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Abstract

Dependency relations among visual entities are ubiq-

uity because both objects and scenes are highly structured.

They provide prior knowledge about the real world that can

help improve the generalization ability of deep learning ap-

proaches. Different from contextual reasoning which fo-

cuses on feature aggregation in the spatial domain, visual

dependency reasoning explicitly models the dependency re-

lations among visual entities. In this paper, we introduce a

novel network architecture, termed the dependency network

or DependencyNet, for semantic segmentation. It unifies

dependency reasoning at three semantic levels. Intra-class

reasoning decouples the representations of different object

categories and updates them separately based on the inter-

nal object structures. Inter-class reasoning then performs

spatial and semantic reasoning based on the dependency re-

lations among different object categories. We will have an

in-depth investigation on how to discover the dependency

graph from the training annotations. Global dependency

reasoning further refines the representations of each object

category based on the global scene information. Extensive

ablative studies with a controlled model size and the same

network depth show that each individual dependency rea-

soning component benefits semantic segmentation and they

together significantly improve the base network. Experi-

mental results on two benchmark datasets show the Depen-

dencyNet achieves comparable performance to the recent

states of the art.

1. Introduction

Semantic segmentation aims at assigning a categorical

label to each pixel to partition an image into multiple mean-

ingful segments. It is a fundamental task in computer vision

and has many practical applications, such as autonomous

driving, image editing, and medical image analysis. In the

past decade, convolutional neural networks (CNNs) have

become a dominant solution to it [26, 11].

*Corresponding author.

Figure 1. Visual dependence relations are ubiquity since both ob-

jects and scenes are highly structured. They provide prior knowl-

edge about the real world that can be used to improve the gener-

alization ability of a learning model. We consider three levels of

visual dependency. Intra-class dependency means parts of an ob-

ject are related due to the object’s internal structural patterns, e.g.,

a bicycle consists of wheels, pedals and a frame. Inter-class depen-

dency means objects are related as certain objects (e.g., a rider and

a bicycle) co-occur more frequently than the others or by chance.

Global dependency means the global scene type enforces strong

prior on the categories of objects that should appear in it.

Recent works [54, 56, 51, 9, 39] have achieved great im-

provement by leveraging contextual information in CNNs.

The context of a pixel refers to the collection of its sur-

rounding pixels. It provides rich visual cues to resolve am-

biguities in pixel classification. For example, the presence

of water in the context suggests that a pixel is more likely to

belong to a boat than other objects like a car or a bed. Ex-

isting approaches like ASPP [1] and PSPNet [57] explore

optimal strategies for multi-scale context aggregation. The

non-local network [46] and its variants [61, 21, 20] employ

the self-attention mechanism [44] to capture the long-range

context in an image. These methods effectively leverage the

context to enrich the representations of each pixel. How-

ever, they focus on feature aggregation in the spatial do-

main, and the explicit dependence relations among different

semantic categories are largely ignored.

Visual dependence relations are ubiquity since both ob-

jects and scenes are highly structured, and they occur at var-

ious semantic levels. Parts are related as they compose into

objects, e.g., a car consists of wheels and a frame. Objects
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are related as certain objects (e.g., a desk and a chair) co-

occur more frequently than the others (e.g., a bed and a car).

At the image level, the type of a scene enforces strong prior

on the categories of objects that should appear in it. For

example, it is unlikely to see a bed in an outdoor scene.

Different from contextual reasoning which focuses on

aggregating pixel features from the context, visual depen-

dency reasoning puts more emphasis on exploiting the de-

pendency relations among semantic entities, e.g., parts, ob-

jects, and a scene. This makes it possible to inject explicit

prior knowledge of the real world into a learning model and

thus promotes its generalization ability.

In this paper, we introduce a novel approach termed

the dependency network or DependencyNet for semantic

segmentation. It explicitly models visual dependency re-

lations in a CNN. As shown in Figure 1, we divide vi-

sual dependency into three levels, i.e., intra-class, inter-

class and global dependency. Accordingly, the Dependen-

cyNet performs three levels of dependency reasoning. It

first decouples the representations of different object cate-

gories so that each representation contains spatial and se-

mantic information of only one category. Intra-class rea-

soning means to update the representations of each object

category based on their respective internal structures, e.g., a

person is composed of body parts. Inter-class reasoning per-

forms spatial and semantic reasoning based on the depen-

dency relations among different object categories. We first

mine prior knowledge about dependency relations from the

training annotations and encode it via a dependency graph.

Two objects are strongly related if they co-occur frequently

in images. Then, the DependencyNet performs reasoning

via group weighted convolutions, wherein category-specific

representations interact with each other according to the de-

pendency graph. Unlike the attention mechanisms [37, 19]

which compute the feature correlations across the spatial lo-

cations or feature channels, our graph does not depend on

the input image and acts as prior knowledge. The inter-class

reasoning is also different from graph convolution networks

(GCNs) [18, 2, 30]. GCNs take as input feature vectors of

positioned objects while we perform both spatial and se-

mantic reasoning to localize objects. Global dependency

reasoning further refines the representations of each cate-

gory based on the scene information. Specially, we encode

a scene via probabilities of the presence of each category

and use them to enrich the object representations. The con-

tributions of this paper are summarized below.

• We introduce a novel DependencyNet to explicitly ex-

ploit visual dependency relations for semantic segmen-

tation. It is the first neural architecture to unify three

levels of dependency reasoning. The research is im-

portant as it bridges CNNs and dependency modeling

commonly achieved via graphical models.

• We introduce intra-class, inter-class, and global depen-

dency reasoning modules, which are the core compo-

nents of the DependencyNet. They effectively utilize

the internal object structures, object-object relations,

and scene information to perform dependency reason-

ing. We also have an in-depth investigation of mining

prior knowledge of dependency relations from training

annotations.

• We perform extensive ablation studies with a con-

trolled model size and the same depth on the three lev-

els of dependency reasoning. Results show that each

individual component benefits semantic segmentation

and they together lead to significant improvement over

the base network. Experimental results on two datasets

demonstrate the effectiveness of our approach.

2. Related Work

Semantic Segmentation. Most state-of-the-art models

for semantic segmentation are based on CNNs [57, 18, 29,

11]. The context in a CNN is formed and enlarged by a

stack of convolutions and pooling operations. In each layer,

features of neighboring pixels are aggregated to obtain more

powerful representations. Theoretically, the receptive field

of a neuron is large enough and can even cover the whole

image. However, the effective context is much smaller [58,

33]. In recent years, a series of works try to explore better

utilization of context.

Multi-Level Context Aggregation. Dilated convolu-

tions [53, 1, 50, 34] and various pooling operations [17, 33]

play an important role in this field. They could gather rich

context within a few layers. Representative works include

PSP [57] and ASPP [1]. They construct a feature pyramid to

aggregate multi-scale context. [28] uses gates to selectively

fuse multi-scale features. Some works replace 2D convo-

lutions by a series of 1-D convolutions [40, 51] to enlarge

the context. ACFNet [55] and OCR [54] extract class-wise

global context by merging coarse segmentation results and

feature maps. Different from these approaches, we focus

on modeling explicit dependency relations among semantic

entities rather than feature aggregation from larger context.

Attention-Based Methods. The non-local neural net-

works [46, 14, 21, 61] use the self-attention mechanism [44]

to capture long-range spatial context. Each output neuron

receives information from all input neurons based on their

feature correlations. Besides, [11, 37] explore the channel

attention. Some works [61, 21] try to lower the high com-

putational cost. Instead of modeling feature correlations,

our method explicitly models dependency relations among

different semantic entities. Furthermore, our approach is

computationally cheaper and more explainable.

Graph-Based Networks. Recently, graph convolutional

networks (GCNs) [24] are used for image segmentation

[2, 31, 18, 30]. Some approaches [18, 2] use GCNs for

reasoning, but there is no clear semantics. BGRNet [47]
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Figure 2. Architecture of the proposed DependencyNet. A backbone network extracts a convolutional feature map from the input image.

The intra-class reasoning module, implemented via group convolutions, decouples the feature map into category-specific representations

and updates the representations of each object category based on their respective internal structures. The inter-class reasoning module,

implemented via group weighted convolutions, then performs spatial and semantic reasoning based on the dependency relations among

different object categories. The global reasoning module further refines the category-specific representations via the global scene informa-

tion. The final representations of each object category are used to predict their presence at each pixel. The network training is supervised

by three losses: Lseg , Lg and Lmain.

constructs a graph with each object category as a node.

Each category is represented as a feature vector, obtained by

pooling the feature map according to a coarse segmentation.

Spatial information is lost before their GCN reasoning. By

contrast, we perform both spatial and semantic reasoning to

update the representations of each object category.

Dependency Modeling in Pre-Deep Era. The relations

among parts and an object are conventionally modeled via

deformable part-based models (DPMs) [10], compositional

models [22, 59], and grammar models [60]. They explic-

itly model the displacement of each part w.r.t. the object.

At the object level, some prior approaches [41, 12, 7, 3]

build a CRF to model the co-occurrence statistics of ob-

jects and their spatial arrangements in an image. Heitz and

Koller [16] divide objects into things and stuff, and ex-

plicitly model their spatial relations. At the global level,

a few methods [38, 35] predict the presence of each ob-

ject via global image features and then use it to turn on/off

local detectors in a graphical model. Several other works

[42, 32, 43, 23, 49] retrieve the best matches of an input im-

age from an annotated image database via global descrip-

tors and transfer their labels via dense pixel or superpixel

correspondence. Mottaghi et al. [36] extend the DPM with

potential functions modeling the presence of objects in the

global image and local neighborhood. The work most re-

lated to our global reasoning module is [13], which refines

the detection score of a window by multiplying it with the

probability of object presence in the image.

Our DependencyNet bridges CNNs and dependency

modeling commonly achieved via graphical models, inher-

its their advantages and overcomes their respective limita-

tions. It provides a principled way for a CNN to model ex-

plicit visual dependency. Compared with graphical models,

whose relational models, e.g., Gaussian, can be too simple

to capture sophisticated relations among visual entities and

whose inference and learning can be painstaking, depen-

dency modeling via neural networks leads to greater model-

ing capacity, stronger visual discrimination, and better scal-

ability to big data.

3. Method

The dependency network or DependencyNet means to

exploit explicit visual dependency relations for semantic

segmentation. It takes as input an image and outputs a

categorical label for each pixel. As illustrated in Fig-

ure 2, the DependencyNet consists of a base network and

three dependency reasoning modules. The base network

extracts a convolutional feature map from the input im-

age. The intra-class reasoning module decouples the feature

map into category-specific representations and updates the

representations of each object category based on their re-

spective internal structures. The inter-class reasoning mod-

ule then performs spatial and semantic reasoning based on

the dependency relations among different object categories.

The global reasoning module further refines the category-

specific representations based on the scene information.

The final representations of each object category are used

to predict their presence at each pixel. We describe each

component in detail in the rest of this section.

3.1. Intra­class Dependence Reasoning

After obtaining the feature map from the base network,

we use another convolutional layer to get a decoupled rep-

resentation Xk ∈ R
Z×H×W for each category k (k ∈
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{1, · · · ,K}), where H and W respectively denote the

height and width, Z is the number of channels, and K is

the number of object categories. Let X ∈ R
C×H×W de-

note the collection of all category-specific representations:

X = Concat(X1,X2, ...,XK), where C = K × Z and

Concat(·) is concatenation on the channel dimension.

We add intermediate supervision so that each decoupled

representation Xk only contains information specific to the

corresponding category k. Specifically, we use each repre-

sentation to predict a segmentation mask and a classification

score for their respective categories. They are compared

with labels during training via a segmentation loss Lseg and

a classification loss Lg . Since Xk only makes prediction for

category k, it is guided to encode the spatial and semantic

information of this object category in the image.

Finally, we perform intra-class dependency reasoning by

applying two convolution layers to each category-specific

representation, which can be easily implemented via group

convolutions. It enables the network to update the repre-

sentations of each object category based on their respec-

tive internal structures, e.g., relations among object parts,

without being affected by the representations of other cat-

egories. Note while the group convolution operation is not

new, we use it here to process the category-specific repre-

sentations. By contrast, no explicit semantics is associated

to group convolutions in previous works, e.g., [25, 48].

3.2. Inter­class Dependence Reasoning

Inter-class dependence reasoning updates the represen-

tations of each object category from those of others based

on their dependency relations. We first introduce how we

obtain a dependence graph to encode the pairwise depen-

dency relations among object categories and then describe

the reasoning module.

Dependence Graph. If one object depends on the other

(for example, a car and a road, and a computer and a desk),

they are usually spatially close in an image. This also re-

flects the interactions of forces and spatial arrangements in

the physical world. Besides, visual dependence is a kind

of prior knowledge or common sense that embodies the re-

lations among visual entities and is invariant to the input

image. We design two methods to discover the visual de-

pendency relations from the training annotations and use

them for inter-class dependence reasoning.

We encode pairwise dependence relations via a graph

G = {V, E}, where V = {vi|i = 1, . . . ,K} is a set of

nodes and E = {ei,j |i = 1, . . . ,K; j = 1, . . . ,K} is a set

of edges. Node vi represents the ith object category. Edge

ei,j ∈ [0, 1] is the degree of category i’s dependency on cat-

egory j. A large value of ei,j indicates the presence of cat-

egory j is very helpful to identify category i, and 0 means

they are irrelevant. Thus, ei,j also determines how much

category j will contribute to the inter-class dependency rea-

Figure 3. Illustration of two dependency graphs Gconn and Gedge

calculated using the Cityscapes training annotations [5]. Gconn

uses a binary indicator to count the frequency of contact between

two objects. Gedge uses a soft count taking into account the length

of the shared boundary between two objects. For better visualiza-

tion, each row is divided by its maximum value.

soning of category i. The diagonal elements {ei,i} are set to

1 and other elements are normalized so that
∑

j 6=i ei,j = 1.

The first dependency graph, denoted as Gconn, is con-

structed based on how often objects contact each other. In

an image Im, if the segment of category i contacts that of

category j, we define I(i, j | Im) to be 1 and otherwise 0.

Then, the count of images in which category i and category

j contact is:

ci,j =

N∑

m=1

I(i, j | Im) (1)

where N is the total number of images in the training set.

ei,j is obtained by normalizing ci,j : ei,j = ci,j/
∑

j 6=i ci,j .

The second dependency graph, denoted as Gedge, treats

multiple objects contacting the same object in an image dif-

ferently. For example, the head of a person riding a bicycle

may contact the sky in an image, but obviously, the depen-

dency relation between the rider and the sky should be much

weaker than that between the rider and the bicycle. Thus,

instead of using a binary contact indicator as in Gconn, Gedge

takes into account the length of shared boundaries. We use

a soft count of images in which category i and category j

contact:

ci,j =

N∑

m=1

(Lm
i,j/L

m
i ) (2)

where Lm
i,j is the length of the boundary shared by category

i and category j in the mth training image, and Lm
i is the

perimeter of the segment of category i in the mth training

image. ei,j is obtained by normalizing ci,j as in Gconn.

The affinity matrices obtained by the two methods are

demonstrated in Figure 3. They have their respective pros
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and cons. Gedge could distinguish strong and weak depen-

dence. But sometimes the length of the shared boundary is

misleading. For example, a traffic sign is always located on

a pole but the length of their shared boundary is short. So

although the pole and traffic sign always contact each other,

their dependence value will be small in Gedge. However,

since Gconn only considers whether two objects contact or

not, the dependency relation between the pole and traffic

sign will be more significant. The effectiveness of these

two dependency graphs is compared in the experiments.

Group Weighted Convolution. We propose the group

weighted convolution to leverage the inter-class dependence

relations for spatial and semantic reasoning. Suppose its

input is X = Concat(X1,X2, ...,XK), where Xk ∈
R

Z×H×W is the representation of category k, e.g., ob-

tained from intra-class reasoning. During inter-class de-

pendency reasoning, the representations of each category

are updated by the representations of categories that they

respectively depend on. We denote the output as Y =
Concat(Y1,Y2, ...,YK), where Yk ∈ R

Zo×H×W is the

updated representation of category k, Zo is the number of

channels, Y ∈ R
Co×H×W , and Co = K × Zo. Before

presenting the group weighted convolution, we first review

the conventional convolution and group convolution.

The conventional convolution could be written as

Y = W ∗X (3)

W ∈ R
Co×C×S×S is the convolutional kernels, S is the

kernel size, and ∗ is the convolution operation. It treats the

representations of each category equally.

The group convolution divides the input feature map into

K groups on the channel dimension. Then convolutions are

conducted on each group separately. The groups of new

feature maps are concatenated to get the output Y:

Y = ConcatKk=1
(Wk ∗Xk) (4)

where Wk ∈ R
Zo×Z×S×S is the convolutional kernels

of the kth group. Since the representations of each cat-

egory are processed separately without interactions from

other categories, the group convolution is suitable to per-

form intra-class reasoning as discussed in Section 3.1.

Our group weighted convolution is designed to perform

inter-class dependency reasoning. Each category-specific

representation will interact with others under the guidance

of the dependency graph. Specifically, it is defined as:

Y = ConcatKk=1
(Yk) (5)

= ConcatKk=1
(

K∑

j=1

ek,j × (Wk,j ∗Xj)) (6)

where Wk,j ∈ R
Zo×Z×S×S is a convolutional kernel mod-

eling the relational pattern between category k and category

j, ek,j denotes the dependence of category k on category

j. The updated representation of category k, i.e., Yk, is

obtained by aggregating the transformed representations of

each category {Wk,j ∗Xj : ∀j} with dependency weights

{ek,j : ∀j}. A higher dependency weight indicates a more

significant contribution. We use different convolutional ker-

nels {Wk,j : ∀k, j} to model the diverse relational patterns

between different pairs of categories.

In fact, both the conventional convolution and group con-

volution could be regarded as special cases of the group

weighted convolution. When all the edges in the depen-

dency graph are equal to 1, the group weighted convolution

becomes the conventional convolution. When edges on the

diagonal are 1 and others are 0, it becomes the group con-

volution. The group weighted convolution could be used

to explicitly exploit the dependency relations among differ-

ent categories. For example, when inferring the bicycle in

an image, categories with strong relations to it, e.g., road,

sidewalk, and rider, will contribute much more than the ir-

relevant categories like sky and river.

In addition, the group weighted convolution performs

both spatial and semantic reasoning. This makes it different

from the graph convolutions [47, 18, 30] in which the spa-

tial information is lost. We experimentally set the number

of group weighted convolution layers to 2 in the Dependen-

cyNet. Its analysis is in the supplementary material.

3.3. Global Dependence Reasoning

The global scene is modeled as a set of probabilities

{P (bi | Im) : ∀i}, bi = 1 if the object of category i ex-

ists in the mth image and 0 otherwise. It is a multi-class

classification problem, where all existing classes will be la-

beled as 1. During training, it is supervised by the binary

cross entropy loss Lg . We perform global dependency rea-

soning by multiplying the probability of each class to the

corresponding class-specific representation. The intuition

is that if category i does not exist but is wrongly identified

locally, then it could be rectified by multiplying a very small

probability.

Some recent methods [33, 1, 57] also exploit global

information for semantic segmentation. They obtain the

global context via global pooling without supervision and

concatenate it with local features. Different from them, our

global scene representation explicitly encodes the probabil-

ity that each category exists in the image.

3.4. Loss Function

The loss function consists of three parts: Lmain for

the final segmentation output, a classification loss Lg for

the global scene representation, a segmentation loss Lseg

to spatially supervise the category-specific representations.

Lseg and Lmain are cross entropy losses and Lg is a binary
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cross entropy loss. The total loss function L is

L = Lmain + λ1 × Lg + λ2 × Lseg (7)

where the weights λ1 and λ2 are empirically set to 0.1 and

0.1, respectively. Detailed study about them is listed in the

supplementary material.

4. Experiments

4.1. Datasets and Implementation Details

To verify the effectiveness of the DependencyNet, we

conduct experiments on the Cityscapes [5] and BDD100K

[52] datasets. We use the mean Intersection over Union

(mIoU%) index for quantitative evaluation.

Cityscapes Dataset [5] is collected for urban scene un-

derstanding. It contains 5K finely annotated urban scene

images and has 2975 / 500 / 1525 images for training, vali-

dation, and testing, respectively. The resolution of each im-

age is 2048×1024. It contains 30 classes, and 19 classes are

used for evaluation. There are also 20K coarsely annotated

images, but they are not used for training in this work.

BDD100K Dataset [52] is the Berkeley Deep Drive

dataset. Its segmentation dataset contains 7000 images for

training and 1000 images for validation. The resolution of

each image is 1280×720. Images in this dataset cover vari-

ous conditions, such as day, night and, different weather.

When training the network on the Cityscapes dataset, we

employ the SGD optimizer with an initial learning rate of

0.01, the momentum 0.9, and the weight decay 0.0005. We

use a polynomial learning rate policy: the initial learning

rate is multiplied by (1− iter/max iter)power and power
equals 0.9. The hyper-parameter Z mentioned in Section

3.2 is set to 64, so that it is a power of 2 and the total number

of channels C = K×Z = 20×64 = 1280 is between 1024

and 2048, which are two typical output channels of a back-

bone. K = 20 is the number of categories in Cityscapes

including the background. When performing evaluation on

the validation set, typical data augmentations methods are

used, including random horizontal flipping, random scaling

within [0.5, 2], color jittering, and random cropping. The

crop size is 768×768. The training will last for 180 epochs.

We use the ResNet [15] pre-trained on ImageNet [6] as the

backbone. Its output stride is 8. We also adopt an aux-

iliary cross-entropy loss to supervise the intermediate lay-

ers [57, 17, 4] and the weight is set to 0.4 by default. The

hyper-parameters for the BDD100K dataset are the same as

those of Cityscapes except that the crop size is changed to

608×608, the batch size to 16, and the training iteration to

72K. We make these adjustments because there are more

training data in BDD100K.

Backbone Intra Inter Global mIoU% #W

ResNet50 - - - 71.38 33M

ResNet50 X - - 73.54 33M

ResNet50 - X - 72.55 33M

ResNet50 X X - 74.74 33M

ResNet50 - - X 74.92 33M

ResNet50 X - X 75.68 33M

ResNet50 - X X 75.59 33M

ResNet50 X X X 76.32 33M

Table 1. Ablative studies of the intra-class, inter-class and global

reasoning modules on the Cityscapes validation dataset. “-” in

the columns of “Intra” and “Inter” means the respective reasoning

module is replaced by conventional convolutions. “-” in the col-

umn of “Global” means the global reasoning module is removed.

#W is the number of trainable weights.

Backbone Lseg mIoU% #W

ResNet50 - 76.32 33M

ResNet50 X 77.66 33M

Table 2. Ablative studies of Lseg on the Cityscapes validation

dataset. We use the DependencyNet including all three reasoning

modules. #W is the number of trainable weights.

4.2. Ablative Study

We perform ablative studies on the Cityscapes dataset.

All experiments are conducted under a controlled model

size and the same number of layers to ensure the fairness

of comparisons. Moreover, to reduce the training time of

the experiments, most of the ablative studies are conducted

on ResNet50 with a batch size of 2.

Impact of Intra-Class Dependence Reasoning. The

effectiveness of the intra-class dependency reasoning is

demonstrated in Table 1. There are two group convolu-

tions in this module. We build a baseline by replacing the

group convolutions with conventional convolutions. It re-

tains the depth of the network and avoids unfair advantages

caused by extra layers. We also adjust the number of chan-

nels to make the model sizes in different settings roughly

the same. We can see the intra-class dependence reasoning

could achieve stable performance gain in all settings. Since

the final segmentation masks of each category are predicted

by their respective category-specific representations, Lmain

also promotes their decoupling. That explains why there is

performance gain without global dependence reasoning.

Impact of Inter-Class Dependence Reasoning. We

verify the effectiveness of inter-class dependence reasoning

in different settings. The results are shown in Table 1. We

use Gconn as the dependency graph. In these experiments,

the number of parameters and the number of layers in the

network are fixed. The inter-class reasoning could achieve

stable performance gain in all different settings.
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Backbone Inter mIoU% #W

ResNet50 - 76.14 33M

ResNet50 Gconn 77.66 33M

ResNet50 Gedge 77.41 33M

Table 3. Ablative studies of the inter-class dependency graph on

the Cityscapes validation dataset, where all three reasoning mod-

ules are used. “-” means to replace the inter-class reasoning mod-

ule with convolutions. #W is the number of trainable weights.

Backbone Methods mIoU%

ResNet50 Class Center Mapping [55] 74.61

ResNet50 Ours 77.66

Table 4. Ablative studies of different methods to extract category-

specific representations.

Impact of Global Dependence Reasoning. The effec-

tiveness of the global dependence reasoning is shown in Ta-

ble 1. It is light-weighted and introduces 0.16M trainable

weights. The performance gain is expected for two rea-

sons. On the one hand, it helps to supervise the learning

of category-specific representations. On the other hand, the

probability of the existence of a category could help resolve

ambiguities from a scene point of view.

The Impact of Intermediate Supervision Lseg. Lseg

supervises the learning of class-specific representations spa-

tially. In Table 2, under the supervision of Lseg , the perfor-

mance could be further improved. The four experiments

above demonstrate intra, inter and global dependency mod-

ules are effective. It is worth mentioning that when all

of them are hierarchically integrated, they could work har-

moniously and achieve further performance gain. In other

words, their functions are complementary. They could

model dependency relations at different levels and jointly

improve semantic segmentation. This demonstrates the ef-

fectiveness of our DependencyNet.

The Impact of Dependency Graph. Gconn and Gedge

are two different dependency graphs obtained from the

training annotations. Their affinity matrices are demon-

strated in Figure 3. The conventional convolution is a spe-

cial case of the group weighted convolution when all the

weights {ei,j} equal 1. Thus, we construct a baseline by

replacing the group weighted convolutions with the con-

ventional convolutions. The results are shown in Table 3.

Our superior performance demonstrates the effectiveness of

our inter-class dependency reasoning and also indicates that

learning dependency relations by conventional convolutions

is difficult. We can also observe that Gconn slightly outper-

forms Gedge. As analyzed in Section 3.2, Gconn and Gedge

have their respective pros and cons. We also have tried to

combine them with arithmetic mean, geometric mean, and

quadratic mean, but did not observe obvious improvement.

Backbone Batch Model MS mIoU%

ResNet101 8 - 76.44

ResNet101 8 Ours 79.15

ResNet101 8 Ours X 80.48

ResNet101 8 ASPP+Ours X 82.01

Table 5. Other ablative studies on the Cityscapes validation

dataset. MS=multi-scale inference.

The Impact of Different Class-wise Feature Extrac-

tion Methods. Our DependencyNet exploits intermediate

supervision, i.e., Lg and Lseg , to facilitate the learning of

category-specific representations. An alternative way to

achieve this goal is to map the coarse segmentation maps of

each category to their respective representations, which has

been used to extract class-wise context in [55, 54]. Here, we

compare it with the intermediate supervision in our Depen-

dencyNet. The results are displayed in Table 4. We can see

that our strategy outperforms the mapping strategy, and sig-

nificantly improves the performance of the DependencyNet.

Other Ablative Studies. We validate some commonly

used methods to improve performance, as shown in Table

5. The MS means to include in the inference process hori-

zontal flipping, sliding inference, and multi-scale reasoning

with scales = {0.5, 1.0, 2.0}. It is widely used in [4, 57, 17].

We also show that the ASPP [1], which is designed to en-

large the context, is complementary to our DependencyNet

and can further improve its performance. These strategies

are retained in subsequent experiments.

Moreover, we take the HRNet-W48 [45] and ResNeXt-

101 [48] as advanced backbones. Without tuning any hyper-

parameters, the DependencyNet improves the mIoU of the

baseline from 79.6% to 81.1% on the HRNet-W48, and

from 81.1% to 82.8% on the ResNeXt-101.

4.3. Results on Cityscapes

To compare with the state-of-the-art methods, our model

is trained on finely annotated training and validation sets.

Because more images are used for training, we increase the

training iterations to 108K. The crop size and batch size

are 864 and 12 respectively. The results on the testing set

are displayed in Table 6. Compared to other methods, our

DependencyNet not only achieves the best overall perfor-

mance, but also produces the best mIoU on most of the

classes.

4.4. Results on BDD100K

We show the performance of the DependencyNet on

BDD100K in Table 7. It is a new dataset published recently.

Here we use the ResNet101 as the baseline, and its perfor-

mance is 62.3%. Adding our dependency reasoning mod-

ules improves the performance to 63.9%. It could further

demonstrate the effectiveness of our model.
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DenseASPP [50](18) 80.6 98.7 87.1 93.4 60.7 62.7 65.6 74.6 78.5 93.6 72.5 95.4 86.2 71.9 96.0 78.0 90.3 80.7 69.7 76.8

CCNet [21](19) 81.4 - - - - - - - - - - - - - - - - - - -

BFP [8](19) 81.4 98.7 87.0 93.5 59.8 63.4 68.9 76.8 80.9 93.7 72.8 95.5 87.0 72.1 96.0 77.6 89.0 86.9 69.2 77.6

DAN [11](19) 81.5 98.6 86.1 93.5 56.1 63.3 69.7 77.3 81.3 93.9 72.9 95.7 87.3 72.9 96.2 76.8 89.4 86.5 72.2 78.2

CPNet101 [51](20) 81.3 - - - - - - - - - - - - - - - - - - -

SpyGR [27](20) 81.6 98.7 86.9 93.6 57.6 62.8 70.3 78.7 81.7 93.8 72.4 95.6 88.1 74.5 96.2 73.6 88.8 86.3 72.1 79.2

ACFNet[55](19) 81.8 98.7 87.1 93.9 60.2 63.9 71.1 78.6 81.5 94.0 72.9 95.9 88.1 74.1 96.5 76.6 89.3 81.5 72.1 79.2

OCR [54](20) 81.8 - - - - - - - - - - - - - - - - - - -

DependencyNet 81.9 98.9 88.0 93.9 59.2 63.6 72.3 78.6 82.0 94.1 73.6 95.9 88.2 75.1 96.5 73.5 89.6 83.3 70.6 78.8

Table 6. Comparison with the state-of-the-art methods on the Cityscapes testing set. Only finely annotated images are used for training.

The backbone of all listed methods is ResNet-101.

Figure 4. Visualization results of representative examples. From left to right are input images, ground truth, results of the baseline, and

results of our DependencyNet. The white boxes together with the white arrow denote important differences.

Methods mIoU%

ResNet101 62.3

ResNet101+Ours 63.9

Table 7. Results on the validation set of BDD100K.

4.5. Visualization

In Figure 4, we present three representative examples to

demonstrate the effectiveness of our model. In the first row,

a window, marked by a white box, is misidentified as a fence

by the baseline network. It is obviously unreasonable that a

fence appears in the middle of a building. This mistake is

rectified by incorporating the visual dependence in our de-

sign. In the second row, under the undesirable lighting con-

dition, it is difficult to identify the existence of a pole. How-

ever, based on the knowledge that there is usually a pole

under a traffic sign, the pole is identified by our approach.

In the third row, the basket held by the person together with

his or her foot is wrongly classified. But our design corrects

this mistake. These visualization results could further sup-

port our statement that the visual dependence could resolve

ambiguities and improve generalization.

5. Conclusion

This paper introduces the DependencyNet for semantic

segmentation. Different from contextual reasoning which

focuses on aggregating features in the spatial domain, it

explicitly takes into account visual dependency relations

among semantic entities. By performing dependency rea-

soning at different levels, the DependencyNet can resolve

semantic ambiguity and enjoy better generalization. Both

quantitative and qualitative results on the Cityscapes dataset

and the BDD100K dataset demonstrate the effectiveness

of each component of the DependencyNet and our unified

framework.
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