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In high-performance computing (HPC), modern supercomputers typically provide exclusive computing resources to user

applications. Nevertheless, the interconnect network is a shared resource for both inter-node communication and across-node

I/O access, among co-running workloads, leading to inevitable network interference. In this study, we develop MFNetSim, a

multi-idelity modeling framework that enables simulation of multi-traic simultaneously over the interconnect network,

including inter-process communication and I/O traic. By combining diferent levels of abstraction, MFNetSim can eiciently

co-model the communication and I/O traic occurring on HPC systems equipped with lash-based storage. We conduct

simulation studies of hybrid workloads composed of traditional HPC applications and emerging ML applications on a 1,056-

node Dragonly system with various conigurations. Our analysis provides various observations regarding how network

interference afects communication and I/O traic.
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1 Introduction

In high-performance computing (HPC), there has been a surge in hardware complexity and diverse workloads.
Supercomputers are progressively embracing heterogeneous architectures that integrate various processors
and storage conigurations. Concurrently, HPC workloads are becoming more diverse, exhibiting multiplex
data movement patterns. Typically, the sequential transfer of large iles, common in traditional modeling and
simulation, is reasonably well-served by cost-efective hard disk drives. However, the I/O handling for artiicial
intelligence (AI) and machine learning (ML) applications, especially during training, often involves moving a
large number of small, randomly accessed iles, which is more eiciently managed by higher-cost lash memory.
Modern HPC systems typically provide exclusive computing resources to user applications. However, the

interconnect network is a shared resource among co-running workloads. Previously, interconnect networks
primarily served the inter-process communication needs of parallel applications. With advancements in storage
techniques and the increasing adoption of lash-based storage, interconnect networks are now required to
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serve dual purposes for both inter-node communication and across-node I/O access. For example, the exascale
supercomputer Aurora [1] employs Distributed Asynchronous Object Storage (DAOS), where storage and I/O
nodes share the same interconnect network with compute nodes. While the network connection between I/O
groups is allocated with larger bandwidth, the concurrent traic from both communication and I/O access remains
a potential bottleneck [3]. The increasing role of interconnect networks introduces complexities and challenges
in balancing the competing demands of both types of traic.
While the inevitability of network interference is clear, its comprehension remains limited, particularly in the

context of multiplex traic sharing network links for both communication and I/O access. Existing studies have
predominantly focused on analyzing communication interference on the interconnect network. While valuable, a
signiicant gap exists in the research on the joint analysis of communication and I/O interference on interconnect
networks. How to efectively model network interference among multiplex traic from diverse workloads remains an

open problem.

Our study aims to address this critical gap by providing a multi-idelity modeling framework that enables the
simulation of multiple traic types simultaneously over the interconnect network. By combining diferent levels
of abstraction, MFNetSim, our multi-idelity framework, is capable of efectively co-modeling the communication
and I/O traic on supercomputers equipped with lash-based storage.
In addition, we conduct simulation studies of hybrid workloads comprised of traditional HPC applications

and emerging AI/ML applications on a 1,056-node Dragonly system equipped with various conigurations. The
quantitative łwhat-ifž exploration reveals several key indings:

• Both I/O traic and communication traic are greatly impacted by network sharing, as they compete for
network bandwidth and resources.

• Applications with extensive I/O or intensive communication are more resilient to network interference,
while those with less intensive I/O or communication sufer more slowdown in performance.

• Job placement signiicantly impacts I/O and communication performance. An intelligent and lexible job
placement methodology is preferred to strike a balance between commonly used random placement and
contiguous placement.

The remainder of this paper is organized as follows: Section 2 introduces related work. Section 3 to 5 present
the proposed system architectures, the multi-idelity design, and its implementation. Section 6 provides model
validation. Section 7 describes case studies utilizing our framework. Section 8 presents the experimental results
and analysis, followed by Section 9 summarizing our conclusions.

2 Background and Related Work

2.1 Background

We give an overview of three related software packages, namely CODES, Union, and coNCePTuaL, which serve
as building blocks for our proposed multi-idelity modeling framework.
CODES (Enabling CO-Design of Exascale Storage Systems) is a parallel, event-driven simulator designed for

high-idelity, packet-level simulations, enabling the exploration of large-scale network and storage architectures
[12]. Built on the Rensselaer Optimistic Simulation System (ROSS), a discrete event simulation framework, CODES
leverages parallel execution to enhance scalability. One of its core features is network simulation, which includes
a modular abstraction layer that supports a variety of network topology models such as dragonly, Torus, Fat-Tree,
Slim Fly, and others [11, 22, 24]. Additionally, CODES features a workload generator that abstracts I/O and
network workloads from multiple sources to drive its network and storage models. These sources range from
synthetic workloads to application traces and SWM skeletons [13]. CODES provides a local storage model based
on the analytical techniques of Ruemmler and Wilkes [19]. The model represents I/O access by scheduling read
and write I/O requests in a irst-come irst-served manner where the available storage space is conigurable.

ACM Trans. Model. Comput. Simul.



MFNetSim: A Multi-Fidelity Network Simulation Framework for Multi-Trafic Modeling of Dragonfly Systems • 3

Union provides in-situ workload generation for CODES [21]. Users only need to describe their applications using
simple English instructions in coNCePTUaL (described below). Union automatically translates these instructions
into a skeleton and coordinates the skeleton generation in CODES. Union contains two main components: a
translator that automatically translates coNCePTuaL applications into skeletons, and an event generator that emits
communication events from skeletons to CODES as in-situ workloads. Union supports concurrent workloads and
also provides a lexible rank-to-node mapping.
The coNCePTuaL (Network Correctness and Performance Testing Language) [16] is a domain-speciic pro-

gramming language aimed at testing and analyzing network performance. It ofers a platform-independent
approach to deining communication patterns and network evaluations, incorporating constructs to specify
message sizes, communication structures, and other key aspects of network performance testing. coNCePTuaL
consists of two main components: a domain-speciic language (DSL) and a compiler. The DSL is designed to write
network benchmarks, featuring a syntax enriched with keywords that encapsulate various built-in functions
to simplify the implementation of complex communication patterns. The compiler converts the coNCePTuaL
code into low-level instructions, integrating calls to a messaging library [15]. One of its notable capabilities is the
inclusion of built-in functions that support various virtual topologies for application communication, such as
n-ary trees, meshes, tori, and k-nomial trees. These functions signiicantly reduce the manual efort required to
model complex communication behaviors.
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Fig. 1. Overview of system architectures. The computing system serves multiple applications, utilizing the interconnect

network for both inter-process communication and I/O data movement. High-fidelity simulation is employed for network

packets (blue dashed box), while low-fidelity analytical models are used for storage device operations (red dashed box). CN

represents compute node, BB represents burst bufer, and ION represents I/O node.

2.2 Related Work

Since the dragonly topology has been proposed and adopted by production systems, many simulation studies
have been conducted to explore network interference in a multi-application environment on dragonly. Existing
simulators developed for high-performance computing architectures include Booksim [4], SST/macro [18], CODES
[12], and others.
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Previous studies mainly focused on the communication performance of applications. Studies explore inter-
application interference using a trace-based simulation framework. Quantitative analysis for multi-application
communication interference has been conducted using trace replay [22, 23], synthetic patterns [6], or skeleton
in-situ workload simulation [21]. At the routing level, Kang et al. have explored reinforcement learning routing for
workload interference migration on Dragonly [5]. These studies show that communication-intensive applications
afect less intensive applications. Furthermore, communication pattern, along with job placement and routing
mechanism, greatly afects the communication performance.
Methodologies for co-analysis of MPI communication and I/O are also proposed in several studies. Kunkel

proposed a sequential discrete event simulator PIOsimHD which enables simulation of collective communication
patterns as well as simulation of parallel I/O with analytical models [8]. Mubarak et al. have analyzed the efects of
interference of checkpointing I/O and uniform random network traic on burst-bufer-equipped dragonly-based
systems using a high-resolution simulation [11]. They conducted experiments with diferent routing strategies to
show that balancing I/O and network traic requires a careful selection of routing mechanisms, and job and data
placement.

Our work difers from these studies in several aspects. First, while existing studies focus on isolated communication
or I/O interference, MFNetSim enables joint analysis of MPI and I/O traic by simulating hybrid workloads with
distinct communication and I/O patterns. Second, instead of relying on single-application traces or synthetic
patterns, our framework supports multi-traic skeletons (Section 7.2), allowing us to model interference between
diverse workloads such as HPC, ML, and checkpointing applications. This capability provides unique insights
into how multiplex traic competes for shared network resources, a critical gap in existing tools like PIOsimHD
or trace-based simulators. We believe our multi-traic interference study ofer valuable insights to the HPC
community regarding workload interference among multiplex communication and I/O operations generated
from diverse applications.

3 System Architecture

I/O nodes and compute nodes in production systems are linked via an interconnect network. Application processes
are assigned to speciic compute nodes according to the coniguration iles. The assigned compute nodes run and
issue MPI and I/O requests.

We model the system architectures with three diferent burst bufer conigurations: local burst bufer, compute-
side global burst bufer and storage-side burst bufer, as shown in Figure 1. Here, CN stands for compute node, BB
stands for burst bufer, and ION stands for I/O server node. It is important to note that high-idelity simulation is
employed for network packets (blue dashed box), while low-idelity analytical models are used for storage device
operations (red dashed box).
In the local burst bufer setting, each compute node pocesses a local burst bufer, serving as a node-local I/O

cache. Data transfer between compute nodes and the local burst bufer does not interfere with traic on the
interconnect network.

In the compute-side global burst bufer setting, burst bufer devices occupy a subset of nodes in the interconnect
network, ensuring that one router in each group is directly connected to burst bufer nodes. Data exchange
between compute nodes and burst bufer devices utilizes the bandwidth of the shared network in this coniguration.
Burst bufer devices communicate with external HDD storage through I/O server nodes.
In the storage-side burst bufer setting, the external storage comprises hybrid SSD and HDD devices, with

SSD devices utilized for small-size I/O (less than 64KB) and HDD devices for large-size I/O. In this scenario, the
compute nodes communicate with the I/O server nodes for I/O operations.

ACM Trans. Model. Comput. Simul.
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MFNetSim: Multi-fidelity MPI & I/O 
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Fig. 2. Key components of MFNetSim. It is built on three packages: coNCePTuaL, Union, and CODES. Our enhancements

are shaded in blue.

4 Multi-fidelity Modeling

To enable scalable simulation of multiplex traic, we developMFNetSim, a multi-idelity framework that integrates
high-idelity packet-level network simulation for MPI and I/O traic with low-idelity analytical storage models for
I/O access. This partitioning prioritizes network idelity to accurately model network behavior, while simplifying
storage modeling to avoid prohibitive computational costs. This design choice is driven by the need to eiciently
study network interference. Modeling both communication and I/O at high idelity would be computationally
impractical for large-scale studies, whereas an entirely low-idelity approach would fail to capture critical network
dynamics. By prioritizing network idelity while simplifying storage modeling, MFNetSim achieves a practical
balance between simulation accuracy and performance.

As shown in Figure 2, our design accommodates both MPI and I/O operations accordingly. The data movements
in the interconnect network are simulated in packet-level discrete-event simulation, while the data movements
in the storage area network are calculated using analytical models, thus providing multi-idelity for multi-traic

modeling. By prioritizing network performance analysis, MFNetSim substitutes I/O operations on storage devices
with delay models. This substitution signiicantly reduces simulation costs without compromising accuracy.
Communication and I/O operations across the interconnect network, whichmay lead to interference, are simulated
with packet-level detail.

4.1 High-fidelity Network Modeling

Parallel discrete-event simulations are made up of logical processes (LPs), where each LP models a component of
the system and has a distinct state. These LPs interact with one another via events in the form of timestamped
messages. In order to accurately simulate the MPI operations coming from scientiic applications, the MPI
simulation layer takes the operations from the CODES workload generator and simulates the MPI tasks on top of
the network models while maintaining the correct causality order. We extend this MPI communication model to

ACM Trans. Model. Comput. Simul.
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include simulating both MPI and I/O operations from workload generator, creating the workload replay module.
The workload replay module consists of separate models for MPI and I/O operations, namely the MPI handler and
the storage manager. The MPI handler imports the MPI replay model from CODES, while the storage manager
enhances the storage server model [11] to adopt three diferent system architectures discussed in Section 3.
The parallel ile systems in HPC systems often employ dedicated I/O servers or I/O nodes responsible for

managing and coordinating I/O operations. Compute nodes communicate with these dedicated I/O nodes to
initiate ile read and write operations. The I/O nodes act as intermediaries between the clients and the underlying
storage devices. I/O nodes are responsible for coordinating I/O requests and managing concurrent access to iles
from compute nodes. Meanwhile, to meet the new requirements in the exascale computing era, a lash-based
storage tier between the compute cluster and a slower disk-based storage tier has been introduced to provide a
faster storage resource to the supercomputer. To model the data access between compute nodes, I/O nodes and
storage devices, the storage manager model is composed of four LPs: a compute node LP, a storage manager LP, a
HDD LP and a SSD LP. The storage manager LP manages I/O to/from HDD LP and SSD LP.
Figure 3, 4, and 5 illustrate the interaction between LPs for three diferent burst bufer setups. Black arrows

represent the simulated I/O events that do not generate network traic, blue arrows show events causing traic
on the interconnect network, and red arrows indicate events between the compute network and storage area
network. Delays for the black and red arrow events are calculated using analytical models, while delays for the
blue arrow events are tracked in the discrete-event simulator.

Local burst bufer. In this setup, the local burst bufer can be treated as a cache. Any I/O operations initiated
at compute nodes will irst be directed to the SSD LP. In this coniguration, the SSD LP will make decisions about
when to contact the storage manager. Figure 3 shows the interaction between the LPs.

Compute Node

LP

Storage Manager

LP

SSD

LP
HDD

LP

Drain BB

Pull data

Reserve space

Send response

Write data

I/O ops

Simulation events for I/O operations (not generate network traffic)

Traffic on compute side network

Traffic on dedicated connections between compute and storage 

(feed into analytic model)

Fig. 3. Interaction between LPs for Local BB configuration

Compute-side global burst bufer. Upon receiving write requests from compute node LPs, the storage
manager LP initiates a blocking call to the SSD LP in order to reserve the requested space. Once space is reserved
on the SSD LP, the storage manager begins a series of concurrent, pipelined RDMA reads of ixed-sized blocks
from the requester and data writes to the SSD LP. Figure 4 illustrates the interaction between the LPs.
Storage-side burst bufer. Similar to the compute-side global burst bufer setup, the storage manager LP

receives write requests from compute node LPs and makes a blocking call to either the SSD LP or the HDD LP
based on a conigurable message size threshold. Figure 5 shows the interaction between the LPs.

4.2 Analytical Storage Modeling

For HDD modeling, we utilize the analytical model introduced by Parsons et al. [17]. This model does not require
time-consuming and error-prone physical parameter extraction from a real disk. Instead, it relies on a few
parameters derived from typical disk characteristics, which can be manually identiied.
When there are no requests in the queue, the request latency is simply the summation of the seek time ����� ,

rotational latency � , and the transfer time ������ � �� , as shown in Equation 1. Transfer time is calculated using the
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length of the tracks in the current zone (������ ), the length of the request (�������� ), and the disk rotational speed
(�������). ����� and ������ are deined with a set of constant parameters which can be calculated using square-
root/linear regression. Rotational latency is modeled as a random time between the minimum and maximum
latency.

������� = ����� + � +������ � ��

������ � �� =
�������� × ������ × 60

�������

(1)

If a request is received while a prior request is being handled, it is placed in the queue until the current request
completes. After each request, the disk will perform at least the minimum readahead, which is parameterized
with a proper threshold. If a request can be partially fulilled with readahead data, the request latency is only
composed of the remaining transfer time for the unread data. When a request can be fulilled with data from
the cache, that request is immediately returned. Most of the parameter values can be identiied from the disk
speciication, while the others can be determined through simple benchmarks.
For SSD modeling, we employ the analytical model proposed by Yoo et al. [25], which can precisely compute

the latency of a read (or write) request. This model facilitates the modeling of parallel behavior in SSDs using a
single thread. For example, upon receiving an I/O request, the thread calculates the I/O latency with the latency
model and applies an appropriate amount of delay using the busy waiting method. With the proper setting of
parameters, this method can accurately calculate I/O delays in multi-channel/multi-way SSDs.

ACM Trans. Model. Comput. Simul.
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In this model, the write and read latency are represented by Equation 2. For example, the latency of write is a
function of channel switching delay(��ℎ), single page write latency (����� ), number of pages (����� ), number of
cycles (������ ) and wait time (����� ). The wait time is deined in Equation 3, where � is the maximum number of
I/Os per cycle.

�� =��ℎ × (����� − 1) +����� × (������ − 1) +�����

�� = ��ℎ × (����� − 1) + �����
(2)

����� =

{

����� −��ℎ × � if����� >��ℎ × �

0 otherwise
(3)

All parameters in the above equations can be obtained through device speciications and benchmarking.
By carefully selecting appropriate parameters, we integrate the HDD and SSD models into our multi-idelity
framework for accelerated workload simulation, while achieving satisfactory accuracy.

5 Implementation

In constructing an integrated framework for multi-traic simulation, we have developed the following enhance-
ments in coNCePTuaL, Union, and CODES to enable simultaneous simulations of I/O and MPI.

Enhancement of coNCePTuaL. We enhance coNCePTuaL to include the capability to translate and compile
I/O operations. Speciically, we introduce keywords such as READ, WRITE, OPEN, and CLOSE to the domain-
speciic language, allowing users to incorporate I/O operations into coNCePTuaL programs. Figure 6 illustrates
an example coNCePTuaL program with the newly added I/O keywords highlighted at line 16. Additionally,
we update the C+MPI compiler to translate instructions containing these new keywords into appropriate I/O
operations in the C language.

Fig. 6. An example of an enhanced coNCePTuaL program supporting both I/O and MPI communication keywords. The newly

added I/O keyword is highlighted with a blue frame.

ACM Trans. Model. Comput. Simul.
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Fig. 7. A code snippet of a Union skeleton application with enhanced I/O operation handler. Line 6-8 intercept and translate

the I/O operation (line 16 of Figure 6) to Union I/O interfaces. Some portions of the code have been omited for brevity.

Enhancement of Union. We add a set of Union I/O interfaces to accommodate both MPI and I/O operations
from workloads and process them accordingly. I/O event handlers are integrated into the Union translator to
intercept I/O operations. The enhanced translator converts all communication and I/O function calls to utilize the
Union interfaces. For example, the READ() call is transformed into READ(), as illustrated in Figure 7 (lines 6-8).

Additionally, we incorporate the declaration of I/O operations into the event generator and implement corre-
sponding functionality in the CODES workload generator. This enables both MPI and I/O operations from Union
skeletons to be emitted as simulation events in CODES. Figure 7 presents a code snippet of a Union skeleton with
enhanced I/O operations, where an example Union I/O interface is shown in lines 6-8.

Storage 

Manager

Workload 

Replay

Workload 

Generator

MPI

Handler

Simulation Layer

ACK

ACK

MPI Operation Events

I/O Operation Events

Fig. 8. An illustration of workload replay module.
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Enhancement of CODES. The enhancement of CODES primarily focuses on the network module. We develop
a separate package called the workload replay module, capable of handling both MPI and I/O operation events
from the workload generator. MPI events are directed to the MPI event handler for processing, while I/O events
are forwarded to a storage server model, as depicted in Figure 8.
The MPI handler imports the MPI replay module from CODES to accurately simulate MPI operations. The

storage manager utilizes our high-idelity network modeling for I/O operations, as discussed in Section 4.1.
Additionally, analytical models for HDD and SSD are integrated into the local storage model, and the burst bufer
storage server model is enhanced to accommodate three burst bufer setups.

6 Storage Model Validation

While CODES has been previously validated for communication performance with the Theta system [14], this
work focuses on validating the analytical models for HDD and SSD to ensure accurate storage performance
simulation. The integration of Union, CODES, and coNCePTuaL was validated in prior work [21]. To further
assess the accuracy of our storage models, we compared the theoretical performance predicted by the latency
models with the observed performance on two physical storage devices: the Intel D3-4510 SSD and the Seagate
ST2000NX0253 HDD. These comparisons were conducted following similar methodologies as outlined in [25],
utilizing baremetal hosts available on Chameleon [7].
We compared the latency predictions generated by the single-page write/read latency model with the actual

I/O performance exhibited by the HDD and SSD devices across four workloads: sequential write/read and random
write/read. For sequential I/O workloads, we sequentially wrote and read a 512 MB ile with a 512 KB record
size. Conversely, for random I/O workloads, we performed write and read operations on a 512 MB ile at random
ofsets with a 4 KB page size. The performance results obtained from both the physical devices and our storage
models for these four workloads are summarized in Table 1. The error rates of the latency model were found to
be less than 5% for SSD and less than 10.3% for HDD, respectively.
The 10.3% error observed in HDD modeling is acceptable given our focus on network interference analysis.

While a higher-idelity storage model could reduce this error, it would signiicantly increase simulation runtime
without enhancing insights into network contention. Our goal is to capture the relative impact of co-running
traic on network links, not absolute storage performance. This trade-of aligns with our design philosophy:
prioritizing high-idelity network simulation for accurate interference studies while using analytical storage
models to ensure scalability.

Our validation ensures that the storage models provide suicient accuracy within the multi-idelity framework.
Since our primary objective is to study network interference, not full-system behavior, end-to-end validation is
beyond the scope of this work. While such validation could provide additional insights, it would require extensive
real-world job traces and systemmeasurements, which are not the focus here. Instead, our evaluation demonstrates
that the storage models achieve the necessary accuracy for analyzing interference efects in large-scale HPC
systems.

7 Case Study

In this section, we present a case study that utilizes MFNetSim for multi-traic workload interference analysis.
We perform simulations of hybrid HPC and ML workloads on a 1,056-node Dragonly system, exploring diferent
placement and routing mechanisms.

7.1 Dragonfly System

We simulate a 1,056-node Dragonly system as speciied in Table 2. The network bandwidth is conigured
according to a Cray Cascade system, Theta [2], with a global link bandwidth of 4.37 GiB/s, local link bandwidth
between routers of 5.25 GiB/s, and channel bandwidth between routers and compute nodes of 16 GiB/s. For this

ACM Trans. Model. Comput. Simul.



MFNetSim: A Multi-Fidelity Network Simulation Framework for Multi-Trafic Modeling of Dragonfly Systems • 11

Table 1. Validation of Write/Read Latency Models

Workload Model Disk Error

HDD

Seq Read 136.00 MB/s 123.33 MB/s 10.3%
Seq Write 136.00 MB/s 129.00 MB/s 5.4%
Rand Read 111.69 IOPS 122.74 IOPS 9.0%
Rand Write 592.22 IOPS 577.91 IOPS 2.5%

SSD

Seq Read 392.04 MB/s 408.69 MB/s 4.6%
Seq Write 388.26 MB/s 378.96 MB/s 5.0%
Rand Read 8474.58 IOPS 8906.43 IOPS 4.8%
Rand Write 14084.51 IOPS 13772.85 IOPS 2.3%

Table 2. System Configuration

Topology Radix #Groups
#Routers/
Group

#Nodes/
Router

#Global links/
Router

#Links between
Groups

System
Size

1D Dragonly 16 33 8 4 4 1 1056

Table 3. Hybrid Workloads and Applications

Application Communication Pattern I/O pattern In Workload 1 In Workload 2

MILC Nearest neighbour & many-to-many Reading conigurations Yes No
Nekbone Nearest neighbour & many-to-many Reading conigurations No Yes

Checkpoint Synchronization Writing state periodically Yes Yes
Cosmolow Allreduce Reading batches every step Yes Yes

Burst buffer Compute Router

Fig. 9. Dragonfly group configuration. The first two nodes within a group are burst bufer nodes, the remaining 30 nodes are

compute nodes.

case study, we adopt the compute-side global burst bufer setting. Each group consists of 32 nodes, with the irst
two nodes serving as burst bufer nodes and the remaining 30 nodes as compute nodes, resulting in a total of 990
compute nodes and 66 burst bufer nodes. Figure 9 illustrates the Dragonly group coniguration for this case
study. Following recommendations from [11], the I/O nodes route the I/O traic to the nearest burst bufer nodes.

We adopt the compute-side global burst bufer coniguration for this case study because it inherently ampliies
cross-application interference. Unlike the local burst bufer, where I/O traic avoids the shared network, or the
storage-side coniguration, where I/O traic may prioritize dedicated paths, the compute-side setup forces both
MPI and I/O traic to compete directly for shared network bandwidth. This coniguration creates a contention
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hotspot between compute nodes and burst bufer nodes, mirroring real-world scenarios in systems like Aurora
[1], where I/O nodes are integrated into the interconnect network, making it a relevant scenario for our study.

7.2 Hybrid Workloads

We investigate two hybrid workloads composed of a mix of HPC and ML applications. Table 3 shows the
organization of two hybrid workloads and the characteristics of applications. The applications are chosen to cover
various representative communication and I/O traic patterns in our experiments. The studied applications can
be categorized into three groups based on their communication and I/O characteristics: (i) MILC and Nekbone are
typical HPC applications with distinct communication intensities and negligible I/O; (ii) Cosmoslow represents
typical communication and I/O patterns observed in machine learning applications; (iii) Checkpoint represents a
widely used fault tolerance application in HPC, featuring high-intensity bursts of I/O. The hybrid workloads are
composed by selecting one application from each group. The details of each application are listed below:

MILC. This application is developed by the MIMD Lattice Computation (MILC) collaboration to study quantum
chromodynamics (QCD) computations on parallel computers. It is commonly used for simulating the behavior of
quarks and gluons within a lattice framework. It performs simulations of four dimensional SU(3) lattice gauge
theory. MILC is conigured with 300 ranks, each rank issues nonblocking send and receive messages of size 486
KB to communicate with neighbors. It has negligible I/O operations for reading conigurations.
Nekbone. Nekbone is a mini-app derived from the computational luid dynamics code Nek5000. Nekbone

solves a standard Poisson equation using a conjugate gradient iteration with a simple preconditioner. Nekbone is
conigured with 300 ranks, performing a large number of MPI collective operations with small 8-byte messages.
It uses nonblocking send and receive to transmit messages with various sizes from 8 bytes to 165 KB. The only
I/O operation is reading a small coniguration ile (336 bytes) during setup, which is negligible.

Checkpoint. The application periodically saves its state to stable storage to allow for resuming execution later
in case of interruptions. Speciically, the application writes to a ile at speciied time intervals. It is conigured with
300 ranks and writes a total of 50GB of data to a ile. The application processes must coordinate and communicate
to ensure a consistent state is captured.
Cosmolow. Distributed machine learning algorithms are featured with periodic Allreduce calls to gather

gradients from multiple worker nodes and broadcast summation result to them. This application captures this
feature by iteratively issuing Allreduce calls with a predeined compute time interval. For I/O, the I/O threads read
training samples at each step time, which is pipelined with gradient computation. It is conigured as a 300-rank
job that issues 28.15 MB Allreduce messages and 8 MB read request every 129 ms as described in [10].

7.3 Job Placement and Routing

We investigate two commonly used job placement policies and two commonly used routing algorithms as
described below.

• Random Nodes (rand) placement selects compute nodes for each job completely randomly from the
entire system. Compute nodes that connect to the same router tend to be assigned to diferent jobs.

• Contiguous (cont) placement assigns each job available nodes consecutively. This method tends to place
application processes into the same group.

• Minimal Routing (min) routes a packet along the minimal path from source to destination. Minimal
routing can guarantee the minimum hops a packet traverses.

• Progressive Adaptive Routing (PAR) selects packet paths based on congestion situations on minimal
and non-minimal paths. If a non-minimal path is chosen, the packet is routed minimally to a random
intermediate router before being forwarded minimally to its destination. PAR permits source group routers
to re-evaluate routing decisions during minimal routing.
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7.4 Performance Metrics

The performance metrics we analyze include communication time, I/O time, message latency, link traic, and link

saturation time. Communication time refers to the portion of process runtime used for sending and receiving
messages. I/O time represents the total time each process spent on I/O operations. Message latency is the time
each message takes to reach its destination from the source, whether it’s a communication or I/O message. Link
traic denotes the amount of data in bytes passing through each router. Link saturation time is deined as the
total duration during which a link has exhausted all its bufers. We classify the links into local links and global
links.

7.5 Experimental Setup

For each application, we irst gather its baseline performance by simulating each application independently,
without any other jobs sharing the network. Subsequently, we simulate the two hybrid workloads, collect
performance metrics for each application, and compare them with the baseline cases. Each of these simulations is
conducted with four diferent combinations of job placement policies and routing mechanisms. Each application
rank is assigned to one compute node, as our focus is on network interference analysis.

The experiments are conducted on the Bebop machine at Argonne National Laboratory [9]. Bebop is equipped
with 1,024 nodes, including 664 Intel Broadwell nodes and 352 Knights Landing nodes. Each Broadwell node
contains a 36-core processor with 128 GB of DDR4 RAM. All of our experiments use the optimistic parallel model
in CODES/ROSS and are executed on 1 Broadwell node with 36 MPI threads. The average simulation runtime is
approximately 4 hours for a single run.

8 Experimental Results

In this section, we showcase the experimental results and illustrate the co-analysis of MPI and I/O traic
interference. To evaluate the efect of network interference, we conducted a comparative analysis of performance
metrics for each application across hybrid workload scenarios and baseline cases.
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Fig. 10. Message latency (let) and I/O time (right) in boxplots of Checkpoint with diferent configurations. Each box

represents the minimum, first quartile, median, third quartile, and maximum, from botom to top. Red triangles indicate the

means.

The Checkpoint application involves negligible communication operations; thus, the message latency, as shown
in Figure 10(a), can be treated as I/O message latency. Across all setups, the majority of I/O messages achieve
latency of less than 2 microseconds. However, compared with baseline cases, the latency of some I/O messages is
exponentially delayed due to network interference under random placement cases. Nevertheless, the total I/O
time remains at the same level, as depicted in Figure 10(b). Notably, network interference does not signiicantly
increase the total I/O time of Checkpoint.
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Fig. 11. Local link trafic and global link saturation time of the Checkpoint application. Diferent curves represent various

placement and routing configurations.

Figure 11 illustrates the local link traic and global link saturation status of Checkpoint. As shown in Figure
11(a), random placement aids in distributing the substantial I/O load across a larger number of routers, whereas
contiguous placement conines I/O traic within a smaller range of routers. A signiicant portion of the I/O traic
is conined within a few router ports in contiguous placement, resulting in degraded I/O time, as observed in
Figure 10(b). Minimal routing exacerbates this situation as it is unable to avoid hot links by routing to non-minimal
paths.

Comparing hybrid workload cases with baselines, router traic increases slightly due to network interference.
In Figure 11(b), global link saturation for baseline cases is not observed since I/O nodes tend to schedule I/O
traic to local burst bufer nodes. In cont-min cases, fewer than 2 global links experience increased saturation
time of up to 106 ms due to network interference. In cont-par cases, 60% of global links experience increased
saturation time due to network interference. In random placement cases, most global links experience signiicant
increments in saturation time, indicating that random placement is sensitive to network interference.
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Fig. 12. Message latency, I/O time, and communication time of Cosmoflow with diferent configurations on dragonfly system.

Diferent colors represent diferent workloads including baseline.

The Cosmolow application entails both I/O and communication loads. Each process reads a batch of samples
and communicates gradients to all others every epoch. The message latency, as shown in Figure 12(a), does not
distinguish between I/O traic and communication messages. There is a negligible diference between latency
distributions for baseline cases and hybrid workload cases. However, the total I/O time and communication time
are signiicantly prolonged under random placement due to network interference. The average I/O times increase
to around 750 ms for hybrid workload cases, while they remain around 300 ms for baseline cases. Similarly, the
communication times for Cosmolow experience around a 1.6x to 1.8x slowdown due to network interference
under random placement.
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Fig. 13. Message latency and communication time of Nekbone and MILC under diferent configurations.

On the other hand, comparing diferent placement policies, random placement results in lower absolute values
for baseline cases but sufers more variability from network traic. Conversely, contiguous placement has a
higher total time but is almost immune to network interference.
Nekbone and MILC are applications with negligible I/O operations. Figure 13 displays their message latency

distribution and total communication time.With random placement, both Nekbone andMILC experience degraded
message latency compared to baseline cases, as shown in Figure 13(a). The average message latency increases up to
103x and 16x for Nekbone and MILC, respectively. With contiguous placement, the message latency distribution
remains unafected for both applications. In terms of total communication time, random placement sufers
slowdown due to network interference, unlike contiguous placement. Nekbone shows more communication time
variability than MILC since Nekbone is less communication-intensive.

Both I/O traic and communication traic are afected by network sharing. Applications with relatively
heavy I/O loads exhibit less sensitivity to network interference in terms of I/O time. For example, Checkpoint
experiences less slowdown in I/O time compared to Cosmolow in this study. Similarly, communication time
performance demonstrates a similar łbully". efect. Therefore, characterizing application communication and I/O
patterns is crucial for making intelligent decisions regarding the scheduling of compute and network resources
in multi-tenant systems.

The job placement method signiicantly impacts both I/O and communication performance. Random placement
achieves better I/O and communication time but is susceptible to considerable degradation from network
interference. Contiguous placement, on the other hand, results in delayed total I/O and communication time
but is stable against network interference. Therefore, smart and lexible placement methodologies are needed to
balance the trade-ofs between random placement and contiguous placement.

In summary, network sharing and job placement signiicantly afect both I/O and communication performance.
While adaptive routing and random placement increase the risk of network interference, contiguous placement
helps mitigate it but may introduce delays. Applications with heavy I/O loads exhibit lower sensitivity to
interference, though both I/O and communication traic display łbullyž efects under congestion. Random
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placement can ofer performance advantages but is more prone to interference, whereas contiguous placement
reduces interference but may limit performance gains.

9 Conclusion

With the increasing adoption of heterogeneous architectures in HPC systems and the diverse nature of HPC work-
loads, understanding network interference among hybrid workloads becomes crucial. The proposed MFNetSim,
a multi-idelity modeling framework, facilitates the co-analysis of MPI and I/O traic on modern interconnect
networks by combining diferent levels of abstraction. This approach eiciently models communication and I/O
traic on HPC systems equipped with lash-based storage, striking a balance between detailed, high-idelity
network models and more eicient, low-idelity storage models.
Our multi-idelity design addresses critical trade-ofs between accuracy and scalability. A fully high-idelity

framework would be computationally prohibitive for large systems. Conversely, a fully low-idelity framework
would sacriice network accuracy, rendering interference analysis unreliable. MFNetSim’s hybrid design ensures
scalable yet precise modeling of network contention, enabling practical studies of multi-tenant systems.
Through large-scale simulation studies of hybrid workloads comprising traditional HPC applications and

emerging ML applications, we found that both I/O and communication traic are susceptible to network in-
terference. Diferent job placement methods ofer trade-ofs between stable performance and fast performance.
Our future work will involve expanding the range of applications, aiming to provide a more comprehensive
understanding of network interference exhibited by various types of applications.

While this work models communication and I/O traic, it is primarily tailored to HPC systems with lash-based
storage, limiting its generalizability to other storage architectures. Additionally, the applications examined may
not comprehensively represent the diverse workloads on Dragonly systems. Future research should include a
broader range of applications to better understand network interference in diferent workload scenarios.

MFNetSim has been released as open-source software on GitHub, ofering a reproducible tool for the parallel
discrete-event simulation and systems research communities to study workload interference in large-scale systems
[20].
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