
Multiapplication, Intertile Synchronization on
Ultra-High-Resolution Display Walls

Sungwon Nam,1 Sachin Deshpande,2 Venkatram Vishwanath,3 Byungil Jeong,4
Luc Renambot,1 Jason Leigh1

1 Electronic Visualization Laboratory
842 W. Taylor St.
Chicago, IL 60607

snam5, luc, spiff@evl.uic.edu

2 Sharp Laboratories of America
5750 NW Pacific Rim Blvd.

Camas, WA 98607

sdeshpande@sharplabs.com

3 Argonne National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439

venkatv@mcs.anl.gov

4 Texas Advanced Computing Center
10100 Burnet Rd., Bldg. 196

Austin,TX 78758

bijeong@tacc.utexas.edu

ABSTRACT
Ultra-high-resolution tiled-display walls are typically driven by
a cluster of computers. Each computer may drive one or more
displays. Synchronization between the computers is necessary to
ensure that animated imagery displayed on the wall appears
seamless. Most tiled-display middleware systems are designed
around the assumption that only a single application instance is
running in the tiled display at a time. Therefore synchronization
can be achieved with a simple solution such as a networked
barrier. When a tiled display has to support multiple applications
at the same time, however, the simple networked barrier
approach does not scale. In this paper we propose and
experimentally validate two synchronization algorithms to
achieve low-latency, intertile synchronization for multiple
applications with independently varying frame rates. The two-
phase algorithm is more generally applicable to various high-
resolution tiled display systems. The one-phase algorithm
provides superior results but requires support for the Network
Time Protocol and is more CPU-intensive.

Categories and Subject Descriptor
I.3.2 [Computer Graphics]: Graphics Systems –
Distributed/network graphics; C.2.4 [Computer-
Communication Networks]: Distributed Systems –
Client/server; D.4.1 [Operating Systems]: Process
Management – Synchronization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MMSys’10, February 22-23, 2010, Phoenix, Arizona, USA.
Copyright 2010 ACM 978-1-60558-914-5/10/02...$10.00.

General Terms
Algorithms, Performance

Keywords
Frame synchronization, Tiled display, Cluster computing

1. Introduction
Ultra-high-resolution display walls are fast becoming a standard
tool for scientific research. These types of displays are the only
means by which scientists can see the massive data generated
from their instruments and supercomputer simulations. With the
advent of low-cost LCDs, researchers are now using tiled-
display walls as “mash up” environments where they can
juxtapose a variety of data so that they can look at them as a
whole [22]. While similar to the notion of Project Rooms or War
Rooms, a key difference is that for large-scale and collaborative
scientific research, there is no other way to look at this
magnitude of data. These projects routinely deal with time-
varying data on the order of terabytes to petabytes. It is
impossible to manage this information by printing out static
diagrams on sheets of paper and pinning them to a wall, as has
been the traditional approach. The microscopes and telescopes
used by scientists today t are integrated with complex computing
systems that perform noise filtering, tiling, and feature detection.
Ultra-high-resolution displays are becoming the new lenses that
bring the data from these instruments into focus.

To meet this challenge, the Electronic Visualization Laboratory
at University of Illinois at Chicago has been conducting research
with Sharp Laboratories of America on scalable display-wall
hardware and software. The culmination of this work is
LambdaVision, a 100-megapixel LCD wall, and the Scalable
Adaptive Graphics Environment (SAGE) [22], a middleware
system for driving such walls. Figure 1 shows the
LambdaVision driven by SAGE that is used for weekly
meetings in the Electronic Visualization Laboratory.

LambdaVision is an array of 55 LCD panels driven by a cluster
of 28 computers. The computers cooperate to give users the

illusion of a seamless display environment. Therefore, precise
coordination and synchronization between the computers are
necessary to ensure that the animated images displayed on the
wall appear seamless. The Scalable Adaptive Graphics
Environment (SAGE) has been developed for this purpose [35].
Unlike other tiled-display middleware such as Chromium [20] or
Equalizer [16], SAGE was designed at the outset to manage
multiple images or animations from different applications at the
same time, enabling users to simultaneously access, stream, and
juxtapose them on ultra-high-resolution tiled-display walls.

The need to support multiple applications at the same time poses
a significant challenge for image synchronization. Traditional
frame synchronization mechanisms used in systems such as
Chromium or Equalizer do not scale because of the increased
message complexity when supporting multiple applications
simultaneously. In this paper, we propose and validate two new
algorithms: a two-phase and a one-phase frame synchronization
algorithm to achieve low-latency, intertile synchronization for
multiple applications with varying frame rates. The two
algorithms achieve the same goal but differ in resource
utilization and complexity. A key contribution of this paper is
proposing a scalable way to achieve frame synchronization
among display nodes in a tiled display wall that can support
multiple applications simultaneously.

Figure 1. The SAGE in action. A student presenting at a
weekly meeting in the Electronic Visualization
Laboratory.

In the following two sections, we discuss related work and
describe in greater detail the synchronization requirements of
ultra-high-resolution environments. We then present background
information about the SAGE. We also detail the limitations of
applying traditional synchronization approaches to SAGE, and
we describe how our new algorithms provide significant
improvements.

2. Related Work
The traditional model for driving tiled display walls was to use
the entire surface to display a single visualization in exquisite
resolution. However, as display walls began to grow in size and
resolution, users found it more useful to be able to use the
expansive screen estate and resolution for displaying not only a
single visualization but multiple visualizations simultaneously
so that they can be compared side by side [6, 12, 34, 36].
Middleware systems in the former category include WireGL

[19], Chromium [20], DMX [2], Equalizer [16], and CGLX [1].
In WireGL and its successor Chromium, one or more servers
convert data from unmodified applications into OpenGL
graphics primitives, which are then streamed to clients driving
the tiled-display wall. CGLX does not distribute graphics
primitives but runs the same copies of the OpenGL-based
application on all clients and replicates the data on all the
clients. Equalizer offers a hybrid approach where the user can
combine various rendering techniques. DMX (Distributed
Multihead X Project) provides an X Window system compatible
environment where multiple displays connected to multiple
machines are presented as a single unified screen. In DMX, a
master node distributes X Window primitives on a tiled display.

All of these approaches assume that a single application
occupies the entire wall at any given instant. Rendering of the
content is often conducted directly on the graphics cards that are
connected to the displays. This approach has the advantage that
it enables low-latency generation and manipulation of the
images. Moreover, the frame synchronization among display
nodes can be achieved easily by implementing a networked
barrier at the point that needs to be synchronized. A networked
barrier works by having all display nodes send a message to a
barrier server node and wait while the barrier server counts the
number of messages it has received. When all the messages have
been received the barrier server broadcasts acknowledgements
to every display node, which upon receipt unblocks the display
nodes. The synchronization barrier can be implemented in
several ways. In cluster computing, the Message Passing
Interface (MPI) [3] is the de facto communication mechanism
among the nodes. MPI supports a “barrier” among all its
communication nodes, which ensures that all progress is blocked
until all the processes running on the nodes enter that barrier.
This approach is sufficient to ensure frame synchronization for
single applications occupying an entire tiled display.
Total image synchronization across displays in a tiled-display
wall is best achieved through a combination of hardware and
software solutions and is required for the display of stereoscopic
images [28]. In terms of hardware, the synchronization of
vertical refresh across multiple graphics cards can be achieved
by using specialized genlock hardware built into advanced
graphics cards such as those found in Nvidia’s Quadro series
[25-27]. Alternatively, Allard et al. [4] presented a cost-effective
approach using custom hardware and parallel port for
distributing vertical refresh synchronization signals. This
approach can be used with any graphics hardware. Combined
with software synchronization methods presented in many
papers, these can provide a cost-effective solution for total frame
synchronization between display nodes.

Chen et al. [8] discussed three communication methods for a
cluster-based, high-resolution display system: a synchronized
execution model where all render nodes have the same copy of
the application instance (e.g., CGLX), a primitive distribution
model where a client distributes graphics primitives to render
servers (e.g., Chromium), and a pixel distribution model where a
client renders and transmits only pixels to display servers. A
synchronization barrier at a certain program execution point
(such as before graphics buffer swap) can be directly used to
ensure frame synchronization in the synchronized execution
model, such as in [5, 8, 9, 17, 37]. In the primitive distribution
model, which can also be considered as a centralized model in
that only a single node that has application instance distributes

graphics primitives or pixels to server nodes that render and
display, the frame synchronization can be achieved implicitly,
leaving small asynchronies between display nodes [29], or a
synchronization barrier can be used explicitly such as in [16, 19,
21, 24] for tighter frame synchronization. SAGE can be
categorized as a parallel pixel distribution model, since multiple
clients (applications) send pixels to multiple display servers
(display nodes). In the earlier generations of SAGE, we
implemented a frame synchronization scheme to support
multiple applications by using multiple synchronization barriers,
one barrier per application. However, this per-application-based
synchronization scheme was unable to provide the tight
synchronization tolerances expected by display manufacturers
such as Sharp. Our new approaches provide significant
improvement.

3. Frame Synchronization Requirements of
a Tiled-Display Wall
In order to display a continuous image on a tiled display, all the
tiles that constitute an application window need to be
synchronously updated. This synchronization is especially
important for interactive visualizations and animations.
There are three requirements for seamless frame synchronization
on tiled displays:
1. Data synchronization: The application data to be displayed

must be coherent. That is, the various display nodes must
display parts of the same frame. For multiple applications,
data synchronization must be achieved for each application
being displayed.

2. Swap buffer synchronization: The display thread on each
node should swap the contents of the graphics buffer

synchronously in order for the various application windows
to appear consistent on the display.

3. Synchronization of the vertical refresh cycles of the
various displays (gen-lock): the physical refresh of
monitors on each node should occur synchronously.

Perfect frame synchronization on tiled displays is achieved by
satisfying all three requirements. In this paper we focus on all
but the third requirement, which can normally be achieved
through the use of specialized hardware.
 In the case of dedicated tiled-display walls that are limited to
running only a single application at a time, data and swap buffer
synchronization can be ensured easily with a single
synchronization barrier [5, 7, 9, 10, 17-19, 21, 24, 28, 30, 32,
33]. However, the problem we are attempting to solve is more
challenging because tiled-display walls can have an arbitrary
number of different application windows in which frame updates
occur at different rates. If a frame synchronization method for
tiled-display system that runs single application is applied, it
becomes per-application-based synchronization, which is not
scalable becausse of excessive synchronization messages over
the network generated for each frame from each application.
Also, with per-application-based synchronization, it is difficult
to obtain swap buffer synchronization across display nodes
because each application sends frames at different rates. Thus,
the events (data and swap buffer synchronizations) of the same
application can become partially ordered on a cluster, thereby
leading to unsynchronized display of frames. For multiple
applications to be displayed seamlessly on a tiled-display wall,
total ordering of data and swap buffer synchronization across all
applications is required. The total ordering of events in a
distributed system is described in detail in [23].

In Section 5, we propose two scalable frame algorithms that

Figure 2. In SAGE, while a compute cluster drives the individual displays, it merely acts as a lightweight client that receives
pixels from remote rendering resources such as visualization clusters or supercomputers.

ensure total ordering of data synchronization of all applications
and swap buffer synchronization between display nodes, with
minimal impact on applications’ frame rate and latency.

4. Scalable Adaptive Graphics Environment
SAGE is a cross-platform middleware system for driving ultra-
resolution tiled displays. Unlike other approaches, such as
Chromium, SAGE delegates the rendering of graphics to
remotely located compute clusters, and relies on the use of high-
speed networks to stream the pixels of the visualization to the
displays. This “thin-client” model has the advantage that large
cluster farms or supercomputers can be used to render datasets
that may be too large to fit on an individual graphics card [13].
In SAGE, a single window displayed on a wall may be driven by
any number of display nodes, and multiple windows can be
displayed on the wall simultaneously. As windows are moved
from one portion of the wall to another, SAGE seamlessly
reroutes the pixels to a different set of computers driving the
display tiles so that handling of the windows on the display is
totally transparent from the application. The SAGE model is
shown in Figure 2.

4.1 Architecture
In SAGE, the application pixel streams are received by the
SAGE Application Receiver threads (APP). Each application
gives its rendered pixels to the SAGE Application Interface
Library (SAIL), which streams them to the appropriate display
nodes depending on the current position and size of the window
on the tiled display. Each node has a Node Display Manager
(NDM) responsible for displaying the contents of all
applications on the display; multiple pixel streams can be
displayed independently to allow multiple applications to be
shown concurrently on the tiled display. The Free Space
Manager (FSManager) keeps track of the current display
parameters and the arrangement of the application pixels on the
tiled display. Based on the requested arrangement, the
FSManager directs SAIL to distribute an application’s pixels to
the appropriate display nodes. The applications can be
dynamically moved and resized with the help of the UI client.
An example of SAGE session that runs on four display nodes
and displays two applications is depicted in Figure 3.

4.2 SAGE’s Frame Synchronization
Algorithm
In this section, we discuss the frame synchronization method we
initially used for SAGE: a dynamic networked barrier per
application for data synchronization.

In this method a synchronization group (SyncGroup), which
consists of a set of display nodes that shows an application’s
image, is maintained for each application. Members (display
nodes) in the group can be dynamically changed as a user moves
or resizes an application window. And a data synchronization
manager thread, which ensures synchronized frame update of
display nodes in the SyncGroup, is created for each
synchronization group. A dynamic SyncGroup and data
synchronization manager thread pair implements a dynamic
barrier for each application. An example of the data

synchronization manager and synchronization group pairs in
SAGE is shown in Figure 4.

Figure 3. The SAGE components. Shown is an example
of four display nodes running two applications, App1
and App2 each distributed on tile 0, 1, and 2 and tile 1,
2, and 3 respectively.

Figure 4. Example of four display nodes displaying two
applications. There is a data sync manager and
SyncGroup pair for each application.

Table 1. Number of messages that need to be exchanged
in SAGE in a single round with its former
synchronization algorithm to display application data on
the tiled display.

 Number of Messages

Application
Frame
Updates

M * N

(Each application on a node sends a message
to its sync master.)

For M applications running on a display
driven by N nodes, we have the worst case of
M*N messages for frame updates.

Data Sync
Messages

The worst case of M*N messages from data
synch manager

Total
messages
per round

(M*N) + (M*N) = 2*M*N

Figure 5. Effect of lacking swap buffer synchronization.
The tile node 1 executed swap buffer right after updating
to frame N, but the tile node 0 did not, because of its CPU
load and scheduling. This uncertain delay may increase as
the number of applications on the tile 0 increases. This
incurs frame synchronization jitter.

Although this method was able to achieve the data
synchronization of multiple applications [22], it requires
excessive messages because it has a separate data
synchronization manager for each application. Table 1 shows
the worst-case message complexity when a tiled display consists
of N display nodes displaying M applications. We also did not
implement swap buffer synchronization explicitly. Since
graphics swap buffer at each node can be performed as soon as
data synchronization is finished, swap buffer synchronization
can be achieved implicitly. Although this implicit swap buffer
synchronization can be enough for supporting one application at
a time [29], it may incur nontrivial synchronization jitter when it
handles multiple applications because of the difference in CPU
load and scheduling across display nodes. As the number of
applications increases, the variance of the swap buffer
completion time across all display nodes increases. Figure 5
illustrates implicit the swap buffer synchronization that may
result in incoherent frame display.

5. Two New Algorithms
In our new approach, data synchronization is achieved by a
single global synchronization master instead of a separate data
synchronization manager for each application. We present two
approaches in this paper—a two-phase algorithm and a one-
phase algorithm.

In both algorithms, the global synchronization manager provides
data synchronization. Whereas the two-phase algorithm achieves
swap buffer synchronization with a network barrier after the
data synchronization phase, the one-phase algorithm uses
Network Time Protocol (NTP) synchronized clocks on each
node. Consequently, the two-phase algorithm is more generally
applicable to diverse high-resolution tiled-display systems,
whereas the one-phase approach yields higher synchronization

accuracy but has a limited range of target systems since it
requires support for NTP and is more CPU-intensive.

5.1 Two-Phase Algorithm
The two-phase algorithm consists of two distinct phases: data
synchronization for all applications and synchronization of the
swap buffer events of all display nodes.

Figure 6 depicts the two-phase synchronization algorithm. In
this case, we have a single global synchronization master (SYNC
MASTER). Upon receiving a new frame at a display node, a
corresponding application receiver on a display node sends a
message with the new frame number and the node ID of the
application receiver to the SYNC MASTER. The SYNC MASTER
has an interval timer that runs at a periodic rate called Sync
Refresh Rate (SRR). The SRR must be a rate greater than the
highest frame rate of all the applications in order to refresh all
the applications at their desired rate. When the timer expires, the
SYNC MASTER computes the highest common frame number
for each application on all the nodes. After computing the
highest common frame for each application, the SYNC MASTER
sends a broadcast message to the NDM on each node. This
message contains a list of the highest common frame number for
each application. The NDM on each node uses this list in order
to display the appropriate frame for each application.

Upon finishing the first phase, the NDM on each node enters the
second phase in order to synchronize the swap buffer events.
This synchronization is achieved by placing a networked barrier
right after the frame buffer drawing and just before the frame
buffer swap in the NDM. This enables swap buffer
synchronization with each NDM displaying multiple
applications on the tiled-display wall. Table 2 depicts the
number of messages needed per round with the two-phase
algorithm, where M is the number of applications and N is the
number of nodes driving the display wall. The two-phase
method uses (M-3) * N messages less than the former SAGE
frame synchronization algorithm per round.

The key differences between the two-phase and the former
SAGE frame synchronization algorithm are as follows:

1. The former version of SAGE has a data synchronization
manager for each application, whereas the two-phase
algorithm has a single data synchronization manager
responsible for all the applications. This dramatically
reduces the number of messages needed to reach data
synchronization per round.

2. The former approach does not achieve swap buffer
synchronization explicitly, whereas the two-phase
algorithm uses a networked barrier to ensure swap buffer
synchronization.

5.2 One-Phase Algorithm
In the one-phase approach, we achieve both data and swap
buffer synchronization in a single phase. We avoid the second
phase in the two-phase approach by synchronizing the clocks of
the nodes driving the tiled display. The NTP, a common
component in most major operating systems including Linux,
helps synchronize the clocks on the cluster nodes. The data
synchronization procedure is identical to the first phase of the
two-phase approach.

Figure 6. The two-phase synchronization algorithm to achieve seamless display of multiple applications on a tiled-display wall.
The first phase ensures data synchronization, and the second phase ensures swap buffer synchronization using a networked
barrier.

Figure 7. The one-phase synchronization algorithm to achieve seamless display of multiple applications on a tiled-display wall.
The first phase ensures data synchronization, and the synchronized swap buffer is ensured by making each node wait until
presentation time instead of using a centralized networked barrier at the SYNC MASTER.

A new term introduced in the algorithm is the Presentation
Time (PT) that informs each NDM of the time when they
should swap their buffer contents. After computing the highest
common frame for each application, the SYNC MASTER
computes the PT by adding a Presentation Time Offset (PTO)
to the current time. The SYNC MASTER sends a broadcast
message to each NDM. This message contains the PT and a list
of the highest common frame number for each application. Each
NDM waits till the PT and then displays the appropriate frame
for each application according to the highest common frame
number list. This procedure achieves both data and swap buffer
synchronization.

The PTO depends on a number of factors, including the
computational load on each node, the message delivery time,
and the maximum frame rate of all applications. The PTO can be
either fixed to a constant large value or computed dynamically
by the SYNC MASTER based on periodic feedback from the
various clients. In our prototype, we chose a fixed value
empirically.

The trade-off of the one-phase algorithm against the two-phase
algorithm is lower synchronization jitter in return for higher
CPU usage caused by the implementation limit. However,
because of the unpredictable nature of user interaction, network
status, and computational load at each node, it is hard to
determine the proper PTO for each frame (for each round)
adaptively at the SYNC MASTER.

Table 2. Number of messages that need to be exchanged
in SAGE in a single round with the two-phase algorithm
to display application frames on the tiled display.

 Number of Messages

Application
Frame Updates

M * N

(Each application on a node sends a
message to the SYNC MASTER.)

For M applications running on a display
driven by N nodes, we have M*N
messages for frame updates.

Phase 1:
Data Sync

N
(The SYNC MASTER sends a message to
an NDM on all the N nodes.)

Phase 2:

Swap Buffer
Sync

2N

2a. Barrier msg
from each NDM
to the Barrier
Master

N

2b. Broadcast
msg from the
Master to all
NDM’s

N

Total Messages
per round (M*N) + N + 2N = (M+3)* N

Table 3. Number of messages that need to be exchanged
in SAGE in a single round with the one-phase algorithm
to display application data on the tiled display.

 Number of Messages

Application
Frame Updates

M * N

(Each application on a node sends a
message to the SYNC MASTER.)

For M applications running on a display
driven by N nodes, we have M*N
messages for frame updates.

Phase 1:
Data Sync

N
(The SYNC MASTER sends a message to
an NDM on all the N nodes. The
Presentation Time is embedded in the
message.)

Total Messages
per round (M*N) + N = (M+1) * N

6. Experiments
In this section, we evaluate the efficacy of the two-phase and
one-phase approach and compare them with the prior SAGE
synchronization algorithm. We also evaluate how the two new
algorithms scale with respect to the number of applications,
number of nodes, and the frame rate of applications. In Figures 9
through 13, “old sage” refers to the prior version of SAGE that
does not use the enhanced synchronization methods. In the case
of the one-phase approach, the wait period till the PT is
implemented by using high-resolution hardware counters.

Figure 8. Method for computing the difference in the swap
buffer completion time at each frame among four display
nodes.

The testbed consists of a 28-node cluster driving an 11x5 tiled-
display wall. The cluster nodes are each equipped with 64-bit
dual processor 2.4 GHz AMD Opterons with 4 GB RAM,
Nvidia Quadro 3000 Graphics Card in an AGP slot, and a
dedicated 1 GigE network interface card. The cluster nodes run
Linux kernel 2.6. The nodes are interconnected via a CISCO
3750 switch with 96 Gbps bisection bandwidth. A software-

based NTP server is run on the master node and a NTP client is
run on each cluster node to synchronize the clocks. The NTP
protocol has an accuracy of 100 microseconds. For the test
application, we use several 1K (approximately 1000x1000 pixel)
animations stored on a high-end dual-processor dual-core AMD
Opteron node, which is equipped with 8 GB RAM and is
connected to the 28-node cluster over a 10-gigabit network via a
10G Neterion NIC.

We use the difference in the swap buffer completion time among
the various nodes as a metric to evaluate intertile frame
synchronization. Figure 8 depicts the swap buffer completion
time, which is defined as the time difference between the earliest
and the latest swap buffer completion times among all nodes for
a particular refresh cycle. A large difference indicates the tiles
are out of synchronization. In the case of video playback, which
is our main concern in this paper, the simultaneous frame
transition across display nodes should occur in several
milliseconds [15, 29]. Since the clocks are synchronized by
using NTP, the swap buffer completion time is measured by
time-stamping the swap buffer completion events on each node.

We show our experiments on the intertile swap buffer
completion time differences for a single application in Section
6.1 and for multiple applications in Section 6.2. In Sections 6.3
and 6.4, we show the effect of the synchronization method on
the frame rates of a single and multiple applications. The
scalability with respect to the number of display nodes is shown
in Section 6.5. In Section 6.6, we compare the average CPU
usage of the NDM of the two-phase and the one-phase
algorithms.

6.1 Intertile Swap Buffer Completion Time
Difference (Out-of-Sync Time) for a Single
Application

Figure 9. Comparison of the swap buffer completion time
differences. The graph shows that the proposed
synchronization algorithms achieve extremely low swap
buffer variance in comparison to the prior frame
synchronization method in SAGE, which in turn results in
better intertile frame synchronization. The high variance
in the prior method is mainly because it lacks swap buffer
synchronization.

A single test application was run on the entire display at 30
frames per second. The SYNC MASTER Refresh Rate (SRR) was
set to 60 Hz and the PTO for the one-phase method was

configured to 9 ms. Figure 9 depicts the swap buffer completion
time variance observed for 1,000 consecutive frames. As seen in
the figure, the difference in the completion time of swap buffer
among the various nodes in the prior approach is around 12–14
ms, which caused the viewers to visually perceive tearing in the
application image on the display wall.
The two-phase algorithm achieves around 2 ms—a 6-fold
improvement over the prior approach. The one-phase algorithm
achieves around 0.15 ms—a 10-fold improvement over the two-
phase and up to 90-fold improvement over the prior approach.
The relatively high variance in “old sage” is mainly because it
lacks swap buffer synchronization (i.e., the second phase of the
two-phase algorithm) in NDMs. This showed the need for swap
buffer synchronization even for the case of single application.
The swap buffer completion time variance in the two-phase
algorithm was higher than that of the one-phase algorithm
because of the barrier latency in the second phase of the two-
phase algorithm. However, both the two-phase and one-phase
algorithms achieve intertile frame synchronization and exhibit a
visually seamless display across the wall.

6.2 Intertile Swap Buffer Completion Time
Difference (Out-of-Sync Time) with
Increasing Number of Applications
In our next experiment, we increased the number of applications
streaming to the display wall and evaluated the impact of the
synchronization mechanisms on the intertile swap buffer
completion time. The SRR was set to 60 Hz, and the PTO for
the one-phase algorithm was fixed at 9 ms. The test application
was a 1K animation remotely streamed at 30 fps. We arranged
multiple instances of this animation window so that the entire
display wall was covered with nonoverlapping windows.

Figure 10. Average of maximum swap buffer completion
time difference of multiple applications. The graph shows
the algorithm scales as the number of applications is
increased.

The results shown in Figure 10 indicated that the prior approach,
per application synchronization, failed to sustain acceptable
synchronization jitter with increasing number of applications,
whereas both the two-phase and the one-phase algorithms
ensured tight frame synchronization despite the increasing
number of applications. This was due to the single global
synchronization master for all applications. Though minor
increments of the swap buffer completion time difference were

0

2

4

6

8

10

12

14

16

ou
t o

f s
yn

c
tim

e
in

 m
ill

is
ec

on
d

frame

old sage
Two Phase
One Phase 13

26

49

80

2.0 2.8 3.1 3.6
0.1 0.6 0.7 0.8

0

15

30

45

60

75

90

1 2 4 8

ou
t o

f s
yn

c
tim

e
in

 m
ill

is
ec

on
d

Number of Applications

old sage
Two Phase
One Phase

incurred by the increased system overhead on the display nodes
as we increase the number of applications, this result still
satisfied very tight frame synchronization tolerance.

6.3 Evaluation on an Application’s Frame
Rate
Three-dimensional stereoscopic tiled-display walls including the
Varrier [31] and StarCAVE [14] are used for interactive and
immersive stereo visualizations. Such applications require
support for a high frame rate, up to 120 fps to achieve
interactivity [11]. A frame synchronization scheme for these
applications must be able to achieve tight synchronization with
minimal impact on the application’s frame rate. Though the
current prototypes of these systems are designed for a single
application, we expect the future extension for multiple
applications. Thus, we evaluated the performance of the
synchronization algorithms as we scaled the frame rate of a 1K
animation displayed across the entire 28-node tiled display wall.
In each case, the SYNC MASTER Refresh Interval was set 10 Hz
higher than the application rate, and the PTO for the one-phase
algorithm was set to 6 ms. Figure 11 depicts the effect of the
synchronization algorithms on the frame rate of the animation as
we increased the target frame rate of the animation from 30 fps
to 120 fps. From the figure, we observed that the two new
algorithms were able to sustain the target frame rate with
minimal deviation. The prior algorithm sustained the target
frame rate till 60 fps but failed to sustain it at 120 fps.

Figure 11. Comparison of the synchronization algorithms
on the application frame rate as we scale the frame rate of
a single application. Both the two-phase and the one-phase
algorithms scale with an application’s frame rate.

6.4 Aggregate Frame Rate with Increasing
Number of Applications
In addition to being able to sustain high frame rates, a good
synchronization mechanism should be able to sustain the frame
rates as more applications are launched on a tiled-display wall.
To test this capability, we increased the number of applications
streaming to the display wall and evaluated the impact of the
synchronization mechanisms on the aggregate achievable frame
rate. Again, each application streamed a 1K animation at 30 fps.
From Figure 12, we observed that the synchronization
mechanisms of the previous version SAGE (“old sage”) was
able to sustain the frame rate only up to four applications and
showed a 25% drop for eight applications. As indicated in

Section 4, the reason is that the per-application-based data
synchronization mechanism requires excessive synchronization
messaging. In contrast, both the two-phase and the one-phase
algorithms scale as the number of applications increases.

Figure 12. Comparison of the synchronization algorithms
on the aggregate application frame rate as we increased the
number of applications each runs at 30 frames per second.
The two-phase and one-phase methods scaled with the
number of applications, whereas the old SAGE
synchronization algorithm showed its limited scalability.

Figure 13. Scalability of the algorithms as the number of
display nodes increases. The swap buffer completion time
difference in the two-phase algorithm slightly increases
because of the swap buffer synchronization phase using a
networked barrier, whereas the effect of the display node
increase is minimal in the one-phase algorithm.

6.5 Scalability Analysis with Increasing
Number of Nodes
Another key requirement of a good synchronization mechanism
is the ability to scale with the number of display nodes. Figure
13 depicts the intertile swap buffer completion time differences
as we increased the number of display nodes and the associated
tiled-display size. In the case of the two-phase algorithm, we

0

30

60

90

120

150

30 60 120

A
ch

ei
ve

d
Fr

am
e

R
at

e

Frame Rate

old sage
Two Phase
One Phase

0

30

60

90

120

150

180

210

240

270

300

1 2 4 8

A
gg

re
ga

te
 F

ra
m

e
R

at
e

Number of Applications

old sage
Two Phase
One Phase

5.2

7.4

10.7

12.0

0.73
1.53 1.93 2.06

0.02 0.02 0.02 0.02
0

2

4

6

8

10

12

14

4 12 20 28

ou
t o

f s
yn

c
tim

e
in

 m
ill

is
ec

on
d

Number of Display nodes

old sage
Two Phase
One Phase

observed minor increments in the intertile swap buffer
completion time difference as we scaled the number of nodes.

These werre primarily an effect of the networked swap buffer
barrier employed in the second phase: as the number of nodes
increased, the time to broadcast all the messages increased and
incurred additional lag. However, the 2 ms difference was too
short for a user to notice any asynchrony between tiles. The one-
phase algorithm achieved the tightest synchronization (~0.02
milliseconds), primarily because of the synchronized clocks and
use of high-resolution hardware timers for displaying the frame
as close as possible to the presentation time. Again, the two new
algorithms showed much more improved scalability over the
prior approach in this test.

6.6 Comparison of Average CPU Utilizations
of the Two-Phase and the One-Phase
Synchronization Algorithms
Resource utilization of the algorithms is a key concern. In the
one-phase algorithm, each display node enters into busy waiting
loop, waits until the presentation time, and then executes
graphics swap buffer. This approach achieves a synchronized
swap buffer across display nodes and eliminates 2N network
messages, where N is the size of the cluster (total N number of
display nodes). Thus, the one-phase algorithm reduces message
complexity at a cost of more CPU cycles than the two-phase
algorithm because of the wait-loop. In this experiment, for
example, we evaluated CPU usages of the NDM when a 1K
animation was displayed on the display wall. The one-phase
algorithm used 20% of CPU time, whereas the two-phase
algorithm used only 4%. Therefore, when a tiled display is
driven by a cluster of thin-client computers that do not have
enough CPU resources for the wait-loop, or when
computationally intensive processes need to run on the tiled
display cluster, the one-phase algorithm should be avoided.

7. Discussion
The PTO of the one-phase algorithm has been set manually in
the current implementation. The PTO has to be carefully chosen.
If the PTO is set too long, then extra busy waiting can occur at a
display node resulting in wasted CPU cycles. A large PTO also
can affect the application’s frame rate because it increases the
frame transition interval. If the PTO is set too small, a
synchronization message can arrive at a display node behind the
PT, or a node can complete the frame buffer drawing behind PT.
The swap buffer synchronization fails in these cases. An
example of a small PTO is shown in Figure 14. The NDM3’s
graphics swap buffer is not synchronized because the
synchronization message arrives at the NDM3 behind PT. These
problems can be resolved by adaptively determining the PTO for
each frame at the SYNC MASTER. However, to make PTO
adaptive is challenging because of the uncertainty in the system
load on the cluster.

The two algorithms we have presented assume reliable delivery
of frames, namely, that the image frame data not be lost or
dropped in any of the display nodes. We are investigating
synchronization techniques to handle unreliable streaming of
frames.

8. Conclusion
We presented the two-phase and the one-phase algorithms to
achieve a seamless display of multiple applications on a high-
resolution tiled display wall driven by a cluster of computers.
Whether one would choose to utilize the one-phase versus two-
phase algorithm depends on the desired synchronization
accuracy and the availability of system resources. The two-
phase algorithm has the advantage that it is more generic and
can therefore be easily applied to most high–resolution tiled
display systems including the ones driven by networked thin
clients. It provides high synchronization accuracy generally
acceptable for interactive high-resolution visualization. The one-
phase algorithm provides superior synchronization
characteristics because of its low degree of messaging
complexity. However, the one-phase algorithm requires support
for NTP and sophisticated display thread scheduling (which is
currently implemented via a busy-wait loop). Hence, if very
tight synchronization is required and if NTP and additional
unused processing cores are available, one should use the one-
phase algorithm. Both methods, however, will scale with respect
to the number of applications, the frame rates of the
applications, and the number of cluster nodes.

Figure 14. Effect of small PTO. The Presentation Time
(PT) calculated from the Presentation Time Offset (PTO)
is passed when the synchronization message is received at
NDM3. Graphics swap buffer at NDM3 cannot be
synchronized with other display nodes.

Acknowledgments
The publication was based on work supported in part by Sharp
Laboratories of America, the King Abdullah University of
Science and Technology (KAUST) (Award US-2008-107/SA-
C0064), the National Science Foundation (Award OCI
0943559), and the Office of Advanced Scientific Computing
Research, Office of Science U.S. Department of Energy, under
Contract No. DE-AC02-06CH11357.

We would like to thank Lance Long, Alan Verlo, Patrick
Hallihan, Andrew Johnson, and Maxine Brown at the Electronic
Visualization Laboratory, and Gail Pieper at the Argonne
National Laboratory for reviewing the paper.

References
[1] Cross-Platform Cluster Graphics Library (CGLX),
http://vis.ucsd.edu/~cglx/
[2] Distributed Multihead X Project,
http://dmx.sourceforge.net
[3] Message Passing Interface, http://www.mpi-
forum.org/
[4] Allard, J., Gouranton, V., Lamarque, G., Melin, E.,
and Raffin, B. "SoftGenLock: active stereo and genlock for PC
cluster," Proceedings of the workshop on Virtual environments
2003, Zurich, Switzerland, pp.255-260, 2003.
[5] Allard, J., Gouranton, V., Lecointre, L., Melin, E., and
Raffin, B. "Net Juggler: running VR Juggler with multiple
displays on a commodity component cluster," Virtual Reality,
2002. Proceedings. IEEE, pp.273-274, 2002.
[6] Ball, R., and North, C. "Analysis of User Behavior on
High-Resolution Tiled Displays," Human-Computer Interaction,
INTERACT 2005, pp.350-363, 2005.
[7] Bues, M., Blach, R., Stegmaier, S., Häfner, U.,
Hoffmann, H., and Haselberger, F. "Towards a Scalable High
Performance Application Platform for Immersive Virtual
Environements," Proceedings of Immersive Projection
Technology and Virtual Environments, Stuttgart, pp.165-174,
2001.
[8] Chen, H., Chen, Y., Finkelstein, A., Funkhouser, T.,
Li, K., Liu, Z., Samanta, R., and Wallace, G. "Data distribution
strategies for high-resolution displays," Computers & Graphics,
vol.25, no.5, pp.811-818, 2001.
[9] Chen, H., Clark, D. W., Liu, Z., Wallace, G., Li, K.,
and Chen, Y. "Software environments for cluster-based display
systems," Proceedings of the 1st International Symposium on
Cluster Computing and the Grid, Washington, DC, pp.202-210,
2001.
[10] Choi, J.-D., Byun, K.-J., Jang, B.-T., and Hwang, C.-J.
"A synchronization method for real time surround display using
clustered systems," Proceedings of the tenth ACM international
conference on Multimedia, Juan-les-Pins, France, pp.259-262,
2002.
[11] Cruz-Neira, C., Sandin, D. J., and DeFanti, T. A.
"Surround-screen projection-based virtual reality: the design and
implementation of the CAVE," Proceedings of the 20th Annual
Conference on Computer Graphics and Interactive Techniques,
1993.
[12] Czerwinski, M., Smith, G., Regan, T., Meyers, B.,
Robertson, G., and Starkweather, G. "Toward characterizing the
productivity benefits of very large displays," Interact, pp.9-16,
2003.
[13] De Winter, D., Simoens, P., L., D., F., D. T., J., M.,
B., D., and P., D. "A hybrid thin-client protocol for multimedia
streaming and interactive gaming applications," Proceedings of
the 2006 International Workshop on Network and Operating
System Support for Digital Audio and Video, Newport, Rhode
Island, 2006.
[14] DeFanti, T. A., Dawe, G., Sandin, D. J., Schulze, J. P.,
Otto, P., Girado, J., Kuester, F., Smarr, L., and Rao, R. "The
StarCAVE, a third-generation CAVE and virtual reality
OptIPortal," Future Generation Computer Systems, vol.25,
no.2, pp.169-178, 2009.
[15] Deshpande, S. "A method for synchronization
mismatch perception evaluation for large ultra high resolution
tiled displays," Quality of Multimedia Experience, 2009. QoMEx
2009. International Workshop on, pp.238-243, 2009.

[16] Eilemann, S., Makhinya, M., and Pajarola, R.
"Equalizer: A Scalable Parallel Rendering Framework,"
Visualization and Computer Graphics, IEEE Transactions on,
vol.15, no.3, pp.436-452, 2009.
[17] Huang, J.-y., Wang, K. M., and Hsu, K.-W. "The
frame synchronization mechanism for the multi-rendering
surrounding display environment," Displays, vol.25, no.2-3,
pp.89-98, 2004.
[18] Humphreys, G., Buck, I., Eldridge, M., and Hanrahan,
P. "Distributed rendering for scalable displays," Proceedings of
the 2000 ACM/IEEE conference on Supercomputing (CDROM),
Dallas, Texas, United States, 2000.
[19] Humphreys, G., Eldridge, M., Buck, I., Stoll, G.,
Everett, M., and Hanrahan, P. "WireGL: a scalable graphics
system for clusters," Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques, 2001.
[20] Humphreys, G., Houston, M., Ng, R., Frank, R.,
Ahern, S., Kirchner, P. D., and Klosowski, J. T. "Chromium: a
stream-processing framework for interactive rendering on
clusters," Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, San Antonio,
Texas, 2002.
[21] Humphreys, G., Houston, M., Ng, R., Frank, R.,
Ahern, S., Kirchner, P. D., and Klosowski, J. T. "Chromium: a
stream-processing framework for interactive rendering on
clusters," ACM SIGGRAPH ASIA 2008 courses, Singapore,
2008.
[22] Jeong, B., Renambot, L., Jagodic, R., Singh, R.,
Aguilera, J., Johnson, A., and Leigh, J. "High-Performance
Dynamic Graphics Streaming for Scalable Adaptive Graphics
Environment," Supercomputing, 2006. SC '06. Proceedings of
the ACM/IEEE SC 2006 Conference, pp.24-24, 2006.
[23] Lamport, L. "Time, clocks, and the ordering of events
in a distributed system," Communications of the ACM, vol.21,
no.7, pp.558-565, 1978.
[24] Nirnimesh, Harish, P., and Narayanan, P. J. "Garuda:
A Scalable Tiled Display Wall Using Commodity PCs,"
Visualization and Computer Graphics, IEEE Transactions on,
vol.13, no.5, pp.864-877, 2007.
[25] Genlock,
http://www.nvidia.com/object/IO_10793.html
[26] Nvidia Quadro G-Sync,
http://www.nvidia.com/page/quadrofx_gsync.html
[27] Nvidia, Quadro FX 3000G Solutions for Advanced
Visualization. Technical Report. NVIDIA Corporation, 2003.
[28] Raffin, B., Soares, L., Tao, N., Ball, R., Schmidt, G.
S., Livingston, M. A., Staadt, O. G., and May, R. "PC Clusters
for Virtual Reality," Virtual Reality Conference, pp.215-222,
2006.
[29] Rrustemi, A. "Computing Surface - a platform for
scalable interactive displays," Doctoral Thesis, University of
Cambridge, 2008.
[30] Samanta, R., Zheng, J., Funkhouser, T., Li, K., and
Singh, J. P. "Load balancing for multi-projector rendering
systems," Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, Los Angeles, California, United States, 1999.
[31] Sandin, D. J., Margolis, T., Ge, J., Girado, J., Peterka,
T., and DeFanti, T. A. "The Varrier™ autostereoscopic virtual
reality display," ACM SIGGRAPH 2005 Papers, Los Angeles,
California, 2005.

[32] Schaeffer, B. "Networking and Management
Frameworks for Cluster-Based Graphics," Virtual Environment
on a PC Cluster Workshop, Protvino, Russia, 2002.
[33] Schikore, D. R., Fischer, R. A., Frank, R., Gaunt, R.,
Hobson, J., and Whitlock, B. "High-resolution multiprojector
display walls," Computer Graphics and Applications, IEEE,
vol.20, no.4, pp.38-44, 2000.
[34] Shupp, L., Ball, R., Yost, B., Booker, J., and North, C.
"Evaluation of viewport size and curvature of large, high-
resolution displays," Proceedings of Graphics Interface 2006,
Quebec, Canada, 2006.

[35] Smarr, L., Brown, M., and de Laat, C. "Special
section: OptIPlanet -- The OptIPuter global collaboratory,"
Future Generation Computer Systems, vol.25, no.2, pp.109-113,
2009.
[36] Tan, D. S., Gergle, D., Scupelli, P., and Pausch, R.
"Physically large displays improve performance on spatial
tasks," ACM Transactions on Computer-Human Interaction,
vol.13, no.1, pp.71-99, 2006.
[37] Wallace, G., Anshus, O. J., Bi, P., Chen, H., Chen, Y.,
Clark, D., Cook, P., Finkelstein, A., Funkhouser, T., Anoop, G.,
Hibbs, M., Li, K., Liu, Z., Rudrajit, S., Rahul, S., and
Troyanskaya, O. "Tools and applications for large-scale display
walls," Computer Graphics and Applications, IEEE, vol.25,
no.4, pp.24-33, 2005.

