provides context for other images or

Figure 4. Results from the usefulness per feature section of the

questionnaire, expressed in percentages
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tables to explore next. Fourth, while participants considered
showing bounding boxes (4.1) and the type of modalities
found on the paper (4.1) as useful features, they expressed
more neutral options toward detailing the modality of each
box (3.8) or the number of images per modality found (3.7).
The learned lesson is to allow the users to select the desired
level of detail.

In terms of limitations, our preprocessing can be further im-
proved. The modality prediction depends on the input image,
and our segmentation tool sometimes produces images with
over and under-segmentation problems. Over-segmented
images created irrelevant images, while under-segmented
images could contain more than one modality, negatively af-
fecting the prediction. We leverage batch processing, and the
extraction component can process two documents per minute
per CPU. Alternatively, deep learning architectures could be
used. Our classifiers also had minor issues predicting specific
classes, e.g. when grayscale colors led to incorrect predictions
of CT scans. The public availability of image modality or
tagged datasets (Chen et al., 2021a, b; Deng et al., 2022;
Jobin et al., 2019; Peng et al., 2021) can help by integrating a
broader diversity of samples and reducing mispredictions. In
addition, our online components have a 7 s latency to the
front end, due to our use of an academic environment, shared
virtual machine. While searching the indexes is already fast,
the time required for querying the figures and database data
could be improved by reducing the number of transactions,
paginating indexed results and using a faster storage location.

Furthermore, our approach relies on adding the identified
modality features to the search service of the Lucene server,
using Lucene’s default retrieval algorithm, which is based on
a vector space model and Boolean allowance supported by
TF-IDF and boosting. Other approaches could combine fea-
tures differently, such as creating word and image embeddings
to support information retrieval beyond TF-IDF, and could
have an effect on the retrieval ranking when searching.
Because our focus is not on the ranking performance, we eval-
uate the retrieval of relevant content via precision and recall
metrics.

Since the system expert evaluation, we have indexed more
documents from the CORD19 collection, now searching
over 43 025 documents and more than 350 000 images.
Integrating this new content required about 7 h, with the ma-
jority (5.5 h) spent in the figure extraction stage. Our lab and
university have adequate hardware and team resources to
support expanding collections and maintain the system
(Marai et al., 2019). At the same time, we update our collec-
tion of labeled figures and model architectures to improve
and expand our classifiers. For example, we updated our
higher-modality model to consider the class ‘errors’ and to de-
tect extraction mistakes from the segmentation pipeline, such
as extracted logos from journals or blocks of text incorrectly
detected as images. The trained models are available in our
repository.

In conclusion, we described the design and evaluation of a
search system that enhances text-based search with image-
modality data. In addition, we presented a design for enhanc-
ing document surrogates with image information to improve
the user experience during document retrieval. We described
our solution’s different components, including a document
preprocessing pipeline, image classifiers, search engine and
user interface. Our evaluation shows the potential benefits of
integrating image content in academic search retrieval.

Feedback from domain experts further confirms the benefits
of blending text and image data.
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