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Abstract: Through the use of open data portals, cities, districts and countries are increasingly making1

available energy consumption data. These data have the potential to inform both policymakers and2

local communities. At the same time, however, these datasets are large and complicated to analyze.3

We present the activity-centered-design, from requirements to evaluation, of a web-based visual4

analysis tool to explore energy consumption in Chicago. The resulting application integrates energy5

consumption data and census data, making it possible for both amateurs and experts to analyze6

disaggregated datasets at multiple levels of spatial aggregation and to compare temporal and spatial7

differences. An evaluation through case studies and qualitative feedback demonstrates that this8

visual analysis application successfully meets the goals of integrating large, disaggregated urban9

energy consumption datasets and of supporting analysis by both lay users and experts.10

Keywords: Interactive Visualization; Visual Design; Sustainability11

1. Introduction12

In the videogame Watch Dogs, you play a hacktivist who gradually cripples the infrastructure of13

a futuristic, hyper-connected Chicago [1]. While the game’s fictional world uses sensor and monitoring14

systems, the real Chicago does not currently run this type of sensing devices. Yet, urban officials15

and management are keenly interested in collecting, processing, and analyzing relevant data in order16

to tackle inefficiencies in the city’s energy infrastructure. City officials aside, the local population is17

equally interested in reducing their carbon footprint: the Chicagoans’ use of plastic and paper bags18

decreased vastly (42% in the first month) after a relatively minor change in the city’s 2017 bag tax19

policy [2].20

At the same time, urban and energy data are becoming freely available through a profusion of21

open data portals supported by local, regional, and national governments. These datasets have the22

potential to inform both policymakers and the local communities. What few potential users anticipated,23

however, is that these datasets are large and complicated to analyze. In particular, the datasets can be24

highly disaggregated, both spatially and temporally. Traditional statistical techniques fail to capture25

complex and meaningful patterns present in these datasets [3]. The problem can benefit from visual26

analysis: using computer graphics techniques to harness the outstanding powers of the human visual27

system and make possible insights into complex problems. However, while several visual analysis28

systems exist for specific energy datasets, they generally do not address the challenge of spatial and29

temporal disaggregation, and they seldom provide explicit data comparison support.30

In this article, we describe our joint efforts (visualization researchers and urban energy policy31

researchers) to provide an easy-to-use platform to visualize urban electricity and gas consumption in a32

meaningful way. The main contributions of this work are: 1) a description of the current challenges33

and state of the art in visualizing urban energy; 2) a description of the urban multi-scale data collection34
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and processing for this problem in the city of Chicago; 3) the activity-centered design of a platform for35

the visual analysis of urban data at multiple spatial scales, in collaboration with domain experts; 4) the36

implementation of this design in a web-based, scalable-display interactive system (Figure 1); and 5)37

the evaluation of this approach through several examples and through domain expert and community38

feedback.39

Figure 1. Interactive, web-based, open-source energy consumption explorer for the city of Chicago.
The central overview + detail map supports selection and comparison of areas at multiple spatial scales
(entire community areas, census tracks, and census blocks) and multiple gas and electricity metrics
that can account for population statistics. Details on demand supply additional area statistics. A word
cloud, simple charts and histograms (left) enable building-type analysis, global seasonal consumption
analysis, and comparison of a selected area against the overall consumption distribution. A scatterplot
view and additional seasonal charts support outlier detection and seasonal consumption analysis at
smaller spatial scales, selected by the user.

1.1. Electricity and Gas Consumption: Background40

In the United States (US) alone, 3.95 million GWh of electricity and 547 million cubic meters of41

gas (excluding for electricity generation) were consumed in 2018, representing about 50% of the total42

energy used in the US — the other 50% include coal and petroleum consumption (both for electricity43

generation and transportation). Moreover, the residential and commercial sectors accounted for 40%44

of energy use, most of which is being consumed in the form of electricity or gas [4]. Understanding45

patterns of electricity and gas consumption is therefore paramount.46

The data and its potential analysis, however, come with a number of challenges. Both electricity47

and gas consumption vary heavily based on land use (i.e., commercial, residential, industrial, etc.)48

and building occupation and use (i.e., energy use per capita and per unit area). The energy data also49

spans multiple spatial levels: some urban users will be interested in consumption at the level of a50

single block, some in census groups, and others in entire neighborhood statistics. Some analyses may51

involve a temporal dimension, for example seasonal consumption (i.e., summer vs. winter). Many52

analyses may involve comparing different spatial areas. The analysis environment itself may vary. For53

example, urban policy users may be interested in discussing and communicating this type of data54

on large screens in war rooms. Last but not least, the data itself may belong to private companies,55

and citizens may have their own privacy concerns. This variability of scales and usages makes the56

collection, processing and analysis of urban energy data particularly difficult.57
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1.2. Energy visualization systems58

Multiple systems exist for the visual analysis of energy data in the most populated cities in the59

US (New York City, Los Angeles, Chicago, Philadelphia), and also for countries or states in Europe60

and Australia. Almost all of these systems encode energy data as spatial overlays over country, city or61

building maps, and most use additional simple visual encodings such as pie charts and plots (Figure 2).62

And yet, there is no combined solution to the multiple challenges outlined earlier, and there is no63

system that handles the variety and complexity of energy data tackled in this work.64

In New York City, the NYC Energy and Water Benchmarking [5] and the NYC Energy and Water65

Performance Map [6] encode energy-use per-block in the city with color, with additional details on66

demand, and no support for multiple spatial scales, seasonal analysis or per unit comparison. In Los67

Angeles, the LA Energy Atlas [7] displays on a map energy consumption across the county by city and68

neighborhood, as well as by building type, age, type of energy and greenhouse gas emissions. The69

data can be explored using multiple metrics (total, per sq feet, per capita), and a separate bar chart70

view supports comparison of multiple areas, although the areas are not user-selected. The system does71

not support seasonal analysis, outlier detection, or details on demand about user-selected areas. In72

Chicago, the Energy Data Map [8] is a basic visualization that shows residential gas and electricity73

consumption, with consumption mapped to the height of each community area in 3D, respectively74

to 2D grayscale at the block level. While users can view basic consumption details at these two75

scales, community area and census block, there is no support for comparing different areas, outlier76

detection, population statistics, seasonal consumption, building type analysis etc. In Philadelphia, the77

Building Energy Benchmarking [9] encodes energy consumption at the building level through color78

and size-coded markers over a map, and supports outlier detection through a scatterplot. A second79

system, the Energy Consumption Map [10] adds comparison capabilities, although in a separate tab,80

and details on demand. Neither system supports multiple spatial scales, population statistics, building81

type analysis, or seasonal consumption. All the urban energy visualization systems discussed in this82

section use recorded snapshots of data, not real-time measurements.83

Figure 2. Snapshots from the state of the art in urban energy visualization systems

Beyond urban visualization, energy visualization systems exist at higher spatial scales in both84

Europe and Australia. In Europe, the Electricity Map project [11] encodes on a colored map the CO2
85
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emitted while producing electricity in different countries. Details on demand show the energy source86

in each country, and timelines encode the CO2 intensity over the last 24 hours. In Australia, the87

Australian Energy Market Operator [12] overlays on a map the electricity infrastructure as color lines,88

along with consumption data such as demand forecasts and historical information. None of these89

systems support multiple spatial scales, population statistics, seasonal or building type analysis, or90

comparison of user-selected units.91

Because almost all these energy visualization systems exist only online, with no other92

documentation, it is difficult to infer the visualization design process and principles that were followed93

in the development of these tools. For example, one common trait arising from these designs appears94

to be an assumed low level of visual literacy among their target audience.95

The wider visualization literature reports on general exploratory visualization techniques for96

spatio-temporal data [13]. We use several of these techniques, in particular querying (lookup and97

filtering), time series graphs, and aggregation of attribute values, in the context of our problem.98

An overview of urban analytics [14] further surveys the data types and visualization techniques99

common in urban computing problems, including energy consumption data, although it does not100

explicitly discuss census data. In terms of energy visualization design, Goodwin et al. [15] describe the101

user-centered design of an analysis tool that was commissioned by a small set of domain experts; their102

tool aimed to visualize data from smart meters in a number of households. In contrast, our project103

follows an Activity-Centered-Design paradigm, aims to serve a broader audience, and integrates104

spatial, temporal, and census data.105

2. Materials and Methods106

Our design process followed an Activity-Centered-Design paradigm for visualization [16], which107

is an extension of the classic Human Centered Design paradigm in visualization design. The approach108

places particular emphasis on functional specifications and on user workflows. We adopted this109

approach because of its documented higher rate of success in interdisciplinary project settings. We110

implemented this paradigm through an iterative process where the research team met regularly111

with potential and actual stakeholders to confirm requirements and functional specifications, explore112

prototypes, refine the design, and verify that evolving requirements were being satisfied.113

2.1. Requirements and workflows114

The first stage of design, requirement engineering, started with several face-to-face115

semi-structured interviews with two energy researchers. Because Activity-Centered-Design [16]116

focuses on activities, not the individual person, no personal data was collected from the energy117

researchers. The interviews established: who the potential users of the visualization would be (energy118

researchers and policymakers; with the clear objective or reaching the broader population); a prioritized119

list of the main analysis tasks and workflows; the data sources and flow of data through the process;120

and non-functional requirements such as web-access and support for large displays.121

Together with the energy researchers, we identified the background challenges to energy analysis,122

as highlighted in the earlier sections: 1) data disaggregation, 2) multiple spatial scales, 3) seasonal123

analysis, 4) explicit support for comparison using multiple metrics, 5) including census-based124

population statistics, 6) support for outlier detection at multiple scales, 7) details on demand. While125

some of the resulting requirements have been previously discussed in the literature in the context of126

urban analytics [14] (e.g., spatiotemporal outlier and trend detection on maps), others have not been127

previously featured; in particular the explicit support for comparison at multiple scales, and the role of128

census-based population statistics in the analysis. We further discussed with the domain experts the129

role of web-based visualization and the low level of visual literacy among both energy analysts and130

the wider population.131

We analyzed the requirements resulting from the interviews along the Activity-Centered-Design132

components of tasks, usage, data, flow, and nonfunctional requirements [16]. The data requirements133
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are described in detail in the following section. We wrote the resulting functional specifications as134

scenarios [16]. A first set of scenarios was centered around policymakers and energy researcher135

characters. To improve engagement with the wider population, a second set of scenarios was centered136

around a fictional teenager, his friends who lived in other neighborhoods, along with their privacy137

concerns, and the teenager’s parent.138

We had the domain experts and a group of lay colleagues (representatives of the amateur, wider139

population) repeatedly read, comment and approve the resulting set of scenarios. This process140

helped us understand the desired functionality of the visual analysis module, formalize it in a written141

document, and reach agreement with the domain experts regarding what the system will do and also142

what it will not do (e.g., ‘The system will not run on other browsers than Chrome and Safari’ and ‘The143

system will not be targeted to smartphone usage’).144

As a result of this process, two main analysis workflows emerged. The first workflow corresponds145

to a city official, manager, or energy researcher persona (the domain expert persona). This workflow146

(‘Overview and Outlier Detection’) starts by looking at the energy landscape as a whole, identifying147

outliers at multiple scales, then proceeding to analysis as in the second workflow described below.148

The second workflow corresponds to a local citizen persona, as well as a local advocate persona (the149

wider population). This workflow (‘Search’) starts by interactively selecting an area of interest, then150

proceeding to the analysis of details, comparison against a related unit or against global behavior,151

and/or seasonal and building analysis, in a process of hypothesis generation and fact-finding. Our152

subsequent visualization design explicitly supports these two workflows.153

2.2. Data Aggregation154

This project builds on the open-access Chicago Energy Usage dataset, the result of a collaborative155

effort between the City of Chicago, the Civic Consulting Alliance, Datascope Analytics and IDEO, with156

support from Accenture, Elevate Energy, the Citizens Utility Board, ComEd and People’s Gas [17].157

This publicly accessible dataset contains information for 88% of the buildings of Chicago; a 68%158

of the overall electricity consumption and 81% of gas consumption; no data is provided for those159

buildings whose energy was not supplied by the earlier listed companies. As with all the urban energy160

visualization systems surveyed earlier, the portal dataset is a pre-recorded dataset, not real-time data;161

this aspect is due to the lengthy and difficult process of data collection and transfer from the energy162

companies to the city management.163

Each observation in this dataset (i.e., accounts for ComEd and People’s Natural Gas) was collected164

and tagged at the US Census block level. A census-block spatial scale corresponds to fewer than165

4 accounts at a local neighborhood (i.e., ‘Community Area’) larger spatial scale. In addition, each166

observation includes additional basic details such as population, physical building information,167

primary building use (i.e., residential, commercial, industrial etc.), and occupancy.168

To enable analysis at multiple spatial scales in the context of population statistics, we process169

and augment this dataset to obtain detailed geographical census identifiers. To this end, we170

geographically aggregated all the observations in the dataset into Census Tracts and Community171

Areas (neighborhoods), a process that we mainly performed through ArcGIS software with additional172

map matching procedures. We obtained the geographical census data in GeoJSON format from the173

Boundaries - Community Areas dataset, the Boundaries - Census Tracts dataset, and the Boundaries -174

Census Blocks dataset in the same Chicago Data Portal. We cross-referenced the census data with the175

energy data timestamp.176

The aggregated dataset for energy consumption analysis includes: 1) spatial information of the177

community areas; 2) census tracts and census blocks provided in GeoJSON format; 3) an id of the178

aggregation level; 4) an id for the target area; 5) the monthly use of electricity (in kWh) and gas (in179

thm); 6) the total consumption in a year; 7) consumption per square feet and per capita. Additional180

census data include 8) the population per area; 9) the number of units; and 10) the number of occupied181

units. We also augmented the dataset with 11) information about the distribution of buildings per182
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community areas, based on the following taxonomy: residential, commercial, office, recreational,183

medical, educational, government/public, industrial, green, vacant, water, and utilities. We store184

the aggregated data (categorical, quantitative, temporal) in a MongoDB database. Handling these185

spatiotemporal data at multiple scales adds complexity to the visual design.186

2.3. Visual encodings and interaction design187

In accordance to the Activity-Centered paradigm, our top-level design builds on the workflows188

and previously identified requirements. A series of low-fidelity prototypes were sketched on paper189

and later in software to illustrate how individual features could be incorporated into an overall design,190

what workflows could be performed and what interactions could be incorporated. We followed a191

parallel prototyping approach [18], which has been shown to lead to better design results. In this192

approach, multiple prototypes were presented to the energy researchers and potential lay users. We193

discussed multiple versions, combinations and permutations of these low-fidelity prototypes with the194

group, and incorporated their feedback and suggestions in successive iterations (Figure 3).195

Figure 3. Parallel prototyping in the design stage. (a) Prototypes for visual encodings. (c) Workflow
and layout prototypes. (b) Early software prototype with reduced functionality, whose look and feel
the end-users critiqued as ‘too Unix/computerish’.

To better support the different workflow designs identified earlier, our final top-level design196

comprises multiple linked-views and side-by-side comparisons. A central map-based explorer, a top197

detail bar, a building-type and yearly statistics side-panel, a scatterplot and a comparison panel (Figure198

1) connect the geographical location of a region of interest with an overview of regional performance199

and outlier and usage-pattern detection. A filter bar further allows users to select the attributes and200
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metrics to visualize for the areas selected. The specific visual encodings were selected from a relatively201

large design space that included, among others, Kiviat diagrams, parallel coordinate plots, overlays202

and stacked graphs. The resulting encodings were selected based on their expressive power, balanced203

against the test users’ visual literacy and feedback. We describe below briefly each main panel.204

Figure 4. Visual encodings and interactions for urban energy consumption analysis: (a) a word cloud
shows the distribution of buildings in a neighborhood; underneath, charts and histograms show energy
consumption across seasons, respectively the relative rank of the selected neighborhood against the 76
neighborhoods in the city. (b) A scatterplot supports outlier detection; bubbles along the two main axes
show regions for which either gas or electricity data is not available. (c) A comparison panel supports
direct comparison of multiple user selected regions, again across seasons.

2.3.1. Map and Community Explorer205

The central component of the visualization shows a context + detail map explorer and serves206

as an entry point for the ‘Search’ workflows. A small map highlights the selected community in the207

context of the city layout, and the detail map shows smaller spatial scales for the region selected: either208
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census tract or census block data. We use a divergent color scale to encode the energy consumption per209

region. We allow using both a normal and a log scale for the value range, because some areas consume210

considerably more energy than others. The range is recomputed each time a new area or spatial scale211

is selected, in order to allow detection of variation at multiple spatial scales.212

A top explorer bar serves as a heading for the visualization and shows the community details for213

the currently selected neighborhood. Underneath, a word cloud shows the distribution and types of214

buildings in that community; most frequent types of structures have bigger fonts (Figure 4 (a)). Further215

below are aggregated consumption and distribution charts for that community. Two line-charts show216

the temporal/seasonal monthly consumption behavior per energy type; the user can hover over the217

line to see the amount of energy consumed in each month. Underneath the line charts, a histogram218

shows the energy consumption per energy type. A red vertical line allows comparing the yearly use of219

the selected community area against the other 76 communities in the city of Chicago.220

Selecting a specific area in the detail map provides further details on demand (Figure 5), and also221

allows adding that area to a comparison chart, described below.222

Figure 5. Details on demand in the detail map, showing the one block in the selected neighborhood
that has higher energy consumption. Unusually, this downtown block features a single inhabitant, and
no occupied units.

2.3.2. Scatterplot and Comparison Chart223

The scatterplot panel supports the second type of workflows, which is based on the overall data224

and not on a specific location. The scatterplot also supports outlier detection and can be explored at225

different levels of aggregation. The user can select a variable for each axis of the scatterplot, as well as226

the quantity encoded by the marker size (Figure 4 (b)). As in the spatial map, the user can inspect data227

in logarithmic or real scale. We use opacity to reduce occlusion between adjacent elements.228

To support comparison subworkflows, the panel also shows a list of selected areas and a set of229

charts (Figure 4 (c)). The list is ordered by level of aggregation of the selected areas. For census tracts230

and census blocks, we named the item by concatenating the name of the community and the area231

number; the complete name of the area is shown when hovering over the list item. Selected areas can232

be removed interactively. The line charts show the comparison for a selected level of aggregation at a233

time, and the header of that aggregation level is highlighted in the list. The line colors correspond to234
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the color used in the list, and on hovering, we display the consumption details for the month, to better235

support seasonal analysis. The map panel and the scatterplot panel are interlinked.236

We built this open source, web-based project using a MongoDB database and a NodeJS server. We237

also used the following Javascript libraries: D3, Leaflet, JQuery and Knockout for the front-end. Because238

the system runs in a browser, it can be effectively used on a variety of displays, from regular laptop239

and desktop screens to larger-scale tiled displays in war rooms using the SAGE2 middleware [19].240

3. Results241

Because of the exploratory visualization nature of the project, and in concordance with242

activity-centered design, which emphasizes "why" and "how" questions over "how much/many"243

questions, we used a qualitative evaluation methodology to analyze the user activities on a244

homogeneous sample of participants who share key characteristics [20]. As in this work, qualitative245

data often are about the function of a tool or system, and they aim for sometimes rich descriptions of246

complex ideas or processes, albeit typically across a limited number of individuals or settings. This247

approach stands in contrast to quantitative methods, which explore variables that can be captured248

or represented in numerical form, often across large samples and/or multiple points in time. In our249

case, the choice of a qualitative scheme was furthermore strongly supported by two factors [21]: 1)250

the nature of the energy project, which emphasizes exploring a new area of inquiry and generating251

hypotheses, without established measurements or known facts; 2) the general goal of generating252

information about how a lay audience understands, thinks about, and makes sense of the energy data,253

with no emphasis on the user background beyond an assumption of low visual literacy. Conversely,254

these are equally strong arguments against a quantitative evaluation.255

Sample size in qualitative research is not judged by the same criteria as it is in quantitative research256

because statistical power is not the goal [21]. Because this project explores a narrow phenomenon257

in depth (an analyst’s process of making sense of energy data), we evaluated this smart city energy258

explorer through multiple demonstrations. The demonstrations involved stakeholders with different259

and sometimes overlapping roles: energy researchers, public policy advocates, state officials, city260

officials and managers, data analysts, and regular citizens. The demonstrations took various forms,261

from designer-driven demos to novice-driven exploratory analyses and to expert-driven in-depth262

sessions. These demonstrations were conducted on a variety of display sizes (Figure 6), and involved263

more than ten groups, ranging in size from two domain experts to twelve citizens, in sessions ranging264

from ten minutes to one hour. Along activity-centered principles, we evaluate the system’s novel265

functionality through activity observation with minimal task guidance (e.g., ‘Do you notice anything266

unusual?’). We report naive and expert analyst feedback and an in-depth case study performed by267

energy researchers and policy advocates.268

Figure 6. Energy explorer usage on a variety of displays and with different stakeholders. (a) Data
analysts usage in a conference room equipped with a large tiled display. (b) Citizen usage on a laptop
and a large display.
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Observation of the system usage showed that the visual analysis tool successfully met the original269

requirements in terms of user workflows. Without exception, policy advocates and citizens started their270

exploration by locating the neighborhood they were interested in, then delving into further seasonal271

exploration and comparison tasks. In contrast, state and city officials and energy researchers started272

their exploration with the overview analysis and outlier detection; although Chicagoan stakeholders in273

this category sometimes continued to local analyses of their workplace neighborhood. In one instance,274

state officials zeroed on a surprising high outlier that turned out to be a federal building downtown275

Chicago. In another instance, energy researchers noticed an unusual high-consumption block that276

featured a single person population and zero occupancy (Figure 5). The feedback from this large277

and diverse number of users has been uniformly enthusiastic (‘Great stuff’, ‘Can I use this for my278

hometown?’, ‘Where can I get the source code?’, ‘Can I pass this on to my criminology class?’, ‘Great279

visualization and I am happy to have been part of it’, ‘Clever visualization’, ‘May we use this at the280

urban planning center?’, ‘May we show this to ComEd?’, ‘May our clients use this in a dispute with281

their landlord?’ etc.). We report below one of the in-depth analyses conducted by a small group of282

public policy advocates.283

3.1. Case Study284

This case study involves a group of three advocates for social good and two energy researchers.285

The group performed an analysis of energy consumption in a particular disadvantaged neighborhood286

of Chicago, with which the advocates were closely familiar. The group’s analysis started by selecting287

the neighborhood in the overview map (Figure 7). They noted that the building word cloud288

confirmed something they had already known – this mostly residential neighborhood featured a289

high concentration of vacant (abandoned) lots, and there were also recreational areas associated with290

local parks. The exploratory panel data was also in agreement with other known facts: the overall291

consumption was relatively low compared to downtown areas in terms of electricity, and similar to292

other areas in terms of gas; gas consumption was higher in the winter, due to the use of gas heating293

in homes; electricity consumption spiked in the summer, possibly due to the use of air conditioning.294

Surprisingly, electricity consumption had been lowest in January, and highest in December. The group295

did not agree on a single possible explanation for this observation.296

The group then switched to the census block spatial aggregate in the detail map. As shown in297

Figure 7, one block stood out in terms of electricity consumption, when compared to other blocks298

within that region. The regional outlier was confirmed by the details on demand. The group agreed299

that the low January consumption could not have contributed to the block’s status as an outlier, and so300

continued their analysis. The advocates tested several electricity metrics, seeking to find a correlation301

between either population, occupied units, or square footage and this unusual distribution, but nothing302

stood out. The scatterplot also confirmed the outlier status of the block, at both logarithmic and real303

scale, and further indicated the outlier was not due to missing data elsewhere in the neighborhood.304

One group member did a quick numerical comparison with their own home’s consumption over the305

previous year, and was shocked by how large this block’s consumption was.306

Since the group was familiar with the location of the block and with the buildings located on it,307

they next selected a similar adjacent block, with similar construction and occupancy, and proceeded308

to compare the two (Figure 7 right). A group member noted, in the timeline chart, the mid-summer309

spike in gas consumption for the outlier block; the spike remains unexplained to date. Despite similar310

statistics (outlier block: Electricity: 7,435,418 kWh; Population: 102; Total Units: 81; Occupied Units:311

78; nearby comparison block: Electricity: 193,120 kWh; Population: 207; Total Units: 84; Occupied312

Units: 78), the seasonal consumption of the two blocks, as captured by the comparison charts, was313

strikingly different—in terms of both electricity and gas. The group hypothesized that the outlier314

block may have either had outdated or in-need-of-repair insulation, or unusual energy end-uses. A315

demonstration several months later to another group of public policy advocates confirmed the atypical316

energy end-use: a less known local hospital was identified on that block. The group is currently317
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working with the local organizations and the local residents to improve the situation. This case study318

proves the utility of this energy visualization project and its potential impact on public policy in the319

city.320

Figure 7. Local neighborhood analysis. An investigation of a disadvantaged urban neighborhood
at the census block spatial scale is able to identify an outlier block with unusual electricity and gas
consumption. The block’s profile is strikingly different when compared to an adjacent block that has
similar census and building statistics.

4. Discussion and Conclusion321

The primary contribution of this work is a visual analysis system that allows experts as well as322

amateurs to analyze gas and energy consumption in Chicago. The secondary contribution is to provide323

other designers with a clear process on how to potentially approach similar problems in other smart324

city applications.325

Notably, while many design studies in the literature describe user-centric processes used to create326

visualizations for one to a few domain experts, this project documents an activity-centered-design327

process that successfully serves not only the domain experts, but also a broader audience. In particular,328

following an Activity-Centered approach allowed us focus on and rapidly identify user activities and329

analysis workflows (e.g., explicit support for comparison tasks, independent of the user backgrounds330

and personal characteristics). A two-way communication process with the users, through functional331

specifications, further enabled us to more precisely model the desired functionality of the analysis332

system. A parallel prototyping approach paved the way to a system that can serve a wide audience:333

several visual encodings (including parallel coordinate plots and stacked graphs) were attempted and334

discarded due to the audience’s low visual literacy. The activity focus further determined the final335

layout and relative size of the multiple views; for example, the emphasis on the ‘Search’ flow lead to a336

design shift from a large overview map to a miniature overview (Figure 7).337

As shown by evaluation with end users, this urban energy visualization project successfully meets338

its original goals. Our systematic approach to data aggregation at multiple spatial scales created an339

enriched urban energy dataset. A subsequent design approach centered on the user workflows helped340

us create a visual analysis tool that can handle the complexities, challenges, and opportunities of this341

dataset: analysis across multiple spatial scales, support for outlier detection, multiple metrics that can342

account for population statistics, building-type analysis, direct comparison of user-selected areas, and343

seasonal consumption analysis.344
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In terms of assumptions and limitations, our approach does not provide information at the345

building level, due to privacy concerns; the data is aggregated at the block level. Furthermore, data is346

not available for every block, reflecting limitations in data collection: not all energy providers provided347

data for their users. However, the data shown comprises 81% of the city gas consumption and 68%348

of electrical usage. The data itself was collected in 2010, in an illustration of how difficult it is to349

coordinate such efforts across energy providers at the city level. Last but not least, while the levels350

of aggregation demonstrated in this project are typical of US cities, our approach may not readily351

generalize to cities in other countries. In terms of future work, it would be interesting to integrate352

population data related to education, income, and other socioeconomic indicators.353

The resulting web-based system serves the needs of a diverse set of stakeholders, from city354

officials to concerned citizens. By documenting the challenges, the design process and the decisions355

behind this smart city project, we hope to help inform the design and implementation of analysis356

systems for other cities and for other resource and infrastructure types.357

The open-source project resulting from this work is publicly available at: http://chicagoenergy.358

evl.uic.edu:3000359
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