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Abstract 
 

This paper describes the development of a generic 
framework for implementing realistic cross-platform 
haptic virtual reality applications.   Currently, freely 
available Software Development Kits (SDKs) deal with a 
single Haptic Interaction Point (HIP), i.e. the tip of the 
haptic probe. However, many applications as path 
planning, virtual assembly, medical or dental simulations, 
as well as scientific exploration require object-object 
interactions, meaning any part of the complex 3D object 
attached to the probe collides with the other objects in the 
virtual scene. Collision detections and penetration depths 
between 3D objects must be quickly computed to generate 
forces to be displayed by the haptic device. In these 
circumstances, implementation of haptic applications is 
very challenging when the numbers, stiffness and/or 
complexity of objects in the scene are considerable, 
mainly because of high update rates needed to avoid 
instabilities of the system. The proposed framework meets 
this high requirement and provides a high-performance 
test bed for further research in algorithms for collision 
detection and generation of haptic forces.   

 
1. Introduction 

 
Haptic rendering techniques can be classified based on 

the way the probing object is modeled. It could be 
represented as: 

• a point 
• a line segment 
•  a complex 3D polyhedron 

 
In point-based haptic interactions, only the end point 

of the haptic device interacts with the virtual objects. In 
each frame, the collision detection algorithms checks if 
the HIP is inside the virtual object. If so, penetration 
depth is computed as the distance between the current 
HIP and the corresponding surface contact point. This 
technique is extremely fast but is not capable of 

simulating tool-object interactions that involve single or 
multiple objects in contact with the tool at arbitrary 
locations of the tool  [1][2][8][10][13][18]. 

When the probe is modeled as a set of line segments, 
collisions are checked between the finite lines and the 
objects. In this ray-based technique the geometric model 
of the probing object is simplified to a set of connected 
line segments simulating long tools. This method is not as 
fast as point-based but few computations are needed. 
Collision between many objects can be detected; however 
it is inappropriate if the probing object has a complex 
geometry which cannot be modeled using line segments 
[3][10]. 

The most computationally expensive, but most 
realistic, technique considers the probing object as a 
complex 3D polyhedron, and so collisions between 
vertices of its geometry and the remaining objects in the 
scene are checked every time the user moves the probe of 
the haptic device [9][11]. 

Object-object collision detection could be 
enormously time consuming for very complex objects. 
However, relatively complex 3D objects can be 
decomposed into multiple convex subparts during an off-
line pre-processing [4][16].  Since collision detection 
algorithms for convex objects are faster than those for 
arbitrary geometry objects, we assume a previous 
decomposition phase and we deal only with convex 
primitives.    

The motivation of this work is to provide a 
framework to develop 3D-object-based haptic 
applications using non-commercially available SDKs. For 
that purpose, state-of-the-art freely-available cross-
platform graphics and collision detection libraries are 
evaluated. 

 
2. Haptics libraries 

 
GHOST (General Haptic Open Software Toolkit) is 

the library provided by [15] along with its PHANToM 
devices. GHOST is a C++ object-oriented toolkit that 
enables application developers to interact with haptic 
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devices and create haptic environments at the object or 
effects level. Using the GHOST SDK, developers can 
specify object geometry (similarly to OpenGL) and 
properties, or global haptic effects, using a haptic scene 
graph.  

GHOST provide functions to automatically compute 
the interaction forces between the HIP and objects or 
effects within the scene, and send forces to the haptic 
interaction device for display. The abstraction of classes, 
methods, manipulators, and effects facilitates the creation 
of very simple haptic applications.  

An alternative C++ Application Programming 
Interface (API) is e-Touch, developed by [12] to allow 
rapid development of haptic applications using OpenGL 
for graphic rendering. Basically, e-Touch can be thought 
as a wrap around GHOST to allow an Open Module 
community of researchers to work together in a common 
development environment and easily develop haptic 
applications. The source code is, then, freely available to 
researchers. A point-based technique is used by e-Touch 
to model the haptic probe as well. 

 
3. Graphics libraries 

 
GHOST and e-Touch functions available to generate 

3D objects and to manipulate the virtual scene are very 
limited,. The capability of loading and showing VRML 
files is non-existent. Open Inventor represents a much 
more sophisticated API than OpenGL. This object-
orientated cross-platform graphics library is based on 
OpenGL, but provides a plethora of advanced tools for 
both manipulation and visualization of the virtual 
environment. Open Inventor has become the de facto 
standard graphics library for 3D visualization and visual 
simulation software in the scientific and engineering 
community [5]. It is an object-oriented toolkit that 
simplifies and abstracts the task of writing graphics 
programming into a set of easy to use objects. A variety 
of fundamental application tasks such as rendering, 
picking, event handling, and file reading/writing are built-
in operations for all objects in the database and are thus 
simple to invoke. It is quite easy to use and it makes 3D 
direct manipulation programming possible.  

 
4. Collision detection libraries 

 
Collision detection is the bottleneck of most haptic 

applications, mainly because of the extremely high 
computational requirements. Haptic update rates must be 
on the order of 1 kHz to maintain a stable system. 
Although collision detection has been studied in computer 
graphics for many years, not all existing algorithms are 
powerful enough to meet the real-time requirements of 
haptic rendering. We have evaluated some algorithms 
which are freely available. 

According to our experiments, SWIFT++ (Speedy 
Walking via Improved Feature Testing) [6] is capable of 
detecting collisions of convex objects in expected 

constant time, but it is not robust enough. We have tested 
it with random object movements and found cases in 
which it fails to detect collisions.  

 
 

  

  

  

  

Figure 1: Situation in which SWIFT fails to detect 
collision 

Figure 1

 
 

 shows a sequence of movement between two 
identical convex objects in which SWIFT does not detect 
the collision. We believe that this may be caused by 
inconsistencies of the lookup table used by SWIFT++, or 
in the heuristics used. However, further research should 
be conducted to find out the real cause, which is beyond 
this project. Failing to detect collision is the worst 
problem in the application of these algorithms in haptics, 



since the object attached to the probe can penetrate other 
objects in the scene, without obtaining any force 
feedback.  

In addition to this, SWIFT++ provides the set of 
closest features (vertex, edge, face) for a pair of disjoint 
convex objects. However, when an intersection is 
determined, it neither measures nor estimates penetration 
depth, which is very an useful piece of information to 
compute reaction forces to be sent to the device in 
response to the probe position and orientation. Therefore, 
the penetration depth of the current frame should be 
estimated according to the previous frame, which may be 
not accurate when objects were interpenetrating over a 
number of frames.  

DEEP (Dual-space Expansion for Estimating 
Penetration Depth) [11] is an incremental algorithm to 
estimate the penetration depth between convex polytopes. 
DEEP is an extension of SWIFT++ since it is designed 
and implemented on top of it. Unfortunately the freely 
available source code presents implementation problems 
and it crashes frequently even with very simple convex 
polyhedral. Moreover, since it depends on SWIFT to 
detect collisions, it is not reliable.  

SOLID v 3.1 (Software Library for Interference 
Detection) [17] is a freely available pre-compiled library 
for many platforms (the source code is commercially 
available, though). SOLID is fast, robust and very useful 
for detecting collisions and computing penetration depth 
between pairs of convex objects that are moving relative 
to one another over time.  

 
5. Proposed implementation 

 
We have carried out several experiments with GHOST 

and e-Touch, as well as the freely available collision 
detection libraries to determine their capabilities and 
deficiencies for this project. Since a point-based technique 
is implemented by both GHOST and e-Touch, neither of 
these libraries is appropriate for creating complete object-
based haptic applications. However, the latest version of 
GHOST provides low-level access to the PHANToM 
device. This enhancement enables users to obtain raw 
encoder counts, send forces directly to the haptic device 
and receive motor temperatures without using the higher-
level GHOST scene graph, object primitives, etc.. 
Consequently, we decided to restrict GHOST to perform 
the actual communication with the force feedback device.  

Specifying the object geometry directly in OpenGL 
and manipulating the virtual scene with the limited 
graphics functions provided by GHOST or e-Touch are 
cumbersome for complex objects and user interactions 
with the virtual environment. Open Inventor provides 
outstanding high-level functions for manipulation with the 
mouse, or trackball, but it does not support haptic devices. 
Hence, for visualization and interaction with the scene, 
we propose to extend the Open Inventor API to support 
the PHANToM device and provide the user with a more 
efficient tool than the primitive OpenGL. Now 3D objects 

can be drawn using any 3D design software like 
3DStudioMax, Maya, Pro/E, etc. and then converted to 
Open Inventor format. Once those files are loaded by the 
application, the user can manipulate the virtual 
environment and feel the objects with the haptic probe.  

The  robustness problems with SWIFT and the 
unstable implementation of DEEP make SOLID the best 
currently existing option for object-based haptic 
applications and, therefore, it was used for the 
implementation of this project.  

 
6. Haptics and graphics rendering 

 
As we have seen, the scene graph is maintained by 

Open Inventor, which allows us to handle the camera, the 
objects in the virtual environment and the object attached 
to the virtual probe (see ).  Figure 2

While haptic update rates needs to be approximately 
1,000 Hz (otherwise, virtual surfaces feel softer or the 
haptic device vibrates), update rates of 30 Hz are fast 
enough for graphics rendering. We have designed the 
Phantom Transform as a new class derived from the Open 
Inventor Transform class. Basically, the Phantom 
Transform class communicates with the device retrieving 
the current probe position and orientation, and sending 
forces to be applied by the haptic device (in one thread), 
while Open Inventor renders the scene graph (in the other 
thread). Consequently, the haptic and graphic upgrades 
are performed by two independent threads, which can be 
executed concurrently in a dual-processor system.  

 
7. User interaction modes 

 
We have designed two user interaction modes. In the 

selection mode, the user can select a particular object in 
the virtual environment touching it with the 3D cursor, 
modeled as a three dimensional point and shown as a 
small sphere (see ). A similar point-based haptic 
technique is then used to detect the collision between the 
3D cursor and the objects in the scene. Once the 3D 
cursor is inside a particular object, the user can feel as the 
tip of the probe penetrates the object, which is shown as 
“selected” by the Open Inventor Selection node (see 

). After pressing the button of the haptic device 
stylus, the selected object is then attached to the probe (so 
the 3D-Cursor Separator is replaced by the selected 
Object Separator node, which becomes a child of the 
Phantom Separator node).  

Figure 3

Figure 4

Now in the grabbing mode (see ), a 3D-
polyhedron-based technique is implemented to detect the 
collision between the selected object and the remaining 
objects in the virtual scene.  Contacts are felt according to 
different object materials that define different force 
feedback sensations. We will see how to compute the 
forces to be applied by the haptic device in following 
sections. 

Figure 5
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Figure 2: Scene graph 

 
 

 

Figure 3: 3D objects and cursor 

 

Figure 4: Selection mode 

 

 
Figure 5: Grabbing mode 

 
 
 



• Compute and send the forces to the haptic device.  
 

 
9. Computation of forces 

 
Since GHOST has no information about the geometry 

of objects in the scene, we need to generate the forces to 
be sent to the PHANToM device manually. Each object 
in the virtual scene may have a different material, which 
is defined by four parameters: stiffness , viscosity V , 
stickiness 

S
T and friction coefficients (based on [14]). F

0P

1P

N

 When a contact is made, SOLID gives two collision 
witness points for each pair of colliding objects  

and . In order to compute the contact forces, surface 
normals must be calculated. Given the camera 
transformation matrix CM , the normal vector  is 
defined as: 

 
( ) CMPPN *01 −=  

 
Based on Hooke’s law, contact forces Cf are 

calculated as: 

10 *** SSssMaxStiffneNCf =  
 
where  is a parameter given by 

GHOST according to the model of Phantom device that is 
being used.   

ssMaxStiffne

 
Adding viscous damping to the equation enhances the 

user’s perception of hard surfaces. Viscosity forces 
are inversely proportional to the end-effector velocity 

when the probe is colliding with an object. Since 
gstDeviceIO also provides velocity information, they can 
be modeled as: 

Figure 6: Phantom Transform node 

 Vf

VelocityVf 10 ** VV=

0P 1P

8. Phantom Transform node 
 
The interaction with the haptic device is performed 

through the GHOST gstDeviceIO class [15]. This low-
level class allows us to define a callback function which 
is called automatically 1,000 times per second, creating a 
1 kHz servo loop running in a separated thread. At the 
same time, the scene graph is traversed (rendered) by 
Open Inventor 30 times per second.  shows how the 
specialized Phantom Transform node creates the 
connection among Open Inventor, GHOST and SOLID, 
encapsulating the following tasks: 

 
 

 
According to Coulomb model, friction applies a 

retarding force that is a function of a coefficient of 
friction and tangential forces in the direction opposite of 
the direction of motion. To implement friction, just after 
a collision, the contact points,  and , of both 
colliding objects are stored. If the user slides one object 
along the surface of the other, tangential forces to the 
surfaces of both colliding objects must be computed to 
restore the user back to the initial contact points. Then, if 
the sliding force applied by the user exceeds certain 
threshold, new contact points are stored and this process 
starts again.   

• Initialize the PHANToM device and enable forces 
• Read the encoders to get position, orientation and 

velocity of the haptic end effector 
• Transform position and orientation of the object 

attached to the probe from the camera coordinate system 
to the world coordinate system, and update the SOLID 
library 

• Ask SOLID to check the collision between the 
virtual probe and all the objects in the scene 

 The witness points are given with respect to the world 
coordinate system. But they must be expressed relative to 
both objects, so they are transformed to each object • Check the status of the PHANToM switch to toggle 

between selection and grabbing modes 



coordinate system. Given the first  and the current 

 contact points after sliding the probe, and two 

coefficients  and  that define material friction; we 
compute respective tangential forces for each colliding 
object as: 

FP

CP

0F 1F

( ) 00 *
00

FPP FC −=

( ) 11 *
11

FPPTf CF −=

i

iT
iCP

iFP i

Tf

10 TfTfTf +=

j

TfVCForce ffj +−=

j

 
 Tf  

 
 
If the magnitude of Tf  is greater than the stickiness 

coefficient ,  becomes the new  and Tf  is 
ignored. Otherwise, it contributes to the friction force 

, which is defined as: 
.  

 
 
The total force for each pair  of colliding object is 

computed as: 
 

 
 
The displayed force is a function of the  forces 

computed for each pair of colliding object. Experiments 
have demonstrated than smoother force effects are 
obtained when the final force to be sent to the device is 
calculated as: 

j

Force
FinalForce

j

k
j∑

== 1   

 
10. Conclusions and future research 

 
This paper shows a successful approach to integrate 

Open Inventor, SOLID and GHOST for the creation of 
realistic haptic applications. We have demonstrated that it 
is possible to obtain excellent results merging the best of 
three worlds: an advanced and sophisticated graphics 
library, a fast and reliable collision detection algorithm, 
together with a library to get direct access to the 
PHANToM device. A simple but very efficient way to 
model multiple contact and friction forces between 3D 
objects to be displayed by a 3-DOF haptic device is also 
shown.  The main contribution of this work is the 
development of a cross-platform and modular test bed for 
further research and implementation of new collision 
detection algorithms as well as new contact and friction 
models for haptics. 

We plan to extend our current system to allow more 
complex non-convex objects, stereo visualization of the 

virtual scene for semi-immersive virtual reality 
environments as well as haptic texture rendering. This 
enhancement would require more computation power to 
meet the high real-time requirements imposed by haptics. 
Parallel processing may be a reasonable solution.  

Haptic telecollaboration is another challenging area of 
research, mainly because of network issues such as delay, 
jitter (variation of delay), reliability or bandwidth which 
may cause severe deterioration of the performance of the 
system. In networked remote haptic interaction, delay 
may cause not only time lag between human operation 
and force feedback, but also instability of the haptic 
device.   These problems make haptic telecollaboration 
prohibitive or at least very hard to implement with 
regular networks. However, the use of state-of-the-art 
clusters of low-cost PCs interconnected by low latency, 
high bandwidth and high speed optical networks may 
allow thinking on high performance haptic 
telecollaboration as a feasible task.  
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