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Abstract—Visualizing the large-scale datasets output by HPC resources presents a difficult challenge, as the memory and compute
power required become prohibitively expensive for end user systems. Novel view synthesis techniques can address this by producing
a small, interactive model of the data, requiring only a set of training images to learn from. While these models allow accessible
visualization of large data and complex scenes, they do not provide the interactions needed for scientific volumes, as they do not
support interactive selection of transfer functions and lighting parameters. To address this, we introduce Volume Encoding Gaussians
(VEG), a 3D Gaussian-based representation for volume visualization that supports arbitrary color and opacity mappings. Unlike prior
3D Gaussian Splatting (3DGS) methods that store color and opacity for each Gaussian, VEG decouple the visual appearance from
the data representation by encoding only scalar values, enabling transfer function-agnostic rendering of 3DGS models. To ensure
complete scalar field coverage, we introduce an opacity-guided training strategy, using differentiable rendering with multiple transfer
functions to optimize our data representation. This allows VEG to preserve fine features across a dataset’s full scalar range while
remaining independent of any specific transfer function. Across a diverse set of volume datasets, we demonstrate that our method
outperforms the state-of-the-art on transfer functions unseen during training, while requiring a fraction of the memory and training time.

Index Terms—Volume Rendering, 3D Gaussian Splatting

1 INTRODUCTION

As high-performance computing (HPC) systems continue to grow in
scale, scientific simulations are generating ever-larger and more com-
plex datasets. These simulations frequently use adaptive mesh refine-
ment (AMR) [2, 3, 5, 8, 9, 21] or unstructured meshes [2, 11, 34, 35] to
reduce the memory footprint of output volumes. However, visualizing
these volumes remains a significant challenge: datasets often exceed
GPU memory, and visualization itself may require HPC resources,
limiting interactivity and accessibility.

To address these challenges, recent work has explored machine
learning (ML) to enable large-scale volume visualization, both for direct
compression of volumetric datasets [24, 57, 60, 61] and for reducing
the compute requirements during rendering [4, 10, 56, 58]. At the
same time, novel view synthesis (NVS) techniques have emerged as
a powerful method for representing 3D scenes within small memory
and compute budgets. Requiring only a sparse set of training images
depicting the original scene, a NVS model can learn to infer viewpoints
at unseen angles, allowing for interactive rendering of a dataset with a
memory footprint independent of the original size. Additionally, image-
based training allows NVS techniques to natively support arbitrary
data formats, as long as they can be rendered to a set of images. This
presents an opportunity for volume visualization, where existing ML
techniques have largely focused on structured volumes rather than
AMR or unstructured data.

Within the field of NVS, 3D Gaussian Splatting (3DGS) has shown
itself as an impressive technique for real-time rendering, and has en-
joyed an explosion of follow-up work since its initial debut [13, 19]. In
3DGS, a scene is represented by a set of 3D Gaussians, each defined
by a position, scale, rotation, view-dependent color, and opacity. These
Gaussians are projected into screen space and alpha-blended to form
the final image. Each Gaussian’s parameters are optimized by an ML
framework using differentiable rendering, and the training pipeline
dynamically densifies and prunes the total number of Gaussians. Once
optimized, 3DGS enables fast and high-quality rendering of 3D scenes.
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However, base 3DGS is fundamentally designed for surface-based,
photogrammetry-derived datasets, not scientific volumes, as it embeds
view-dependent color and opacity into each Gaussian. This makes
3DGS incompatible with the workflows that are typical for volume
visualization, where users must be able to adjust color and opacity
mappings interactively by changing transfer functions (TFs). To ad-
dress this, previous work has extended 3DGS for volume visualization
tasks [1, 49] using composition of multiple sets of editable Gaussians
that allow for adjusting color, opacity, and lighting after training. Each
set of editable Gaussians is trained using a collection of multi-view
images rendered from a single TF. By using many TFs that highlight
disjoint areas of the volume’s range, the composed set can represent
the original data. While this method is accurate for the TFs the model
was trained on, it is unable to robustly render unseen TFs. In addition,
because the method involves composing multiple sets of 3DGS models
to produce a full model, its training time and memory footprint quickly
grow as more sets are required to represent larger datasets.

To address these issues, we present Volume Encoding Gaussians
(VEG), a novel 3DGS representation tailored for scientific volume visu-
alization. Rather than storing color and opacity for each Gaussian, VEG
store only scalar field values, decoupling the data representation from
its visual properties. This allows VEG to support fully transfer function-
agnostic rendering, where arbitrary color and opacity mappings can be
applied dynamically at render time. Additionally, the entire function
range of a volume can be accurately represented with only one set of
VEG, greatly reducing memory and training time compared to methods
which rely on composing multiple models.

Our work presents the following contributions:

• A method for novel view synthesis of volume data that can faith-
fully visualize color and opacity mappings unseen during training
by approximating the underlying scalar field.

• An opacity-guided training technique that allows representing the
full function range of volume data without separate training and
composition for multiple transfer functions.

• An evaluation demonstrating that VEG achieve higher reconstruc-
tion quality on unseen transfer functions than the state-of-the-art,
while having greatly improved training time and memory footprint
(average 6.8× faster training time and 17.0× smaller files).
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2 RELATED WORK

Interactive rendering of large-scale volumes has long been a focus area
in scientific visualization [7, 39, 43, 55]. Ever larger data sets and the
desire for faster rendering and higher visual quality pose a continuous
challenge, while new hardware capabilities provide opportunities for
new techniques [28–30, 37, 38]. For a current overview of the field, we
refer the reader to the survey by Sarton et al. [39] for more details.

In this work, we propose an image-based machine learning method
for volume visualization. While our work does not produce a neural
representation, it is similar to methods that do in that we use machine
learning to optimize our VEG to represent volume data. Because of
this, we review neural representations for compressing and rendering
volume data in Section 2.1. Next, we review image-based methods
for volume visualization in Section 2.2. Finally, since our work draws
heavily from 3DGS, we give background for this work and related
methods in Section 2.3.

2.1 Neural Representations for Volume Data

Neural representations for volume data, also known as scene represen-
tation networks (SRNs), implicitly model a volumetric function from
input positions to scalar values using neural networks. Because neural
networks can be sampled quickly and represent data without scaling
linearly with dataset size, they offer a compressed representation that
can be used for rendering. While there has been much work in this field
(see the recent survey by Wang and Han [52]), here we will focus on
papers that apply to scientific volume data. Weiss et al. [59] showed the
possibility of reconstructing volume data from ground truth images us-
ing differentiable volume rendering. Jain et al. [16] presented a neural
method for compressed volume rendering of multivariate time-varying
volumes. Kim et al. created NeuralVDB [20], which used neural
networks to further improve the compression ability of the VDB [32]
data structure for sparse volumes. Lu et al. created Neurcomp [24],
which adapted SIREN’s [44] implicit neural representation for efficient
volume data compression. Weiss et al. developed fV-SRN [57], which
used dense-grid encoding [48] and fast tensor core inference to build a
neural representation that supports interactive rendering. Wu et al. then
improved on fV-SRN’s performance (in terms of reconstruction qual-
ity, training time, and rendering speed) with InstantVNR [61], which
utilizes multi-resolution hash encoding [31], along with out-of-core
training and batch inference during rendering.

Although our method is similar to these representations in its goal of
enabling visualization of large-scale volumes, there are multiple advan-
tages arising from our method being image-based. First, image-based
methods easily fit into simulation workflows, where output images can
be written at each timestep and later used for training without transfer
of the prohibitively large output volumes. Next, image-based models
naturally support any data type, while only a small set of neural rep-
resentations have been demonstrated to work directly with AMR or
unstructured volume data [23, 45]. Finally, image-based methods offer
performance that is completely decoupled from the original data size,
only depending on image resolution and scene complexity. This allows
training of image-based models to be done even on consumer hardware,
rather than requiring HPC resources.

2.2 Image-Based Methods for Volume Visualization

As image-based rendering and modeling methods are not tied to dataset
size, they are important in enabling volume visualization for use cases
where traditional rendering methods have prohibitively high compute
and memory requirements. Early work in this area from Tikhonova
et al. [50, 51] involved creating exploratory images, which allowed
for changing color and opacity mappings of a rendered image without
accessing the original volume data. Since then, image-based work has
been extended to support synthesis of images from unseen view points
using various ML approaches. Berger et al. [6] proposed pre-trained
generative adversarial networks to synthesize volume-rendered images
and explore the space of transfer functions while guiding user selection.
Yao et al. [63] used a NeRF-based approach to train a network to rep-
resent pre-shaded volumetric scenes from a small number of rendered

images. VisNerf [62] presented a multidimensional radiance field rep-
resentation that allows for novel view synthesis of volumetric scenes
with interactive control over transfer functions, isovalues, timesteps,
and simulation parameters. Most importantly to our work, iVR-GS [49]
showed how 3D Gaussian splatting can be extended for volume visual-
ization by implementing Blinn-Phong lighting and editable Gaussian
colors after training. Instead of directly storing color for each Gaus-
sian, they store a palette color common to a set of Gaussians, train
an offset color for each Gaussian, then produce each Gaussian’s final
color during rendering by adding the offset color to the palette color.
This allows them to edit color after training by modifying the palette
color of the set. We differ from iVR-GS in that we fully remove color
and opacity attributes for each Gaussian, and instead allow our model
to learn the scalar field represented by volume data directly. In doing
so, we remove the need to train multiple models for each desired TF,
achieving a transfer-function independent model after training.

2.3 3D Gaussian Splatting

Splatting methods involve projecting a set of 3-dimensional primitives
directly onto a 2-dimensional image, then α-blending the primitives
in order of their depth. Zwicker et al. [68] first proposed the use of
Gaussian filters as a primitive for splatting, showing their effectiveness
for rendering both surface and volume data. Since the landmark work
on utilizing neural radiance fields (NeRF) [26], novel view synthesis
has seen an explosion of work. While neural radiance fields have been
shown to produce highly accurate renderings, they regularly suffer
from high training times and low rendering frame rates, reducing their
applicability for real-time interaction. Kerbl and Kopanas et al. [19]
noted that, while the rendering algorithm for Gaussian splatting is very
different, its image formation model is similar to traditional volume
rendering methods such as those in neural radiance field rendering
(NeRF) [26]. At the same time, the explicit nature of 3D Gaussians en-
ables fast rendering compared to the expensive sampling necessary for
rendering with the continuous implicit neural representation of NeRFs.
3D Gaussian splatting [19] was developed to optimize an explicit rep-
resentation for novel view synthesis, allowing for greatly improved
rendering performance while maintaining reconstruction quality.

Originally developed for photogrammetry-based scene reconstruc-
tion, in 3DGS each Gaussian stores an opacity along with view-
dependent color using spherical harmonics, similar to previous
work [14, 31]. In addition, initializing a set of 3D Gaussians relies
on point clouds derived from NeRFs, COLMAP [40, 41] or similar
structure-from-motion pipelines. These features of 3DGS are inherently
designed for real-world image datasets, making them unsuitable for
scientific volume data, where direct volume rendering [25] techniques
are commonly used to map scalar field values to optical properties
using transfer functions consisting of color and opacity maps. Arbitrary
transfer functions are needed for data exploration, so volume render-
ing must support interactive transfer function adjustments, meaning
that hard-coded color and opacities in the data representation are not
suitable. While recent work [17] has used distributed 3DGS [67] for
visualization of large scientific datasets, this method supports only a
single static transfer function per 3DGS model. In our work, we remove
this limitation through our development of Volume Encoding Gaus-
sians which represent the underlying data field of a volume directly.
Moreover, we replace the use of scene reconstruction for initialization,
instead using the given volume dataset or random initialization.

Our work also takes advantage of recent extensions to 3DGS with re-
gards to lighting effects and reduced memory footprint. Gao et al. [15]
introduced relightable Gaussians, which augmented 3DGS with extra
parameters to support Bidirectional Reflectance Distribution Function
(BRDF) lighting. iVR-GS [49] adapted this method to the Blinn-Phong
reflection model, which is more common to volume rendering use
cases. Our method adopts their technique of Blinn-Phong lighting for
producing shaded images with our own model. The original 3DGS
formulation had an unnecessarily high memory requirement, and sev-
eral works have been created to address this limitation [12, 33, 36]. We
adopt these methods by utilizing vector quantization to compress our
models while maintaining reconstruction quality, clustering most model



parameters into a codebook for storage.

3 DESIGN OF VEG

In this section, we give background on volume data types (Section 3.1),
then describe the VEG representation (Section 3.2), an extension of
3DGS tailored to scientific volume visualization. Finally, we present
how VEG are used for differentiable rendering with arbitrary transfer
functions (Section 3.3).

3.1 Volume Types

A structured volume is defined by a set of scalar field values on a
regular grid, with neighboring points assumed to be connected grid
cells. The geometry of a structured grid is defined implicitly; only
the data values need to be stored along with the grid dimensions and
spacing. Any point in space can then be interpolated directly from the
surrounding grid points. In contrast, unstructured volume data requires
explicit storage of the geometry over which the scalar field is defined.
Given a position in space, a test is performed to determine what cell in
the volume, if any, contains it, before interpolating between that cell’s
vertices to find the scalar value at that position.

3.2 The VEG Representation

In our work, we propose an explicit, point-based representation to
encode a volume’s geometry and underlying scalar field. To do this,
we use a 3D Gaussian formulation, where each point is defined as an
ellipsoid centered at position µ with 3-dimensional scaling and rotation
matrices, S and R. This allows the points to translate, stretch, and rotate
independently in each dimension, giving the representation freedom
to adapt to the arbitrary geometries of structured and unstructured
volumes. Each Gaussian stores a value, allowing it to record the scalar
field over the covered area of the volume’s geometry. In this way, our
Volume Encoding Gaussians (VEG) give a compact representation that
can encode the full information of the volume being rendered without
storing any connectivity information for unstructured volumes.

3.3 Rendering of VEG

The goal of our representation is to approximate direct volume render-
ing [25] of the ground truth dataset. Specifically, we target raymarching
with the emission-absorption model, where the color of each pixel is
given by accumulating the contribution of N samples along the ray
using α-blending with the discretized equation:

P =
N

∑
i=0

ci ·αi ·
i−1

∏
j=0

(1−α j) (1)

where samples i of the represented scalar field produce each opacity
αi (emission) and color ci (absorption) through transfer function ap-
plication and lighting effects. We use 3D Gaussian splatting to model
Equation 1 approximately, where the Volume Encoding Gaussians
representing a scalar field are sampled through splatting. To render
each Gaussian, the scaling and rotation matrices are used to create the
Gaussians’ 3-dimensional covariance matrix, which is then projected
to a 2-dimensional covariance matrix using the method of Zwicker
et al. [68]. This converts the 3D Gaussian in object space into a 2D
Gaussian in image space. The list of 2D Gaussians intersecting the
screen can then be used to create the rendered image using the efficient
tile-based rasterizer of Kerbl and Kopanas et al. [19]. This rasterizer
employs α-blending of splatted Gaussians in front-to-back order, where
a pixel accumulates each Gaussian intersecting it by evaluating its 2D
covariance matrix at the pixel’s position (using the method of Yifan
et al. [65]). This solves Equation 1, effectively approximating the
emission-absorption model for raymarching-based volume rendering.

To determine how each VEG contributes to the color and opacity
of a pixel, we first use a given transfer function to map each Gaus-
sian to opacity and color. Rather than evaluating a transfer function
when accumulating samples, it is more efficient to apply the transfer
function as the first step of our rendering algorithm. This allows us to

immediately cull Gaussians with values mapped to low opacities, sav-
ing computation time similarly to empty space skipping in traditional
volume rendering.

We found that, although this transfer function mapping follows the
principles of volume rendering, it leads to poor training performance
due to limiting the model’s ability to optimize opacity directly. This is
important, as 3DGS effectively uses opacity to weigh the importance of
different Gaussians, increasing the visibility of those that are useful and
removing those with low opacity for density control. To reintroduce this
ability into VEG, we augment our Gaussians with a trainable weight
parameter analogous to the original opacity, and output the final opacity
for each VEG as the product of its transfer function-dependent opacity
and its weight, i.e. αi = O(vi) ·wi where O(v) is the opacity mapping
of the transfer function, vi is the Gaussian’s scalar value and wi is the
Gaussian’s weight.

Additionally, our model needs to support lighting effects, which
are essential for 3D perception during rendering. For volume visual-
ization, the most common lighting model used is Blinn-Phong. The
Blinn-Phong model produces lighting effects by summing ambient (ca),
diffuse (cd), and specular (cs) colors output by samples, rather than just
the transfer function-determined color C(v). We adopt the technique
of iVR-GS [49] for Blinn-Phong lighting in our model by attaching
ambient, diffuse, and specular coefficients (ka

i , kd
i , and ks

i ), a normal
vector (ni), and a shininess term (βi) to each Gaussian. Then, given a
light direction l, we produce the final color for each Gaussian as:

ci = ka
i ·C(vi)+ kd

i ·C(vi) · |ni · l|+ cs
i , (2)

cs
i =

{
ks

i · cwhite · |ni · v+l
|v+l| |

βi , if |n · l|> 0

0,otherwise
(3)

This gives the final parameter list for each VEG (Gi) in our model as
(µi, Si, Ri, vi, wi, ni, ka

i , kd
i , ks

i , βi). In the backwards pass of rendering,
gradients are computed manually for each Gaussian parameter using
a modified version of Kerbl and Kopanas et al.’s [19] rasterizer. In
order to optimize the attached scalar values for each Gaussian, we
backpropagate gradients with respect to color and opacity through the
lighting equations and transfer function used to render that frame. We
assume linear interpolation of color and opacity between each control
point of a given transfer function, but allow for an arbitrary number
of control points to be given. To constrain values within [0,1) and
ensure smooth gradients during training, we utilize a sigmoid activation
function for storing scalar values and weights.

4 OPTIMIZATION OF VEG
The essence of our method is our optimization of VEG to accurately
represent volume data. In this section we outline our strategy, starting
with how we initialize our models in Section 4.1. We then detail our
method for training these models to completion in Section 4.2.

4.1 Initialization
As shown in previous work [19], proper initialization can be essential
for learning explicit scene representations. Because the input to our
method is a volume dataset, it is important to initialize our VEG with
some knowledge of the scalar field they will be trained to represent.
To do this, we experimented with initializing VEG from either cell
centers or vertices of a volume, but found both methods to give around
equal performance, so present here only the vertex-centered method. In
order to initialize our VEG, we first drop the connectivity information
and treat the scalar-valued vertices as a point cloud with each point
storing a value. We then transform each point into a VEG centered at
the same position with the same scalar value. We initialize each VEG’s
scale depending on the proximity of its closest neighbors, with larger
Gaussians in areas of empty space and smaller Gaussians in areas of
high density. This process is shown in Figure 2.

In practice, we randomly drop out all but a small number of data
points before initializing the VEG in order to create compact models, as
each VEG can represent many data points. This also makes our method
easier to fit into HPC workflows, as only a small sampling of data is
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with attached data value. These are initialized to make each initial 3D
Gaussian a sphere with size relative to the density of other points around
it, with lower density creating larger Gaussians.

required to be stored for later training. For use cases where this is not
possible, our method can also perform well with random initialization,
as shown in Section 5.3. The exact number of Gaussians needed for
a VEG model depends on a dataset’s complexity, and so we rely on
adaptive density control during training (see Section 4.2) and only use
a very rough estimate for initialization. For unstructured volumes, we
also experimented with selecting data points uniformly in space rather
than randomly from the unstructured mesh, but found this to have little
effect on training; in our evaluation, we use random selection of data
points for initialization.

4.2 Training
To optimize our VEG, we conduct image-space training using our fast
differentiable rendering algorithm described in Section 3.3. The com-
plete training pipeline is shown in Figure 1. The model is iteratively
optimized to match training images via backpropagation to each Gaus-
sians’ parameters. Through this, the VEG are able to learn both the
geometry of the volume and value of the scalar field.

In order to accurately recreate a dataset, the model must have train-
ing data that can allow it to learn all of the dataset’s information. This
process requires creating a robust set of training images with corre-
sponding transfer functions and camera information. For our evaluation,
we accomplish this by rendering a set of ground truth images using
PyVista’s [46] VTK backend [42]. For these images, PyVista ray-
marches volumes with an emission-absorption model and shades them
with Blinn-Phong lighting with a headlight from the camera. Images
are rendered in a full camera orbit to ensure complete coverage of the
given dataset.

To allow our model to render images for transfer functions never
seen during training, we must ensure the VEG are able to reconstruct

the full function range of the dataset. For this, the transfer functions
used to create the training set of images must be carefully chosen.
Because optimization is done from loss computed between images,
transfer functions which highlight certain ranges of the scalar field
effectively weight the set of VEG to reconstructing the regions of the
dataset containing those ranges. We found that the mapping of values
to color did not have large effect on the resulting trained VEG, as
long as the colormap used was not diverging. Opacity mapping, on
the other hand, was especially significant to deciding which areas of
the volume were reconstructed. This is intuitive, since areas of value
mapped to high opacity will be rendered with high opacity in resulting
images, making them more impactful on loss, which leads optimization
to assign more relevance towards reducing their error.

We take advantage of this to improve the reconstruction quality of
our models with opacity-guided training, where we use the opacity
applied by transfer functions as an importance mapping to reconstruct
all areas of the given dataset. To create our training set of images,
we render each camera angle with multiple opacity maps highlighting
different areas of the scalar field’s range. We design these opacity maps
so that, in combination, every area of the range is weighted as equally
important. Because these opacity maps will be used for optimizing
scalar values, it is also important that there is slope between each data
point, in order for gradients to move values up or down during training.
We build the set of opacity maps by first dividing the function range into
a number of steps, which we take as an input parameter. We then create
an opacity map centered in each step, with linear drop-off around this
center having slope equal to the number of steps. A visual comparison
of trained Gaussian density resulting from our opacity-guided training
technique against naive approaches is given in Figure 3. We evaluate the
quality of models trained with our method against the naive approach,
as well as investigate the number of opacity steps needed for accurate
training in Section 5.3.

For each training iteration, a random camera angle and transfer
function are chosen from the training set. The current set of VEG
are then rendered and compared against the ground truth image for
the same settings in order to compute loss. We compute image loss
as a mixture of L1 and SSIM [53] loss, i.e. (1 − λ )L1 + λLSSIM ,
where λ weighs them against each other. We set λ to 0.2 for all
our tests, borrowing this convention from other work in 3D Gaussian
splatting [19, 49]. Additionally, we also optimize Gaussian normals
directly using the normal consistency loss from Gao et al. [15], and
Gaussian lighting attributes (ka

i , kd
i , ks

i , and βi) using a small bilateral
smoothness regularization term [49, 64, 66].

For best resulting models, training needs some way to adaptively
control the density of Gaussians in space. This allows for removing
Gaussians from areas where they are unneeded, saving memory and
computation, and adding them to areas where the current number of
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Fig. 3: Gaussian density comparison of VEG models trained using either a linear opacity map, an inverse linear opacity map, or our multiple opacity
map method using three steps on the RBL dataset. Reference shows volume rendering with a pale rainbow colormap, where high values are red
and low values are pale blue. Gaussian centers are painted using deep blue for each of the trained models, on top of the reference image, using
SuperSplat’s [47] 3D Gaussian editor. Selected areas of high value are highlighted with an orange box, and areas of low value are highlighted with a
yellow box. Notice training with the linear transfer function (which gives high opacity to high values) leads to greater Gaussian density in areas of
high values and very low density in areas of low values, while the model trained with the inverse linear map does the opposite. Our multiple opacity
map method leads to equal density for both areas of the function range.

Gaussians cannot accurately represent the volume’s complexity. This is
accomplished via densification and pruning heuristics during training.
For both, we follow the method of Kerbl and Kopanas et al. [19]. They
show that, if a Gaussian has large view-space positional gradients, it is
likely to be in a region that is not well reconstructed. Therefore, new
Gaussians need to be added to that area, which is done by either cloning
or splitting the Gaussian. For pruning, their work removes Gaussians
with low attached opacity, so we follow this heuristic by using each
VEG’s attached weight parameter wi. We find these heuristics sufficient
for creating accurately compact models depending on the complexity
of the volume being reconstructed.

5 EVALUATION

In this section, we perform an extensive evaluation of our method both
quantitatively and qualitatively. We list our datasets and system setup
in Section 5.1. Our experimental study is to compare our method with
the state-of-the-art image-based method for volume visualization, iVR-
GS [49]. We evaluate both methods with regards to reconstruction
quality, memory footprint, training time, rendering performance, and
generalizability to unseen transfer functions in Section 5.2. We then
perform an ablation study of the design decisions of our method in Sec-
tion 5.3. Finally, we present and briefly describe a qualitative showcase
of our method on more complex transfer functions in Section 5.4.

In addition, we also adapted the interactive renderer of Tang et
al. [49] to our use case, as presented in Figure 4. Please see the
supplemental video for a demo of interaction with our renderer and
comparison with iVR-GS. We additionally created a web application
port of this renderer, accelerated with WebGPU [54], to illustrate the
potential of our method to enable lightweight client devices within a
low memory footprint.

Dataset Dimensions

Vortex (512, 512, 512)
Chameleon (1024, 1024, 1080)

Dataset Tetrahedra

RBL 3.89M
Mito 5.54M

Table 1: Chosen datasets and their size. Separated into structured
volumes (left) and unstructured volumes (right).

Fig. 4: Interactive VEG renderer adapted from Tang et al. [49]. Because
VEG models are trained to generalize to arbitrary transfer functions, we
replace their per-basic-set color and opacity sliders with selection of
colormaps and an interactive opacity map creation tool.

5.1 Setup
Datasets To showcase the potential of VEG across different volume
types, we benchmark our method on 4 datasets, consisting of 2 struc-
tured volumes (Vortex [49] and Chameleon [22]) and 2 unstructured
volumes (Mito and RBL) [37]. The size of each is given in Table 1.

Systems All training was performed on a workstation with an Nvidia
A40 GPU and an AMD EPYC 9124 16-Core Processor. To illustrate
the applicability of both methods to less powerful end-user systems, all
rendering performance results were achieved on an XPS 17 laptop with
an RTX 4070 Laptop GPU and an i9-13900H CPU.

5.2 Evaluation of Metrics
For our evaluation, we create training and testing sets of 800× 800
resolution images using PyVista’s [46] VTK backend [42]. We per-
form volume rendering with Blinn-Phong shading using a headlight
from the camera for all images. We use 10 training opacity maps as
described in Section 4.2 for all datasets except RBL, where we use
only 5 steps due to the dataset’s sparsity. Multiple colormaps were
experimented with, but since all led to similar results we choose to
use only the Matplotlib [18] "viridis" colormap during training for
simplicity. For every transfer function used for training or testing,



Dataset Method Training TF Unseen Colormaps Broad Opacity Narrow Opacity Training # of File Size Avg.
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM Time (min) Gaussians (MB) FPS

Vortex iVR-GS 37.83 0.99 28.41 0.96 23.20 0.92 21.69 0.90 219.8 3,848,171 90.2 3.9
VEG 35.19 0.98 33.98 0.97 25.85 0.92 22.22 0.89 29.7 216,328 4.9 40.9

Chameleon iVR-GS 34.41 0.96 29.27 0.94 24.42 0.90 24.99 0.91 144.8 1,327,237 31.1 17.5
VEG 32.60 0.95 31.44 0.94 28.93 0.93 24.45 0.91 20.1 70,742 1.6 51.3

RBL iVR-GS 37.38 0.99 34.03 0.99 27.83 0.98 23.49 0.98 49.8 195,384 4.6 47.1
VEG 39.83 0.99 40.65 0.99 32.81 0.99 31.08 0.99 11.3 30,218 0.7 61.2

Mito iVR-GS 37.23 0.99 25.55 0.98 23.20 0.96 23.57 0.97 137.0 1,105,228 25.9 19.8
VEG 36.36 0.99 33.75 0.99 28.00 0.97 28.08 0.98 17.1 49,969 1.1 57.8

Table 2: Evaluation metrics for novel view synthesis across different datasets for our method (VEG) and the state of the art for volume visualization
(iVR-GS). Results show that our models have drastically improved training times and memory footprints. Additionally, our models outperform iVR-GS
when testing on color and opacity mappings not seen during training (Unseen Colormaps, Broad Opacity, Narrow Opacity), although iVR-GS has
greater reconstruction quality when testing on the transfer functions used for training. Best results for each metric are in bold.

we render 160 images where camera positions are sampled from a
spherical orbit around the volume iterating through 16 azimuthal and
10 elevation angles. The camera zoom was selected as the minimum
which shows the entire volume’s bounding box in each image, and this
design decision is motivated in Section 5.3. All testing images use
camera views not seen during training, so that all results are for novel
view synthesis. We create VEG models for each dataset by initializing
Gaussians from 500,000 data points of the original volume. While the
number of Gaussians necessary for a model depends on the represented
dataset’s complexity, our densification and pruning methods allow the
model to find this number during training, so an initial guess of 500,000
is sufficient. As seen in Table 2, models regularly end with drastically
different numbers of Gaussians after training. All models are trained
for 30,000 iterations with settings matching the defaults in 3DGS and
iVR-GS wherever possible. Densification and pruning were enabled
from iteration 500 until iteration 20,000. We explored using iVR-GS’s
two-stage training approach for Gaussians to learn geometry before
scalar values and lighting effects, but found best performance with
training all parameters from the first iteration. We use a learning rate of
0.00025 for scalar values and 0.025 for weights, along with a pruning
threshold of 0.005 for removing Gaussians with low weight. These
values were found by conducting a hyperparameter search on the Mito
dataset, and choosing the values that led to the highest reconstruction
quality to number of Gaussians ratio.

We also create composed iVR-GS models for each dataset, following
their approach of combining multiple basic sets of editable Gaussians
trained from transfer functions with disjoint opacity bumps. For exam-
ple, to train 10 basic sets, one will be trained using renderings where
a transfer function left all values transparent except [0,0.1], the next
with all values transparent except [0.1,0.2], and so on. We tested using
flat opacity bumps for each basic set’s transfer function, but found
equal performance when training with the ramped opacity maps used
by our method, so here we present results using ramped opacity maps
for consistency with our method. Choosing an appropriate number of
basic sets to train for each dataset is not trivial, as composing more sets
improves reconstruction quality while worsening training time, mem-
ory footprint, and rendering performance significantly. The original
paper [49] does not provide an easy heuristic to decide where to make
this tradeoff, so for our study we choose to compose 10 basic sets for
all datasets except RBL, where we compose 5 due to its sparsity. As
with our models, all training images use the "viridis" colormap. We
use the default settings for their method in all cases, and follow their
two-stage training approach for a total of 40,000 training iterations per
basic model. The training time reported for iVR-GS models in Table 2
is the sum of training times for each of the basic sets, not including time
to compose the sets together. The file size, number of Gaussians, and
FPS reported are those of the composed models. All quality metrics
are computed using renderings from the composed models. For testing
of transfer functions, we apply colormaps by setting the palette color
for each basic set to the colormaps’ value at the corresponding portion
of the function range, taken at the midpoint of the value range that set
represents. We apply opacity mappings in the same way, assigning the
opacity for each basic set according to the given opacity function.

In order to measure the generalizability of both approaches for arbi-
trary transfer functions, we evaluate reconstruction quality on three use
cases. First, performing novel view synthesis on the transfer functions
seen during training. Next, rendering unseen views with colormaps
that were unseen during training. We select five colormaps for variance
with regards to color assigned to a specific part of the function range,
along with the maps’ popularity. Since all models were trained on
Matplotlib "viridis", for testing we use "rainbow", "rainbow reversed",
"cool to warm", "warm to cool", and "red blue yellow." Finally, we
render unseen views with opacity mappings not seen during training.
For this evaluation, we want to test each approach’s ability to both
infer volume renderings where large portions of the function range are
visible, and surface-type renderings where only narrow portions of the
function range are visible. To do this, we create sets of opacity maps
where the slope of the opacity functions were either double the slope
of the training transfer functions, leading to volume rendering-type
images, or half the slope of the training transfer functions, leading to
surface rendering-type images. We call these sets of opacity mappings
"Broad Opacity" and "Narrow Opacity" in our results.

We present these results, along with training time, number of Gaus-
sians in resulting models, file size, and rendering FPS in Table 2. We
find several conclusions from this study. First, we find that our method
drastically improves on training time, number of Gaussians, and file size
compared to iVR-GS, with average improvements of 6.76×, 16.28×,
and 16.99× respectively. These improvements can mostly be explained
by our method directly training a single set of 3D Gaussians to rep-
resent a volume, while iVR-GS requires training multiple basic sets
individually, then composing them to create their full volume model.
Even so, the number of Gaussians in our trained VEG models is less
than the number of Gaussians in a single basic set of the corresponding
iVR-GS models. We find that VEG models are capable of offering
a high-quality interactive rendering of the 4.2GB chameleon dataset
while requiring only 2.7MB of memory and 1.6MB for storage. Interest-
ingly, while we do find large frame rate speedups with our method, they
are far from linearly correlated with the number of Gaussians, likely
due to fixed costs per frame and higher GPU utilization with larger
models. All models are able to achieve interactive framerates except
for iVR-GS’s Vortex model, showing the advantage of 3DGS-based
methods for real-time rendering, even with a laptop GPU.

Next, we find that while iVR-GS outperforms our method for novel
view synthesis using the transfer functions that the models were trained
on, our method can more accurately infer novel views for transfer func-
tions unseen during training. When generalizing to unseen colormaps,
VEG models consistently outperform iVR-GS models, with an average
increase of 5.64 PSNR. With regards to broad opacity maps, VEG mod-
els have an average increase of 4.24 PSNR. Finally, for narrow opacity
maps, while iVR-GS actually outperforms VEG on Chameleon, VEG
models still produce an average increase of 3.02 PSNR. These results
show that with our training of scalar field values directly, we are able
to create a transfer function-agnostic model in only 30,000 iterations
of training, while iVR-GS’s color storing approach requires a total of
400,000 (200,000 for RBL) iterations of training while creating models
with worse accuracy for transfer functions unseen during training.



Chameleon
VEG (Ours) iVR-GSGround Truth

Vortex

Random 

Colormap

Narrow 

Opacity

Broad 

Opacity

VEG (Ours) iVR-GSGround Truth

Random 

Colormap

Narrow 

Opacity

Broad 

Opacity

Training 

TF

Training 

TF

Difference Image TF

Fig. 5: Qualitative comparison of our method with iVR-GS on the Vortex and Chameleon datasets. For each dataset and method, we show results
from the tests run in Table 2, along with difference images showing perceivable difference in the CIE LUV color space between reconstructions and
ground truth. Difference images use the Matplotlib ’jet’ colormap with linear opacity map, shown at top, to highlight areas of low error (purple to blue),
medium error (cyan to green), and high error (yellow to red). These results showcase how VEG models outperform iVR-GS composed models for
unseen color and opacity mappings. For example, see "Broad Opacity" for chameleon, where the iVR-GS model incorrectly assigns opacity to large
portions of the volume that are supposed to be transparent.

We present a qualitative evaluation of our method in Figures 5 and
6, for structured and unstructured datasets respectively. We include a
rendering for both our method and iVR-GS for every dataset, for each
of the reconstruction quality tests assessed in Table 2. Ground truth
renderings are given as well, along with images showing the pixel-wise
perceivable difference between each reconstructed rendering and the
ground truth. By analyzing these images, it’s possible to see what
causes the difference in reconstruction quality between methods for
each type of test. Starting with the tests on training TFs, iVR-GS mod-
els outperform VEG for two reasons. First, by training color directly
instead of optimizing scalar values through a transfer function, iVR-GS
models can more accurately reconstruct the exact rendered colors of the
ground truth. Second, iVR-GS models contain many more Gaussians
than VEG models, so they are better able to approximate fine-grained
volume geometry for the collection of surfaces that are seen during
training. For the random colormap tests, iVR-GS’s method of editing
Gaussian color by changing the palette color for each basic set does
not generalize well when the color being applied has high perceptual
difference to the original palette color. In contrast, VEG models handle

recoloring through direct application of transfer functions. In both of
the opacity mapping tests, the main reason for higher reconstruction
quality with VEG models appears to be avoiding assigning opacity to ar-
eas that should not be rendered, illustrated by the Chameleon results for
"Broad Opacity" in Figure 5. Storing scalar values allows VEG models
to cull Gaussians more precisely where the opacity function determines,
rather than iVR-GS which can only control opacity set-wide.

5.3 Ablation Study

In this section, we conduct several tests for validation of design deci-
sions made for VEG. Specifically, we test the effect of our initialization
strategy, our use of additional weight parameters per Gaussian, our
opacity-guided training strategy, the generalizability of training with
different numbers of opacity maps, and optimal zoom level for training
image selection. To do this, we train models on the Mito dataset while
changing various aspects of our algorithm. Unless otherwise stated,
training and testing follow the procedure from Section 5.2 exactly. We
present our results in Table 3. The "Default" row represents usage of
the default parameters and method of our algorithm, and the metrics



Mito
VEG (Ours) iVR-GSGround Truth

RBL

Random 

Colormap

Narrow 

Opacity

Broad 

Opacity

VEG (Ours) iVR-GSGround Truth

Narrow 

Opacity

Broad 

Opacity

Training 

TF

Training 

TF

Difference Image TF

Random 

Colormap

Fig. 6: Qualitative comparison of our method with iVR-GS on the RBL and Mito datasets. We show results from each of the tests run in Table 2, along
with difference images computed in the same way as Figure 5. These results showcase how VEG models outperform iVR-GS composed models for
unseen color and opacity mappings. See both of the "Random Colormap" sections, where iVR-GS models are incapable of applying the transfer
function correctly, as it causes the basic sets to have palette colors perceptually different than during training. Also see "Broad Opacity" and "Narrow
Opacity" sections, where the VEG models more closely follow the ground truth while the iVR-GS models incorrectly render more of the volume.

are taken directly from Table 2.
Initialization To test our volume initialization strategy, we compare

our default initialization against a model trained starting from 500k
data points with random positions and values. These results are given
in the "Random Init" row of Table 3. Surprisingly, we find that the
performance of this model is around equal to the default model in
all cases except the training TF, where the default’s quality is higher.
This shows that our method is robust to random initialization, likely
due to the densification and pruning strategies that allow creating and
destroying new geometry as needed.

Weight Parameter Training As mentioned in Section 3.3, our VEG
models include a trainable weight parameter per Gaussian that is mul-
tiplied with the transfer function-determined opacity when rendering.
This allows for more direct model optimization, along with the ability to
remove ineffective Gaussians as their weight parameters are pushed be-
low our pruning threshold during training. To test this design decision,
we present results from training a VEG model without the use of this
parameter in Table 3, labeled "No Weights". As can be seen, the recon-
struction quality of this model dips significantly from the default model.
In addition, because there is no way to prune based on the weight

threshold, the model can only grow from its starting 500,000 Gaussians,
ending with 563,223 compared to the default model’s 49,969.

Multiple Opacity Maps An important contribution of our work is
our opacity-guided training, in which we use chosen opacity maps to
ensure that the entire function range of a volume is accurately repre-
sented. To test this, we compare training with our default 10 steps of
opacity maps against naive training with a single linear opacity map.
These results are given in the "Linear Opacity Map" row of Table 3.
This model achieved low quality for all other sets of opacity maps,
illustrating that the model did not learn the dataset’s full function range.

In addition, we experiment with the number of opacity maps neces-
sary for accurate volume reconstruction. We conduct training using our
multiple opacity map method from Section 4.2 with number of steps 5
("5 Opac Steps"), 10 ("Default"), and 20 ("20 Opac Steps"), then evalu-
ate how well each model generalizes to each of the other sets of opacity
maps. We present the results in Table 3, with "Training TF" testing the
opacity maps from the set with 10 steps, "Broad Opacity" testing from
the set with 5 steps, and "Narrow Opacity" testing from the set with 20
steps. As expected, each model outperformed the others when tested on
the set of opacity maps it was trained on. We also find, as the number



Ablation Training TF Unseen Colormaps Broad Opacity Narrow Opacity Training # of File Size
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM Time (min) Gaussians (MB)

Default 36.36 0.99 33.75 0.99 28.00 0.97 28.08 0.98 17.1 49,969 1.1
Random Init 35.53 0.99 33.91 0.98 27.76 0.97 28.19 0.98 20.5 40,906 0.9
No Weights 33.65 0.99 33.72 0.99 24.76 0.95 25.92 0.97 37.8 563,223 13.3
Linear Opac 18.28 0.93 17.45 0.93 17.37 0.92 18.66 0.93 27.0 70,492 1.6
5 Opac Steps 26.23 0.97 26.92 0.97 36.08 0.99 25.82 0.97 18.2 88,678 2.1
20 Opac Steps 29.28 0.98 28.18 0.97 28.18 0.97 34.74 0.99 12.4 39,001 0.9

Table 3: Evaluation metrics for novel view synthesis with different ablations of our method, evaluated on the Mito dataset. Best results in bold.
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Fig. 7: Qualitative showcase of novel view synthesis for a VEG model on complex unseen transfer functions. We train a model for the Paraview head
dataset using the five transfer functions on the left, and test with those and the four functions on the right (A-D), where the opacity and color maps
were unseen during training. The top, middle, and bottom rows of images show ground truth, inference, and difference images (as in Figure 5).

Training Set Default Zoomed In Training # of
PSNR SSIM PSNR SSIM Time (min) Gaussians

Default 36.36 0.99 33.34 0.98 17.1 49,969
Zoom 34.87 0.99 33.43 0.98 22.7 119,821

Table 4: Evaluation metrics for novel view synthesis for default and
zoomed in testing sets of our method, evaluated on the Mito dataset. We
compare our model trained on the default training set and training set
including zoomed images. The default model outperforms on the default
test set, while maintaining near equal quality on the zoomed in test set.

of training opacity maps increases, the model seems to perform better
on opacity maps not seen during training. This is likely because wider
opacity maps can prevent the model from learning features for regions
of the volume that are overlapping for that map’s portion of the function
range. Interestingly, the training time and number of Gaussians in the
resulting models correlates inversely with the number of opacity maps
used for training, likely because narrower opacity maps lead to sparser
training images.

Optimal Zoom Level We also validate our selection of zoom level
for training images. We create a set of test images identical to our
Training TF testing set from Section 5.2 for the Mito dataset, but with
varying zoom levels at either 1 (default), 2, or 3×. We name this testing
set "Zoomed In," and report the performance of our default model on
this and the default testing set in Table 4. Additionally, we train another
model "Zoom," which is identical to the default except that its training
image set also included images at 2 and 3× zoom, and report its results
on both testing sets. We find that, while our model does perform worse
when rendering zoomed in views, including similarly zoomed views in
the training set does not improve model quality, validating our camera
sampling strategy for training images. In fact, the "Zoom" model shows
noticeably worse performance on the default views, while using more
than 2× the number of Gaussians as the default model.

5.4 Complex TF Showcase
The final evaluation we present is to test our method on more com-
plex transfer functions than those in Section 5.2. To do this, we use a
Paraview example dataset of a CT scan of a boy’s head made up of a
structured volume of 256x256x94 cells. We choose this dataset as it

consists of easily highlightable anatomical features, allowing for ex-
amples such as the opaque skull rendered underneath semi-transparent
skin. We train a single model for this dataset in the same way as pre-
viously, using 5 opacity maps. We then manually select 4 transfer
functions for testing, where the opacity and color maps were both un-
seen during training. From A to D in Figure 7, these were selected
for demonstrating a linear opacity map over the full function range,
multiple narrow opacity bumps, a semi-transparent opacity bump along
with a high opacity bump, and a constant opacity as well as a qualitative
colormap. Results of the VEG model for novel view synthesis on the
training and unseen transfer functions are given in Figure 7. While
the model performs more poorly on our custom transfer functions (es-
pecially in overfilling semi-transparent areas), these results show that
VEG models can perform high-quality novel view synthesis even with
arbitrary transfer functions disparate from those seen during training.

6 CONCLUSION

In this paper, we introduced Volume Encoding Gaussians (VEG), a
novel 3D Gaussian splatting (3DGS) approach tailored specifically
for structured and unstructured scientific volume rendering. VEG
departs from conventional 3DGS techniques by removing color and
opacity encodings and instead directly encoding scalar valued fields
from volume datasets. This decouples the visual appearance from data
representation, enabling lightweight, transfer function-agnostic models
suitable for interactive visualization. Our evaluation demonstrates that
VEG can achieve high reconstruction quality with robust generalization
to previously unseen transfer functions, while maintaining tiny storage
sizes, requiring less than 5 megabytes for all datasets studied.

For future work, we will explore support for time-varying volumetric
data and distributed training schemes in order to improve scalability
for very large datasets and enable training in HPC contexts. Addition-
ally, we are interested in investigating the possibility of VEG to fully
reconstruct volumes, rather than only render images. Future work will
look into creating training pipelines for compact, high-quality VEG
models to use as compressed representations for volume sampling di-
rectly. These could then be rendered through 3D Gaussian raytracing,
similarly to recent work [27].
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