
 1

LambdaStream – a Data Transport Protocol for Streaming Network-intensive Applications over
Photonic Networks

Chaoyue Xiong, Jason Leigh, Eric He, Venkatram Vishwanath, Tadao Murata
Luc Renambot, Thomas A. DeFanti
Electronic Visualization Laboratory

University of Illinois at Chicago

Abstract LambdaStream is a transport protocol
designed specifically to support gigabit-level
streaming, which is required by streaming
applications over OptIPuter. The protocol takes
advantage of characteristics in photonic networks. It
adapts the sending rate to dynamic network
conditions while maintaining a constant sending rate
whenever possible. One advantage of this scheme is
that the protocol avoids deliberately provoking
packet loss when probing for available bandwidth, a
common strategy used by other congestion control
schemes. Another advantage is that it significantly
decreases fluctuations in the sending rate. As a result,
streaming applications experience small jitter and
react smoothly to congestion. Another important
feature is that the protocol extends congestion control
to encompass an end-to-end scope. It differentiates
packet loss and updates the sending rate accordingly,
thus increasing throughput. We have implemented
and evaluated LambdaStream over the photonic
network testbed between Chicago and Amsterdam.
Our results show that LambdaStream occupies almost
the full bandwidth and exhibits very small
application-level jitter, which is very suitable for
streaming applications in OptIPuter.

1. INTRODUCTION

 The OptIPuter [1] is a National Science
Foundation funded project to interconnect distributed
storage, computing and visualization resources using
photonic networks whose current bandwidth can
reach up to 10Gbps. The main goal of the project is
to exploit the trend that network capacity is
increasing at a rate far exceeding processor speed [5],
while at the same time plummeting in cost. This
allows one to experiment with a new paradigm in
distributed computing - where the photonic networks
serve as the computer's system bus and compute
clusters, taken as a whole, serve as the peripherals in
a potentially planetary-scale computer. We
differentiate photonic networks from optical
networks as networks comprised of optical fibers and
MEMS (Micro-Electro-Mechanical Systems) optical
switching devices. There is no translation of photons
to electrons and hence no routing within photonic

switches. Applications that control these networks
will direct photons from the starting point to the end
point of a series of photonic switches and hence will
have a full control of the available bandwidth in these
allocated light paths. Therefore, congestion control is
only necessary for applications which require
variable numbers of streams. As a result, photonic
networks lead to a much lower level of statistical
multiplexing in flows.

 In order to optimize data delivery in OptIPuter
applications such as Vol-a-Tile [2] and TeraVision
[3], advances need to be made at several of the OSI
network layers. For example, many OptIPuter
applications send data in frames, where between-
packet jitter is not an issue but jitter between frames
needs to be minimized. Existing transport protocols
do not adequately meet this requirement. This paper
focuses on our work above the transport layer to
provide a gigabit-level streaming protocol called
LambdaStream. LambdaStream builds on
experiences from QUANTA [4] and high
performance networking protocol—Reliable Blast
User Datagram Protocol (RBUDP) [4]—that
transports data using UDP and uses TCP to
acknowledge missing packets. Through mathematical
modeling and experiments on both national and
international links, RBUDP has been shown to
effectively utilize available bandwidth for reliable
data transfer. For example, over the TeraGrid [19]
between UCSD and NCSA, RBUDP has been able to
achieve 18Gb/s throughput over 20Gb/s available
link [6]. RBUDP is optimal for large payloads and
does not perform favorably for small payloads and
continuous data streams with varying payloads that
are crucial for visualization applications. In
LambdaStream, we have developed a congestion
control scheme to decrease jitter and improve
RBUDP’s adaptation to network conditions, tailoring
the protocol for OptIPuter visualization applications.
We target LambdaStream as an application-layer
library, for two reasons. Firstly, we believe an
application-layer tool makes development easier and
simplifies deployment for testing purposes. Secondly,
an application-layer protocol can measure end-to-end
conditions as applications actually experience them,

 2

allowing the protocol to distinguish packet loss and
avoid unnecessarily throttling throughput.

 LambdaStream is an application-layer transport
protocol designed specifically for streaming
applications in OptIPuter. Correspondingly, key
characteristics of LambdaStream include a
combination loss recovery and a special rate control,
which avoids packet loss inherent in other congestion
control schemes [7] [8] [11]. To efficiently utilize
bandwidth and quickly converge to a new state, the
protocol sets the initial sending rate as the quotient of
the link capacity over the maximum number of flows,
which is easily obtained in a dedicated network.

 The remainder of the paper is organized as follows.
Metric justifications are given in Section 2. In
Section 3, we describe a reliable delivery scheme that
is suitable for applications in OptIPuter. Detailed
information on the congestion control is given in
Section 4. Section 5 provides experimental results of
the protocol over the photonic network testbed
between Amsterdam and Chicago. We describe the
related work in Section 6. Conclusions and future
work are given in Section 7.

2. METRIC JUSTIFICATIONS

 The key characteristics of the congestion control in
LambdaStream are: it is rate based, it uses receiving
interval as the primary metric to control the sending
rate, it calculates rate decrease/increase at the
receiver side during a probing phase, and it maintains
a constant sending rate after probing for available
bandwidth. LambdaStream uses the receiving interval
as a metric because 1) the receiving interval is closely
related with the link congestion and the receiver’s
processing capability; 2) the receiving interval can be
used to detect incipient congestion.

 A connection is composed of devices like
switches, physical links and the end computers. Thus
the whole system can be modeled as a set of store-
and-forward queues as shown in Figure 1.

 Qs is the queue at the sender side, and Qr is the
queue at the receiver side. The two queues usually
adopt FIFO (First In First Out) mechanism. si(t) is an
application’s sending rate and ro(t) is an application’s
receiving rate, which is dependent on the feeding rate
as well as the receiver’s processing speed. Lower
receiving capability usually leads to a smaller

servicing rate (i.e., the receiving rate in this case),
ro(t).

2.1 Incipient congestion

 Assume Q is a bottleneck queue, and t0 is the time
instant when congestion begins to appear, so the
length of the bottleneck queue is expressed by:

∫ −+=
1

0

))()(()(0

t

t
oi dttrtrqtq (1)

 After congestion occurs, ro(t)<ri(t) (ro(t) is Q’s
servicing rate and ri(t)is the packet incoming rate at
Q), so clearly q(t) is a monotonously increasing
function. Suppose packet i arrives at Q right before
packet i+1 does (ti<ti+1), so q(ti+1)>q(ti). A packet has
to wait in the queue until all the previous packets in
the queue are delivered, so its waiting time is
w=q*ro. We know q(ti+1)>q(ti), thus wi<wi+1, that is
to say, packet i+1 has to wait longer than packet i
does. So finally, the receiving interval between
packet i and i+1 is larger than the sending interval
when congestion occurs, i.e., ∆tr>∆ts. As a
consequence, the ratio between the receiving rate and
the sending rate is smaller than one. Based on this
analysis, we assume a packet delay larger than the
sending interval indicates congestion. This
assumption and others similar to it are used in many
related works [12] [13] [14] [15] [16].

Figure 2: Inter-packet spacing

 This assumption is reasonable in photonic
networks. In Figure 3, a single stream is sent over
1Gbps photonic network at different speeds. The
stream has 200 packets. We measure the average
ratio at the receiver’s side. When packets are sent at a
rate slower than the available bandwidth, the ratio is
close to one. But when the rate is higher than the
available bandwidth, ratio is greater than one. The
results also show that the value of the ratio indicates
a degree of congestion. Higher the ratio, more serious
the congestion.

∆ wi

wi ∆

Sender Bottleneck Receive

Figure 1: An end-to-end connection

ri(t) ro(t) Qr Qs
si(t) so(t)

Packets from an application Packets to an application

 3

Sending a stream with different rate over a 1Gbps link

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800 1000 1200 1400 1600

Sending rate (Mbps)

Av
er

ag
e

ra
tio

 b
et

w
ee

n
re

ce
iv

in
g

in
te

rv
al

an

d
se

nd
in

g
in

te
rv

al

Figure 3: Average ratio VS sending rate

 If the operating system reschedules the sender
program or the receiver program, the actual packet
interval may be longer than the ideal one without
disturbance from the operating system. CPU’s shift to
a small application causes a small spike while a large
application causes a big spike in the packet interval.
Spikes in the sending interval have a similar
reflection at the receiver’s side. All these may cause
imprecision in the ratio measurement. We adopt two
methods to reduce this deviation. First, the protocol
uses an average inter-packet delay, which is
calculated once every epoch. This method is helpful
in filtering out spikes caused by the receiver. Second,
the protocol removes samples with a large spike. The
algorithm considers a spike large when the spike is
20 times larger than the sending interval.

2.2 Loss differentiation

 The protocol decreases the sending rate when the
ratio is greater than 1.02 (we choose this threshold by
experience). Additional decrease is necessary if
congestion is serious or a receiver suffers from a
long-lasting low capability. These two cases usually
results in packet losses. However, not every packet
loss is an indication for these two cases. When a
receiver suffers from a low capability for a much
shorter time than RTT, packet loss may occur but it is
not necessary to decrease the sending rate. To avoid
unnecessarily throttling the sending rate, we should
firstly differentiate causes for packet loss.

 We use loss spacing and the average receiving
interval to distinguish causes for packet loss. Loss
spacing is defined as the difference in sequence
number between two neighboring loss events. The
average packet delay is the quotient of difference in
time between two consecutively received packets
over difference of their sequence numbers, as given
by Equation (2).

prevseqnoseqno
prevtcurrtpktdelayavg

−
−

=_ (2)

where currt and seqno are the receiving time and the
sequence number for the last received packet, and
prevt and prevseqno are the receiving time and the
sequence number for the packet preceding it.

 When congestion occurs, packets en route must
wait longer for delivery. This means that the average
packet delay observed by the receiver becomes longer
than the sending interval. If the congestion is serious
and persists for a long time, more loss occurs with a
higher frequency, which means the loss spacing is
small.

 When a receiver has enough capability to handle
incoming packets, the average length of Qr converges
to 0. However, when the receiving capability is low,
the receiving rate ro(t) will be smaller than the
sending rate and the queue will be filled soon and
newly arrived packets are dropped. However, a
sudden independent decrease in the receiver’s
capability rarely affects the application because the
receiver recovers its capability very quickly. The
receiver immediately drains all the packets in the
queue during a short timeframe, and then waits for
the oncoming of another packet. As a consequence,
the loss event is usually not followed by another loss
event and the average packet delay between the two
packets with dropped packets in between is close to
the sending interval. If the receiver suffers from a
continuous decrease in its capability, the queue
length accumulates. Loss events occur much more
frequently. Because data is always available for the
receiver to fetch, the actual average packet delay with
lost packets in between, on the contrary, will be much
shorter than the sending interval.
 Therefore, average packet delay and loss spacing
are good metrics to determine the loss type. If the
average packet delay falls somewhere outside a range
and the loss spacing is small, the protocol decreases
the sending rate. Congestion may coincide with a
receiver’s low performance, making metrics deviate.
In spite of this, the experimental results show that the
two metrics still produce a decision with a high
degree of correctness and acceptability.

3. RELIABLE DELIVERIES

 Most applications over OptIPuter are visualization
related and can tolerate certain amount of packet loss.
So a reliable delivery is not necessity. Actually
recovering packet loss is time costly in LFNs and
usually compromises performance. Therefore, some
applications prefer packet loss to reliable delivery in

 4

order to obtain better performance. The protocol
proposes the combination loss recovery to meet this
requirement. It offers choices of either guaranteed
reliable delivery or unreliable delivery. Both
congestion and a receiver’s capacity are the two main
reasons for packet losses in OptIPuter.

 Combination loss notification scheme is composed
of two independent loss notification schemes. One is
called quick loss notification; and another is called
epoch loss notification. These two schemes together
contribute and guarantee reliable delivery. Epoch
loss notification can be easily disabled if an
unreliable delivery is preferred.

 When a receiver receives a packet with a higher
sequence number than the expected sequence
number, the receiver immediately sends a quick loss
notification. The lost list ranges from the expected
packet to the received packet (excluding the packet).
Whenever a packet loss is detected, the receiver
immediately sends out a loss notification. Upon
receiving this negative acknowledgement, the sender
immediately retransmits the lost packet. This scheme
takes about one RTT to recover the lost packet. The
quick loss notification applies only to packets lost in
the first transmission.

 The protocol notifies retransmission loss by the
epoch loss notification scheme. Once every epoch, a
receiver checks retransmission loss and sends a
retransmission loss notification. In case a
retransmission loss occurs, the sequence number of
the lost packet will queue in the lost list buffer and
blocks the increase of maximal continuous sequence
number. A receiver decides a retransmission loss
when it detects that the lost packet is not received
after a threshold.

 This mechanism improves the performance of a
loss-tolerant application. For an application needs a
reliable delivery, this mechanism may need longer
time to recover a packet loss if the packet is lost more
than once. However, the probability is small for a
retransmitted packet to be discarded over a photonic
network. Furthermore, time spent on waiting for a
retransmission notification is still small compared
with long propagation delay on the network.
Therefore, this disadvantage is acceptable for a
reliable delivery application.

4 CONGESTION CONTROL

 The congestion control is composed of two parts.
One part is to distinguish a packet loss and adjusts
sending rate accordingly, thus avoiding unnecessarily
throttling of the sending rate. Another part is to

update the sending rate based on the ratio between
the average receiving interval and the sending
interval. Incipient congestion leads to a higher ratio,
which triggers the protocol to decrease the sending
rate. The protocol increases its sending rate if the
ratio is close to one and the available bandwidth is
greater than zero.

4.1 An algorithm for distinguishing a packet loss

 To fast clear serious congestion and thus avoid
more packet losses, the protocol should further
decrease its sending rate as soon as possible.
However, if a packet loss is caused by light
congestion or a sudden decrease of the receiver’s
processing capability, the protocol should not
decrease additional amount of the sending rate. Thus
the protocol is required to distinguish the two cases
and updates sending rate accordingly.

 The pseudo-code for this scheme is shown below.
When the protocol detects a packet loss (line 2), it
first checks its average receiving delay and the loss
spacing. If the loss is determined to be caused by
serious congestion or continuous low receiver’s
capacity (line 5), the receiver decreases sending rate
and sends the feedback to the sender (line 6 and 7).
Otherwise, it neglects the packet loss and does not
update the sending rate.

rate_cotrol1()
1 when (a packet arriving at the receiver)
2 if (seqno>expected sequence number)
3 if sndDealy

lastseqnoseqno
prevtcurrtsndDealy)1()1(αα +<

−
−

<−

4 //do nothing
5 else if (seqno-lostSeqno<th)
6 sndPktDelay ← (1+K1)*sndPktDelay
7 ack(sndPktDelay)
8 lostSeqno = seqno

4.2 An algorithm for updating the sending rate

 The main objective of the algorithm is to obtain a
high throughput while maintaining a minimal jitter.
Propagation delay does not account for jitter because
an end-to-end transmission involves only one
transmission route in OptIPuter. However, packet
loss and changes of sending rate can not be neglected
for jitter because: 1) a change of the sending rate
alters the packet receiving interval; 2) recovering lost
packets is time-consuming. The mechanism we
discussed in this section reduces jitter by preventing
scenarios for 1 and 2 from appearing.

 5

 Most congestion control schemes detect available
bandwidth reactively. They send data at a rate
exceeding the actual available bandwidth. One
advantage of this mechanism is that it fast detects the
available bandwidth. However, it imposes packet
loss. For example, TCP’s congestion control
algorithm is designed to deliberately cause occasional
loss to provide feedbacks to the sender. This
mechanism works very well in a network with small
RTT and with frequent variations in the number of
flows, but is costly in LFNs. It greatly increases jitter.
Photonic networks are characterized by low levels of
statistical multiplexing. We take advantage of this
property and propose a proactively congestion
control scheme, making it more suitable for our
applications. The algorithm updates sending rate only
when it detects environmental changes and keeps the
sending rate as a constant when no change is
detected. Thus, it avoids deliberately invoking packet
loss and greatly decreases jitter.

4.2.1 Design

 The algorithm considers that network conditions
are changing when it observes that the ratio is greater
than 1.02 or the ratio is close to one and the end-to-
end available bandwidth is greater than zero. End-to-
end available bandwidth is defined to be the unused
bandwidth on a link [17].

 As we mentioned earlier, either incipient
congestion or a receiver’s capacity affects the
average receiving rate. When congestion is about to
occur or a receiver has a low processing capacity, the
receiving rate is slower than the sending rate.
However, with a very limited information, we do not
know a convenient expression for the dynamics of
the average receiving interval, the degree of
congestion and a receiver’s capacity. Nonetheless, we
know that 1) the average receiving interval never
exceeds the sending interval; 2) the lower a receiver’s
capacity or the more serious the congestion is, the
slower the receiving rate. Based on this knowledge,
we model the system as shown in Figure 4. In the
Figure, s is the sending rate, r is the average
receiving interval, bl is the link allowable rate and br
is the receiver allowable rate.





><
≤

=
),min(1

),min(1
),,(

rl

rl
rl bbs

bbs
bbsf (3)

 The control objective is to obtain a high sending
rate without causing congestion or overflowing a
receiver, and maintains the appropriate sending rate
as stable as possible. The appropriate sending rate is
actually equal to min(bl, br). This actually means the
appropriate sending rate is system bandwidth when
receiver is a bottleneck. Clearly, when several flows
run simultaneously on the link, a receiver with a
much lower capacity than others may have a lower
share of the link capacity. The following
straightforward rules are used to probe for min(bl, br).

1) Rule 1:
If:

a. no congestion occurs OR
b. available bandwidth is greater than zero

and receiver has enough extra capacity
Then increase current sending rate;

2) Rule 2:
If:

a. congestion is predicted OR
b. receiver does not have enough capacity

to handle current sending rate
Then decrease current sending rate;

3) Rule 3:
If:

a. Rule 1 does not apply AND
b. Rule 2 does not apply
Then maintain current sending rate.

 Clearly, the important part of the rules is to detect
the network conditions accurately. We map the two
metrics, the estimated available bandwidth and the
ratio between the average receiving interval and the
sending interval, to the current network conditions.
After deciding network conditions, the algorithm
should appropriately update the sending rate. A large
adjustment is desirable in situations where the
protocol must adapt rapidly to changes in the
connection environment, but small adjustments are
usually a better way to efficiently utilize the
bandwidth in a more stable environment. For
example, with a small growth, the protocol will not
push the system into serious congestion if the system
is already on the verge of congestion. Therefore,
variable growth rate is necessary. We choose an
equation that allows the protocol to change the
growth rate easily. The equation s(n+1)= (1±k)s(n)
meets this requirement. When the protocol chooses a
small k, say k is close to 0, the growth rate is small.
When the protocol chooses a large k, the growth rate
will be exponential. The larger k, the more the

f(s, bl, br) s r

Figure 4: System model

 6

sending rate varies. So by adaptively changing k, we
can change the growth rate as expected. The sending
rate is updated as follows:







<−

>=+
=+

1),,()()(~)(

01),,()()(~)(
)1(

2

1

rl

estrl

bbsfnsnkns

bandbbsfnsnkns
ns (4)

 For the practical meaning,)(~
1 nk and)(~

2 nk should
satisfy: 0)(~1 2 >> nk and 0)(~

1 >nk . best is an estimated
available bandwidth and is obtained based on the
packet train method [17]. Clearly,)(~

1 nk and
)(~

2 nk affects the system performance. If they are not
properly chosen, the system may not be able to
maintain the sending rate at a constant. Instead, the
system may oscillate executing between Rule1 and
Rule2, resulting in high jitter.

4.2.2 Choices for parameter)(~
1 nk and)(~

2 nk

 At any instant, the system may work in one of the
following scenarios in a probing phase:

Scenario 1: working under Rule1;
Scenario 2: working under Rule2.

 In either scenario, parameters)(~
1 nk and)(~

2 nk
should be selected in a way so that the overall
sending rate converges to min(br, bl). When the
algorithm spots that the network is in congestion or
the end-to-end available bandwidth is greater than
zero, the algorithm initiates a probing phase. It firstly
chooses an initial value of parameter)0(~

1k or)0(~
2k

based on the current network conditions. All the
following values of)1(~

1 +ik and)1(~
2 +ik are

determined by preceding values)(~
1 ik or)(~

2 ik . The
farther the sending rate away from min(br, bl), the
larger the initial value)0(~

1k or)0(~
2k should be.

 When the algorithm starts a probing phase by
increasing the sending rate,)0(~

1k is chosen as such
that the new sending rate reaches somewhere
between the current sending rate s and s plus the
predicted available bandwidth. So

skbls estm))0(1(1+=+
lm is called bandwidth proportional share. The
network before the probing phase is stable, which
means every connection has a proper share of the
bandwidth. So the available bandwidth should be
distributed proportionally to the previous share
among all flows. We choose Lslm /= . Clearly, the
sum of lm for all connections is one and

L
b

s
blk estestm ==)0(1

.

 When congestion triggers a probing phase, the
initial value of)0(~

2k is chosen in the following way:
 If the connection is in serious congestion
(ratio>1.2), the algorithm determines that the
congestion is caused by participation of a new flow
and directly sets the sending rate to a fair share
among all flows. The number of flows before the
probing phase is estimated as  sL / , and thus the
number of current flows is  sL / . So the new

sending rate should be
 sL

L
/

so

 sLs
Lk

/
1)0(2 ⋅
−=

 Figure 3 shows that the ratio can well indicate
congestion degree when the connection is in a light
congestion. Based on experience, we consider that a
connection is in a light congestion if 1<ratio<1.2.
Therefore, the initial value of

2
~k is chosen so that the

sending rate will be s(n+1)=s(n)/ratio, so
ratiok /11)0(2 −=

 After updating the sending rate, the system may be
in the same Scenario or in another Scenario. If the
system is in the same Scenario, we update the
parameter so that the sending rate increases/decreases
in a smaller amount than the previous
increase/decrease. But if the update moves the system
to another Scenario as shown in Figure 5, we need to
choose a parameter so that the system has a decaying
oscillation. After one oscillation, actually we know
the ideal sending rate, s(i+2) lies somewhere within
the range between s(i) and s(i+1). So let’s obtain
some conditions to guarantee s(i+2) to be within s(i)
and s(i+1).

 First let’s assume that at time i, the system satisfies
the condition in Rule1, shown in Figure 5(a). So the
sending rate will be increased to:

)())(1()1(1 isikis +=+ (5)
Then s(i+1) moves the system to under the control of
Rule2, resulting in oscillation. So

)1())1(1()2(2 ++−=+ isikis (6)

Figure 5: Update the sending rate
(a)

s(i)

s(i+1)
s(i+2)

t

s

(b)

s(i)

s(i+1)
s(i+2)

t

s

 7

For decaying oscillation, the ideal s(i+2) should lie
between

)1()2()(+<+< isisis (7)
as shown in Figure 5(a). Since k2(i+1)>0, so clearly,

)1()2(+<+ isis ;
From Equations (5) and (6), we get

)())1()()1()(1(
)())(1))(1(1(

)1())1(1()2(

2121

12

2

isikikikik
isikik

isikis

+−+−+=
++−=

++−=+

For (7) to be held, we have:
0)1()()1()(2121 >+−+− ikikikik

so

)(1
)()1(

1

1
2 ik

ikik
+

<+ (8)

Equation (8) guarantees a decaying oscillation for the
case shown in Figure 5(a).
 Second, let’s assume that at time i, the system
satisfies the condition in Rule2, as shown in Figure
5(b). So the sending rate will be reduced to:

)())(1()1(2 isikis −=+
s(i+1) moves the system to under the control of
Rule1. So

)1())1(1()2(1 +++=+ isikis
For decaying oscillation, the ideal s(i+2) should lie
between

)()2()1(isisis <+<+ (9)
Since k1(i+1)>0, so clearly)2()1(+<+ isis

)())()1()()1(1(
)())(1))(1(1(

)1())1(1()2(

2121

21

1

isikikikik
isikik

isikis

+−−++=
−++=

+++=+

For satisfying Equation (9), we have
0)()1()()1(2121 <+−−+ ikikikik

i.e.,

)(1
)(

)1(
2

2
1 ik

ik
ik

−
<+ (10)

Equation (10) guarantees a decaying oscillation for
the case shown in Figure 5(b).
 Therefore, if oscillation occurs and the next step
parameter is chosen according to Equation (8) or
(10), the system will guarantee a decaying oscillation,
that means the system will have a convergence
sending rate.
 For simplicity, this algorithm chooses the
parameters as









=
−

=
=+

truenoscillatio
nk
nk

falseoscilationenk
nk

)(~1
)(~5.0

/)(~

)1(~

2

2

1

1









=
+

=
=+

trueoscilation
nk
nk

falseoscilationenk
nk

)(1
)(5.0

/)(~

)1(~

1

1

2

2

The initial parameters are determined as described
above.

4.2.3. Pseudo-code algorithm

 This section describes the pseudo-code for the
above algorithm. At the end of every sampling
interval, the algorithm checks if any packet is
received in the new interval. If no packet is received,
the algorithm directly starts another sampling period.
Otherwise, the algorithm generates the rate control
algorithm (Line 1). If the algorithm detects that a
probing phase is on, the algorithm calculates the
following value of the parameter (Line 13~17 or Line
28~32), or if a probing phase is off but the algorithm
detects that the connection conditions are changing
(Line4 or 23), the algorithm starts a probing phase
(Line 5~12 or Line 24~32) and calculates the initial
value of the parameter. After updating the parameter
accordingly, the algorithm requests the sender to
update its sending rate (Line 19 or Line 34). The
algorithm finally checks if the probing phase is
complete or not (Line 38~43).

rate_control2()
1 if (totalNoOfSample !=0) {

2 avgDRatio←totalDRatio/totalNoOfSample
3 if (avgDRatio > 1.02){

4 if (!bProbe){
5 if (avgDRatio>1.2) {
6 k0=1-L/(┌L/sndRate┐.sndRate)
7 k=k0
8 }
9 else {
10 k0=1-1/avgDRatio
11 k=k0
12 }
13 else {
14 if (bInc)
15 k=0.5k/(1+k)
16 else
17 k=k/e
18 }
19 newSndRate=(1-k)sndRate
20 bProbe = true;
21 bInc = false;
22 }
23 else if (estBandwidth>0) {
24 if (!bProbe) {
25 k0=best/L;
26 k=k0
27 }
28 else {
29 if (bInc)
30 k=k/e
31 else
32 k=0.5k/(1-k)
33 }

 8

4.4 Estimate available bandwidth

 To avoid intrusiveness, the protocol uses data
packets to form a measurement train. So the resulting
available bandwidth is actually A-S (A is the
measured available bandwidth and S is the current
sending rate). The sender sends a measurement train
once every T(8000) packets. The packet train is sent
at different rate with the current sending rate as the
starting rate. The train has K(300) packets and every
50 packets is grouped into one category. Starting with
the current sending rate, the following group is sent
at an increasing sending rate with the increasing
amount ∆. Receiver is responsible for calculating the
available bandwidth. If the receiver finds the
connection is already in congestion, it sets the
available bandwidth to zero. Otherwise, it calculates
inter-packet delay and chooses the mean in every
group as the representative inter-packet delay for the
group. It uses representative inter-packet delays to
calculate a bandwidth for each group. So finally we
obtain five groups of (si, ri). The final available
bandwidth is the breakpoint where ri/si<1.

5. EXPERIMENTAL RESULTS

 We have evaluated LambdaStream over the
photonic network testbed between Chicago (Scylla)
and Amsterdam (Vangogh). As shown in Figure 7,
this Testbed consists of three all-optical switches,
located at University of Amsterdam, downtown
Chicago StarLight site and University of Illinois at
Chicago. The transatlantic link is composed of one
1Gbps fiber and its RTT is 110ms.

Figure 7: Photonic network testbed between

Amsterdam and Chicago

Vangogh Dual Intel Xeon 2.8GHz, Linux 2.4.26 with
web100 kernel patch, 2GB RAM, Intel Pro
1000 Gigabit Adaptor

Scylla Dual Intel Xeon 1.8Hz, Linux 2.4.18-3smp
with web100 kernel patch, 1.5GB RAM, ,
Intel Pro 1000 Gigabit Adaptor
Table 1 : System Configuration

 Figure 8 describes throughput for one single flow
running on the Testbed. One line represents a TCP
flow, and the rest of the lines represent
LambdaStream flows, each of which starts with a
different initial sending rate. TCP window is set to
35Mbytes in this experiment. The Figure shows that
the LambdaStream protocol’s throughput converges
very well for a single flow. Even if we set the initial
sending rate to either 1720Mbps or 172Mbps, values
far exceeding or much lower than the available
bandwidth, the protocol manages to maintain the
throughput at an almost fixed sending rate, about
950Mbps. Figure 8 also shows that a single TCP flow
obtains about 800Mbps throughput, which is a little
bit lower than but still comparable to LambdaStream.
However, because of TCP’s slow-start scheme, it
takes about 1.2 seconds to obtain this stable
throughput, which is much longer than the worst case
with LambdaStream, which is 0.8 seconds. The graph
also shows that the TCP throughput varies much
more than LambdaStream does. Higher variation in
throughput usually indicates a higher jitter.

34 newSndRate=(1+k)sndRate
35 bInc = true;
36 bProbe = true;
37 }
38 if (newSndRate ≅sndRate) {
39 bProbe = false;
40 bInc=false
41 totalNoOfSample = 0
42 totalDRatio = 0
43 }
44 }

 9

Throughput of TCP and LS on the 1Gbps Link

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

172Mbps
1720Mbps
983Mbps
TCP

Figure 8: Throughput for a single flow on a 1Gbps

network (showing multiple cases)

 Our OptIPuter applications use frames to send and
receive data, so all we care about is the frame-level
(or called application-level) jitter. Figure 9 describes
the frame-level jitter when the frame size is 2MB. In
Figure 9 (below), the Y-axis represents the interval
between received packets, so the variations indicate
jitter. Higher variation in packet interval represents
higher jitter. LambdaStream exhibits much smaller
jitter than TCP does. The big spike in the
LambdaStream line indicates that the protocol
recovered a lost packet. With smaller payloads (e.g.
2MB), every lost packet increases jitter. For example,
to transmit a 2MB payload without loss takes
2M*8/1G = 16ms for a complete transmission.
However, the time needed for lost packet recovery is
at least one RTT (110ms). As a result, every lost
packet causes a huge spike in jitter.

Jitter of TCP and LS Flow with 2MB Payload

0

20

40

60

80

100

120

0 100 200 300 400 500

Round

Ti
m

e
(m

s)

TCP
LS

Figure 9: Jitter Comparison between TCP and

LambdaStream with identical 2 Mbyte Payloads

 Figure 10 describes fairness between multiple
LambdaStream flows. Experiments show that
LambdaStream can achieve either converging
fairness (Figure 10a and Figure 10b) or min-max

fairness (Figure 10c and Figure 10d) among flows. In
both cases, LambdaStream can fully occupy the
available bandwidth. The differences result from
scheduling imprecision in non real-time operating
systems, which sometimes delay LambdaStream
packets by returning control to the protocol tens of
milliseconds later than requested. We are currently
investigating this.

Fairness Between Two Flows

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

Flow 1
Flow 2

a. Two LambdaStream flows with converging

fairness
Fairness among 3 flows

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16 18

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

LS Flow 1
LS Flow 2
LS Flow 3

b. Three LambdaStream flows with

converging fairness

Fairness Between Two Flows

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

Flow 1
Flow 2

c. Two LambdaStream flows with min-max fairness

 10

Fairness Among Three LS Flows

0

200

400

600

800

1000

1200

0 2 4 6 8 10

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

Flow 1
Flow 2
Flow 3

d. Three LambdaStream flows with min-

max fairness

Figure 10: Fairness experiments for LambdaStream
flows over 1Gbps link

 It is difficult to compare fairness between TCP
with a high performance protocol because TCP
usually cannot utilize the full bandwidth. But since
the single revised TCP uses almost the full
bandwidth, the paper also shows the situations when
several TCP flows run simultaneously. Figure 11
shows fairness achieved by TCP in the same
environment. In Figure 11(a), a new TCP flow is
started before the first flow reaches maximum
throughput. In this case, the flows achieve average
fairness. In Figure 11(b), a new flow is started after
the first flow reaches maximum throughput. In this
case, TCP cannot achieve fairness. The first flow is
affected greatly when a second flow is added. Even
after the second flow completes, the first flow
continues to increase its throughput at the same rate
and does not probe the highest available bandwidth
for more than fifteen seconds. In both cases, the
results show that multiple TCP flows cannot fully
occupy the available bandwidth.

Fairness between Two TCP Flows

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

TCP1
TCP2

a. Two TCP flows with new flow added earlier

Fairness Between Two TCP Flows

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

TCP1
TCP2

 b. Two TCP flows with new flows added

later
Fairness Among Three TCP Flows

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

TCP1
TCP2
TCP3

c. Three TCP flows

Figure 11: Fairness experiment for TCP flows

 Figure 12 describes how a LambdaStream flow
may affect TCP flows. In this experiment, a
LambdaStream flow lasts about 10s and then
disappears. We see TCP’s throughput is similar to the
situation when another TCP joins in. Therefore, we
can say that the way LambdaStream influences TCP
flows is similar to the way when another TCP joins
in. LambdaStream occupy the rest of the bandwidth.
We cannot say LambdaStream is fair to TCP.

Two TCP Flows and One LS Flow

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

TCP1
TCP2
LS1

Figure 12: Influence

 11

6. RELATED WORK
 Network researchers have reached a consensus that
the current TCP implementations are not suitable for
long distance high performance data transfer. Either
TCP needs to be modified radically or new transport
protocols should be introduced. Long Fat Networks
(LFNs), such as those between the U.S., Europe and
Asia, have extremely high round-trip latencies (at
best 120ms). This latency results in gross bandwidth
under-utilization when TCP is used for data delivery.
Several solutions have been proposed. One solution
is to provide revised versions of TCP [8] [11] with
better utilization of the link capacity. Another
solution is to develop UDP-based protocols to
improve bandwidth usage. The Simple Available
Bandwidth Utilization Library (SABUL) [9],
Tsunami [10], Reliable Blast UDP (RBUDP) [4] and
the Group Transport Protocol (GTP) [20] are few
recent examples.

 However, none of these solutions, except GTP,
works well when packet loss occurs. TCP interprets
packet loss as an evidence of congestion and halves
its congestion window when detecting a packet loss.
This mechanism ensures fairness among connections
sharing the same channel, and works well in the
current Internet, where most of the packet losses are
due to congestion. However, in OptIPuter, other
factors for packet loss can not be ignored. Most
visualization-related applications for the OptIPuter
are both computation and network-intensive,
processing datasets to generate geometries for real
time rendering. Additionally, high bandwidth of
LFNs allows packets to reach a receiver at speeds
that may exceed the receiver’s capability, forcing the
receiver to discard packets (this often occurs when
the receiver’s CPU usage is high). Thus the receiver
usually becomes the bottleneck to maintaining a high
throughput [18]. However, TCP and many of its
revised versions such as SCTP (Stream Control
Transmission Protocol) [8] and FAST (Fast Active
queue management Scalable TCP) [11] use
windowing mechanisms and do not differentiate the
causes for packet loss, which limits the complete
utilization of link capacity. The latest version of
SABUL--UDT [9] has the similar problem. GTP is
designed as a request transfer data model and our
work is designed as a real time data streaming model.

7 CONCLUSIONS

 LambdaStream extends the congestion control to
encompass an end-to-end scope. It distinguishes
packet loss and adjusts the sending rate accordingly.
The protocol also applies a ratio sampling approach
to detect incipient congestion and combines it with a
bandwidth estimation method for proactively probing
for an appropriate sending rate. The experimental
results show that LambdaStream achieves 950Mbps
throughput in a 1Gbps channel. It exhibits small
application-level jitter and react smoothly to
congestion, which is very suitable for streaming
applications in OptiPuter. LambdaStream works well
for continuous data streams of varying payloads that
are representative characteristics of visualization
applications.

8. REFERENCE

[1] http://www.evl.uic.edu/cavern/optiputer

[2] http://www.evl.uic.edu/cavern/optiputer/volatile.html

[3] Rajvikram Singh, Jason Leigh, Thomas A. DeFanti and
Fotis Karayannis, “TeraVision: a high resolution
graphics streaming device for amplified collaboration
environments”, Future Generation Computer Systems,
Special Issue: IGRID 2002. Volume 19(2003), Number
6, August 2003, Elsevier B. V., The Netherlands.

[4] E. He, J. Alimohideen, J. Eliason, N. K. Krishnaprasad,
J. Leigh, O. Yu and T.A. DeFanti, “QUANTA: A
toolkit for high performance data delivery over
photonic networks”, Future Generation Computer
Systems, Special Issue: IGRID 2002. Page 919-933,
Volume 19(2003), Number 6, August 2003, Elsevier B.
V., The Netherlands.

[5] J. S. Chase, A. J. Gallatin, and K. G. Yocum, “End-
system optimizations for high-speed TCP”, In IEEE
Communications, special issue on TCP Performance in
Future Networking Environments, vol. 39 no. 4, April
2001

[6] http://www.evl.uic.edu/cavern/rg/20030817_he/

[7]. A. S. Tanenbaum, Computer Networks. New Jersey:
Prentice-Hall, 1996, ch. 6.

[8] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.
Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang
and V. Paxson Stream Control Transmission Protocol
(RFC 2960).http://www.ietf.org/rfc/rfc2960.txt

 [9] Y. Gu and R. L. Grossman, “UDT: An Application
Level Transport Protocol for Grid Computing”,
Abstract for 2nd International Workshop on Protocols
for Fast Long-Distance Networks

[10] http://www.indiana.edu/~anml/anmlresearch.html

[11] C. Jin, D. X. Wei and S. H. Low, “FAST TCP:
motivation, architecture, algorithms, performance”,
IEEE Infocom, March 2004

 12

[12] A.A. Awadallah and C. Rai. TCP-BFA: Buffer Fill
Avoidance. In Procedding of IFIP high perfornace
networking conference, sep. 1998

[13]. L.S. Brakmo, S.W. O’Malley, and L. L. Peterson.
TCP Vegas: new techniques for congestion detection
and avoidence. In proceesings of ACM SIGCOMM,
Aug. 1994

[14] R. Jain, A delay-based approach for congestion
avoidence in interconnected heterogeneous computer
networks, ACM computer communications review,
19(5):56-71, Oct, 1989

[15] D. Mitra and J.B. Seery. dynamic adaptive windows
for high-speed data networks: theory and simulations.
In proceedings of ACM SIGCOMM, Aug. 1990.

[16] M. Jain, C. Dovrolos. end-to-end available bandwidth:

measurement methodology, dynamics, and relation
with TCP throughput. In proceedings of SIGCOMM
Aug. 2002.

[17] B. Melander, M. Bjorkman, P. Gunningberg, “A new

end-to-end probing and analysis method for estimating
bandwidth bottlenecks,” in IEEE Global Internet
Symposium, 2000.

[18] J. S. Chase, A. J. Gallatin, and K. G. Yocum, “End-
system optimizations for high-speed TCP”, In IEEE
Communications, special issue on TCP Performance in
Future Networking Environments, vol. 39 no. 4, April
2001

[19] D. A. Reed, Grids, the TeraGrids, and Beyond. IEEE
Computer, 2003. 36(1):p 62-68

[20] Ryan X. Wu, and Andrew Chien, "GTP: Group
Transport Protocol for Lambda-Grids", in Proceedings
of the 4th IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid), April 2004

