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Abstract LambdaStream is a transport protocol 
designed specifically to support gigabit-level 
streaming, which is required by streaming 
applications over OptIPuter. The protocol takes 
advantage of characteristics in photonic networks. It 
adapts the sending rate to dynamic network 
conditions while maintaining a constant sending rate 
whenever possible. One advantage of this scheme is 
that the protocol avoids deliberately provoking 
packet loss when probing for available bandwidth, a 
common strategy used by other congestion control 
schemes. Another advantage is that it significantly 
decreases fluctuations in the sending rate. As a result, 
streaming applications experience small jitter and 
react smoothly to congestion. Another important 
feature is that the protocol extends congestion control 
to encompass an end-to-end scope. It differentiates 
packet loss and updates the sending rate accordingly, 
thus increasing throughput. We have implemented 
and evaluated LambdaStream over the photonic 
network testbed between Chicago and Amsterdam. 
Our results show that LambdaStream occupies almost 
the full bandwidth and exhibits very small 
application-level jitter, which is very suitable for 
streaming applications in OptIPuter.  
 
1. INTRODUCTION  
 
    The OptIPuter [1] is a National Science 
Foundation funded project to interconnect distributed 
storage, computing and visualization resources using 
photonic networks whose current bandwidth can 
reach up to 10Gbps. The main goal of the project is 
to exploit the trend that network capacity is 
increasing at a rate far exceeding processor speed [5], 
while at the same time plummeting in cost. This 
allows one to experiment with a new paradigm in 
distributed computing - where the photonic networks 
serve as the computer's system bus and compute 
clusters, taken as a whole, serve as the peripherals in 
a potentially planetary-scale computer. We 
differentiate photonic networks from optical 
networks as networks comprised of optical fibers and 
MEMS (Micro-Electro-Mechanical Systems) optical 
switching devices. There is no translation of photons 
to electrons and hence no routing within photonic 

switches. Applications that control these networks 
will direct photons from the starting point to the end 
point of a series of photonic switches and hence will 
have a full control of the available bandwidth in these 
allocated light paths. Therefore, congestion control is 
only necessary for applications which require 
variable numbers of streams. As a result, photonic 
networks lead to a much lower level of statistical 
multiplexing in flows.  

    In order to optimize data delivery in OptIPuter 
applications such as Vol-a-Tile [2] and TeraVision 
[3], advances need to be made at several of the OSI 
network layers. For example, many OptIPuter 
applications send data in frames, where between-
packet jitter is not an issue but jitter between frames 
needs to be minimized. Existing transport protocols 
do not adequately meet this requirement. This paper 
focuses on our work above the transport layer to 
provide a gigabit-level streaming protocol called 
LambdaStream. LambdaStream builds on 
experiences from QUANTA [4] and high 
performance networking protocol—Reliable Blast 
User Datagram Protocol (RBUDP) [4]—that 
transports data using UDP and uses TCP to 
acknowledge missing packets. Through mathematical 
modeling and experiments on both national and 
international links, RBUDP has been shown to 
effectively utilize available bandwidth for reliable 
data transfer. For example, over the TeraGrid [19] 
between UCSD and NCSA, RBUDP has been able to 
achieve 18Gb/s throughput over 20Gb/s available 
link [6].  RBUDP is optimal for large payloads and 
does not perform favorably for small payloads and 
continuous data streams with varying payloads that 
are crucial for visualization applications. In 
LambdaStream, we have developed a congestion 
control scheme to decrease jitter and improve 
RBUDP’s adaptation to network conditions, tailoring 
the protocol for OptIPuter visualization applications. 
We target LambdaStream as an application-layer 
library, for two reasons. Firstly, we believe an 
application-layer tool makes development easier and 
simplifies deployment for testing purposes. Secondly, 
an application-layer protocol can measure end-to-end 
conditions as applications actually experience them, 
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allowing the protocol to distinguish packet loss and 
avoid unnecessarily throttling throughput.  

    LambdaStream is an application-layer transport 
protocol designed specifically for streaming 
applications in OptIPuter. Correspondingly, key 
characteristics of LambdaStream include a 
combination loss recovery and a special rate control, 
which avoids packet loss inherent in other congestion 
control schemes [7] [8] [11]. To efficiently utilize 
bandwidth and quickly converge to a new state, the 
protocol sets the initial sending rate as the quotient of 
the link capacity over the maximum number of flows, 
which is easily obtained in a dedicated network.  

    The remainder of the paper is organized as follows. 
Metric justifications are given in Section 2. In 
Section 3, we describe a reliable delivery scheme that 
is suitable for applications in OptIPuter. Detailed 
information on the congestion control is given in 
Section 4. Section 5 provides experimental results of 
the protocol over the photonic network testbed 
between Amsterdam and Chicago. We describe the 
related work in Section 6. Conclusions and future 
work are given in Section 7. 
 
2. METRIC JUSTIFICATIONS 

    The key characteristics of the congestion control in 
LambdaStream are: it is rate based, it uses receiving 
interval as the primary metric to control the sending 
rate, it calculates rate decrease/increase at the 
receiver side during a probing phase, and it maintains 
a constant sending rate after probing for available 
bandwidth. LambdaStream uses the receiving interval 
as a metric because 1) the receiving interval is closely 
related with the link congestion and the receiver’s 
processing capability; 2) the receiving interval can be 
used to detect incipient congestion.  

    A connection is composed of devices like 
switches, physical links and the end computers. Thus 
the whole system can be modeled as a set of store-
and-forward queues as shown in Figure 1. 

 

 

 

    Qs is the queue at the sender side, and Qr is the 
queue at the receiver side. The two queues usually 
adopt FIFO (First In First Out) mechanism. si(t) is an 
application’s sending rate and ro(t) is an application’s 
receiving rate, which is dependent on the feeding rate 
as well as the receiver’s processing speed. Lower 
receiving capability usually leads to a smaller 

servicing rate (i.e., the receiving rate in this case), 
ro(t).  

2.1 Incipient congestion 

    Assume Q is a bottleneck queue, and t0 is the time 
instant when congestion begins to appear, so the 
length of the bottleneck queue is expressed by: 
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    After congestion occurs, ro(t)<ri(t) (ro(t) is Q’s 
servicing rate and ri(t)is the packet incoming rate at 
Q), so clearly q(t) is a monotonously increasing 
function. Suppose packet i arrives at Q right before 
packet i+1 does (ti<ti+1), so q(ti+1)>q(ti). A packet has 
to wait in the queue until all the previous packets in 
the queue are delivered, so its waiting time is 
w=q*ro. We know q(ti+1)>q(ti), thus wi<wi+1, that is 
to say, packet i+1 has to wait longer than packet i 
does. So finally, the receiving interval between 
packet i and i+1 is larger than the sending interval 
when congestion occurs, i.e., ∆tr>∆ts. As a 
consequence, the ratio between the receiving rate and 
the sending rate is smaller than one. Based on this 
analysis, we assume a packet delay larger than the 
sending interval indicates congestion. This 
assumption and others similar to it are used in many 
related works [12] [13] [14] [15] [16]. 
 
 
 
 
 
 
 
 
 

Figure 2: Inter-packet spacing 

    This assumption is reasonable in photonic 
networks. In Figure 3, a single stream is sent over 
1Gbps photonic network at different speeds. The 
stream has 200 packets. We measure the average 
ratio at the receiver’s side. When packets are sent at a 
rate slower than the available bandwidth, the ratio is 
close to one. But when the rate is higher than the 
available bandwidth, ratio is greater than one. The 
results also show that the value of the ratio indicates 
a degree of congestion. Higher the ratio, more serious 
the congestion. 
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Figure 1: An end-to-end connection
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Sending a stream with different rate over a 1Gbps link 
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Figure 3: Average ratio VS sending rate 

    If the operating system reschedules the sender 
program or the receiver program, the actual packet 
interval may be longer than the ideal one without 
disturbance from the operating system. CPU’s shift to 
a small application causes a small spike while a large 
application causes a big spike in the packet interval. 
Spikes in the sending interval have a similar 
reflection at the receiver’s side. All these may cause 
imprecision in the ratio measurement. We adopt two 
methods to reduce this deviation. First, the protocol 
uses an average inter-packet delay, which is 
calculated once every epoch. This method is helpful 
in filtering out spikes caused by the receiver. Second, 
the protocol removes samples with a large spike. The 
algorithm considers a spike large when the spike is 
20 times larger than the sending interval. 

2.2 Loss differentiation 

    The protocol decreases the sending rate when the 
ratio is greater than 1.02 (we choose this threshold by 
experience). Additional decrease is necessary if 
congestion is serious or a receiver suffers from a 
long-lasting low capability. These two cases usually 
results in packet losses. However, not every packet 
loss is an indication for these two cases. When a 
receiver suffers from a low capability for a much 
shorter time than RTT, packet loss may occur but it is 
not necessary to decrease the sending rate. To avoid 
unnecessarily throttling the sending rate, we should 
firstly differentiate causes for packet loss.  

    We use loss spacing and the average receiving 
interval to distinguish causes for packet loss. Loss 
spacing is defined as the difference in sequence 
number between two neighboring loss events. The 
average packet delay is the quotient of difference in 
time between two consecutively received packets 
over difference of their sequence numbers, as given 
by Equation (2).   

prevseqnoseqno
prevtcurrtpktdelayavg

−
−

=_  (2) 

where currt and seqno are the receiving time and  the 
sequence number for the last received packet, and 
prevt and prevseqno are the receiving time and the 
sequence number for the packet preceding it. 

    When congestion occurs, packets en route must 
wait longer for delivery. This means that the average 
packet delay observed by the receiver becomes longer 
than the sending interval. If the congestion is serious 
and persists for a long time, more loss occurs with a 
higher frequency, which means the loss spacing is 
small. 
 
    When a receiver has enough capability to handle 
incoming packets, the average length of Qr converges 
to 0. However, when the receiving capability is low, 
the receiving rate ro(t) will be smaller than the 
sending rate and the queue will be filled soon and 
newly arrived packets are dropped. However, a 
sudden independent decrease in the receiver’s 
capability rarely affects the application because the 
receiver recovers its capability very quickly. The 
receiver immediately drains all the packets in the 
queue during a short timeframe, and then waits for 
the oncoming of another packet. As a consequence, 
the loss event is usually not followed by another loss 
event and the average packet delay between the two 
packets with dropped packets in between is close to 
the sending interval. If the receiver suffers from a 
continuous decrease in its capability, the queue 
length accumulates. Loss events occur much more 
frequently. Because data is always available for the 
receiver to fetch, the actual average packet delay with 
lost packets in between, on the contrary, will be much 
shorter than the sending interval. 
    Therefore, average packet delay and loss spacing 
are good metrics to determine the loss type. If the 
average packet delay falls somewhere outside a range 
and the loss spacing is small, the protocol decreases 
the sending rate. Congestion may coincide with a 
receiver’s low performance, making metrics deviate. 
In spite of this, the experimental results show that the 
two metrics still produce a decision with a high 
degree of correctness and acceptability.   

3. RELIABLE DELIVERIES 

    Most applications over OptIPuter are visualization 
related and can tolerate certain amount of packet loss. 
So a reliable delivery is not necessity. Actually 
recovering packet loss is time costly in LFNs and 
usually compromises performance. Therefore, some 
applications prefer packet loss to reliable delivery in 
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order to obtain better performance. The protocol 
proposes the combination loss recovery to meet this 
requirement. It offers choices of either guaranteed 
reliable delivery or unreliable delivery. Both 
congestion and a receiver’s capacity are the two main 
reasons for packet losses in OptIPuter. 

    Combination loss notification scheme is composed 
of two independent loss notification schemes. One is 
called quick loss notification; and another is called 
epoch loss notification. These two schemes together 
contribute and guarantee reliable delivery.  Epoch 
loss notification can be easily disabled if an 
unreliable delivery is preferred. 

    When a receiver receives a packet with a higher 
sequence number than the expected sequence 
number, the receiver immediately sends a quick loss 
notification. The lost list ranges from the expected 
packet to the received packet (excluding the packet). 
Whenever a packet loss is detected, the receiver 
immediately sends out a loss notification. Upon 
receiving this negative acknowledgement, the sender 
immediately retransmits the lost packet.  This scheme 
takes about one RTT to recover the lost packet. The 
quick loss notification applies only to packets lost in 
the first transmission.  

    The protocol notifies retransmission loss by the 
epoch loss notification scheme. Once every epoch, a 
receiver checks retransmission loss and sends a 
retransmission loss notification.  In case a 
retransmission loss occurs, the sequence number of 
the lost packet will queue in the lost list buffer and 
blocks the increase of maximal continuous sequence 
number. A receiver decides a retransmission loss 
when it detects that the lost packet is not received 
after a threshold.   

    This mechanism improves the performance of a 
loss-tolerant application. For an application needs a 
reliable delivery, this mechanism may need longer 
time to recover a packet loss if the packet is lost more 
than once. However, the probability is small for a 
retransmitted packet to be discarded over a photonic 
network. Furthermore, time spent on waiting for a 
retransmission notification is still small compared 
with long propagation delay on the network. 
Therefore, this disadvantage is acceptable for a 
reliable delivery application.  

4 CONGESTION CONTROL 

    The congestion control is composed of two parts. 
One part is to distinguish a packet loss and adjusts 
sending rate accordingly, thus avoiding unnecessarily 
throttling of the sending rate. Another part is to 

update the sending rate based on the ratio between 
the average receiving interval and the sending 
interval. Incipient congestion leads to a higher ratio, 
which triggers the protocol to decrease the sending 
rate. The protocol increases its sending rate if the 
ratio is close to one and the available bandwidth is 
greater than zero. 

4.1 An algorithm for distinguishing a packet loss  

    To fast clear serious congestion and thus avoid 
more packet losses, the protocol should further 
decrease its sending rate as soon as possible. 
However, if a packet loss is caused by light 
congestion or a sudden decrease of the receiver’s 
processing capability, the protocol should not 
decrease additional amount of the sending rate. Thus 
the protocol is required to distinguish the two cases 
and updates sending rate accordingly.  

    The pseudo-code for this scheme is shown below. 
When the protocol detects a packet loss (line 2), it 
first checks its average receiving delay and the loss 
spacing. If the loss is determined to be caused by 
serious congestion or continuous low receiver’s 
capacity (line 5), the receiver decreases sending rate 
and sends the feedback to the sender (line 6 and 7). 
Otherwise, it neglects the packet loss and does not 
update the sending rate.  

rate_cotrol1() 
1  when (a packet arriving at the receiver) 
2         if (seqno>expected sequence number)  
3 if sndDealy

lastseqnoseqno
prevtcurrtsndDealy )1()1( αα +<

−
−

<−  

4                         //do nothing 
5              else if (seqno-lostSeqno<th) 
6                        sndPktDelay ← (1+K1)*sndPktDelay 
7             ack(sndPktDelay) 
8   lostSeqno = seqno 
 

4.2 An algorithm for updating the sending rate 

    The main objective of the algorithm is to obtain a 
high throughput while maintaining a minimal jitter. 
Propagation delay does not account for jitter because 
an end-to-end transmission involves only one 
transmission route in OptIPuter. However, packet 
loss and changes of sending rate can not be neglected 
for jitter because: 1) a change of the sending rate 
alters the packet receiving interval; 2) recovering lost 
packets is time-consuming.  The mechanism we 
discussed in this section reduces jitter by preventing 
scenarios for 1 and 2 from appearing. 
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    Most congestion control schemes detect available 
bandwidth reactively. They send data at a rate 
exceeding the actual available bandwidth. One 
advantage of this mechanism is that it fast detects the 
available bandwidth. However, it imposes packet 
loss. For example, TCP’s congestion control 
algorithm is designed to deliberately cause occasional 
loss to provide feedbacks to the sender. This 
mechanism works very well in a network with small 
RTT and with frequent variations in the number of 
flows, but is costly in LFNs. It greatly increases jitter. 
Photonic networks are characterized by low levels of 
statistical multiplexing. We take advantage of this 
property and propose a proactively congestion 
control scheme, making it more suitable for our 
applications. The algorithm updates sending rate only 
when it detects environmental changes and keeps the 
sending rate as a constant when no change is 
detected. Thus, it avoids deliberately invoking packet 
loss and greatly decreases jitter.  

4.2.1 Design  

    The algorithm considers that network conditions 
are changing when it observes that the ratio is greater 
than 1.02 or the ratio is close to one and the end-to-
end available bandwidth is greater than zero. End-to-
end available bandwidth is defined to be the unused 
bandwidth on a link [17]. 

    As we mentioned earlier, either incipient 
congestion or a receiver’s capacity affects the 
average receiving rate. When congestion is about to 
occur or a receiver has a low processing capacity, the 
receiving rate is slower than the sending rate. 
However, with a very limited information, we do not 
know a convenient expression for the dynamics of 
the average receiving interval, the degree of 
congestion and a receiver’s capacity. Nonetheless, we 
know that 1) the average receiving interval never 
exceeds the sending interval; 2) the lower a receiver’s 
capacity or the more serious the congestion is, the 
slower the receiving rate. Based on this knowledge, 
we model the system as shown in Figure 4. In the 
Figure, s is the sending rate, r is the average 
receiving interval, bl is the link allowable rate and br 
is the receiver allowable rate.  
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    The control objective is to obtain a high sending 
rate without causing congestion or overflowing a 
receiver, and maintains the appropriate sending rate 
as stable as possible. The appropriate sending rate is 
actually equal to min(bl, br). This actually means the 
appropriate sending rate is system bandwidth when  
receiver is a bottleneck. Clearly, when several flows 
run simultaneously on the link, a receiver with a 
much lower capacity than others may have a lower 
share of the link capacity. The following 
straightforward rules are used to probe for min(bl, br). 

1) Rule 1: 
If: 

a. no congestion occurs OR 
b. available bandwidth is greater than zero 

and receiver has enough extra capacity 
Then increase current sending rate; 

2) Rule 2: 
If: 

a. congestion is predicted OR 
b. receiver does not have enough capacity 

to handle current sending rate 
Then decrease current sending rate;  

3) Rule 3: 
If: 

a. Rule 1 does not apply AND 
b. Rule 2 does not apply 
Then maintain current sending rate. 

    Clearly, the important part of the rules is to detect 
the network conditions accurately. We map the two 
metrics, the estimated available bandwidth and the 
ratio between the average receiving interval and the 
sending interval, to the current network conditions. 
After deciding network conditions, the algorithm 
should appropriately update the sending rate. A large 
adjustment is desirable in situations where the 
protocol must adapt rapidly to changes in the 
connection environment, but small adjustments are 
usually a better way to efficiently utilize the 
bandwidth in a more stable environment. For 
example, with a small growth, the protocol will not 
push the system into serious congestion if the system 
is already on the verge of congestion. Therefore, 
variable growth rate is necessary. We choose an 
equation that allows the protocol to change the 
growth rate easily. The equation s(n+1)= (1±k)s(n) 
meets this requirement.  When the protocol chooses a 
small k, say k is close to 0, the growth rate is small. 
When the protocol chooses a large k, the growth rate 
will be exponential. The larger k, the more the 

f(s, bl, br) s r

Figure 4: System model 
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sending rate varies. So by adaptively changing k, we 
can change the growth rate as expected. The sending 
rate is updated as follows: 







<−

>=+
=+

1),,()()(~)(

01),,()()(~)(
)1(

2

1

rl

estrl

bbsfnsnkns

bandbbsfnsnkns
ns   (4) 

    For the practical meaning, )(~
1 nk and )(~

2 nk  should 
satisfy: 0)(~1 2 >> nk and 0)(~

1 >nk . best is an estimated 
available bandwidth and is obtained based on the 
packet train method [17]. Clearly, )(~

1 nk and 
)(~

2 nk affects the system performance. If they are not 
properly chosen, the system may not be able to 
maintain the sending rate at a constant. Instead, the 
system may oscillate executing between Rule1 and 
Rule2, resulting in high jitter.  

4.2.2 Choices for parameter )(~
1 nk and )(~

2 nk  

    At any instant, the system may work in one of the 
following scenarios in a probing phase: 

Scenario 1: working under Rule1; 
Scenario 2:  working under Rule2. 

    In either scenario, parameters )(~
1 nk and )(~

2 nk  
should be selected in a way so that the overall 
sending rate converges to min(br, bl). When the 
algorithm spots that the network is in congestion or 
the end-to-end available bandwidth is greater than 
zero, the algorithm initiates a probing phase. It firstly 
chooses an initial value of parameter )0(~

1k or )0(~
2k  

based on the current network conditions. All the 
following values of )1(~

1 +ik  and )1(~
2 +ik  are 

determined by preceding values )(~
1 ik  or )(~

2 ik .  The 
farther the sending rate away from min(br, bl), the 
larger the initial value )0(~

1k or )0(~
2k should be.  

    When the algorithm starts a probing phase by 
increasing the sending rate, )0(~

1k  is chosen as such 
that the new sending rate reaches somewhere 
between the current sending rate s and s plus the 
predicted available bandwidth. So  

skbls estm ))0(1( 1+=+  
lm is called bandwidth proportional share. The 
network before the probing phase is stable, which 
means every connection has a proper share of the 
bandwidth. So the available bandwidth should be 
distributed proportionally to the previous share 
among all flows. We choose Lslm /= . Clearly, the 
sum of lm for all connections is one and 

L
b

s
blk estestm ==)0(1

.  

    When congestion triggers a probing phase, the 
initial value of )0(~

2k  is chosen in the following way:  
    If the connection is in serious congestion 
(ratio>1.2), the algorithm determines that the 
congestion is caused by participation of a new flow 
and directly sets the sending rate to a fair share 
among all flows. The number of flows before the 
probing phase is estimated as  sL / , and thus the 
number of current flows is  sL / . So the new 

sending rate should be 
 sL

L
/

 

so  

 sLs
Lk

/
1)0(2 ⋅
−=  

    Figure 3 shows that the ratio can well indicate 
congestion degree when the connection is in a light 
congestion. Based on experience, we consider that a 
connection is in a light congestion if 1<ratio<1.2. 
Therefore, the initial value of 

2
~k  is chosen so that the 

sending rate will be s(n+1)=s(n)/ratio, so 
ratiok /11)0(2 −=  

    After updating the sending rate, the system may be 
in the same Scenario or in another Scenario. If the 
system is in the same Scenario, we update the 
parameter so that the sending rate increases/decreases 
in a smaller amount than the previous 
increase/decrease. But if the update moves the system 
to another Scenario as shown in Figure 5, we need to 
choose a parameter so that the system has a decaying 
oscillation. After one oscillation, actually we know 
the ideal sending rate, s(i+2) lies somewhere within 
the range between s(i) and s(i+1). So let’s obtain 
some conditions to guarantee s(i+2) to be within s(i) 
and s(i+1). 

         
    First let’s assume that at time i, the system satisfies 
the condition in Rule1, shown in Figure 5(a). So the 
sending rate will be increased to:  

)())(1()1( 1 isikis +=+  (5) 
Then s(i+1) moves the system to under the control of 
Rule2, resulting in oscillation. So  

)1())1(1()2( 2 ++−=+ isikis  (6) 

Figure 5: Update the sending rate 
(a) 
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For decaying oscillation, the ideal s(i+2) should lie 
between 

)1()2()( +<+< isisis  (7) 
as shown in Figure 5(a). Since k2(i+1)>0, so clearly, 

)1()2( +<+ isis ; 
From Equations (5) and (6), we get 

)())1()()1()(1(
)())(1))(1(1(

)1())1(1()2(

2121

12

2

isikikikik
isikik

isikis

+−+−+=
++−=

++−=+
 

For (7) to be held, we have: 
0)1()()1()( 2121 >+−+− ikikikik  

so  

)(1
)()1(

1

1
2 ik

ikik
+

<+   (8) 

Equation (8) guarantees a decaying oscillation for the 
case shown in Figure 5(a). 
    Second, let’s assume that at time i, the system 
satisfies the condition in Rule2, as shown in Figure 
5(b). So the sending rate will be reduced to: 

)())(1()1( 2 isikis −=+  
s(i+1) moves the system to under the control of 
Rule1. So  

)1())1(1()2( 1 +++=+ isikis  
For decaying oscillation, the ideal s(i+2) should lie 
between 

)()2()1( isisis <+<+   (9) 
Since k1(i+1)>0, so clearly )2()1( +<+ isis  

)())()1()()1(1(
)())(1))(1(1(

)1())1(1()2(
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21
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isikikikik
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For satisfying Equation (9), we have 
0)()1()()1( 2121 <+−−+ ikikikik  

i.e.,  

)(1
)(

)1(
2

2
1 ik

ik
ik

−
<+  (10) 

Equation (10) guarantees a decaying oscillation for 
the case shown in Figure 5(b). 
    Therefore, if oscillation occurs and the next step 
parameter is chosen according to Equation (8) or 
(10), the system will guarantee a decaying oscillation, 
that means the system will have a convergence 
sending rate.  
    For simplicity, this algorithm chooses the 
parameters as 
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The initial parameters are determined as described 
above.  
 
4.2.3. Pseudo-code algorithm 

    This section describes the pseudo-code for the 
above algorithm. At the end of every sampling 
interval, the algorithm checks if any packet is 
received in the new interval. If no packet is received, 
the algorithm directly starts another sampling period. 
Otherwise, the algorithm generates the rate control 
algorithm (Line 1). If the algorithm detects that a 
probing phase is on, the algorithm calculates the 
following value of the parameter (Line 13~17 or Line 
28~32), or if a probing phase is off but the algorithm 
detects that the connection conditions are changing 
(Line4 or 23), the algorithm starts a probing phase 
(Line 5~12 or Line 24~32) and calculates the initial 
value of the parameter. After updating the parameter 
accordingly, the algorithm requests the sender to 
update its sending rate (Line 19 or Line 34).  The 
algorithm finally checks if the probing phase is 
complete or not (Line 38~43). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rate_control2() 
1 if (totalNoOfSample !=0 ) {  

2     avgDRatio←totalDRatio/totalNoOfSample  
3     if (avgDRatio > 1.02){ 

4            if (!bProbe){ 
5                 if (avgDRatio>1.2) { 
6                         k0=1-L/(┌L/sndRate┐.sndRate) 
7                         k=k0 
8 } 
9               else { 
10                          k0=1-1/avgDRatio 
11                          k=k0 
12                } 
13          else { 
14                       if (bInc) 
15                            k=0.5k/(1+k) 
16                       else 
17                            k=k/e 
18            } 
19                newSndRate=(1-k)sndRate 
20                bProbe = true; 
21                bInc = false; 
22          } 
23        else if (estBandwidth>0) { 
24                 if (!bProbe) { 
25                        k0=best/L;  
26                       k=k0 
27                } 
28               else { 
29                       if (bInc) 
30                            k=k/e 
31                       else 
32                            k=0.5k/(1-k) 
33               } 
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4.4 Estimate available bandwidth  

    To avoid intrusiveness, the protocol uses data 
packets to form a measurement train. So the resulting 
available bandwidth is actually A-S (A is the 
measured available bandwidth and S is the current 
sending rate). The sender sends a measurement train 
once every T(8000) packets. The packet train is sent 
at different rate with the current sending rate as the 
starting rate. The train has K(300) packets and every 
50 packets is grouped into one category. Starting with 
the current sending rate, the following group is sent 
at an increasing sending rate with the increasing 
amount ∆. Receiver is responsible for calculating the 
available bandwidth. If the receiver finds the 
connection is already in congestion, it sets the 
available bandwidth to zero. Otherwise, it calculates 
inter-packet delay and chooses the mean in every 
group as the representative inter-packet delay for the 
group. It uses representative inter-packet delays to 
calculate a bandwidth for each group. So finally we 
obtain five groups of (si, ri). The final available 
bandwidth is the breakpoint where ri/si<1.  
 
5. EXPERIMENTAL RESULTS 
 
    We have evaluated LambdaStream over the 
photonic network testbed between Chicago (Scylla) 
and Amsterdam (Vangogh). As shown in Figure 7, 
this Testbed consists of three all-optical switches, 
located at University of Amsterdam, downtown 
Chicago StarLight site and University of Illinois at 
Chicago. The transatlantic link is composed of one 
1Gbps fiber and its RTT is 110ms.  

 
Figure 7: Photonic network testbed between 

Amsterdam and Chicago 
 

Vangogh Dual Intel Xeon 2.8GHz,  Linux 2.4.26  with 
web100 kernel patch, 2GB RAM, Intel Pro 
1000 Gigabit Adaptor 

Scylla Dual Intel Xeon 1.8Hz, Linux 2.4.18-3smp 
with web100 kernel patch, 1.5GB RAM, , 
Intel Pro 1000 Gigabit Adaptor 
Table 1 :  System Configuration 

 
    Figure 8 describes throughput for one single flow 
running on the Testbed. One line represents a TCP 
flow, and the rest of the lines represent 
LambdaStream flows, each of which starts with a 
different initial sending rate. TCP window is set to 
35Mbytes in this experiment. The Figure shows that 
the LambdaStream protocol’s throughput converges 
very well for a single flow. Even if we set the initial 
sending rate to either 1720Mbps or 172Mbps, values 
far exceeding or much lower than the available 
bandwidth, the protocol manages to maintain the 
throughput at an almost fixed sending rate, about 
950Mbps. Figure 8 also shows that a single TCP flow 
obtains about 800Mbps throughput, which is a little 
bit lower than but still comparable to LambdaStream. 
However, because of TCP’s slow-start scheme, it 
takes about 1.2 seconds to obtain this stable 
throughput, which is much longer than the worst case 
with LambdaStream, which is 0.8 seconds. The graph 
also shows that the TCP throughput varies much 
more than LambdaStream does. Higher variation in 
throughput usually indicates a higher jitter. 
 

34               newSndRate=(1+k)sndRate 
35               bInc = true; 
36               bProbe = true; 
37      }                       
38    if (newSndRate ≅sndRate) { 
39  bProbe = false; 
40               bInc=false 
41           totalNoOfSample = 0 
42           totalDRatio = 0 
43      } 
44 } 
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Throughput of TCP and LS on the 1Gbps Link
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Figure 8: Throughput for a single flow on a 1Gbps 

network (showing multiple cases) 
 
    Our OptIPuter applications use frames to send and 
receive data, so all we care about is the frame-level 
(or called application-level) jitter. Figure 9 describes 
the frame-level jitter when the frame size is 2MB. In 
Figure 9 (below), the Y-axis represents the interval 
between received packets, so the variations indicate 
jitter. Higher variation in packet interval represents 
higher jitter. LambdaStream exhibits much smaller 
jitter than TCP does. The big spike in the 
LambdaStream line indicates that the protocol 
recovered a lost packet. With smaller payloads (e.g. 
2MB), every lost packet increases jitter. For example, 
to transmit a 2MB payload without loss takes 
2M*8/1G = 16ms for a complete transmission. 
However, the time needed for lost packet recovery is 
at least one RTT (110ms). As a result, every lost 
packet causes a huge spike in jitter.  
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Figure 9: Jitter Comparison between TCP and 

LambdaStream with identical 2 Mbyte Payloads 
 

    Figure 10 describes fairness between multiple 
LambdaStream flows. Experiments show that 
LambdaStream can achieve either converging 
fairness (Figure 10a and Figure 10b) or min-max 

fairness (Figure 10c and Figure 10d) among flows. In 
both cases, LambdaStream can fully occupy the 
available bandwidth. The differences result from 
scheduling imprecision in non real-time operating 
systems, which sometimes delay LambdaStream 
packets by returning control to the protocol tens of 
milliseconds later than requested. We are currently 
investigating this. 
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a. Two LambdaStream flows with converging 

fairness 
Fairness among 3 flows
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b. Three LambdaStream flows with 

converging fairness 
 

Fairness Between Two Flows
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c. Two LambdaStream flows with min-max fairness 
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Fairness Among Three LS Flows
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d. Three LambdaStream flows with min-

max fairness 
 

Figure 10: Fairness experiments for LambdaStream 
flows over 1Gbps link 

 
    It is difficult to compare fairness between TCP 
with a high performance protocol because TCP 
usually cannot utilize the full bandwidth. But since 
the single revised TCP uses almost the full 
bandwidth, the paper also shows the situations when 
several TCP flows run simultaneously. Figure 11 
shows fairness achieved by TCP in the same 
environment. In Figure 11(a), a new TCP flow is 
started before the first flow reaches maximum 
throughput. In this case, the flows achieve average 
fairness. In Figure 11(b), a new flow is started after 
the first flow reaches maximum throughput. In this 
case, TCP cannot achieve fairness. The first flow is 
affected greatly when a second flow is added. Even 
after the second flow completes, the first flow 
continues to increase its throughput at the same rate 
and does not probe the highest available bandwidth 
for more than fifteen seconds. In both cases, the 
results show that multiple TCP flows cannot fully 
occupy the available bandwidth. 
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a. Two TCP flows with new flow added earlier 

Fairness Between Two TCP Flows
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 b. Two TCP flows with new flows added 

later 
Fairness Among Three TCP Flows

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

TCP1
TCP2
TCP3

 
c. Three TCP flows 

 
Figure 11: Fairness experiment for TCP flows 

    Figure 12 describes how a LambdaStream flow 
may affect TCP flows. In this experiment, a 
LambdaStream flow lasts about 10s and then 
disappears. We see TCP’s throughput is similar to the 
situation when another TCP joins in. Therefore, we 
can say that the way LambdaStream influences TCP 
flows is similar to the way when another TCP joins 
in. LambdaStream occupy the rest of the bandwidth. 
We cannot say LambdaStream is fair to TCP. 
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Figure 12: Influence 
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6. RELATED WORK 
    Network researchers have reached a consensus that 
the current TCP implementations are not suitable for 
long distance high performance data transfer. Either 
TCP needs to be modified radically or new transport 
protocols should be introduced. Long Fat Networks 
(LFNs), such as those between the U.S., Europe and 
Asia, have extremely high round-trip latencies (at 
best 120ms). This latency results in gross bandwidth 
under-utilization when TCP is used for data delivery. 
Several solutions have been proposed. One solution 
is to provide revised versions of TCP [8] [11] with 
better utilization of the link capacity. Another 
solution is to develop UDP-based protocols to 
improve bandwidth usage. The Simple Available 
Bandwidth Utilization Library (SABUL) [9], 
Tsunami [10], Reliable Blast UDP (RBUDP) [4] and 
the Group Transport Protocol (GTP) [20] are few 
recent examples.  

   However, none of these solutions, except GTP, 
works well when packet loss occurs. TCP interprets 
packet loss as an evidence of congestion and halves 
its congestion window when detecting a packet loss. 
This mechanism ensures fairness among connections 
sharing the same channel, and works well in the 
current Internet, where most of the packet losses are 
due to congestion.  However, in OptIPuter, other 
factors for packet loss can not be ignored. Most 
visualization-related applications for the OptIPuter 
are both computation and network-intensive, 
processing datasets to generate geometries for real 
time rendering. Additionally, high bandwidth of 
LFNs allows packets to reach a receiver at speeds 
that may exceed the receiver’s capability, forcing the 
receiver to discard packets (this often occurs when 
the receiver’s CPU usage is high). Thus the receiver 
usually becomes the bottleneck to maintaining a high 
throughput [18]. However, TCP and many of its 
revised versions such as SCTP (Stream Control 
Transmission Protocol) [8] and FAST (Fast Active 
queue management Scalable TCP) [11] use 
windowing mechanisms and do not differentiate the 
causes for packet loss, which limits the complete 
utilization of link capacity. The latest version of 
SABUL--UDT [9] has the similar problem. GTP is 
designed as a request transfer data model and our 
work is designed as a real time data streaming model. 

 
7 CONCLUSIONS  
 

    LambdaStream extends the congestion control to 
encompass an end-to-end scope. It distinguishes 
packet loss and adjusts the sending rate accordingly. 
The protocol also applies a ratio sampling approach 
to detect incipient congestion and combines it with a 
bandwidth estimation method for proactively probing 
for an appropriate sending rate. The experimental 
results show that LambdaStream achieves 950Mbps 
throughput in a 1Gbps channel. It exhibits small 
application-level jitter and react smoothly to 
congestion, which is very suitable for streaming 
applications in OptiPuter. LambdaStream works well 
for continuous data streams of varying payloads that 
are representative characteristics of visualization 
applications.  
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