
 Realistic Cross-Platform Haptic Applications Using Freely-Available Libraries

Cristian Luciano

Pat Banerjee
Thomas DeFanti

2039 ERF (M/C 251), 842 W. Taylor St.
University of Illinois at Chicago

Chicago, IL 60607
clucia1@uic.edu

banerjee@uic.edu
tom@uic.edu

Sanjay Mehrotra
Northwestern University

Evanston, IL
mehrotra@iems.nwu.edu

Abstract

This paper describes the development of a generic
framework for implementing realistic cross-platform
haptic virtual reality applications. Currently, freely
available Software Development Kits (SDKs) deal with a
single Haptic Interaction Point (HIP), i.e. the tip of the
haptic probe. However, many applications as path
planning, virtual assembly, medical or dental simulations,
as well as scientific exploration require object-object
interactions, meaning any part of the complex 3D object
attached to the probe collides with the other objects in the
virtual scene. Collision detections and penetration depths
between 3D objects must be quickly computed to generate
forces to be displayed by the haptic device. In these
circumstances, implementation of haptic applications is
very challenging when the numbers, stiffness and/or
complexity of objects in the scene are considerable,
mainly because of high update rates needed to avoid
instabilities of the system. The proposed framework meets
this high requirement and provides a high-performance
test bed for further research in algorithms for collision
detection and generation of haptic forces.

1. Introduction

Haptic rendering techniques can be classified based on

the way the probing object is modeled. It could be
represented as:

• a point
• a line segment
• a complex 3D polyhedron

In point-based haptic interactions, only the end point

of the haptic device interacts with the virtual objects. In
each frame, the collision detection algorithms checks if
the HIP is inside the virtual object. If so, penetration
depth is computed as the distance between the current
HIP and the corresponding surface contact point. This
technique is extremely fast but is not capable of

simulating tool-object interactions that involve single or
multiple objects in contact with the tool at arbitrary
locations of the tool [1][2][8][10][13][18].

When the probe is modeled as a set of line segments,
collisions are checked between the finite lines and the
objects. In this ray-based technique the geometric model
of the probing object is simplified to a set of connected
line segments simulating long tools. This method is not as
fast as point-based but few computations are needed.
Collision between many objects can be detected; however
it is inappropriate if the probing object has a complex
geometry which cannot be modeled using line segments
[3][10].

The most computationally expensive, but most
realistic, technique considers the probing object as a
complex 3D polyhedron, and so collisions between
vertices of its geometry and the remaining objects in the
scene are checked every time the user moves the probe of
the haptic device [9][11].

Object-object collision detection could be
enormously time consuming for very complex objects.
However, relatively complex 3D objects can be
decomposed into multiple convex subparts during an off-
line pre-processing [4][16]. Since collision detection
algorithms for convex objects are faster than those for
arbitrary geometry objects, we assume a previous
decomposition phase and we deal only with convex
primitives.

The motivation of this work is to provide a
framework to develop 3D-object-based haptic
applications using non-commercially available SDKs. For
that purpose, state-of-the-art freely-available cross-
platform graphics and collision detection libraries are
evaluated.

2. Haptics libraries

GHOST (General Haptic Open Software Toolkit) is

the library provided by [15] along with its PHANToM
devices. GHOST is a C++ object-oriented toolkit that
enables application developers to interact with haptic

mailto:clucia1@uic.edu
mailto:banerjee@uic.edu
mailto:tom@uic.edu

devices and create haptic environments at the object or
effects level. Using the GHOST SDK, developers can
specify object geometry (similarly to OpenGL) and
properties, or global haptic effects, using a haptic scene
graph.

GHOST provide functions to automatically compute
the interaction forces between the HIP and objects or
effects within the scene, and send forces to the haptic
interaction device for display. The abstraction of classes,
methods, manipulators, and effects facilitates the creation
of very simple haptic applications.

An alternative C++ Application Programming
Interface (API) is e-Touch, developed by [12] to allow
rapid development of haptic applications using OpenGL
for graphic rendering. Basically, e-Touch can be thought
as a wrap around GHOST to allow an Open Module
community of researchers to work together in a common
development environment and easily develop haptic
applications. The source code is, then, freely available to
researchers. A point-based technique is used by e-Touch
to model the haptic probe as well.

3. Graphics libraries

GHOST and e-Touch functions available to generate

3D objects and to manipulate the virtual scene are very
limited,. The capability of loading and showing VRML
files is non-existent. Open Inventor represents a much
more sophisticated API than OpenGL. This object-
orientated cross-platform graphics library is based on
OpenGL, but provides a plethora of advanced tools for
both manipulation and visualization of the virtual
environment. Open Inventor has become the de facto
standard graphics library for 3D visualization and visual
simulation software in the scientific and engineering
community [5]. It is an object-oriented toolkit that
simplifies and abstracts the task of writing graphics
programming into a set of easy to use objects. A variety
of fundamental application tasks such as rendering,
picking, event handling, and file reading/writing are built-
in operations for all objects in the database and are thus
simple to invoke. It is quite easy to use and it makes 3D
direct manipulation programming possible.

4. Collision detection libraries

Collision detection is the bottleneck of most haptic

applications, mainly because of the extremely high
computational requirements. Haptic update rates must be
on the order of 1 kHz to maintain a stable system.
Although collision detection has been studied in computer
graphics for many years, not all existing algorithms are
powerful enough to meet the real-time requirements of
haptic rendering. We have evaluated some algorithms
which are freely available.

According to our experiments, SWIFT++ (Speedy
Walking via Improved Feature Testing) [6] is capable of
detecting collisions of convex objects in expected

constant time, but it is not robust enough. We have tested
it with random object movements and found cases in
which it fails to detect collisions.

Figure 1: Situation in which SWIFT fails to detect
collision

Figure 1

 shows a sequence of movement between two
identical convex objects in which SWIFT does not detect
the collision. We believe that this may be caused by
inconsistencies of the lookup table used by SWIFT++, or
in the heuristics used. However, further research should
be conducted to find out the real cause, which is beyond
this project. Failing to detect collision is the worst
problem in the application of these algorithms in haptics,

since the object attached to the probe can penetrate other
objects in the scene, without obtaining any force
feedback.

In addition to this, SWIFT++ provides the set of
closest features (vertex, edge, face) for a pair of disjoint
convex objects. However, when an intersection is
determined, it neither measures nor estimates penetration
depth, which is very an useful piece of information to
compute reaction forces to be sent to the device in
response to the probe position and orientation. Therefore,
the penetration depth of the current frame should be
estimated according to the previous frame, which may be
not accurate when objects were interpenetrating over a
number of frames.

DEEP (Dual-space Expansion for Estimating
Penetration Depth) [11] is an incremental algorithm to
estimate the penetration depth between convex polytopes.
DEEP is an extension of SWIFT++ since it is designed
and implemented on top of it. Unfortunately the freely
available source code presents implementation problems
and it crashes frequently even with very simple convex
polyhedral. Moreover, since it depends on SWIFT to
detect collisions, it is not reliable.

SOLID v 3.1 (Software Library for Interference
Detection) [17] is a freely available pre-compiled library
for many platforms (the source code is commercially
available, though). SOLID is fast, robust and very useful
for detecting collisions and computing penetration depth
between pairs of convex objects that are moving relative
to one another over time.

5. Proposed implementation

We have carried out several experiments with GHOST

and e-Touch, as well as the freely available collision
detection libraries to determine their capabilities and
deficiencies for this project. Since a point-based technique
is implemented by both GHOST and e-Touch, neither of
these libraries is appropriate for creating complete object-
based haptic applications. However, the latest version of
GHOST provides low-level access to the PHANToM
device. This enhancement enables users to obtain raw
encoder counts, send forces directly to the haptic device
and receive motor temperatures without using the higher-
level GHOST scene graph, object primitives, etc..
Consequently, we decided to restrict GHOST to perform
the actual communication with the force feedback device.

Specifying the object geometry directly in OpenGL
and manipulating the virtual scene with the limited
graphics functions provided by GHOST or e-Touch are
cumbersome for complex objects and user interactions
with the virtual environment. Open Inventor provides
outstanding high-level functions for manipulation with the
mouse, or trackball, but it does not support haptic devices.
Hence, for visualization and interaction with the scene,
we propose to extend the Open Inventor API to support
the PHANToM device and provide the user with a more
efficient tool than the primitive OpenGL. Now 3D objects

can be drawn using any 3D design software like
3DStudioMax, Maya, Pro/E, etc. and then converted to
Open Inventor format. Once those files are loaded by the
application, the user can manipulate the virtual
environment and feel the objects with the haptic probe.

The robustness problems with SWIFT and the
unstable implementation of DEEP make SOLID the best
currently existing option for object-based haptic
applications and, therefore, it was used for the
implementation of this project.

6. Haptics and graphics rendering

As we have seen, the scene graph is maintained by

Open Inventor, which allows us to handle the camera, the
objects in the virtual environment and the object attached
to the virtual probe (see). Figure 2

While haptic update rates needs to be approximately
1,000 Hz (otherwise, virtual surfaces feel softer or the
haptic device vibrates), update rates of 30 Hz are fast
enough for graphics rendering. We have designed the
Phantom Transform as a new class derived from the Open
Inventor Transform class. Basically, the Phantom
Transform class communicates with the device retrieving
the current probe position and orientation, and sending
forces to be applied by the haptic device (in one thread),
while Open Inventor renders the scene graph (in the other
thread). Consequently, the haptic and graphic upgrades
are performed by two independent threads, which can be
executed concurrently in a dual-processor system.

7. User interaction modes

We have designed two user interaction modes. In the

selection mode, the user can select a particular object in
the virtual environment touching it with the 3D cursor,
modeled as a three dimensional point and shown as a
small sphere (see). A similar point-based haptic
technique is then used to detect the collision between the
3D cursor and the objects in the scene. Once the 3D
cursor is inside a particular object, the user can feel as the
tip of the probe penetrates the object, which is shown as
“selected” by the Open Inventor Selection node (see

). After pressing the button of the haptic device
stylus, the selected object is then attached to the probe (so
the 3D-Cursor Separator is replaced by the selected
Object Separator node, which becomes a child of the
Phantom Separator node).

Figure 3

Figure 4

Now in the grabbing mode (see), a 3D-
polyhedron-based technique is implemented to detect the
collision between the selected object and the remaining
objects in the virtual scene. Contacts are felt according to
different object materials that define different force
feedback sensations. We will see how to compute the
forces to be applied by the haptic device in following
sections.

Figure 5

 Root

 Camera

Scene Transform Camera Transform

 Phantom Separator

3D Cursor Transform

3D Cursor Separator

Object- n Separator

Object- n Transform

Object- n Geometry 3D Cursor geometry

 Object Selection

Time Sensor

- Position
- Orientation

- Translation
- Rotation

Phantom Transform

- Translation
- Rotation

Update- 3D-Cursor
Callback

Object-2 Transform

Object-1 Transform

Object-2 GeometryObject-1 Geometry

 Object-1 Separator

Object-2 Separator

Figure 2: Scene graph

Figure 3: 3D objects and cursor

Figure 4: Selection mode

Figure 5: Grabbing mode

• Compute and send the forces to the haptic device.

9. Computation of forces

Since GHOST has no information about the geometry

of objects in the scene, we need to generate the forces to
be sent to the PHANToM device manually. Each object
in the virtual scene may have a different material, which
is defined by four parameters: stiffness , viscosity V ,
stickiness

S
T and friction coefficients (based on [14]). F

0P

1P

N

 When a contact is made, SOLID gives two collision
witness points for each pair of colliding objects

and . In order to compute the contact forces, surface
normals must be calculated. Given the camera
transformation matrix CM , the normal vector is
defined as:

() CMPPN *01 −=

Based on Hooke’s law, contact forces Cf are

calculated as:

10 *** SSssMaxStiffneNCf =

where is a parameter given by

GHOST according to the model of Phantom device that is
being used.

ssMaxStiffne

Adding viscous damping to the equation enhances the

user’s perception of hard surfaces. Viscosity forces
are inversely proportional to the end-effector velocity

when the probe is colliding with an object. Since
gstDeviceIO also provides velocity information, they can
be modeled as:

Figure 6: Phantom Transform node

 Vf

VelocityVf 10 ** VV=

0P 1P

8. Phantom Transform node

The interaction with the haptic device is performed

through the GHOST gstDeviceIO class [15]. This low-
level class allows us to define a callback function which
is called automatically 1,000 times per second, creating a
1 kHz servo loop running in a separated thread. At the
same time, the scene graph is traversed (rendered) by
Open Inventor 30 times per second. shows how the
specialized Phantom Transform node creates the
connection among Open Inventor, GHOST and SOLID,
encapsulating the following tasks:

According to Coulomb model, friction applies a

retarding force that is a function of a coefficient of
friction and tangential forces in the direction opposite of
the direction of motion. To implement friction, just after
a collision, the contact points, and , of both
colliding objects are stored. If the user slides one object
along the surface of the other, tangential forces to the
surfaces of both colliding objects must be computed to
restore the user back to the initial contact points. Then, if
the sliding force applied by the user exceeds certain
threshold, new contact points are stored and this process
starts again.

• Initialize the PHANToM device and enable forces
• Read the encoders to get position, orientation and

velocity of the haptic end effector
• Transform position and orientation of the object

attached to the probe from the camera coordinate system
to the world coordinate system, and update the SOLID
library

• Ask SOLID to check the collision between the
virtual probe and all the objects in the scene

 The witness points are given with respect to the world
coordinate system. But they must be expressed relative to
both objects, so they are transformed to each object • Check the status of the PHANToM switch to toggle

between selection and grabbing modes

coordinate system. Given the first and the current

 contact points after sliding the probe, and two

coefficients and that define material friction; we
compute respective tangential forces for each colliding
object as:

FP

CP

0F 1F

() 00 *
00

FPP FC −=

() 11 *
11

FPPTf CF −=

i

iT
iCP

iFP i

Tf

10 TfTfTf +=

j

TfVCForce ffj +−=

j

 Tf

If the magnitude of Tf is greater than the stickiness

coefficient , becomes the new and Tf is
ignored. Otherwise, it contributes to the friction force

, which is defined as:
.

The total force for each pair of colliding object is

computed as:

The displayed force is a function of the forces

computed for each pair of colliding object. Experiments
have demonstrated than smoother force effects are
obtained when the final force to be sent to the device is
calculated as:

j

Force
FinalForce

j

k
j∑

== 1

10. Conclusions and future research

This paper shows a successful approach to integrate

Open Inventor, SOLID and GHOST for the creation of
realistic haptic applications. We have demonstrated that it
is possible to obtain excellent results merging the best of
three worlds: an advanced and sophisticated graphics
library, a fast and reliable collision detection algorithm,
together with a library to get direct access to the
PHANToM device. A simple but very efficient way to
model multiple contact and friction forces between 3D
objects to be displayed by a 3-DOF haptic device is also
shown. The main contribution of this work is the
development of a cross-platform and modular test bed for
further research and implementation of new collision
detection algorithms as well as new contact and friction
models for haptics.

We plan to extend our current system to allow more
complex non-convex objects, stereo visualization of the

virtual scene for semi-immersive virtual reality
environments as well as haptic texture rendering. This
enhancement would require more computation power to
meet the high real-time requirements imposed by haptics.
Parallel processing may be a reasonable solution.

Haptic telecollaboration is another challenging area of
research, mainly because of network issues such as delay,
jitter (variation of delay), reliability or bandwidth which
may cause severe deterioration of the performance of the
system. In networked remote haptic interaction, delay
may cause not only time lag between human operation
and force feedback, but also instability of the haptic
device. These problems make haptic telecollaboration
prohibitive or at least very hard to implement with
regular networks. However, the use of state-of-the-art
clusters of low-cost PCs interconnected by low latency,
high bandwidth and high speed optical networks may
allow thinking on high performance haptic
telecollaboration as a feasible task.

11. Acknowledgments

This research was supported by NSF grant DMI

9988136, NIST ATP cooperative agreement
70NANB1H3014, Fulbright/YPF-Repsol scholarship
program, and the Department of Mechanical and
Industrial Engineering and the Department of
Periodontics at the University of Illinois at Chicago
(UIC).

Additional support was obtained by the virtual reality
and advanced networking research, collaborations, and
outreach programs at the Electronic Visualization
Laboratory (EVL) at the UIC, which were made possible
by major funding from NSF awards EIA-9802090, EIA-
0115809, ANI-9980480, ANI-0229642, ANI-9730202,
ANI-0123399, ANI-0129527 and EAR-0218918, as well
as the NSF Information Technology Research (ITR)
cooperative agreement (ANI-0225642) to the University
of California San Diego (UCSD) for "The OptIPuter" and
the NSF Partnerships for Advanced Computational
Infrastructure (PACI) cooperative agreement (ACI-
9619019) to the National Computational Science
Alliance. EVL also receives funding from the US
Department of Energy (DOE) ASCI VIEWS program. In
addition, EVL receives funding from the State of Illinois,
Microsoft Research, General Motors Research, and
Pacific Interface on behalf of NTT Optical Network
Systems Laboratory in Japan.

12. References

[1] Adachi, Y., Kumano T. and Ogino, K. (1995)
“Intermediate representation for stiff virtual objects”.
Proceedings of the IEEE Virtual Reality Annual
International Symposium (pp. 203-210). Research
Triangle Park., NC: IEEE.

[2] Avila, R. and Sobierajsky, L. (1996) “A haptic
interaction method for volume visualization”, IEEE
Proceedings of Visualization (pp. 197-204).

[3] Basdogan, C., Ho, C. and Srinivasan, M. (1997) “A
ray-based haptic rendering technique for displaying shape
and texture of 3D objects in virtual environments. ASME
Winter Annual Meeting (pp. 61 – 77-84). Dallas, TX:
ASME.

[4] Chazelle, B. and Palios, L. (1997) Decomposing the
Boundary of a Nonconvex Polyhedron. Algorithmica 17,
245-265

[5] Coin3D (2002) “The Coin Source”, www.coin3d.org.

[6] Ehmann, S. and Lin, M. (2000) “Accelerated
proximity queries between convex polyhedra by multi-
level Voronoi marching”, Technical report, Department
of Computer Science, University of North Carolina.

[7] Ehmann, S. and Lin, M. (2001) “Accurate and Fast
Proximity Queries Between Polyhedra Using Convex
Surface Decomposition”, Eurographics, 20,(3.)

[8] Gregory, A., Lin, M., Gottschalk, S. and Taylor, R.
(1999) “H-collide: A framework for fast and accurate
collision detection for haptic interaction”, Proceedings of
Virtual Reality Conference 1999.

[9] Gregory, A., Mascarenhas, A., Ehmann, S., Lin, M.
and Manocha, D. (2000) “Six Degree-of-Freedom Haptic
Display of Polygonal Models”, Proceedings of 2000
IEEE Visualization.

[10] Ho, C., Basdogan, C. and Srinivasan, M. (1999)
“An efficient haptic rendering technique for displaying
3D polyhedral objects and their surface details in virtual
environments”, Presence: Teleoperators and Virtual
Environments, 8(5), 477-491.

[11] Kim, Y., Lin, M. and Manocha, D. (2002) “DEEP:
Dual-space Expansion for Estimating Penetration depth
between convex polytopes”, IEEE International
Conference on Robotics and Automation

[12] Novint Technologies, Inc. (2001) “Using and
Programming the e-Touch™ API, A 3D Haptic
Human/Computer Interface and Software Development
API. www.eTouch3D.org.

[13] Ruspini, D., Kolarov, K. and Khatib, O. (1997)
“The haptic display of complex graphical environments”,
ACM (Proceedings of SIGGRAPH), 345-352.

[14] Salisbury, K., Brock, D., Massie, T., Swarup, N.
and Zilles, C. (1995) “Haptic rendering: programming

touch interaction with virtual objects”, 1995 Symposium
on Interactive 3D Graphics, Monterey, CA.

[15] SensAble Technologies, Inc. (2002) “GHOST®
SDK API Reference and Programmer’s Guide, Version
4.0”, www.sensable.com.

[16] Tesic, R. and Banerjee, P. (2001) “Exact Collision
Detection for Virtual Manufacturing Simulator”, IIE
Trans, vol. 33 (1), 43-54.

[17] Van Den Bergen, G. (2002) “SOLID Collision
Detection Library” User’s guide. www.solid.org

[18] Zilles, C and Salisbury, J. (1995) “A constraint-
based god-object method for haptic display”, IEEE
International Conference on Intelligent Robots and
System, Human Robot Interaction, and Co-operative
Robots, 3. 146-151.

http://www.coin3d.org/
http://www.sensable.com/
http://www.solid.org/

