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Figure 1: Tensor-based region of interest tracking for a mixing layer dataset. On the left is a volume rendering of the strain tensor trace
(divergence). On the right is a volume rendering of three tensor clusters. The main regions of interest follow the tensor trace almost exactly.

1 INTRODUCTION

In visualization of tensor data associated with turbulent combustion
simulations, the datasets we have to process and visualize are typ-
ically enormous in size and continue to grow exponentially. The
large amount of data may severely affect the manipulating speed,
thus posing a major challenge to interactive visualization [2]. Even
worse, tensor datasets tend to be very dense leading to clutter and
occlusion problems. To address these issues, feature extraction is
an emerging method. Typically, only a small percentage of data
is of interest, thus making the effective visualization of very large
datasets possible. Feature extraction also helps the users highlight
and focus on regions of interest.

We introduce an approach for the segmentation, visualization
and tracking of regions of interest in large scale tensor field datasets
generated by computational turbulent combustion simulations. We
use canopy clustering followed by a K-means algorithm to parti-
tion and cluster the tensor field components. The resulting clus-
ters are tracked through multiple timesteps. Interactive, hardware-
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accelerated volume renderings [4] are generated using the cluster
indices. Results on two rich datasets show this approach can assist
in the visual analysis of combustion tensor fields.

A great deal of research has been conducted on the problems
of feature extraction and tracking [5], as well as in characterizing,
detecting and visualizing regions of interest [1]. The method we
present herein is novel in that it integrates machine learning with
visualization for extracting and clustering regions of interest. It is
thus a promising approach to apply to very large flow datasets.

2 METHODS

Clustering analysis is used to group data points that are similar to
one another. Clustering was performed on the 6 distinct values of
the strain-rate tensor, which is a symmetric quantity (Eq. 1):
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where xi and ui for i = 1,2,3 are the Cartesian components of
position and velocity, respectively; and Si j is the strain-rate tensor.



(a) timestep 70 (b) timestep 75 (c) timestep 80

Figure 2: Star-plot glyphs corresponding to the cluster centroids for a four-cluster segmentation (left to right: centroids at timesteps 70, 75,
and 80). The different signatures of the cluster centroids make possible the consistent labeling and thus tracking of clusters over time.

Due to the density of the data, a pre-clustering step was per-
formed through canopy clustering [3] to obtain good starting clus-
ter centers. Once the centers were found, k-means was run, this
time limiting the number of iterations to 50. Star-plots were gen-
erated around the cluster centers to facilitate the consistent labeling
of clusters across multiple timesteps. The star-plot representation
was selected by the domain expert as being the most intuitive rep-
resentation of the tensor. (Figure 2) Alternative designs had ex-
plored a variety of glyph representations including ellipsoids and
superquadrics [2]. Finally, a ray-based volume rendering technique
was employed with a user-defined transfer function. This allowed
for the presentation of interactive linked views to the user. By de-
sign, the comparison between regions of interest and the actual ten-
sor fields could thus be observed simultaneously. The first volume
showed the divergence of the dataset. The second volume displayed
the regions of interest, rendered by assigning each cluster an indi-
vidual value and setting the transfer function monochromatically to
each.

3 RESULTS

Datasets. The first dataset, the temporal mixing layer, is a simple
configuration where two streams of fuel and oxidizer flow over and
against each other. The flow speeds are adjusted for a low Reynolds
number yielding a narrow range of length scales, and this configu-
ration can be easily tackled with Direct Numerical Solution (DNS)
and then used as a benchmark. The data covers a grid of size 193
grid points in two Cartesian directions and 194 in the other (approx.
8M grid points); single timestep. The second dataset, the shocklet,
has a similar configuration, but is significantly larger (194 x 577,
approx. 21M points), and varies along the temporal dimension (t =
0:600; 12,900 time steps.) Through time, the flow is going through
pairing and exhibits 3D effects (“shocklet”). Flow field variables
such as Mach number, divergence of velocity and gradients of den-
sity, temperature and pressure change sharply across the shocklet
surface.
Performance. Clustering was performed on a quad-core 3.33 GHz
Intel i5 CPU machine with 16 GB of RAM running Windows 7.
On average, the data took between 15 to 20 minutes to generate
3 and 4 clusters. The application was then tested on a machine
with two NVIDIA GeForce GTX 550Ti 1024MB GPUs and 16 GB
of RAM running Windows 7 as well as a Macbook Pro with an
NVIDIA GeForce GT 650M 1024MB GPU and 8GB of RAM. For
both datasets, both machines achieved frame rates of 125 frames per
second, allowing the user to interact with the volume renderings in
real-time.
Feedback.The goal for the mixing layer dataset was to see if the
clustering can provide insight into the structure of the flow. We
provided a senior combustion researcher with a 3D volume render-
ing of the divergence of the tensor (sum of components on the main
diagonal, indicates fluid density changes), and a volume rendering

of the 3-group clustering (Fig. 1). When asked for an evaluation, he
noted that the clusters coincided surprisingly well with the interest-
ing regions of the flow.

The goal for the second dataset was to see if the distinct tensor
field regions have a clear relationship with the shock region. Figure
2 shows the starplot glyphs corresponding to the cluster centroids
for the four-cluster segmentation, steps 70, 75 and 80. Two senior
combustion researchers analyzed the corresponding volume render-
ing output and concluded that the tensor clusters did not correlate
with the regions where the shock is. This indicated to the combus-
tion researchers that the tensor field did not modify significantly in
the shock region, which was considered an interesting finding.

4 DISCUSSION AND CONCLUSION

The goal of this project was to examine the potential of using clus-
ter analysis on tensor field data generated by turbulent combustion
simulations. Specifically, our aim was firstly to see if tensor field
clustering and rendering could give researchers insights into the
structure of the flow through a volume. Secondly, we wanted to
investigate if cluster analysis would allow combustion researchers
to detect the positive or negative correlation of the tensor field with
a specific feature of high-speed flow, namely the region where the
speed becomes supersonic. The answer to both questions is affir-
mative.

In conclusion, we have introduced an approach for the segmen-
tation, visualization and tracking of regions of interest in large scale
tensor field datasets generated by computational turbulent combus-
tion simulations. The approach is novel in that it integrates machine
learning – canopy and k-means clustering – with visualization – in-
teractive volume rendering – to extract, cluster, and track regions of
interest in the tensor field. Our evaluation on two rich combustion
datasets shows this approach can assist in the visual analysis of the
combustion tensor field.
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