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ABSTRACT
Patient-Reported Outcome (PRO) surveys are used to monitor pa-
tients’ symptoms during and after cancer treatment. Late symptoms
refer to those experienced after treatment. While most patients ex-
perience severe symptoms during treatment, these usually subside
in the late stage. However, for some patients, late toxicities persist
negatively affecting the patient’s quality of life (QoL). In the case
of head and neck cancer patients, PRO surveys are recorded every
week during the patient’s visit to the clinic and at different follow-
up times after the treatment has concluded. In this paper, we model
the PRO data as a time-series and apply Long-Short Term Memory
(LSTM) neural networks for predicting symptom severity in the
late stage. The PRO data used in this project corresponds to MD
Anderson Symptom Inventory (MDASI) questionnaires collected
from head and neck cancer patients treated at the MD Anderson
Cancer Center. We show that the LSTM model is effective in pre-
dicting symptom ratings under the RMSE and NRMSE metrics. Our
experiments show that the LSTM model also outperforms other
machine learning models and time-series prediction models for
these data.
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1 INTRODUCTION
During head and neck cancer treatment, patients may experience
different symptoms with different severity during and after treat-
ment [4, 27, 28]. A commonly used way to monitor patients’ symp-
toms is to record symptom severity or occurrence through a ques-
tionnaire survey, which is commonly known as Patient-Reported
Outcomes (PRO) data. Much research is done over these PRO data
in order to identify symptoms in an early stage and guide treatment
decisions, as well as investigating the relationships among these
symptoms [19, 24]. In this work, we use data collected from head
and neck cancer patients treated at the M.D. Anderson Cancer Cen-
ter using the M.D. Anderson Symptom Inventory questionnaire [5]
and more specifically, the Head-Neck Module (MDASI-HN) [22].
The module is comprised of 28 questions, 13 referring to core symp-
toms related to cancer (systemic), 9 to head and neck symptoms
(local), and the remaining 6 to symptom-burden interference with
daily activities (life general). Patients rated the severity of their
symptoms on a scale of 0 to 10 with 0 being mild or no existence
and 10 being very severe (the worst imaginable). During treatment,
symptoms are experienced with greater severity than after treat-
ment. Ideally, we would like to see that all symptoms have receded
in the late stage (e.g. a year after treatment), but in some cases,
symptoms persist affecting the Quality-of-Life (QoL) of the patients
in the long term.

Previous research over the MDASI-HN PRO data applies factor
analysis and cluster analysis to cluster and investigate symptom
progression [25]. These researches look at a particular snapshot
in time to cluster either the patients, by their experienced symp-
toms, or the symptoms given the patient’s ratings. In this work, we
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approached the problem from a different perspective by modeling
the PRO data as a time-series and applying the Long-Short Term
Memory (LSTM) Neural Network model [12] to predict late symp-
tom’s rating 6 weeks and 12 months after treatment. Since PRO
data is self-reported, patients may skip questions or entire question-
naires altogether, resulting in many missing values. To overcome
this issue, we applied several methods for missing data imputation
and evaluate the performance of the LSTM model for each method.
We show that the LSTM model is effective in predicting symptom
ratings under the RMSE and NRMSE metrics. In our experiments,
the LSTM model also outperforms other machine learning models.
Furthermore, we show that for this particular task as it has been
observed in other domains, the more data used, the better the model
obtained, even when the data needs to be imputed.

The main contributions of this paper can be summarized as
follows. This is the first work that looks at predicting late toxicity
for head and neck cancer patients using LSTM.We evaluate different
imputation methods for completing the data, including applying
LSTM recursively. We compare the LSTM performance against
ARIMA and other machine learning models.

2 RELATEDWORK
MDASI-HN PROData. PRO data has been widely collected physi-
cally and electronically in the clinical area since it has an important
meaning of evaluating the treatment benefits [6]. The PRO data
used in this project is an MDASI-HN [22] questionnaire with 28
symptoms to be rated on a scale from 0 to 10 with 0 being mild or
no symptoms and 10 being very severe, during and after treatment.
As shown in Table 1, the 28 symptoms can be divided into three
types of toxicity. All patients are asked to fill MDASI-HN surveys
before the start of treatment (baseline) and then weekly for the
6 weeks of the duration of the treatment. Patients are also asked
at their follow-up visits 6 weeks, 6 months, and 12 months after
treatment.

Using the MDASI-HN PRO data, several studies focus on iden-
tifying symptom clusters at a single timepoint [10, 14, 23]. Prior
research mainly used two methods to find symptom clusters, one
is factor analysis such as principal component analysis and the
other one is cluster analysis such as hierarchical agglomerative
clustering [2, 7, 11, 25]. These studies focus on a single time point
analysis, whereas we model the PRO data as a time series.
Time Series Prediction and Imputation. Prediction of time se-
ries is typically done by looking at the previous values in the series
and deciding the value at the current time step. Auto-regressive In-
tegrated Moving Average (ARIMA) [1] is a commonly used method
for the prediction of time series. The model combines the Auto-
regressive (AR) and Moving Average (MA) models that are suitable
for univariate time series modeling. In the AR model, the output
depends on its lags while in the MA model, the output depends
only on the lagged forecast errors. More recently, Long short term
memory (LSTM) Recurrent Neural Networks have gained more
popularity in time series prediction [9] and healthcare domain [15].
Specifically, LSTM networks were used to mimic the pathologist
decision and other diagnostic applications [18, 30]; LSTM networks
were used to recognize sleep patterns in multi-variate time-series

Toxicity Symptoms
Systemic fatigue, constipation, nausea, sleep, memory, ap-

petite, drowsy, vomit, numb
Local pain, mucus, swallow, choke, voice, skin, taste, mu-

cositis, teeth, shortness of breath (SOB), dry mouth
Life gen-
eral

general activity, mood, work, relations, walking,
enjoy, distress, sad

Table 1: The 28 symptoms in the MDASI-HN questionnaire
grouped into three types of toxicities.

clinical measurements [16]. However, to the best of our knowledge,
it has not been previously applied to PRO data.

Data imputationmethods such asMultiple Imputation byChained
Equations (MICE) [3, 21], linear regression, Kalman filtering [13],
among others, can be used to impute time series data.

3 PROPOSED APPROACH
In this section, we first describe themethodological approach includ-
ing data pre-processing and the methods used for data imputation.

3.1 Long Short Term Memory (LSTM)
Since PRO data with patients self-reporting on the severity of their
symptoms is collected over time, we model it as a time series. If
we can learn from the patients’ answers over a period of time
and predict their answers next week or in 6 months, we could
proactively make recommendations to minimize the symptom’s
burden and therefore, improve the patients’ quality of life. For
example, we can record patients’ responses to different symptoms
from week 0 to week 5 during the treatment and predict what the
ratings for those symptoms would be in week 6. Such prediction,
if accurate, can be useful to make patients aware of the risks and
prescribe exercises or medication that can help patients cope with
the symptoms to avoid having to adjust treatment and improve the
long-term quality of life of the patients.

Long short term memory (LSTM) neural networks are a type
of recurrent neural network (RNN) proven effective in predicting
time series [12]. Unlike a traditional neural network, LSTMs have
a feedback structure to store the memory of the events happened
in the past and use it as a parameter in prediction. The basic struc-
ture of an LSTM model takes 3 different pieces of information: the
current input data, the short-term memory (hidden states) from
the previous cell, and the long-term memory (cell state). This 3-
dimensional data structure (number of samples, number of time
steps, number of parallel time series on features) is pushed through
the LSTM gates, which are used to regulate the information to be
kept or discarded, i.e. selectively remove any irrelevant information.
The LSTM model is able to memorize the time-series pattern of
each patient’s response and be able to predict late toxicity. Another
advantage of the LSTM is the diversity of the inputs and outputs.
LSTM can handle multiple predictions simultaneously. In a many-
to-one mode, the LSTMwould learn frommany patients and predict
one symptom. In a many-to-many mode, the LSTM would learn
from many patients and predict all 28 symptoms for the test data.
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Taking advantage of this, we are able to generate predictions for all
28 symptoms using one trained LSTM with many-to-many mode.

To feed the data into the LSTM model, the original data was
transformed into a 3-dimensional array where the first dimension
corresponds to the patients, the second dimension to the time steps,
and the third dimension to the symptoms. The number of patients
corresponds to the number of samples in the training data. The
number of time steps depends on what late toxicity we are evaluat-
ing. For the toxicity at 6 weeks after treatment, the number of time
steps is 6, while for the toxicity at 12 months after treatment, the
number of time steps is 11. The number of symptoms is always 28.

3.2 Data Imputation
Many of the symptom severity scores in the PRO data have NaN
values. Some patients do not have enough follow-up time to col-
lect later time points. Like many other machine learning models,
LSTM requires complete data. As a proof of concept, we first con-
sider three imputation methods: Linear interpolation, Kalman in-
terpolation [13], and Multiple Imputation by Chained Equations
(MICE) [3].

Both Linear and Kalman interpolations are uni-variable impu-
tations. The first non-NA value was replicated to the start of the
time series and the last-NA value was replicated to the end of the
time series. Kalman smoothing requires at least three observations.
When the time series contained less than 3 observations, the spline
method was used to interpolate. Since the MDASI-HN ratings range
from 0 to 10, imputed values that resulted in negative values were
replaced by 0, and values larger than 10 were replaced by 10. Before
applying the Kalman smoothing, the time series for the patient was
scaled between 0 and 1, imputation applied, and then the data was
scaled back to the original 0-10 scale.

MICE [3] is a multivariate imputation so the time series for all
the patients are used simultaneously. That is, through an iterative
series of predictive models, each specified variable in the data set
is imputed using the other variables in the data set. The predictive
model used to impute values can be various. In this work, we used
predictive mean matching (pmm) where for each missing entry, the
method forms a small set of candidates from all complete cases that
have predicted values that is close to the predicted value for the
missing entry and select a random candidate from the set to replace
the missing value. Besides, we did 5 iterations for the imputation.

We also apply the LSTM model recursively to predict interme-
diate time points and then use the predicted data to train the next
time step in the model.

All the data imputations described were done using only the PRO
time-series data without considering any other clinical variables
such as gender, age, cancer staging, or treatment.

Each imputation method produces a different complete version
of the dataset. The complete data was then transformed into the
correct input size of the LSTM model, and an LSTM model was
trained on each of the imputed datasets. The predictions for all 28
symptoms were then compared using the Root Mean Squared Error
(RMSE) and Normalized RMSE (NRMSE) metrics as defined below.

RMSE(θ̂ ) =

√
MSE(θ̂ ) =

√
E((θ̂ − θ )2) (1)

where θ̂ is the vector of observed values of the variable being
predicted and θ being the predicted values and E is the expected
value.

NRMSE =
RMSE

ymax − ymin
(2)

where ymax and ymin are the maximum and minimum of actual
data.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
MDASI questionnaires were collected from 823 patients weekly for
6-weeks during treatment and for 3-time points after treatment
(6-weeks, 6 Months, and 12 Months). The original data was split
into two series: from baseline to 6-weeks after treatment, and from
baseline to 12-month after treatment. We then applied the three
interpolation methods on the two versions of the data and gener-
ated 6 imputed data sets. The time point to be predicted was not
imputed and patients with missing surveys for that time point were
excluded from the model. For testing, we only considered patients
with complete data, that is, patients that completed all the PRO
surveys for each time point. We ended up with a total of 651 and 483
patients predicting 6-weeks after treatment and for 12-months after
treatment, respectively. All data imputation was done in R using
the imputeTS [20] and mice packages. For MICE, the method used
was predictive mean matching (pmm) and only one imputation was
used with 5 iterations.

The LSTM models are built based on the open-source PyTorch
framework. The input and output dimensions were set to 28. We
used Mean Square Error (MSE) as the loss function and Stochastic
Gradient Descent (SGD) as the optimizer with the learning rate of
0.215. Using a grid search for parameter tuning, we set the num-
ber of hidden layers to 1 and the number of hidden dimensions
to 8. During training, we used early stopping criteria to prevent
over-fitting. The RMSE score is calculated by applying the square
root function on the PyTorch MSE metric and the NRMSE score is
calculated by dividing the RMSE with the range (max - min) of the
actual data. All the networks were run on NVIDIA GeForce RTX
2070 GPU with 8GB of memory.

4.2 PRO Data Summary
The PRO data is summarized in Figure 1 using the average symptom
severity for the different time points. As can be seen, patients expe-
rience severe symptoms during the treatment and over time most
of the symptoms return to baseline. However, for some symptoms
and for some patients the toxicity persists even after 12 months
after treatment.

4.3 Training LSTM using only complete data
Figure 2 shows the training and validation performance for the
LSTM model trained for predicting symptom severity 6-weeks after
treatment when only complete data (without imputation) is used
in the analysis. As can be seen, the validation RMSE score is higher
than the training RMSE score all the time, which can be caused
by insufficient samples in the training set. The same trend was
observed for the NRMSE metric as well.
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Figure 1: Average PRO scores trajectory and 95% confidence
weekly during, 6 weeks, 3-6, 12 and 18-24months after treat-
ment for all 28 toxicities included in this study among all
patients. Abbreviations: sob= shortness of breath; numb=
numbness; wk=week; M=month

Figure 2: LSTM training and validation performance for
predicting symptom severity 6-weeks after treatment using
only complete data (original).

4.4 Data Imputation Evaluation
To evaluate the imputation methods, we compare the model perfor-
mance in terms of RMSE and NRMSE when the LSTM was trained
with complete data generated using the different imputation meth-
ods. Figure 3 shows the RMSE performance for training and val-
idation of predicting symptom severity 6-weeks after treatment
using complete datasets imputed with Linear interpolation, Kalman
interpolation, MICE, and LSTM-recursive imputation methods. As
can be seen, the model performance is better than when only com-
plete data is used. Furthermore, the performance between the three
imputation methods is similar and the models do not start to overfit
until after 600 epochs for Linear interpolation and almost 1500
for the recursive LSTM. The final model uses the early stopping
strategy to improve model performance.

Figure 4 shows the validation RMSE metric for the final models
trained over the complete data (original) and the four different

(a) Linear

(b) Kalman

(c) MICE

(d) LSTM

Figure 3: LSTM RMSE performance for predicting symp-
tom severity 6 weeks after treatment using Linear, Kalman,
MICE, and LSTM imputed datasets.

imputed datasets. Linear imputation, in 6Wk after prediction, has
the lowest validation RMSE score of and 1.9371 among the non-
recurrent imputation methods whereas the original completed data
has 2.1653 RMSE. The LSTM-recursive imputation shows the best
overall performance for all metrics on late symptom predictions
for 6Wk and 12Mo. The LSTM-recursive has an overall lowest
RMSE of 1.9142 and 1.4231 for 6Wk and 12Mo, respectively. The
LSTM-recursive method also achieved the best overall performance
under the NRMSE metric (not shown). Worth noting is the fact that,
regardless of what imputation method was used, the models trained
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Figure 4: LSTM performance in terms of RMSE metrics for
the validation set when the model is trained with only com-
plete data (original) vs. complete data imputed with linear
interpolation, Kalman interpolation, MICE, or LSTM meth-
ods.

with imputed data, and therefore more data, performed better than
the models trained with only complete data.

4.5 LSTM performance on individual
symptoms

Next, we want to evaluate the LSTM performance on individual
symptoms. For these experiments, we used the LSTM-recursive
interpolation dataset, as it had the best overall RMSE score for all
28 symptoms combined.

Figure 5, shows the (a) RMSE and (b) NRMSE score for each
symptom predicted 6-weeks and 12-month after treatment. As can
be seen, symptoms like taste and dry-mouth have higher RMSE
scores for predictions at both time points while other symptoms
like vomit and nausea have lower RMSE scores. However, when we
look at the NRMSE metrics for the same symptoms, we see that the
NRMSE scores are higher for some of those symptoms with lower
RMSE. The reason is that NRMSE takes into account the range of
the responses for the given time point. At 6-weeks after treatment,
many symptoms still have a larger severity range than 12-months
after treatment. Most of the symptoms have a lower RMSE score for
6-weeks after when compared to 12-months after treatment. The
only exceptions are constipation and teeth, for which the RMSE
score shows a slight increase for 12-months when compared to the
6-weeks prediction.

4.6 Comparison with other ML Models
For comparison to other machine learning models, we focus on
three prevalent symptoms: pain, taste and general activity. The rea-
son that we limit the number of symptoms is that the other models
considered cannot handle multiple predictions simultaneously. We
compare the LSTM performance with the performance of six other
popular models: supported vector machine (SVM), K-nearest neigh-
bour (KNN), random forest (RF), Gaussian naive Bayes (GauNB),
multi-layer perceptron (MLP), and ARIMA.

Figure 6 shows the RMSE comparison for the 6-weeks after
treatment prediction of pain, taste, and general activity symptoms
for the 6 ML models and two LSTM: the one trained with the linear
interpolated data (LSTM_L) and the recursive LSTM (LSTM*2). As
can be seen, the LSTM model yields the lowest RMSE scores for

all three symptoms. For pain, LSTM has an RMSE of 1.7794 which
is over 20% lower than the MLP prediction, which has the second-
lowest RMSE score of 2.2646. LSTM also outperformed all other
models for the 12-month prediction of these symptoms but results
are omitted for brevity. Interestingly, for taste and general activity,
the LSTM trained over the data imputed using linear interpolation
shows a slightly lower error than the recursive LSTM imputed data.
A plausible explanation is that interpolation uses the before and
after values in the series to impute themissing values and intuitively
symptom severity follow a linear increase/decay. In contrast, LSTM
only uses past information to forecast symptoms’ severity. In the
future, it could be worth exploring alternatives that could combine
both methods.

5 CONCLUSION
In this work, we used the PRO data from the MDASI-HN module
and applied the LSTM model to predict late toxicity from head and
neck cancer treatment. An accurate prediction can help identify
personalized symptom risk profiles and proactively prescribe exer-
cises or medication that can help patients cope with symptoms to
avoid having to adjust treatment and improve the long-term quality
of life of the patients.

To deal with the missing data, we applied three interpolation
methods, linear, Kalman, and MICE. In addition, we also applied
LSTM recursively to complete the data. We compared the perfor-
mance of the LSTM model in terms of RMSE and NRMSE. The re-
sults show that using linear interpolation as the imputation method,
though it is the simplest of the methods used, yielded better per-
formance than Kalman and MICE imputations. While the LSTM
imputation produces lower overall error measures than using lin-
ear interpolation, linear interpolation performed better than LSTM
imputation for some individual symptoms. In all cases, the use of
imputed data produced a better model than using only complete
data. Furthermore, the LSTM model outperforms other machine
learning models in the prediction of individual symptoms including
pain, taste, and general activity symptoms.

As future work, we would like to evaluate whether the inclusion
of clinical data [8, 17, 26, 29] into the analysis would further improve
the predictive power of the LSTM models. There are different ways
in which these clinical variables, which are mostly categorical,
can be leveraged into the LSTM model to further improve model
performance and symptom prediction.
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