
Radiotherapy and Oncology 161 (2021) 152–158
Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal .com
Precision association of lymphatic disease spread with
radiation-associated toxicity in oropharyngeal squamous carcinomas
https://doi.org/10.1016/j.radonc.2021.06.016
0167-8140/� 2021 Elsevier B.V. All rights reserved.

⇑ Corresponding authors at: Department of Computer Science, The University of
Illinois at Chicago, Chicago, IL 60612, USA.

E-mail addresses: awentze2@uic.edu (A. Wentzel), gmarai@uic.edu (G. Elisabeta
Marai).

1 Questions about statistical analyses can be directed to Andrew Wentzel.
Andrew Wentzel a,⇑,1, Timothy Luciani a, Lisanne V. van Dijk b, Nicolette Taku b, Baher Elgohari b,e,
Abdallah S.R. Mohamed b, Guadalupe Canahuate d, Clifton D. Fuller b, David M. Vock c, G. Elisabeta Marai a,⇑,
Spatial-Non-spatial Multi-Dimensional Analysis of Radiotherapy Treatment/Toxicity Team SMART3
aDepartment of Computer Science, The University of Illinois at Chicago, Chicago; bDepartment of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston;
eDepartment of Clinical Oncology and Nuclear Medicine, Mansoura University, Mansoura, Egypt; dDepartment of Electrical and Computer Engineering, University of Iowa, Iowa City,
USA; cDivision of Biostatistics, University of Minnesota, Minneapolis

a r t i c l e i n f o
Article history:
Received 16 October 2020
Received in revised form 18 May 2021
Accepted 5 June 2021
Available online 11 June 2021

Keywords:
Oropharynx cancer
Precision medicine
Statistical data mining
Medical informatics
Radiation-associated dysphagia
Head and neck cancer
a b s t r a c t

Purpose: To determine whether patient similarity in terms of head and neck cancer spread through
lymph nodes correlates significantly with radiation-associated toxicity.
Materials and methods: 582 head and neck cancer patients received radiotherapy for oropharyngeal can-
cer (OPC) and had non-metastatic affected lymph nodes in the head and neck. Affected lymph nodes were
segmented from pretreatment contrast-enhanced tomography scans and categorized according to con-
sensus guidelines. Similar patients were clustered into 4 groups according to a graph-based representa-
tion of disease spread through affected lymph nodes. Correlation between dysphagia-associated
symptoms and patient groups was calculated.
Results: Out of 582 patients, 26% (152) experienced toxicity during a follow up evaluation 6 months after
completion of radiotherapy treatment. Patient groups identified by our approach were significantly cor-
related with dysphagia, feeding tube, and aspiration toxicity (p < .0005).
Discussion: Our results suggest that structural geometry-aware characterization of affected lymph nodes
can be used to better predict radiation-associated dysphagia at time of diagnosis, and better inform treat-
ment guidelines.
Conclusion: Our work successfully stratified a patient cohort into similar groups using a structural geom-
etry, graph-encoding of affected lymph nodes in oropharyngeal cancer patients, that were predictive of
late radiation-associated dysphagia and toxicity.

� 2021 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 161 (2021) 152–158
Ever larger numbers of head and neck cancer (HNC) patients
survive years after oncologic therapy due to increased efficacy of
therapy, increased incidences of human papilloma virus (HPV)
related HNC, and decreased numbers of smoking and tobacco
related tumors [1]. Though they may survive therapy, patients
are often plagued with long lasting or permanent residual toxicity.
We hypothesize that information about a patient’s pattern of dis-
ease spread through lymph nodes could be used as a prognostic
indicator for symptoms of late Radiation Associated Dysphagia
(RAD) toxicity. To evaluate this hypothesis, we developed a novel
patient risk stratification method based on grouping HNC patients
with similar patterns of disease spread through the lymph nodes,
and applied it to imaging data collected retrospectively from a
cohort of 582 HNC patients.

Concretely, we encoded chains of affected lymph nodes as a set
of covariates that incorporate spatial relationships between
affected nodes, used this representation to calculate patient simi-
larity, and applied unsupervised clustering to stratify patients into
4 groups. We show that the resulting groups are strongly corre-
lated with two post-treatment toxicities associated with RAD.
These groups serve as a precise toxicity-risk staging system based
on nodal disease spread.

Despite an overall reduction in tobacco and alcohol associated
malignancies of the head and neck cancers (HNC), recent decades
have been marked by a paradoxical increase in the incidence of
cancers of the oropharynx (OPC) [2]. Approximately 7500 cases
of OPC are diagnosed in the United States annually, including
70–90% of which are associated with the human papilloma virus
(HPV) [3–5]. HPV-related OPC patients generally have better prog-
nosis than HPV-negative OPC patients, with 5-year overall survival
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Table 1
Patient Characteristics. Legend: IQ: Inter-quantile, NOS: not otherwise specified, GPS:
glossopharyngeal sulcus, RT: radiation therapy, IC: induction chemotherapy, CC:
concurrent chemo-radiation, Gy: gray. Intra-cluster breakdowns of pathological
characteristics are available in Appendix B.

Characteristic N (%)

Gender
Male 512 (88)
Female 70 (12)
Median age at diagnosis (IQ Range) 57.8 (52.1–65)
Race
White/Caucasian 530 (91.1)
Black/African American 17 (2.92)
Hispanic/Latino 20 (2.92)
Asian 7 (1.2)
Native American 1 (0.66)
NOS 7 (1.2)
Smoking status
Current 118 (20)
Former 216 (37)
Never 248 (43)
HPV Status
Negative 45 (8)
Positive 360 (62)
Unknown 177 (30)
Tumor Sub-site
Tonsil 237 (41)
BOT 295 (51)
Soft palate 6 (1)
GPS 11 (2)
NOS 33 (6)
Therapeutic combination
Radiation alone (RT alone) 74 (13)
Concurrent chemo-radiation (CC) 308 (53)
Induction chemotherapy (IC) + RT alone 53 (9)
IC + CC 147 (25)
Total RT dose, median (IQ Range) 70 (66–70) Gy
Total RT fractions, median (IQ Range) 33 (30–33)
Feeding tube at 6 months
Y 99 (17)
N 483 (83)
Aspiration rate at 6 months
Y 96 (16)
N 486 (84)
N Category (7th Edition)
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rates around 80%, compared to rates of less than 50% for HPV-
negative patients [6]. The steady increase of OPC survivors has
amplified the need to understand and minimize acute and long
term side effects following (chemo-)radiation based on cohorts of
similar patients [7,8]. Swallowing dysfunction, i.e. radiation-
associated dysphagia (RAD), has a particularly large impact on
the quality of life of OPC survivors [9]. RAD can result in nutritional
deficiencies and life-threatening aspiration pneumonia [10]. Over
50% of patients with locally-advanced OPC will demonstrate acute
or subacute evidence of aspiration and nearly 10% will become gas-
trostomy tube dependent during the peri-treatment course [11–
14].

Studies have shown that the maximum distance between
involved lymph nodes and primary tumors are potential determi-
nants of metastasis-free survival, and that patterns of involved
(diseased) lymph nodes (LN), as well as tumor proximity to organs
at risk, may affect toxicity [15,16]. However, matching spread pat-
terns based on lymph labels alone and ignoring spread over adja-
cent anatomical regions has been shown to result in incorrect
patient matches [17]. These data suggest that spatial information
pertaining to lymph node involvement may be useful in predicting
patient outcomes.

Given the overall favorable survival outcomes of HPV-
associated disease, there is a need for staging tools that can inte-
grate baseline clinical information and stratify patients by risk
for treatment-related clinical toxicities. By identifying patients at
higher risk of complications, physicians can identify where to rec-
ommend treatment changes or preventative therapy to maintain
swallowing function during and after treatment. For example,
moderate risk patients could be given more aggressive swallowing
exercises, nutritional support, or post-therapy surveillance for dys-
phagia symptoms. High risk patients could also be selected for pro-
ton therapy referral or given prophylactic gastrostomy tube
placement. As OPCs typically exhibit substantial lymphatic
involvement, pre-therapy predictive models for toxicity that are
available before radiation planning are exceptionally valuable, as
they can allow for actionable dose-modification or surgical neck
management.
N1 71 (12)
N2a 49 (8)
N2b 311 (53)
N2c 133 (23)
N3 18 (3)
T-Category
T1 131 (23)
T2 245 (42)
T3 121 (21)
T4 85 (15)
Material and methods

Patient cohort

An IRB-approved, retrospective review of patients diagnosed
with oropharyngeal cancer (OPC) and treated at MD Anderson Can-
cer Center from 2005 to 2013 was performed. Patients with lymph
node positive, biopsy-proven, OPC who were treated with radio-
therapy (RT) with or without chemotherapy with curative intent
and had at least 6 months post-treatment follow-up assessment
were eligible for inclusion. Patients’ demographic, clinical, treat-
ment, and outcome measures are summarized in (Table 1).

Patient demographics, clinical data, outcomes, and toxicity
assessments were collected retrospectively from electronic medi-
cal records. All patients underwent a complete physical and endo-
scopic examination, as well as radiological and pathological
assessments at initial treatments. Data on affected lymph nodes
levels were taken from baseline contrast-enhanced tomography
(CECT) scans obtained during initial assessment. Lymph node
levels extracted from CECT scans were used to construct a map
of each patient’s lymphatic disease spread. LN levels were defined
based on anatomical landmarks. LN levels considered were the
retropharyngeal larynx (RPN) and levels I-VI based on consensus
guidelines [18]. Outcome data was collected during a 6-month
follow-up assessment that included physical, endoscopic, radiolo-
cal, nutritional and toxicity assessments. Radiation associated dys-
phagia was defined as the presence of grade 2+ aspiration rate
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based on CTCAE guidelines [19] or feeding-tube insertion during
treatment or after treatment completion. No feeding tubes were
placed prophylactically.
Patient stratification

To perform stratification, each patient’s chain of affected lymph
nodes was encoded as a multidimensional vector (Appendix A).
First, a map of levels I-VI, and the RPN, were constructed such that
anatomically adjacent regions were connected in the map (Fig. 1).
Involved lymph nodes in each patient were identified for both
sides of the head through physical examination and radiological
imaging [20,21]. If at least one lymph node in a given level is
affected with cancer cells, we consider the corresponding level to
be ‘‘involved”. Fig. 1 illustrates the encoding process for an exam-
ple patient with bilaterally affected levels IIA-IIB and unilaterally
affected level 3.



Fig. 1. (Left) Diagram of the anatomically-adjacent representation of affected lymph nodes, for an example patient with levels 2A-2B affected on both sides of the head and
level 3 affected on the ipsilateral side of the head. Adjacent regions are represented as bigrams (e.g., 2A-2B) in our encoding (Appendix A). (Center) Encodings for each side of
the head. The contralateral side is given a ‘maximum spread’ value of 2 to represent the travel distance from 2b to 3, while the contralateral side (opposite primary tumor) has
a spread of 1 for 2A-2B. (Right) Composite encoding for the patient that captures symmetry of the head and neck; diseased regions are added while the maximum LN spread
on each side are treated as two separate covariates.

Disease spread through lymph nodes predicts radiotherapy toxicity
Pairwise similarity between patients was calculated using sim-
ilarity based on LN spread over adjacent anatomical regions, which
is an extension of the methodology introduced by Luciani et al.
[17]. Hierarchical agglomerative clustering (HAC) was performed
on the set of unique patterns of involvement present in the cohort.
Patients were then assigned to clusters by matching their lymph
node involvement to the cluster with the corresponding pattern
of involvement. More details on the similarity calculation and clus-
tering method is given in (Appendix A). Predictive models of toxi-
city 6-months after finishing radiation treatment were created
using different numbers of clusters (2–5), with and without inclu-
sion of N-staging. Baseline models were also created using only N-
staging in order to compare the performance of the clusters to N-
stage alone. For these models, membership in each cluster was
encoded as a set of 4 binary variables. The optimal number of clus-
ters was chosen using 10-fold cross validation and a logistic regres-
sion model for toxicity, described below. Statistical analysis and a
descriptive characterization was performed on the groups.
Reported clusters are labeled in the order of percentage of patients
with RAD, where cluster 4 had the highest risk.
Statistical analysis

Correlations between the LN cluster labels and toxicity outcome
(i.e. RAD) and other clinical covariates (e.g. TNM staging, HPV sta-
tus, GTVp dose, tumor subsite, age groups) were evaluated using
statistical significance tests (Fisher’s and Pearson Chi-square test)
[22]. The likelihood ratio test was used to evaluate the perfor-
mance of a logistic regression model for RAD using clinical covari-
ates with and without including the LN cluster labels as covariates.
A more detailed description of the methods used are given in
(Appendix B).

Logistic regression models were created in order to compare the
performance of different numbers of clusters with and without
including N-staging, as well as to compare to the performance of
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a baseline model where all patients are in a single cluster. These
models were evaluated using a 10-fold cross-validation scheme
where the model was trained on 90% of the data and the AUC
was evaluated using the predicted risk for the remaining 10% of
the data. This was repeated 10 times using separate splits, and
the mean AUC score across all 10 splits is reported as the overall
AUC score.

The likelihood ratio test (LRT) was used to show that the LN
cluster labels were significantly correlated with RAD while
accounting for other clinical factors, including age, HPV status, N-
stage, T-stage, and treatment modality. Tumor subsite was not
considered as it was not significantly correlated with RAD
(p > .01). The likelihood ratio test (LRT) is not a performance metric
like the C-index/ROC or R2 which is prone to overoptimism due to
overfitting. The likelihood ratio is a test of whether additional
model terms are significantly different from zero and accounts
for the fact that additional terms lead to an increased log
likelihood.

For all regression models, cluster membership and clinical stag-
ing was encoding as categorical binary variables, where the cluster
or clinical stage each patient was assigned to was encoded as a 1
and all other clusters were encoded as a 0. A more detailed descrip-
tion of the methods used for statistical methods are given in
(Appendix B).

LN graph calculations and patient similarity computations were
performed in Python using the pandas library [23]. Hierarchical
clustering and statistical tests were performed using Matlab
2018a statistical toolbox and R. All statistical tests were two-
sided with p < 0.01 considered statistically significant.

Results

Out of 644 OPC patients available for the study, 582 patients
had affected lymph nodes and were included in the final cohort.
Ignoring laterality, 63 distinct patterns of affected LNs were pre-



Table 2
Affected lymph-node (LN) patterns and toxicity outcomes. Percentages of FT and AS
are given as a percentage of the total patients with a given pattern. Legend: FT:
Feeding tube. AS: Aspiration. 2A, 2B, 3, 4: lymph node level 2a, ab, 3 and 4.

Pattern Patient Count FT AS

Unilateral 2A-2B 227 24 (11%) 26 (11%)
Unilateral 2A-2B-3 125 16 (13%) 13 (10%)
Bilateral 2A-2B 37 10 (27%) 4 (11%)
Unilateral 2A-2B-3-4 28 9 (32%) 7 (25%)
Bilateral 2A-2B, Unilateral 3 19 6 (32%) 4 (21%)
Bilateral 2A-2B-3 17 5 (29%) 7 (41%)
Top 6 patterns total 453 70 (15%) 61 (13%)
Other (57) patterns 129 29 (22%) 25 (27%)
All 63 patterns 582 99 (17%) 96 (16%)
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sent in the 582 patient cohort, with 6 patterns comprising 78% of
the cases (Table 2). Of the patterns with over 10 cases, patients
with bilaterally affected 2A-2B-3 levels showed the highest inci-
dence of RAD (53%), while the group with unilaterally affected
2A-2B-3 regions had the lowest incidence (18%). Levels 2A-2B were
the most common affected sites, with 76% and 19% of patients
showing unilateral spread and bilateral involvement, respectively.

Table 3 shows the mean AUC for predicting feeding tube depen-
dency, aspiration, and RAD using cluster labels for 2–5 clusters
using 10-fold cross-validation. All models that included both N-
staging and LN clusters performed better than the baseline model
with only N-stage. In the subsequent analysis, we used 4 clusters,
as they performed best for overall dysphagia (RAD) in terms of
AUC, and facilitated direct comparison against the current AJCC T
and N staging systems, which use 4 categories each to describe
the size of the tumor and spread to lymph nodes.

The 4 groups consist of 1 large, low risk cluster (Cluster 1), and 3
smaller, higher risk clusters that are characterized by the spread
and presence of bilaterally affected regions. To better explain the
patient stratification to clinicians, we created a visual representa-
tion of the disease spread patterns in the clusters (Fig. 2) [24] using
visual communication rules [25].

The 4 clusters were significantly correlated (p < .0001) with
both feeding tube and aspiration rate at 6 months post-therapy
(Appendix C). Although clusters were also correlated (p < .0001)
with several other early risk factors: N-category, AJCC staging, T-
category, tumor laterality, and total dose, none of these factors
by themselves were able to stratify the patient cohort as our
approach did. Clusters were also significantly correlated with
HPV status (p < .01). No correlation was found between clusters
and age (p > .05), nor with tumor subsite (p > .05). A detailed dis-
cussion of each cluster is given in (Appendix C) and breakdowns of
demographics and toxicity by cluster are detailed in (Appendix C
Table C1).

After adjusting for age, smoking status, use of chemotherapy,
HPV status, T category, and N category, LN clusters were signifi-
cantly associated with RAD using a likelihood ratio test
(p < 0.001). The addition of the LN clusters shows significant
improvement when included in the model, even when T and N-
category are included (Table 4).
Discussion

Head and neck cancers account for nearly 3% of all malignancies
in the U.S. with approximately 62,000 HNC cases diagnosed per
year [3]. More than two-thirds of those diagnosed with HNC will
survive 5 years or more if treated with locoregional curative ther-
apy. However, almost all radiotherapy survivors will suffer from at
least mild-to-moderate symptoms from head and neck radiation
[26,16]. Recent phase III studies [27,28] suggest that concurrent
chemoradiation will remain the standard for most locoregional
head and neck cancers, and treatment protocols that minimize tox-
icity risk will remain essential. Thus, effective methods to predict
radiation effects before radiation planning, actively reducing the
side effects to adjacent organs-at-risk (OARs) deliverable with cur-
rent radiotherapy treatment devices represents a clinically key
improvement in cancer care. A majority of models utilized for tox-
icity prediction consider organs-at-risk (OARs) independently, but
fail to consider distinct patterns of lymphatic spread, or that OAR
dose is a function of proximity to tumor volumes [29].

We introduce a stratification technique to group patients based
on the spread of diseased lymph nodes in OPC patients. These
groups strongly correlated with late Radiation-Associated Dyspha-
gia (RAD) after correcting for existing diagnostic information. Since
our model relies on stratification using unsupervised clustering, it
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can allow for granular risk predictions for small populations of
patients with uncommon or unique lymph node involvement.
Thus, even before time intensive radiation plan optimization, an
indication of the expected RAD can be estimated. Conclusively, this
work shows that lymph node spread, determined at the time of
diagnoses, can supply a clinically usable RAD risk assessment and
guide toxicity-informed treatment decision making.

Our model does not rely on the delineation of organs-at-risk or
radiation dose optimization, which are time expensive, but instead
uses the lymph-node spread as a precursor for late toxicity. While
our clusters are largely correlated with N-staging, we identified
sub-patterns within these groups that are not captured by current
staging considerations. Most of the difference in the cohort pre-
sented as either in N-category 2b or lower (low risk) vs N-
category 2c or higher (high-risk). However, our 3 high risk clusters
were able to identify groups of higher risk patients within and
across N-category 2b and 2c that allowed for more granular risk
prediction not captured by N-category alone. Furthermore, after
adjusting for age, smoking status, use of chemotherapy, HPV status,
T-category, and N-category, the LN clusters were still significantly
associated with RAD. Our technique uniquely considers 3-d anat-
omy of the lymphatic system in the oropharynx, allowing us to
capture more granular spatial information beyond what is cap-
tured by current staging systems.

Interestingly, we found a disparity in risk within different clus-
ters when comparing aspiration rate and feeding tube. Cluster 4
showed the highest percentage of RAD and a very high percentage
of patients with aspiration. This is consistent with the group’s
higher degree of bilaterally affected nodes and larger nodal spread
than other nodes, as well as the higher T-category and AJCC stage,
as patients with more severe disease are more likely to have
adverse effects. However, feeding tube toxicity was most prevalent
in cluster 3, suggesting that some underlying causes of feeding
tube are not captured by overall disease spread or traditional AJCC
staging. When ignoring bilaterality, cluster 3 had the highest per-
centage of patterns with affected nodes in levels 1B, 4, 5A and
5B, indicating that cluster 3 may be separating a small set of
patients with disease more localized to the lower regions of the
neck, rather than the majority of patients with disease around
levels 2A-2B. It may be the case then, that the presence of diseased
lymph nodes in regions 4-5A-5B is indicative of feeding-tube tox-
icity risk separate from general disease spread or tumor size.

Our results suggest that bilaterality, as well as spread to level 3
or 4, are correlated with clusters at high-risk of RAD, and are thus
an indicator of patient risk of toxicity. However, the fact that our
clusters, while heavily correlated with RAD, are largely subsumed
in N-category 2b/2c, suggests that existing classifications methods
are insufficient for capturing relevant spatial information. We
show that the maximum lymph node spread is a valuable covariate
for stratifying patients, which is consistent with previous findings
that suggest lymph node spread is a good measure of distance
metastasis free survival [15]. Finally, some distinct patterns are



Table 3
AUC scores (10-fold cross validation) for toxicity prediction using logistic regression from different numbers of lymph node clusters, with and without addition of N-staging.
Models with the highest AUC for a given outcome are in bold. AUC performance is highest for 3 clusters and for 4 clusters, implying that those provide the best ranking of patients
based on risk prediction.

Cross-Validation AUC

Feeding Tube Aspiration RAD

# Clusters Our method + N Category Our method + N Category Our method + N Category

Baseline (no clusters) - 0.555 - 0.659 - 0.64
2 clusters 0.577 0.572 0.591 0.675 0.591 0.646
3 clusters 0.612 0.592 0.603 0.675 0.603 0.655
4 clusters 0.595 0.567 0.621 0.677 0.621 0.656
5 clusters 0.597 0.597 0.62 0.669 0.62 0.652

Fig. 2. Visual representation of each cluster. (A) Heat map of nodal spread within each cluster. Left half of each map indicates % of patients in the cluster with at least one
affected node on a specific level, while the right half encodes the percentage of patients with bilateral spread within a specific level. Regions outlined in black denote regions
that are most discriminative for cluster membership, and could be used to determine if 99% of patients are within a given cluster. (B) Radar chart showing the % of patients in
each cluster with a given toxicity or inclusion in a specific clinical staging category. FT: Feeding Tube, AS: Aspiration, RAD: Radiation-associated dysphagia, T1-2: T-category 1
or 2, T3-T4: T-category 3 or 4, N0-N1: N-category 0 or 1, N2a-N2b: N-category 2a or 2b, N2c-N3: N-category 2c or 3.

Table 4
Akaike information criteria (AIC) and p-values from Likelihood ratio tests (LRT) for cluster labels in logistic regression models for predicting feeding tube, aspiration, and RAD.
Lower AIC indicates better fit models after accounting for the number of covariates. LRT p-values <.05 indicates 95% confidence that cluster labels are meaningfully correlated
with toxicity after accounting for other covariates. Legend: Age: Age >= 65; Smoke: Smoking Status (Never or Former/Current); Chemo: (Concurrent Chemo-radiation or Radiation
Alone); HPV: HPV status (Positive, Negative, or Unknown); T: T-category (1–2 or 3–4); N: N-category (0–1 or 2–3).

Feeding Tube Aspiration Rate RAD

Base model Base model + LN
Cluster

Base model Base model + LN
Cluster

Base model Base model + LN
Cluster

Model Covariates AIC AIC LRT AIC AIC LRT AIC AIC LRT

Clinical (Age, Smoke, Chemo, HPV) 519.1 508.6 <0.001 503.6 493.1 <0.001 645.1 627.1 <0.001
Clinical + T-stage 488.5 485 <0.05 477.2 472.3 <0.05 602.8 594.4 <0.01
Clinical + T-stage + N-stage 490.5 486.8 <0.05 475.2 467.5 <0.01 602.2 590.9 <0.001

Disease spread through lymph nodes predicts radiotherapy toxicity
more correlated with aspiration rate vs feeding tube toxicity, and
while bilaterality, lymph-node spread, and T-category are good
predictors of aspiration risk, the location of affected lymph node
chains lower in the neck may be underexplored indicators of late
feeding tube insertion, which is less well understood.

Since clustering was performed over the unique patterns of
involvement, not the individual patients in the training cohort,
assigning new patients to a cluster can be done without retraining
the model. In the case that the new patient exhibits one of the pat-
terns within the training data, the cluster assignment is done by
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matching. In the case the new patient has a previously unseen pat-
tern of involvement, the distance between the pattern and each
cluster is computed and the patient is assigned to the closest clus-
ter using average Euclidean distance.

While this retrospective study considers a cohort with many
HNC patients and lymph node spread, it is not without limitations.
First, our cohort consists primarily of white, male patients, and
thus these results may not be reflected in more diverse demo-
graphics. The AJCC and TNM staging used in our analysis is the
7th edition, which was the standard at the time of treatment,
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because of the large number of patients with unknown HPV status.
However, HPV status, alongside TNM staging and treatment
modality, is already considered in our multivariate logistic regres-
sion models when assessing statistical significance. In AJCC’s 8th
edition the N2a and N2b stage for HPV positive patients are com-
bined with N1, as it provides a larger pool for events by grouping
disparate lymph node distributions for overall survival risk cohort
stratification. Comparatively, this work is concerned with late tox-
icity and its relation to LN involvement. The loss of granularity in
the 8th edition would limit our ability to distinguish between
lymph node patterns in HPV positive N2a and N2b patients.

Finally, we consider only patterns present in our cohort. While
this assumption is reasonable for a majority of patients, there may
be different factors that may indicate RAD risk in patients with
uncommon patterns of nodal spread that are not present in our
cohort (e.g., patients with nodal spread in level 6). Our results sug-
gest that there is a small set of rare patterns with limited bilateral
spread with higher risk of feeding tube toxicity. It is thus possible
that there are spread patterns with bilaterally affected nodes in
levels 3–5 that may be very high indicators of feeding tube inser-
tion, but these patterns are rare, making it difficult to draw
conclusions.

This work represents the first demonstration of a toxicity model
incorporating spatial, inter-patient similarity metrics to predict
radiation-associated dysphagia at 6-months post-radiation in
oropharyngeal cancer survivors. Future efforts include work to
apply these pre-trained clusters, alongside recent advances in
delta-radiomics features, and radiomics-based clusters, to a differ-
ent validation cohort, as well as adding normal tissue radiomics
metrics to the spatial analyses presented herein. At present, while
we have radiomics signatures associated with salivary injury, the
data on muscle-specific radiomics markers of dysphagia remains
preliminary but is a potential avenue for further hypothesis gener-
ation. Additionally, we seek to integrate spatial features into visu-
alization software for dynamic decision tools [7] for
multidisciplinary head and neck risk stratification, therapy selec-
tion, and patient education.
Conclusion

In conclusion, this study demonstrates that clustering based on
lymph nodes spread is associated with radiation-associated dys-
phagia, both aspiration toxicity and feeding tube dependency.
Our anatomical representation of lymph node spread showed
superior association to RAD compared to the current N-category
classification. Our method relies only on discrete information on
nodal spread at time of diagnosis, and thus does not require com-
plex dose-planning or organ segmentation to determine RAD risk.
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