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Abstract8

In this paper, we describe the design and implementation of a Virtual Reality (VR) art piece—“Kites flying in and out
of space” that was inspired by the kite-like art forms of French artist, Jackie Matisse. We use a physically based animation
method known as the mass-spring model to realistically simulate the movement of these virtual kitetail forms in the CAVE VR
theatre. In this immersive environment, the user can interact with these “virtual” kites by moving them, changing their imagery
or adding a wind force. However, the real-time requirements imposed by immersive environments and the computational
complexity in calculating these forms inhibit the number of kites we can “fly”. To address this limitation, we show how the
use of distributed computing resources across the GRID can provide a scalable solution. Serendipitously, we also discovered
that the movement of these virtual art forms became visual metaphors for the network performance and parameters.
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1. Introduction19

1.1. Motivation—Jacqueline Matisse’ kitetails20

French sculpter and light artist, Jackie Matisse[1]21

creates Teflon or crepe kites, with artistic tails as long22

as 15 ft, that can soar through the air, ripple through23

water, or undulate with the air currents in a room. Ran-24

domly influenced by natural forces, the kitetails move,25

and metamorphose in faint air currents and dramati-26

cally changing natural light; echoing the more intense27

pressures of “civilized” life, they interact with visitors28

who traverse the gallery.29

∗ Corresponding author. Tel.:+ 1-312-996-3002;
fax: +1-312-413-7585.
E-mail addresses:shalini@evl.uic.edu (S. Venkataraman),
spiff@evl.uic.edu (J. Leigh), tcoffin@ncsa.uiuc.edu (T. Coffin).
URL: http://calder.ncsa.uiuc.edu/ART/MATISSE/

The VR piece was inspired by the three-screen col-30

laborative videoSea Tailscreated in 1983 by Matisse 31

with filmmaker Molly Davies.Fig. 1 shows a still 32

from this video. The film follows 10 kitetails on their 33

dancing flight through the air and into the water. Our34

goal here was to realistically simulate the movement35

of these physical kite forms in a virtual environment.36

1.2. Background work 37

To realistically simulate the movement of these kite-38

tails, we draw upon existing research in physically39

based cloth animation[2]. Animation in an immer- 40

sive environment needs to be robust and fast given41

the high-frame rate and interaction requirements. One42

of the simplest physically based cloth models over43

the last decade, and thus, the most likely to achieve44

real-time performances, is the mass-spring system[3]. 45

1 0167-739X/03/$ – see front matter © 2003 Published by Elsevier Science B.V.
2 doi:10.1016/S0167-739X(03)00075-X
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Fig. 1. A still from the film Sea Tails, showing Matisse’ underwater
kitetails.

In the mass-spring system, the deformable body is ap-46

proximated by a set of masses linked by springs in a47

fixed topology. It is easy to implement, highly paral-48

lelizable, and involves few computations. In addition49

to this, there is a plethora of existing techniques for50

non-real-time requirements, which the reader is en-51

couraged to peruse[4].52

All the above-mentioned approaches, however, suf-53

fer from the same problem—to ensure stability, the54

simulation has to be performed in very small time55

steps making them very computationally intensive.56

Various ways to overcome this problem have been57

suggested. One model is the recent development of58

neuro-animators[5], where after a learning period,59

a large neural network can emulate a simple physi-60

cal system. This recent approach has not been proven61

practical for large coupled systems such as cloth. The62

use of implicit integration, which can stably take large63

time steps, has been proposed[6] in the context of64

cloth animation. More recently, implicit approaches65

to mass-spring systems are proposed by Meyer et al.66

[7] in the context of VR environments Although the67

implicit method offers significantly reduced computa-68

tional times, the kind of approximation does not ren-69

der very visually accurate simulations.70

To solve this computationally intensive problem,71

we propose a distributed approach using the Grid72

with its geographically dispersed processors linked by73

high-speed interconnects. The rest of the paper will74

proceed as follows. InSection 2, we will review our 75

physically based model, explaining the mass-spring76

setup and the dynamics.Section 3will discuss the 77

standalone implementation on a single machine quan-78

titatively presenting the limitations and results. We79

will extend this inSection 4to a distributed networked 80

architecture, describing the details of the system and81

an evaluation of results in comparison with the stan-82

dalone version. Finally, inSection 5, we conclude 83

with some discussion on possible future work. 84

2. The physically based model 85

The physically based mass-spring cloth model[8,9] 86

is used to simulate the behavior of the kites. Each kite87

is modeled as a cloth object that is approximated to88

an array of masses and springs. Using the fundamen-89

tal laws of dynamics, various forces acting on these90

masses and springs are evaluated. These forces create91

the movement of the individual masses in the network92

and thus the deformation of the cloth as a whole is93

simulated. 94

2.1. Mesh model 95

The kite model is composed of masses and springs,96

where each kite is a grid of masses that form the97

control points for the motion. Each mass-point in this98

grid, sayPij is connected to neighboring points with99

springs. When two points get pulled further apart,100

they experience a force pulling them together and101

vice versa. There are three different kinds of springs:102

structural springsconnect adjacent horizontal and103

vertical points thus defining the rough structure of104

the kite. These springs handle the compression and105

traction stresses. However, these simple spring con-106

nections alone are not enough to force the grid to107

hold its shape causing it to shear. To counteract108

this shearing, we addshear springsthat also con- 109

nect these points diagonally.Fig. 2a shows the mesh110

with the structural and shear springs. However, this111

model is still incomplete. Once moving, the kites112

tend to fray very easily as there is nothing to keep113

the model from folding along the edges. So, we need114

to add bend springsthat resist folding and bend-115
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Fig. 2. The kite mesh model: (a) shear and structural springs, (b)
bend springs.

ing. These bend springs connect every other point116

in the horizontal and vertical directions as shown in117

Fig. 2b.118

The final mesh is a superimposition of the two119

meshes shown inFig. 2.120

2.2. Dynamics121

The movement of kitetails is in turn determined by122

the dynamics of the mass-points or particles in the123

mesh. So, we want to individually model the motion124

of each particlePij . The problem is formulated as fol-125

lows: assuming we know the positionxij , velocity vij126

and resultant forceFij acting on a particlePij at time127

t, we want to compute the new positionxt+�t
ij , of that128

particle after a small amount of time,�t, has elapsed.129

With the value of the force,Fij and the massm of130

the particle, we can obtain the accelerationaij of the131

particle as stated in the familiar Newtonian notation,132

F = ma. So, at timet + �t , the acceleration,at+�t
ij133

of the particlePij is given by134

at+�t
ij = 1

m
F t+�t

ij135

Integrating this acceleration with respect to time, we136

get the new velocity of the particle 137

vt+�t
ij = vt

ij + �tat+�t
ij 138

Integrating again, we end up with the new position,xij 139

xt+�t
ij = xt

ij + �tvt+�t
ij 140

The integration steps above give rise to the classical141

problem in simulation systems, that ofnumerical in- 142

stability. This arises because the integration of a con-143

tinuous function is approximated by a discrete numer-144

ical integrator. When the error between the approxi-145

mation and the real value gets too large, the numer-146

ical simulation can fail. The choice of the integrator147

and the time step,�t, are thus crucial. The first-order148

Euler’s method[10] although very simple is subject149

to numerical instability. We instead use the midpoint150

method[10] which is more robust albeit computation-151

ally expensive. However, even with a robust integra-152

tor, there will be times when the simulation will be153

in danger of diverging or “blowing up”. The solution154

therefore is to take small time steps. However, smaller155

time steps mean more processing. If the processor is156

not fast enough, the simulation will be too slow to ob-157

serve anything visually interesting. 158

Now all that is left is to determineFij for a particle, 159

which is the sum of all the different types of forces160

acting on it. There are two types of forces we model—161

Internal andExternalforces. 162

2.3. Internal forces 163

These are the forces determined by the physical164

properties of the cloth, i.e. the structural, shearing and165

bending forces and are a result of the tensions of these166

springs linking neighboring points of the cloth. 167

As a spring is compressed or expanded, it creates a168

force that is opposed to direction of the applied force.169

Assume we have two particlesPij andPkl connected 170

by a spring, S which can be of any type (bend, shear171

of structural) as shown inFig. 3. 172

The force contribution from spring S,FS is mathe- 173

matically equated by the formula 174

FS = k(Lt − L0)(Pij − Pkl) 175

wherek is the elasticity coefficient (set to 1000 N/m),176

Lt the length of the spring at timet, L0 the rest length 177

of the spring, i.e. at time 0. 178
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Fig. 3. Modeling the internal forces contributed by the springs.

This forceFS is accumulated for bothPij andPkl but179

in opposing directions. This force computation process180

is repeated for every spring linked to the pointPij ,181

and summed to give the final internal force vector182

Finij .183

2.4. External forces184

External forces are forces applied to the entire sys-185

tem, which in our case aregravity, wind resistance186

andviscous drag.187

The kites suspended in the air will fall due to the188

force of gravity pushing downwards to the earth.Grav-189

itational force, Fgr acts on all particles and is modeled190

as191

Fgrij = mg192

wherem is the mass of the particlePij , g the acceler-193

ation of gravity, taken to be 9.8 m/s2.194

Since this force depends on mass, a kite with a195

larger mass will fall faster than one with a smaller196

mass.197

Wind force, Fw acts on a particle depending on198

its surface normal. As shown inFig. 4, this force is199

greatest when the surface of the kite and the wind200

vector are perpendicular since this gives the great-201

est cross-sectional area and therefore greater air resis-202

tance.203

The wind force is calculated as follows:204

Fwij = µwnij (vw − vij )nij205

Fig. 4. Modeling wind force. The kite mesh is treated as a surface
in order to compute the wind reaction.

whereµw is a user-specified viscosity constant for the206

wind, vw the wind vector,nij the normal to the surface207

at pointPij . 208

In order to compute the surface normals, the kite209

mesh is tessellated to form triangles. The wind force210

is calculated on each of these triangles individually.211

At each point,Pij of the cloth, the sum of the effect212

of the wind on the surrounding triangles is calculated.213

Since the mesh is constantly changing, this normal214

computation needs to be done every frame. 215

Theviscous drag, Fd is a damping force applied to216

each particle and is directly proportional and opposite217

to the velocity of the moving particle. We use this218

drag to model the loss of mechanical energy of the219

cloth and also add numerical stability to the system,220

ensuring that the particles will not bounce around too221

much: 222

Fdij = −µdvij 223

whereµd is a user-specified damping coefficient (set224

to be 20.0 N/m). 225

The internal and external force vectors are summed226

to give the final force acting on the pointPij 227

Fij = Finij + Fgrij + Fwij + Fdij 228
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It is the combination of the above forces that gives the229

kite its smooth, fluttering motion.230

3. Standalone implementation231

The preliminary standalone version of “Kites fly-232

ing In and Out of Space” was demonstrated on the233

CAVE system at Virginia Tech as part of theMoun-234

tain Lake Workshop[11] which is a collaborative,235

community-based art project drawing on the customs,236

environmental resources, and technology of the New237

River Valley and the Appalachian region, USA.238

3.1. CAVE virtual reality239

The CAVE (CAVE Automatic Virtual Environment)240

is a projection-based virtual reality system[12]. In241

contrast to head-mounted display VR systems, where242

the user views a virtual world through small video243

screens attached to a helmet, in projection-based VR244

large, fixed screens are used to provide a panoramic245

display without encumbering the user. The CAVE246

is a 10 ft cubed room. Stereoscopic images are247

rear-projected onto the walls creating the illusion248

that 3D objects exist with the user in the room. The249

user wears liquid crystal shutter glasses to resolve the250

stereoscopic imagery. An electromagnetic tracking251

sensor attached to the glasses allows the CAVE system252

to determine the location and orientation of the user’s253

head. This information is used by the Silicon Graph-254

ics Onyx that drives the CAVE to render the imagery255

from the user’s point of view. The user can physically256

walk around an object that appears to exist in 3D in257

the middle of the CAVE. The user holds a wand that258

is also tracked and has a joystick and three buttons259

for interaction with the virtual environment. Typically260

the joystick is used to navigate through environments261

that are larger than the CAVE itself. The buttons262

can be used to change modes, or bring up menus in263

the CAVE, or to grab virtual objects. Speakers are264

mounted to the top corners of the CAVE structure to265

provide sounds from the virtual environment.266

Software support for the CAVE comes in the form267

of the CAVE library. Applications are built on top of268

the CAVE library, which controls the display, tracking,269

and input devices. OpenGL which is an industry stan-270

dard Graphics API was used to render these kitetails.271

Fig. 5. A snapshot of the standalone kite application.

3.2. Interacting with the kitetails 272

Fig. 5 shows a snapshot of the application that has273

three kites in the scene. The imagery for these tails274

was scanned from the physical kitetails and texture275

mapped onto the kitetail mesh. These kites are an-276

chored by their two end points and start off horizontal277

thus free falling under the influence of gravity. Using278

the CAVE wand, the user can grab on to a kite head to279

move or change its imagery. At any point, the move-280

ment of these tails can be dynamically controlled by281

injecting a global wind into the system using the wand.282

The wind strength is constant in space and its direction283

is determined by the wand orientation. The structural284

attributes of a kite like the stiffness, length, width and285

the visual attributes like its texture maps can be spec-286

ified at run-time by the user using a configuration file.287

Each kite has a dimension of 2 ft× 30 ft in the virtual 288

space and is modeled by about 250 mass-points. 289

3.3. Results and findings 290

The number of iterations computed by the simu-291

lator per second or the simulation rate can be used292

as a metric to determine its performance. A higher293
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value indicates a faster simulation. The simulation rate294

for one kite in our application was 125 iterations per295

second and this varied inversely with the number of296

kites in the system. The compute time for each iter-297

ation was therefore, 8 ms. The time step was chosen298

to be 5 ms, to be close enough to the actual itera-299

tion time. A smaller time step simulation would have300

been more stable but also more compute intensive.301

We instead decided to “fly” three kites. Although this302

slows the simulation rate for each kite to 41.7 itera-303

tions per second, the results were visually more inter-304

esting. The simulation ran on a SGI ONYX Infinite305

Reality with eight 195 MHz MIPS R10000 processors306

and 2048 MB main memory size.307

4. Distributed simulation308

As seen in the previous section, the small time-step309
requirement calls for additional computing power. The310
GRID with its distributed computing resources con-311
nected by high-speed networks proves to be an el-312
egant and scalable solution to circumvent the pro-313
cessing constraints imposed by a single machine. Al-314
though, theoretically, any speed network can be used315

Fig. 6. The distributed model for the kite application. Typically, there are many simulation nodes, one display client (e.g. CAVE) and a
server that maintains state information about user-interaction. These components are connected across the GRID or any high-speed network.

as long as it supports the underlying network pro-316

tocols. 317

Fig. 6 pictorially describes the structure of the dis-318

tributed system. We decouple the simulation from the319

display procedures. This results in many simulation320

nodes all across the GRID and one display node, in321

our case the CAVE machine that displays the results of322

the simulation. These distributed software components323

communicate using a middleware QUANTA[13] that 324

was developed within EVL. QUANTA is a rich col-325

lection of network programming tools for optimizing326

data sharing over high-speed networks. Following is a327

brief description of the distributed components used:
328

• kiteServeris an implementation of the QUANTA329

database module that provides a simple two-field330

database, associating arbitrary chunks of binary data331

with character string keys. The keys are treated like332

Unix directory paths, so that a hierarchical arrange-333

ment of data is possible. When a client connects334

to a QUANTA database, it can make asynchronous335

requests to fetch particular keys’ values, and it can336

store new values for keys. Stored data is automat-337

ically reflected to all other clients by the database338

server. In our application, the shared data is the wind
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direction specified as a 3-float array. This wind di-339

rection vector is received from the CAVE display340

client as a result of any user-interaction and broad-341
cast to all thekiteSimnodes to update their simula-342
tion.343

• kiteSimis the simulation server that typically runs344
on a linux machine. Each machine’s simulation345

loop is dedicated to computing the positions for346
one kitetail. These computed positions are directly347
transmitted through a UDP socket to the display348
client running in the CAVE. The network loop,349
in turn, uses the database client to listen to any350
changes in the wind direction broadcast from the351
kiteServer.352

• kiteDisplay is the display client that displays the353
kitetails and handles any user-interaction. The kite354
position data for each kite mesh is read from the dis-355
tributed servers using QUANTA UDP and displayed356
texture mapped with the images. In addition, any357
user-interaction events to move the kites or change358
the imagery are handled here. When the user injects359

Fig. 7. The network testbed used for IGRID 2002. The display client was the CAVE at SARA, Amsterdam with the simulation running
across the GRID in Chicago, Canada, Japan and Virginia.

wind into the system, the wind direction vector is360

sent to thekiteServerusing a QUANTA database361

client, which is then broadcasted to all the simula-362

tion nodes. The OpenGL/CAVElib is used for the363

user-interaction and display. 364

4.1. Implementation 365

The network testbed used in IGRID2002[14] is 366

shown inFig. 7. 367

The CAVE in SARA, Amsterdam was our display368

client with simulation servers distributed across the369

globe in Chicago, Canada, Japan, and Virginia to370

stream the kitetails positions. The test itself involved371

a gamut of networking infrastructures ranging from372

the 10 Gbps optical link between Starlight/Surfnet to373

the more commonplace Internet2. The network band-374

width indicated for each machine is the bandwidth375

required if the kite position data were streamed to the376

network at the simulation rate (which is the maximum377

possible rate). 378
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Fig. 8. Results showing that the simulation rate is significantly higher and is independent of the number of kites for the distributed version.
The scale of the simulation rate is logarithmic.

4.2. Results379

The graphFig. 8 shows in logarithmic scale the380

performance of the distributed system vis-à-vis its381

standalone version. Two conclusions follow from this382

graph. Firstly, since the simulations were running on383

high-end PCs, the simulation rate for a kite in the dis-384

tributed version (1000 iterations per second) is signif-385

icantly higher than that of the standalone (125 itera-386

tions per second). The compute time for one iteration387

is 1 ms. Hence, smaller time steps could be used which388

gave us a stable simulation. Since the time step is equal389

to the compute time for an iteration, the movement of390

the kites is also more natural and cloth-like. Secondly,391

in the distributed version, the simulation rate is inde-392

pendent of the number of kites. Of course, the limiting393

factor in this case could be the network bandwidth.394

The network bandwidth used by each simulation was395

about 1.1 Mbits/s. Although the simulation ran as fast396

as the processor (1000 iterations per second), the re-397

sults were only streamed to the network at 40 frames398

per second which suffices for the graphics update.399

Fig. 9shows a screenshot of the distributed version400

that was demonstrated in the CAVE at SARA, Am-401

sterdam for IGRID2002. There are 12 kites in total,402

“flying” from all the remote simulation sites. The kites403

crisscross each other in the virtual space since there are404

no spatial limits imposed on them. As the movement405

of the kites is dependant on the network, they become406

visual metaphors for their underlying network perfor-407

mance and parameters. A slow moving kite for in-408

stance, signifies a low-bandwidth link and vice versa.409

The response time of the kites to wind interaction in-410
dicates their network latency. Since the kitetail data411
is split into segments and transmitted across as UDP412
packets, any visual jaggedness in the reconstruction at413
the display side represents the segment size and the414
UDP packet loss. 415

Fig. 9. A screenshot of the distributed version of the kites appli-
cation. The yellow particle traces represent the wind forces added.
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5. Conclusion and future work416

The application of Grid computing for the Arts and417

Humanities is still in its infancy. It is our hope that this418

first piece of GRID Art will encourage others to think419

of creative new ideas for exploiting GRID technolo-420

gies. As part of our future work, we would like to make421

the application collaborative so that CAVEs around422

the world could potentially view this application. For423

complex physical interactions like collision detection,424

we would like a synchronous mode that would involve425

more communication between the simulation nodes.426

In order to further optimize, we could use some im-427

plicit methods of integration for the simulation. We428

would also like to improve the rendering quality to vi-429

sually model the interaction of kitetails with different430

media as this is the focus of Matisse’ works.431
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