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ABSTRACT 
Ultra-high-resolution tiled-display walls are typically driven by 
a cluster of computers. Each computer may drive one or more 
displays. Synchronization between the computers is necessary to 
ensure that animated imagery displayed on the wall appears 
seamless. Most tiled-display middleware systems are designed 
around the assumption that only a single application instance is 
running in the tiled display at a time. Therefore synchronization 
can be achieved with a simple solution such as a networked 
barrier. When a tiled display has to support multiple applications 
at the same time, however, the simple networked barrier 
approach does not scale. In this paper we propose and 
experimentally validate two synchronization algorithms to 
achieve low-latency, intertile synchronization for multiple 
applications with independently varying frame rates. The two-
phase algorithm is more generally applicable to various high-
resolution tiled display systems. The one-phase algorithm 
provides superior results but requires support for the Network 
Time Protocol and is more CPU-intensive. 

 
Categories and Subject Descriptor 
I.3.2 [Computer Graphics]: Graphics Systems – 
Distributed/network graphics; C.2.4 [Computer-
Communication Networks]: Distributed Systems – 
Client/server; D.4.1 [Operating Systems]: Process 
Management – Synchronization  
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1. Introduction 
Ultra-high-resolution display walls are fast becoming a standard 
tool for scientific research. These types of displays are the only 
means by which scientists can see the massive data generated 
from their instruments and supercomputer simulations. With the 
advent of low-cost LCDs, researchers are now using tiled-
display walls as “mash up” environments where they can 
juxtapose a variety of data so that they can look at them as a 
whole [22]. While similar to the notion of Project Rooms or War 
Rooms, a key difference is that for large-scale and collaborative 
scientific research, there is no other way to look at this 
magnitude of data. These projects routinely deal with time-
varying data on the order of terabytes to petabytes. It is 
impossible to manage this information by printing out static 
diagrams on sheets of paper and pinning them to a wall, as has 
been the traditional approach. The microscopes and telescopes 
used by scientists today t are integrated with complex computing 
systems that perform noise filtering, tiling, and feature detection. 
Ultra-high-resolution displays are becoming the new lenses that 
bring the data from these instruments into focus.  

To meet this challenge, the Electronic Visualization Laboratory 
at University of Illinois at Chicago has been conducting research 
with Sharp Laboratories of America on scalable display-wall 
hardware and software. The culmination of this work is 
LambdaVision, a 100-megapixel LCD wall, and the Scalable 
Adaptive Graphics Environment (SAGE) [22], a middleware 
system for driving such walls. Figure 1 shows the 
LambdaVision driven by SAGE that is used for weekly 
meetings in the Electronic Visualization Laboratory. 

LambdaVision is an array of 55 LCD panels driven by a cluster 
of 28 computers. The computers cooperate to give users the 



illusion of a seamless display environment. Therefore, precise 
coordination and synchronization between the computers are 
necessary to ensure that the animated images displayed on the 
wall appear seamless. The Scalable Adaptive Graphics 
Environment (SAGE) has been developed for this purpose [35]. 
Unlike other tiled-display middleware such as Chromium [20] or 
Equalizer [16], SAGE was designed at the outset to manage 
multiple images or animations from different applications at the 
same time, enabling users to simultaneously access, stream, and 
juxtapose them on ultra-high-resolution tiled-display walls. 

The need to support multiple applications at the same time poses 
a significant challenge for image synchronization. Traditional 
frame synchronization mechanisms used in systems such as 
Chromium or Equalizer do not scale because of the increased 
message complexity when supporting multiple applications 
simultaneously. In this paper, we propose and validate two new 
algorithms: a two-phase and a one-phase frame synchronization 
algorithm to achieve low-latency, intertile synchronization for 
multiple applications with varying frame rates. The two 
algorithms achieve the same goal but differ in resource 
utilization and complexity. A key contribution of this paper is 
proposing a scalable way to achieve frame synchronization 
among display nodes in a tiled display wall that can support 
multiple applications simultaneously. 
 

 
Figure 1. The SAGE in action. A student presenting at a 
weekly meeting in the Electronic Visualization 
Laboratory. 

 
In the following two sections, we discuss related work and 
describe in greater detail the synchronization requirements of 
ultra-high-resolution environments. We then present background 
information about the SAGE. We also detail the limitations of 
applying traditional synchronization approaches to SAGE, and 
we describe how our new algorithms provide significant 
improvements. 
 

2. Related Work 
The traditional model for driving tiled display walls was to use 
the entire surface to display a single visualization in exquisite 
resolution. However, as display walls began to grow in size and 
resolution, users found it more useful to be able to use the 
expansive screen estate and resolution for displaying not only a 
single visualization but multiple visualizations simultaneously 
so that they can be compared side by side [6, 12, 34, 36]. 
Middleware systems in the former category include WireGL 

[19], Chromium [20], DMX [2], Equalizer [16], and CGLX [1]. 
In WireGL and its successor Chromium, one or more servers 
convert data from unmodified applications into OpenGL 
graphics primitives, which are then streamed to clients driving 
the tiled-display wall. CGLX does not distribute graphics 
primitives but runs the same copies of the OpenGL-based 
application on all clients and replicates the data on all the 
clients. Equalizer offers a hybrid approach where the user can 
combine various rendering techniques. DMX (Distributed 
Multihead X Project) provides an X Window system compatible 
environment where multiple displays connected to multiple 
machines are presented as a single unified screen. In DMX, a 
master node distributes X Window primitives on a tiled display. 

All of these approaches assume that a single application 
occupies the entire wall at any given instant. Rendering of the 
content is often conducted directly on the graphics cards that are 
connected to the displays. This approach has the advantage that 
it enables low-latency generation and manipulation of the 
images. Moreover, the frame synchronization among display 
nodes can be achieved easily by implementing a networked 
barrier at the point that needs to be synchronized. A networked 
barrier works by having all display nodes send a message to a 
barrier server node and wait while the barrier server counts the 
number of messages it has received. When all the messages have 
been received the barrier server broadcasts acknowledgements 
to every display node, which upon receipt unblocks the display 
nodes. The synchronization barrier can be implemented in 
several ways. In cluster computing, the Message Passing 
Interface (MPI) [3] is the de facto communication mechanism 
among the nodes. MPI supports a “barrier” among all its 
communication nodes, which ensures that all progress is blocked 
until all the processes running on the nodes enter that barrier. 
This approach is sufficient to ensure frame synchronization for 
single applications occupying an entire tiled display. 
Total image synchronization across displays in a tiled-display 
wall is best achieved through a combination of hardware and 
software solutions and is required for the display of stereoscopic 
images [28]. In terms of hardware, the synchronization of 
vertical refresh across multiple graphics cards can be achieved 
by using specialized genlock hardware built into advanced 
graphics cards such as those found in Nvidia’s Quadro series 
[25-27]. Alternatively, Allard et al. [4] presented a cost-effective 
approach using custom hardware and parallel port for 
distributing vertical refresh synchronization signals. This 
approach can be used with any graphics hardware. Combined 
with software synchronization methods presented in many 
papers, these can provide a cost-effective solution for total frame 
synchronization between display nodes. 

Chen et al. [8] discussed three communication methods for a 
cluster-based, high-resolution display system: a synchronized 
execution model where all render nodes have the same copy of 
the application instance (e.g., CGLX), a primitive distribution 
model where a client distributes graphics primitives to render 
servers (e.g., Chromium), and a pixel distribution model where a 
client renders and transmits only pixels to display servers. A 
synchronization barrier at a certain program execution point 
(such as before graphics buffer swap) can be directly used to 
ensure frame synchronization in the synchronized execution 
model, such as in [5, 8, 9, 17, 37]. In the primitive distribution 
model, which can also be considered as a centralized model in 
that only a single node that has application instance distributes 



graphics primitives or pixels to server nodes that render and 
display, the frame synchronization can be achieved implicitly, 
leaving small asynchronies between display nodes [29], or a 
synchronization barrier can be used explicitly such as in [16, 19, 
21, 24] for tighter frame synchronization. SAGE can be 
categorized as a parallel pixel distribution model, since multiple 
clients (applications) send pixels to multiple display servers 
(display nodes). In the earlier generations of SAGE, we 
implemented a frame synchronization scheme to support 
multiple applications by using multiple synchronization barriers, 
one barrier per application. However, this per-application-based 
synchronization scheme was unable to provide the tight 
synchronization tolerances expected by display manufacturers 
such as Sharp. Our new approaches provide significant 
improvement. 
 

3. Frame Synchronization Requirements of 
a Tiled-Display Wall 
In order to display a continuous image on a tiled display, all the 
tiles that constitute an application window need to be 
synchronously updated. This synchronization is especially 
important for interactive visualizations and animations. 
There are three requirements for seamless frame synchronization 
on tiled displays: 
1.  Data synchronization: The application data to be displayed 

must be coherent. That is, the various display nodes must 
display parts of the same frame. For multiple applications, 
data synchronization must be achieved for each application 
being displayed. 

2.  Swap buffer synchronization: The display thread on each 
node should swap the contents of the graphics buffer 

synchronously in order for the various application windows 
to appear consistent on the display. 

3.  Synchronization of the vertical refresh cycles of the 
various displays (gen-lock): the physical refresh of 
monitors on each node should occur synchronously.  

Perfect frame synchronization on tiled displays is achieved by 
satisfying all three requirements. In this paper we focus on all 
but the third requirement, which can normally be achieved 
through the use of specialized hardware. 
 In the case of dedicated tiled-display walls that are limited to 
running only a single application at a time, data and swap buffer 
synchronization can be ensured easily with a single 
synchronization barrier [5, 7, 9, 10, 17-19, 21, 24, 28, 30, 32, 
33]. However, the problem we are attempting to solve is more 
challenging because tiled-display walls can have an arbitrary 
number of different application windows in which frame updates 
occur at different rates. If a frame synchronization method for 
tiled-display system that runs single application is applied, it 
becomes per-application-based synchronization, which is not 
scalable becausse of excessive synchronization messages over 
the network generated for each frame from each application. 
Also, with per-application-based synchronization, it is difficult 
to obtain swap buffer synchronization across display nodes 
because each application sends frames at different rates. Thus, 
the events (data and swap buffer synchronizations) of the same 
application can become partially ordered on a cluster, thereby 
leading to unsynchronized display of frames. For multiple 
applications to be displayed seamlessly on a tiled-display wall, 
total ordering of data and swap buffer synchronization across all 
applications is required. The total ordering of events in a 
distributed system is described in detail in [23]. 

In Section 5, we propose two scalable frame algorithms that 

 

Figure 2. In SAGE, while a compute cluster drives the individual displays, it merely acts as a lightweight client that receives 
pixels from remote rendering resources such as visualization clusters or supercomputers. 



ensure total ordering of data synchronization of all applications 
and swap buffer synchronization between display nodes, with 
minimal impact on applications’ frame rate and latency. 

 

4. Scalable Adaptive Graphics Environment  
SAGE is a cross-platform middleware system for driving ultra-
resolution tiled displays. Unlike other approaches, such as 
Chromium, SAGE delegates the rendering of graphics to 
remotely located compute clusters, and relies on the use of high-
speed networks to stream the pixels of the visualization to the 
displays. This “thin-client” model has the advantage that large 
cluster farms or supercomputers can be used to render datasets 
that may be too large to fit on an individual graphics card [13]. 
In SAGE, a single window displayed on a wall may be driven by 
any number of display nodes, and multiple windows can be 
displayed on the wall simultaneously. As windows are moved 
from one portion of the wall to another, SAGE seamlessly 
reroutes the pixels to a different set of computers driving the 
display tiles so that handling of the windows on the display is 
totally transparent from the application. The SAGE model is 
shown in Figure 2. 

 

4.1 Architecture 
In SAGE, the application pixel streams are received by the 
SAGE Application Receiver threads (APP). Each application 
gives its rendered pixels to the SAGE Application Interface 
Library (SAIL), which streams them to the appropriate display 
nodes depending on the current position and size of the window 
on the tiled display. Each node has a Node Display Manager 
(NDM) responsible for displaying the contents of all 
applications on the display; multiple pixel streams can be 
displayed independently to allow multiple applications to be 
shown concurrently on the tiled display. The Free Space 
Manager (FSManager) keeps track of the current display 
parameters and the arrangement of the application pixels on the 
tiled display. Based on the requested arrangement, the 
FSManager directs SAIL to distribute an application’s pixels to 
the appropriate display nodes. The applications can be 
dynamically moved and resized with the help of the UI client. 
An example of SAGE session that runs on four display nodes 
and displays two applications is depicted in Figure 3. 

 

4.2 SAGE’s Frame Synchronization 
Algorithm 
In this section, we discuss the frame synchronization method we 
initially used for SAGE: a dynamic networked barrier per 
application for data synchronization.  

In this method a synchronization group (SyncGroup), which 
consists of a set of display nodes that shows an application’s 
image, is maintained for each application. Members (display 
nodes) in the group can be dynamically changed as a user moves 
or resizes an application window. And a data synchronization 
manager thread, which ensures synchronized frame update of 
display nodes in the SyncGroup, is created for each 
synchronization group. A dynamic SyncGroup and data 
synchronization manager thread pair implements a dynamic 
barrier for each application. An example of the data 

synchronization manager and synchronization group pairs in 
SAGE is shown in Figure 4. 
 

 
Figure 3. The SAGE components. Shown is an example 
of four display nodes running two applications, App1 
and App2 each distributed on tile 0, 1, and 2 and tile 1, 
2, and 3 respectively. 

 

 
Figure 4. Example of four display nodes displaying two 
applications. There is a data sync manager and 
SyncGroup pair for each application. 

 

Table 1. Number of messages that need to be exchanged 
in SAGE in a single round with its former 
synchronization algorithm to display application data on 
the tiled display. 

 Number of Messages 

Application 
Frame 
Updates 

M * N  

(Each application on a node sends a message 
to its sync master.) 
 

For M applications running on a display 
driven by N nodes, we have the worst case of 
M*N messages for frame updates. 

Data Sync 
Messages 

The worst case of M*N messages from data 
synch manager 

Total 
messages 
per round 

(M*N) + (M*N) = 2*M*N 

 



  
Figure 5. Effect of lacking swap buffer synchronization. 
The tile node 1 executed swap buffer right after updating 
to frame N, but the tile node 0 did not, because of  its CPU 
load and scheduling. This uncertain delay may increase as 
the number of applications on the tile 0 increases. This 
incurs frame synchronization jitter.  

 

Although this method was able to achieve the data 
synchronization of multiple applications [22], it requires 
excessive messages because it has a separate data 
synchronization manager for each application. Table 1 shows 
the worst-case message complexity when a tiled display consists 
of N display nodes displaying M applications. We also did not 
implement swap buffer synchronization explicitly. Since 
graphics swap buffer at each node can be performed as soon as 
data synchronization is finished, swap buffer synchronization 
can be achieved implicitly. Although this implicit swap buffer 
synchronization can be enough for supporting one application at 
a time [29], it may incur nontrivial synchronization jitter when it 
handles multiple applications because of the difference in CPU 
load and scheduling across display nodes. As the number of 
applications increases, the variance of the swap buffer 
completion time across all display nodes increases. Figure 5 
illustrates implicit the swap buffer synchronization that may 
result in incoherent frame display. 
 

5. Two New Algorithms 
In our new approach, data synchronization is achieved by a 
single global synchronization master instead of a separate data 
synchronization manager for each application. We present two 
approaches in this paper—a two-phase algorithm and a one-
phase algorithm. 

In both algorithms, the global synchronization manager provides 
data synchronization. Whereas the two-phase algorithm achieves 
swap buffer synchronization with a network barrier after the 
data synchronization phase, the one-phase algorithm uses 
Network Time Protocol (NTP) synchronized clocks on each 
node. Consequently, the two-phase algorithm is more generally 
applicable to diverse high-resolution tiled-display systems, 
whereas the one-phase approach yields higher synchronization 

accuracy but has a limited range of target systems since it 
requires support for NTP and is more CPU-intensive. 
 

5.1 Two-Phase Algorithm  
The two-phase algorithm consists of two distinct phases: data 
synchronization for all applications and synchronization of the 
swap buffer events of all display nodes. 

Figure 6 depicts the two-phase synchronization algorithm. In 
this case, we have a single global synchronization master (SYNC 
MASTER). Upon receiving a new frame at a display node, a 
corresponding application receiver on a display node sends a 
message with the new frame number and the node ID of the 
application receiver to the SYNC MASTER. The SYNC MASTER 
has an interval timer that runs at a periodic rate called Sync 
Refresh Rate (SRR). The SRR must be a rate greater than the 
highest frame rate of all the applications in order to refresh all 
the applications at their desired rate. When the timer expires, the 
SYNC MASTER computes the highest common frame number 
for each application on all the nodes. After computing the 
highest common frame for each application, the SYNC MASTER 
sends a broadcast message to the NDM on each node. This 
message contains a list of the highest common frame number for 
each application. The NDM on each node uses this list in order 
to display the appropriate frame for each application.  

Upon finishing the first phase, the NDM on each node enters the 
second phase in order to synchronize the swap buffer events. 
This synchronization is achieved by placing a networked barrier 
right after the frame buffer drawing and just before the frame 
buffer swap in the NDM. This enables swap buffer 
synchronization with each NDM displaying multiple 
applications on the tiled-display wall. Table 2 depicts the 
number of messages needed per round with the two-phase 
algorithm, where M is the number of applications and N is the 
number of nodes driving the display wall. The two-phase 
method uses (M-3) * N messages less than the former SAGE 
frame synchronization algorithm per round. 

The key differences between the two-phase and the former 
SAGE frame synchronization algorithm are as follows: 

1. The former version of SAGE has a data synchronization 
manager for each application, whereas the two-phase 
algorithm has a single data synchronization manager 
responsible for all the applications. This dramatically 
reduces the number of messages needed to reach data 
synchronization per round.  

2. The former approach does not achieve swap buffer 
synchronization explicitly, whereas the two-phase 
algorithm uses a networked barrier to ensure swap buffer 
synchronization. 
 

5.2 One-Phase Algorithm  
In the one-phase approach, we achieve both data and swap 
buffer synchronization in a single phase. We avoid the second 
phase in the two-phase approach by synchronizing the clocks of 
the nodes driving the tiled display. The NTP, a common 
component in most major operating systems including Linux, 
helps synchronize the clocks on the cluster nodes. The data 
synchronization procedure is identical to the first phase of the 
two-phase approach.  



 
Figure 6. The two-phase synchronization algorithm to achieve seamless display of multiple applications on a tiled-display wall. 
The first phase ensures data synchronization, and the second phase ensures swap buffer synchronization using a networked 
barrier.  

 
 

 
Figure 7. The one-phase synchronization algorithm to achieve seamless display of multiple applications on a tiled-display wall. 
The first phase ensures data synchronization, and the synchronized swap buffer is ensured by making each node wait until 
presentation time instead of using a centralized networked barrier at the SYNC MASTER. 

 



A new term introduced in the algorithm is the Presentation 
Time (PT) that informs each NDM of the time when they 
should swap their buffer contents. After computing the highest 
common frame for each application, the SYNC MASTER 
computes the PT by adding a Presentation Time Offset (PTO) 
to the current time. The SYNC MASTER sends a broadcast 
message to each NDM. This message contains the PT and a list 
of the highest common frame number for each application. Each 
NDM waits till the PT and then displays the appropriate frame 
for each application according to the highest common frame 
number list. This procedure achieves both data and swap buffer 
synchronization. 

The PTO depends on a number of factors, including the 
computational load on each node, the message delivery time, 
and the maximum frame rate of all applications. The PTO can be 
either fixed to a constant large value or computed dynamically 
by the SYNC MASTER based on periodic feedback from the 
various clients. In our prototype, we chose a fixed value 
empirically.  

The trade-off of the one-phase algorithm against the two-phase 
algorithm is lower synchronization jitter in return for higher 
CPU usage caused by the implementation limit. However, 
because of the unpredictable nature of user interaction, network 
status, and computational load at each node, it is hard to 
determine the proper PTO for each frame (for each round) 
adaptively at the SYNC MASTER.  
 

Table 2. Number of messages that need to be exchanged 
in SAGE in a single round with the two-phase algorithm 
to display application frames on the tiled display. 

 Number of Messages 

Application 
Frame Updates 

M * N  

(Each application on a node sends a 
message to the SYNC MASTER.) 
 
For M applications running on a display 
driven by N nodes, we have M*N 
messages for frame updates. 

Phase 1:  
Data Sync  

N  
(The SYNC MASTER sends a message to 
an NDM on all the N nodes.) 

Phase 2: 

Swap Buffer 
Sync 

2N 

2a. Barrier msg 
from each NDM 
to the Barrier 
Master 

N 

2b. Broadcast 
msg from the 
Master to all 
NDM’s 

N 

Total Messages 
per round (M*N) + N +  2N  = (M+3)* N 

 

Table 3. Number of messages that need to be exchanged 
in SAGE in a single round with the one-phase algorithm 
to display application data on the tiled display. 

 Number of Messages 

Application 
Frame Updates 

M * N  

(Each application on a node sends a 
message to the SYNC MASTER.) 
 

For M applications running on a display 
driven by N nodes, we have M*N 
messages for frame updates. 

Phase 1:  
Data Sync 

N  
(The SYNC MASTER sends a message to 
an NDM on all the N nodes. The 
Presentation Time is embedded in the 
message.) 

Total Messages 
per round (M*N) + N = (M+1) * N 

 

6. Experiments  
In this section, we evaluate the efficacy of the two-phase and 
one-phase approach and compare them with the prior SAGE 
synchronization algorithm. We also evaluate how the two new 
algorithms scale with respect to the number of applications, 
number of nodes, and the frame rate of applications. In Figures 9 
through 13, “old sage” refers to the prior version of SAGE that 
does not use the enhanced synchronization methods. In the case 
of the one-phase approach, the wait period till the PT is 
implemented by using high-resolution hardware counters. 
 

 
Figure 8. Method for computing the difference in the swap 
buffer completion time at each frame among four display 
nodes.  

The testbed consists of a 28-node cluster driving an 11x5 tiled-
display wall. The cluster nodes are each equipped with 64-bit 
dual processor 2.4 GHz AMD Opterons with 4 GB RAM, 
Nvidia Quadro 3000 Graphics Card in an AGP slot, and a 
dedicated 1 GigE network interface card. The cluster nodes run 
Linux kernel 2.6. The nodes are interconnected via a CISCO 
3750 switch with 96 Gbps bisection bandwidth. A software-



based NTP server is run on the master node and a NTP client is 
run on each cluster node to synchronize the clocks. The NTP 
protocol has an accuracy of 100 microseconds. For the test 
application, we use several 1K (approximately 1000x1000 pixel) 
animations stored on a high-end dual-processor dual-core AMD 
Opteron node, which is equipped with 8 GB RAM and is 
connected to the 28-node cluster over a 10-gigabit network via a 
10G Neterion NIC. 

We use the difference in the swap buffer completion time among 
the various nodes as a metric to evaluate intertile frame 
synchronization. Figure 8 depicts the swap buffer completion 
time, which is defined as the time difference between the earliest 
and the latest swap buffer completion times among all nodes for 
a particular refresh cycle. A large difference indicates the tiles 
are out of synchronization. In the case of video playback, which 
is our main concern in this paper, the simultaneous frame 
transition across display nodes should occur in several 
milliseconds [15, 29]. Since the clocks are synchronized by 
using NTP, the swap buffer completion time is measured by 
time-stamping the swap buffer completion events on each node. 

We show our experiments on the intertile swap buffer 
completion time differences for a single application in Section 
6.1 and for multiple applications in Section 6.2. In Sections 6.3 
and 6.4, we show the effect of the synchronization method on 
the frame rates of a single and multiple applications. The 
scalability with respect to the number of display nodes is shown 
in Section 6.5. In Section 6.6, we compare the average CPU 
usage of the NDM of the two-phase and the one-phase 
algorithms. 

 

6.1 Intertile Swap Buffer Completion Time 
Difference (Out-of-Sync Time) for a Single 
Application 

 
Figure 9. Comparison of the swap buffer completion time 
differences. The graph shows that the proposed 
synchronization algorithms achieve extremely low swap 
buffer variance in comparison to the prior frame 
synchronization method in SAGE, which in turn results in 
better intertile frame synchronization. The high variance 
in the prior method is mainly because it lacks swap buffer 
synchronization. 

A single test application was run on the entire display at 30 
frames per second. The SYNC MASTER Refresh Rate (SRR) was 
set to 60 Hz and the PTO for the one-phase method was 

configured to 9 ms. Figure 9 depicts the swap buffer completion 
time variance observed for 1,000 consecutive frames. As seen in 
the figure, the difference in the completion time of swap buffer 
among the various nodes in the prior approach is around 12–14 
ms, which caused the viewers to visually perceive tearing in the 
application image on the display wall. 
The two-phase algorithm achieves around 2 ms—a 6-fold 
improvement over the prior approach. The one-phase algorithm 
achieves around 0.15 ms—a 10-fold improvement over the two-
phase and up to 90-fold improvement over the prior approach. 
The relatively high variance in “old sage” is mainly because it 
lacks swap buffer synchronization (i.e., the second phase of the 
two-phase algorithm) in NDMs. This showed the need for swap 
buffer synchronization even for the case of single application. 
The swap buffer completion time variance in the two-phase 
algorithm was higher than that of the one-phase algorithm 
because of the barrier latency in the second phase of the two-
phase algorithm. However, both the two-phase and one-phase 
algorithms achieve intertile frame synchronization and exhibit a 
visually seamless display across the wall. 
 

6.2 Intertile Swap Buffer Completion Time 
Difference (Out-of-Sync Time) with 
Increasing Number of Applications 
In our next experiment, we increased the number of applications 
streaming to the display wall and evaluated the impact of the 
synchronization mechanisms on the intertile swap buffer 
completion time. The SRR was set to 60 Hz, and the PTO for 
the one-phase algorithm was fixed at 9 ms. The test application 
was a 1K animation remotely streamed at 30 fps. We arranged 
multiple instances of this animation window so that the entire 
display wall was covered with nonoverlapping windows. 

 
Figure 10. Average of maximum swap buffer completion 
time difference of multiple applications. The graph shows 
the algorithm scales as the number of applications is 
increased. 

The results shown in Figure 10 indicated that the prior approach, 
per application synchronization, failed to sustain acceptable 
synchronization jitter with increasing number of applications, 
whereas both the two-phase and the one-phase algorithms 
ensured tight frame synchronization despite the increasing 
number of applications. This was due to the single global 
synchronization master for all applications. Though minor 
increments of the swap buffer completion time difference were 
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incurred by the increased system overhead on the display nodes 
as we increase the number of applications, this result still 
satisfied very tight frame synchronization tolerance. 

 

6.3 Evaluation on an Application’s Frame 
Rate 
Three-dimensional stereoscopic tiled-display walls including the 
Varrier [31] and StarCAVE [14] are used for interactive and 
immersive stereo visualizations. Such applications require 
support for a high frame rate, up to 120 fps to achieve 
interactivity [11]. A frame synchronization scheme for these 
applications must be able to achieve tight synchronization with 
minimal impact on the application’s frame rate. Though the 
current prototypes of these systems are designed for a single 
application, we expect the future extension for multiple 
applications. Thus, we evaluated the performance of the 
synchronization algorithms as we scaled the frame rate of a 1K 
animation displayed across the entire 28-node tiled display wall. 
In each case, the SYNC MASTER Refresh Interval was set 10 Hz 
higher than the application rate, and the PTO for the one-phase 
algorithm was set to 6 ms. Figure 11 depicts the effect of the 
synchronization algorithms on the frame rate of the animation as 
we increased the target frame rate of the animation from 30 fps 
to 120 fps. From the figure, we observed that the two new 
algorithms were able to sustain the target frame rate with 
minimal deviation. The prior algorithm sustained the target 
frame rate till 60 fps but failed to sustain it at 120 fps. 

 
Figure 11. Comparison of the synchronization algorithms 
on the application frame rate as we scale the frame rate of 
a single application. Both the two-phase and the one-phase 
algorithms scale with an application’s frame rate. 

 

6.4 Aggregate Frame Rate with Increasing 
Number of Applications 
In addition to being able to sustain high frame rates, a good 
synchronization mechanism should be able to sustain the frame 
rates as more applications are launched on a tiled-display wall. 
To test this capability, we increased the number of applications 
streaming to the display wall and evaluated the impact of the 
synchronization mechanisms on the aggregate achievable frame 
rate. Again, each application streamed a 1K animation at 30 fps. 
From Figure 12, we observed that the synchronization 
mechanisms of the previous version SAGE (“old sage”) was 
able to sustain the frame rate only up to four applications and 
showed a 25% drop for eight applications. As indicated in 

Section 4, the reason is that the per-application-based data 
synchronization mechanism requires excessive synchronization 
messaging. In contrast, both the two-phase and the one-phase 
algorithms scale as the number of applications increases.  

 
Figure 12. Comparison of the synchronization algorithms 
on the aggregate application frame rate as we increased the 
number of applications each runs at 30 frames per second. 
The two-phase and one-phase methods scaled with the 
number of applications, whereas the old SAGE 
synchronization algorithm showed its limited scalability. 

 

 
Figure 13. Scalability of the algorithms as the number of 
display nodes increases. The swap buffer completion time 
difference in the two-phase algorithm slightly increases 
because of the swap buffer synchronization phase using a 
networked barrier, whereas the effect of the display node 
increase is minimal in the one-phase algorithm.  

 

6.5 Scalability Analysis with Increasing 
Number of Nodes 
Another key requirement of a good synchronization mechanism 
is the ability to scale with the number of display nodes. Figure 
13 depicts the intertile swap buffer completion time differences 
as we increased the number of display nodes and the associated 
tiled-display size. In the case of the two-phase algorithm, we 
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observed minor increments in the intertile swap buffer 
completion time difference as we scaled the number of nodes. 

These werre primarily an effect of the networked swap buffer 
barrier employed in the second phase: as the number of nodes 
increased, the time to broadcast all the messages increased and 
incurred additional lag. However, the 2 ms difference was too 
short for a user to notice any asynchrony between tiles. The one-
phase algorithm achieved the tightest synchronization (~0.02 
milliseconds), primarily because of the synchronized clocks and 
use of high-resolution hardware timers for displaying the frame 
as close as possible to the presentation time. Again, the two new 
algorithms showed much more improved scalability over the 
prior approach in this test. 
 

6.6 Comparison of Average CPU Utilizations 
of the Two-Phase and the One-Phase 
Synchronization Algorithms 
Resource utilization of the algorithms is a key concern. In the 
one-phase algorithm, each display node enters into busy waiting 
loop, waits until the presentation time, and then executes 
graphics swap buffer. This approach achieves a synchronized 
swap buffer across display nodes and eliminates 2N network 
messages, where N is the size of the cluster (total N number of 
display nodes). Thus, the one-phase algorithm reduces message 
complexity at a cost of more CPU cycles than the two-phase 
algorithm because of the wait-loop. In this experiment, for 
example, we evaluated CPU usages of the NDM when a 1K 
animation was displayed on the display wall. The one-phase 
algorithm used 20% of CPU time, whereas the two-phase 
algorithm used only 4%. Therefore, when a tiled display is 
driven by a cluster of thin-client computers that do not have 
enough CPU resources for the wait-loop, or when 
computationally intensive processes need to run on the tiled 
display cluster, the one-phase algorithm should be avoided.  
 

7. Discussion 
The PTO of the one-phase algorithm has been set manually in 
the current implementation. The PTO has to be carefully chosen.  
If the PTO is set too long, then extra busy waiting can occur at a 
display node resulting in wasted CPU cycles. A large PTO also 
can affect the application’s frame rate because it increases the 
frame transition interval. If the PTO is set too small, a 
synchronization message can arrive at a display node behind the 
PT, or a node can complete the frame buffer drawing behind PT. 
The swap buffer synchronization fails in these cases. An 
example of a small PTO is shown in Figure 14. The NDM3’s 
graphics swap buffer is not synchronized because the 
synchronization message arrives at the NDM3 behind PT. These 
problems can be resolved by adaptively determining the PTO for 
each frame at the SYNC MASTER. However, to make PTO 
adaptive is challenging because of the uncertainty in the system 
load on the cluster. 

The two algorithms we have presented assume reliable delivery 
of frames, namely, that the image frame data not be lost or 
dropped in any of the display nodes. We are investigating 
synchronization techniques to handle unreliable streaming of 
frames.  

 

8. Conclusion  
We presented the two-phase and the one-phase algorithms to 
achieve a seamless display of multiple applications on a high-
resolution tiled display wall driven by a cluster of computers. 
Whether one would choose to utilize the one-phase versus two-
phase algorithm depends on the desired synchronization 
accuracy and the availability of system resources. The two-
phase algorithm has the advantage that it is more generic and 
can therefore be easily applied to most high–resolution tiled 
display systems including the ones driven by networked thin 
clients. It provides high synchronization accuracy generally 
acceptable for interactive high-resolution visualization. The one-
phase algorithm provides superior synchronization 
characteristics because of its low degree of messaging 
complexity. However, the one-phase algorithm requires support 
for NTP and sophisticated display thread scheduling (which is 
currently implemented via a busy-wait loop). Hence, if very 
tight synchronization is required and if NTP and additional 
unused processing cores are available, one should use the one-
phase algorithm. Both methods, however, will scale with respect 
to the number of applications, the frame rates of the 
applications, and the number of cluster nodes. 

 
Figure 14. Effect of small PTO. The Presentation Time 
(PT) calculated from the Presentation Time Offset (PTO) 
is passed when the synchronization message is received at 
NDM3. Graphics swap buffer at NDM3 cannot be 
synchronized with other display nodes.  
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