
Wenskovitch Jr. et al.

RESEARCH

MOSBIE: A Tool for Comparison and Analysis of
Rule-Based Biochemical Models
John E. Wenskovitch Jr.1, Leonard A. Harris2, Jose-Juan Tapia3, James R. Faeder3 and G. Elisabeta

Marai4*

*Correspondence:

g.elisabeta.marai@gmail.com
4Electronic Visualization Lab,

Department of Computer Science,

University of Illinois at Chicago,

60607 Chicago, USA

Full list of author information is

available at the end of the article

Abstract

Background: Mechanistic models that describe the dynamical behaviors of
biochemical systems are common in computational systems biology, especially in
the realm of cellular signaling. The development of families of such models, either
by a single research group or by different groups working within the same area,
presents significant challenges that range from identifying structural similarities
and differences between models to understanding how these differences affect
system dynamics.
Methods: We present the development and features of an interactive model

exploration system, MOSBIE, which provides utilities for identifying similarities
and differences between models within a family. Models are clustered using a
custom similarity metric, and a visual interface is provided that allows a
researcher to interactively compare the structures of pairs of models as well as
view simulation results.
Results: We illustrate the usefulness of MOSBIE via two case studies in the

cell signaling domain. We also present feedback provided by domain experts and
discuss the benefits, as well as the limitations, of the approach.

Keywords: visualization; visual computing; rule-based modeling; cell signaling

Introduction
Modeling approaches used in computational systems biology range from phe-

nomenological to detailed-mechanistic [1]. A popular type of mechanistic modeling

uees chemical kinetics, where models are defined in terms of collections of species

that interact via reactions [2]. A shortcoming of the traditional chemical kinetics

approach is that the number of distinct species and reactions in a biochemical sys-

tem can be combinatorially large [3, 4]. A modeling approach that aims to overcome

this “combinatorial explosion” is rule-based modeling (RBM) [5]. Rule-based mod-

els differ from traditional chemical kinetics models in that they explicitly specify

the parts of biological molecules that directly participate in and are modified by

biochemical interactions [6]. A detailed tutorial on RBM can be found in Ref. [7].

When constructing a model of a biological process, a researcher may begin with

a commonly accepted model of the process and build on it over time, modifying

and expanding its structure to test different hypotheses. These models can be repre-

sented as graphs, with enzymes and other reactants inside cells shown as nodes, and

the reaction rules that govern their interactions depicted as edges. As the researcher

develops the model, they may make several unrelated alterations, e.g., adding or

deleting an interaction in one case while changing the initial concentration of a

mailto:g.elisabeta.marai@gmail.com


Wenskovitch Jr. et al. Page 2 of 22

chemical species in another. These branches in the development of a model can

then lead to even more branches. At some point, keeping track of the numerous

paths taken in the process of building the model can become unmanageable, with

little or no documentation as to how the development of one path was affected by

another. Additionally, two models may involve the same molecules with different

component structure and interactions, leading to different outcomes. It would be

useful for a researcher to be able to directly compare these models, looking for both

similarities and differences in their structure.

Although several software tools have been developed for interactive visualization

of rule-based models, including RuleBender [8–10], rxncon [11], and Simmune Net-

workViewer [12], these tools aim to assist in viewing and understanding one model

at a time and do not directly support model comparison, the focus of the current

work. As we discuss in more detail below, the problem of model comparison is

closely related to that of graph comparison, from which several useful techniques

can be adapted.

In this paper, we present MOSBIE (MOdel Simulation Browser and Interactive

Explorer), an interactive exploration system that supports pairwise comparison of

rule-based models both in terms of model structure and dynamical behavior. Struc-

tural comparisons are performed on the basis of a compact, scalable, visual abstrac-

tion called an interactive contact map [10, 13]. We define a similarity metric over

this contact map abstraction that enables clustering of similar models. Using the

map representations and the similarity metric, we then design a visual interface for

structurally exploring pairwise differences and family relationships. The utility of

the tool is illustrated through two case studies and feedback from domain experts.

Background
Task Analysis

There are two broad motivations for comparing the similarities and differences

within a family of models. In the first case, a research team is building a fam-

ily of models up from a base model over time. As members leave the project, new

members join to replace them. The continuity of the project is thus greatly facil-

itated by the ability of the new members to browse the history of the model and

identify when and where modifications were made. Identifying the common core

among the family of models is essential, since the elements that are not present in

the core represent modifications to the model.

In the second case, a researcher intends to model a particular signaling pathway

or set of pathways. As part of this process, they would want to see what elements of

that pathway have been previously modeled, and explore the relationships among

existing models in the literature. The researcher downloads several models from one

of the several existing online databases [14–17] in a commonly-used model exchange

format such as the Systems Biology Markup Language (SBML) [18]. The researcher

would like to see at a glance which model components are shared and which are

unique.

Starting from these two motivating cases, and through close interaction with do-

main experts, we identified the following major tasks where visualizations can bene-

fit model comparison in the area of cell signaling. Because of the similarities between



Wenskovitch Jr. et al. Page 3 of 22

model usage in this domain and in other domains, we assert that many of these tasks

have global applications to model comparison beyond the cell signaling domain.

1 Identify similar structures within models. Identifying similar structures is ben-

eficial because if two different models share a common core, it is likely that

those models can be combined to form a single, more-complete model. Addi-

tionally, searching for a single structure common to a significant subset of a

family of models can help to identify models missing this structure. This can

help researchers make observations about the functionality of that subset of

models.

2 Identify structures that differ between pairs of models. Performing a pairwise

comparison similar to task 1 with the goal of identifying structures that dif-

fer between the models helps researchers identify model components present

in one model that do not appear in the other. Researchers can use this in-

formation to explore the functional effects of the structural differences be-

tween models. When identifying both the similarities and differences between

graphs, minimizing layout differences is essential to enable the user to see

changes [19, 20].

3 Sort/cluster models by similarity. Sorting models by degree of similarity helps

to minimize visual differences between graphs in proximity to each other,

facilitating comparison [19]. As such, a method for computing the similarity

of a pair of models should be developed or found from literature. Following

this, the models should be laid out based on these scores in a clear and visually

pleasing way.

4 Support pairwise detailed comparison. Building upon the similarity and dif-

ference comparison of a pair of models, a researcher should also be able to

examine the similar or differing structures of the models in more detail. In

particular, the researcher may wish to examine the individual rules within the

model to determine the level of similarity.

5 Explore the functional effects of differences between model structures. The

researcher may also wish to explore the functional effects of model changes. In

particular, the researcher should be able to perform a pairwise comparison of

the simulation results or other species and reactions in the generated network

of a model, in order to identify how the changes within a model affect the

generated outputs.

6 Organize and browse model repositories. A researcher should be able to use

this system to organize and browse a set of possibly unrelated models from

a database or online repository. The researcher should still be able to look

at the similar and different structures across the collection of models under

examination.

7 Enable the ability to share model layouts with other researchers. Finally, if a

researcher wishes to highlight important structural features that were custom-

encoded into a model, that researcher must be able to also convey the structure

of the model along with the model itself. To keep the model interactive and to

share all of the properties of the model, simply sharing a screenshot of a model

is not sufficient. Therefore, although the model language may not specify any

kind of set structural information, that structural information needs to be

maintained.



Wenskovitch Jr. et al. Page 4 of 22

This task analysis breakdown shows that a number of problems related to the com-

parison of models can be solved or aided with visualization. Specifically, Tasks 1–6

can be performed with a clear visual representation of the model(s), and are specif-

ically addressed in this work. Task 7, on the other hand, is not specifically a vi-

sualization challenge, but can be facilitated by specific aspects of our visualization

system.

Related Work

Computing Graph Similarity. A number of methods have been proposed for com-

puting the similarity of two graphs. Zeng et al. [21] computes a similarity score for

a pair of graphs by computing the edit distance between two graphs, counting the

number of edit operations to nodes and edges required to transform graph G into

graph H. Bunke and Shearer [22] computes a similarity score by finding the maximal

common subgraph, looking for the largest isomorphic subgraph present in graphs

G and H. Ullman [23] presents an algorithm to find subgraph isomorphisms using

a brute-force tree search, but pruning the tree to reduce the number of successor

nodes that need to be examined. Our approach for determining a graph similarity

score builds off of these ideas, looking both at maximal common subgraphs, while

also considering the differences between graphs that can be computed through edit

counts.

Simulation Journaling. A number of recent projects have included simulation

journaling components to track simulations, steer computations, and perfect mod-

els. The World Lines system [24–26] simulates flood response and control, storing

options for different simulations as a timeline tree. Similar to World Lines are track-

ing graphs, as seen in Widanagamaachchi et al. [27], which show the evolution of

features over time as a collection of feature tracks that may merge or split. Likewise,

the PORGY system [28] enables simulation steering through direct manipulation

of graph components, using a node-link representation to show transitions between

graph states. Our system notes the links between models and simulations through

their proximity to each other as computed by the custom similarity score noted

above.

Visualizing Temporal Network Changes. Misue et al. [19] notes that the primary

factor to consider when visualizing network changes over time is preserving the

user’s mental map — minimizing unnecessary changes to the structure of the graph

while emphasizing patterns within the graph. Four primary mechanisms have been

used for visualizing changes in networks while preserving the mental map. Using

an extra dimension to show network changes over time can add to clutter in the

visualization, but can be effective when used appropriately, with either a full extra

dimension [29] or simply a “half-dimension” [30]. Small multiples are useful to show

side-by-side comparisons of two or more networks, but with the disadvantage of

losing some of the detail of the networks due to the reduced size, and are featured

in ego networks [31] and the Semantic Graph Visualizer project [32]. Animations

are useful in directly showing how a graph transforms over time, but have the oc-

casional issues of being overly complex or too fast to be accurately perceived [33].

Such animations have been studied in projects such as DynaVis [34]. Finally, in-

teractions for comparing graph states over time come in various forms, including



Wenskovitch Jr. et al. Page 5 of 22

interactive tree layouts [35], configurable layout algorithms in 3D graphs [36], and

time sliders [24].

Methods
The top design of our tool is informed by our formal task analysis (see “Back-

ground”). Since many of these tasks feature comparisons, we selected a small mul-

tiples top design; this design allows the comparative exploration of models. We

mitigated the issue of detail loss by providing a zoom function to the individual

multiples, using animated transitions in the zoom action as suggested by Shanmu-

gasundaram and Irani [37] and using slow-in/slow-out pacing as recommended by

Dragicevic et al. [38]. The front-end also allows the exploration of previous simula-

tions and versions for a specific model.

The small multiples view provides a compact, scalable, visual encoding of models

through an abstraction called an interactive contact map [10, 13]. The view further

allows the comparison of similarities and differences between pairs of models repre-

sented as contact maps. An interactive contact map is a compact, interactive graph

representation of a complete model [10]; this representation lies at the core of our

scalable approach. The molecules and binding sites in the biological model become

nodes in an undirected graph, while the reaction rules are mapped to edges and

component states. The contact map provides a global, compact view of the model.

As discussed below, the interactive contact map can visually map models featur-

ing hundreds of species and thousands of reactions into compact graphs featuring

dozens of edges and nodes. The small multiples view is enabled by three modules:

a Contact Map Manager, a Comparison Engine, and a Layout Stabilization and

Overlay Module.

Contact Map Manager

The Contact Map Manager handles the parallel loading of a family of models from

disk, generating contact map representations for these models and laying the contact

maps out on screen. It further supports interactions such as panning and zooming,

highlighting similarities and differences between pairs of models, identifying com-

mon edges and nodes across an entire family of models, showing the states of a

model, and opening the model in the default editor interface for closer inspection

of parameters and simulation outputs.

Each contact map is kept concise and scalable by limiting the number of nodes

in the map: molecules and binding sites are uniquely identified by single nodes,

regardless of how many times they appear in the model rules. For example, the

epidermal growth factor receptor (EGFR) model in Fig. 1 contains 24 different re-

action rules, which are compressed into a contact map with six edges and three

modifiable components. The rules of the model generate a system of 356 species

and 3749 unidirectional reactions involving those species. It is worth noting that

the contact map is an abstraction of the generative-model for the system, not of

the implied reaction network. Molecules are represented as large nodes that contain

smaller, internal nodes that represent binding sites (yellow nodes) and components

containing states that are modified by the rules (purple nodes). Note that a modifi-

able component may also participate in bonds (e.g., the Y317 component of Shc).



Wenskovitch Jr. et al. Page 6 of 22

The reaction rules in the model are represented as the edges connecting the binding

sites, and several rules may map to a single edge.

By default, the contact map is drawn using a force-directed layout algorithm

which is intended to minimize edge crossings to preserve clarity. A user can manip-

ulate the location of the nodes to convey structural information about molecules

and components with the layout of the graph [10] (discussed further in “Layout

Stabilization”). The contact maps corresponding to the members of a model family

are laid out in a small multiple display and rendered in grayscale in order to focus

attention on the similarity and difference highlights generated by the Comparison

Engine.

Comparison Engine

The Comparison Engine serves two major purposes. First, it sorts the models by

complexity in order to minimize differences between neighboring panels and thereby

preserve the viewer’s mental map of the core model. Second, it calculates similarities

and differences between the models, both pairwise and across the full family, which

are then passed to the Contact Map Manager for display.

Sorting Models

To compute the visual similarity of a graph (i.e., contact map), we create first an

adjacency matrix representation. In an adjacency matrix, each row and column is

labeled with a node from the graph, and the matrix itself contains a 0 or 1 depending

on whether or not an edge exists between the two nodes. In our contact map imple-

mentation, a node can either be a molecule, a component, or a state. We follow a

bottom-up approach in the construction of the adjacency matrix. Starting from the

finest granularity, a state is guaranteed to be a row/column in the adjacency ma-

trix. A component is included as a row/column if it has no states already included

in the matrix. A molecule is guaranteed to have at least one component, although

that component could represent the entire molecule. This numerical representation

of the graph enables us to construct a visual similarity metric as described below.

The first challenge in computing a similarity score for two models is defining

what makes two graphs similar. There are two descriptive examples for model pairs

that are similar, shown in Fig. 2. In the first, two graphs share a large number

of nodes and edges, representing a majority of each graph. These two graphs are

certainly similar, as their only differences represent a small percentage of the overall

structure. In the second example, two graphs only share a small number of nodes

and edges, but one graph is a subgraph of the second. Since the structure of the

smaller graph is mostly (or completely) contained within the larger graph, we can

argue that these graphs are also similar.

To account for both of these similarity examples, we propose and construct

four similarity matrices which reflect graph similarity. A similarity matrix has the

same basic structure as an adjacency matrix. However, instead of nodes in the

rows/columns, a similarity matrix contains an entire model. Instead of Boolean

edge existence values inside the matrix, a similarity matrix contains a real number

representing how similar two graphs are by some measure.

The first two of our similarity matrices handle the first similarity example case.

One similarity matrix counts the number of nodes that the two graphs share, while



Wenskovitch Jr. et al. Page 7 of 22

another counts the number of edges that the two graphs share. The other two

similarity matrices handle the second similarity example case. One similarity matrix

counts the percentage of nodes that the two graphs share, while another counts the

percentage of edges that the two graphs share. In each of these cases, we calculate

the percentage of nodes/edges in the smaller graph that are present in the larger

graph. Hence, if graph G is a subgraph of graph H, then the similarity score by

this measure is 100% for both nodes and edges, regardless of the number of nodes

in graphs G and H.

We calculate an absolute similarity score by multiplying the number of nodes that

the graphs share and the percentage of nodes that the graphs share, multiplying

the number of edges that the graphs share and the percentage of edges that the

graphs share, and finally adding these two values together. Thus, to compute the

absolute similarity between two graphs, we use of the following similarity formula:

similarity = (numNode ∗ pctNode) + (numEdge ∗ pctEdge). (1)

To sort the models in our small multiples view, we precompute similarity scores

for each pair of graphs. We also compare each graph to the most complete graph, and

sort the models row-wise into the small multiples view based on their similarity score

in comparison with the most complete model. In our implementation, we assume

that the most complete graph is the graph with the greatest number of nodes and

edges. The assumption is based on our understanding of the iterative development

of biological model families – researchers continue to add molecular structures and

interaction rules to models to obtain an increasingly complete representation of the

physical process. As such, the number of nodes and edges will generally increase

as the model is developed. An example of this layout is shown in Fig. 3, and is

described more fully in “Layout Stabilization and Overlay Module.”

Model Comparison

The second feature of the comparison engine is its ability to locate similarities and

differences between models, which are then displayed using a bubbleset overlay [39].

For computing similarities, we iterate over all nodes and edges in one model, cre-

ating an identifier for each. We create a unique identifier for the structure we are

searching for (by molecule name, component name, state name, and the number of

times seen). We then iterate across all models, searching for that structure (syn-

onyms are currently not allowed). If the structure exists in the other model, we

add that structure to an internal list. Once the iteration is complete, the internal

list of structures is passed to the Contact Map Manager for display. Similarly, for

computing differences, we must iterate over the nodes and edges of both models,

looking for structures that exist in one model but not the other. When such a

structure is found,it is likewise added to an internal list. In addition to pairwise

comparison, our system also supports identifying a single node or edge across the

entire model family. This will allow a researcher to identify which members of a

family of models contain a certain problematic rule, or a binding site that is no

longer of functional relevance to the behavior of the model. Because each of these

comparison processes require nested iteration over the node and edge sets of both

models, the computational complexity of our comparison algorithm is O(n2).



Wenskovitch Jr. et al. Page 8 of 22

Layout Stabilization and Overlay Module

Laying out the contact maps in a consistent manner across all of the small multiples

facilitates the visual comparison of similar models, and in fact may be required for

visual comparison in more complex models. We implement layout stabilization by

storing the nodes and their user-assigned positions for a particular graph, and then

applying the stored layout across a family of models. Nodes not present in the stored

layout are assigned positions using a force-directed algorithm. By default, layout

positions are taken from each individual model. However, the user may override this

choice by selecting a stored layout from a drop-down list.

When further analyzing a subset of models in a family, it is helpful to easily

identify similarities and differences in the structures of each model. The similarities

and differences that we compute via the Comparison Engine are highlighted with a

bubbleset overlay [39] on the relevant small multiples. When running a differences

comparison, if one graph is a complete subgraph of the other, the result in the

smaller graph will be an empty overlay bubbleset (see Fig. 7 for an example). To

show that this subgraph model is a member of the comparison, the backgrounds

of models under pairwise comparison are highlighted. An example of a similarity

comparison bubbleset highlight with layout stabilization is shown in Fig. 4.

Figure 4 emphasizes the scalable advantages of the interactive contact map repre-

sentation. The system compactly represented here with at most six edges generates

over 300 molecular species and more than 3,000 unidirectional reactions among

those species. The contact map representation combined with layout stabilization

makes similarity and differences beteween the models easy to spot. For example,

in the highlighted panes of Fig. 4, it can be seen that the two models share the

molecules Grb2 , Shc, and egfr but differ in that egfr in the top model has an addi-

tional component. Also, the top model contains the molecule Sos, which can bind

Grb2 , whereas the bottom model does not. However, the bottom model contains

egf , which can bind egfr . Given the size of the rule sets of the underlying mod-

els corresponding to each of these multiples, these differences would be arduous to

determine from text-based comparison of the rules, or from unprocessed network

diagrams of the two systems.

Availability and Requirements

The MOSBIE system is open source and cross platform, with 32- and 64-bit re-

leases available for Windows, Linux, and Mac OS X. The system uses Java, Rich

Client Platform (RCP), Perl, and Prefuse libraries. MOSBIE is implemented as a

view in the RuleBender interface for rule-based modeling [? ? ]; the RuleBender re-

lease includes the BioNetGen software [6] as well as NFsim, which is an additional

simulator that allows for efficient simulation of large models [40]. No installation

is required: unzip the downloaded archive to a directory and the application will

run directly. The system can be downloaded at http://visualizlab.org/mosbie.

Sample models are located in the SampleModels/BNG directory of the decompressed

directory. All the example models and auxiliary layout files used in this paper can

also be found in the Supplementary Material provided with the manuscript.

http://visualizlab.org/mosbie


Wenskovitch Jr. et al. Page 9 of 22

Results
In this section we report on the performance of MOSBIE. We follow with two

case studies from the application domain, and finally report feedback from domain

experts.

Performance Analysis

We report the time required to calculate the similarity matrices, as well as the

time to sort a collection of models, using an HP Pavilion g7 machine with 6 GB

RAM and an i3 2.3 GHz dual-core processor. Our test set of 20 models from the

fceri family represents biological systems with thousands of species and tens to

hundreds of thousands of reactions. For example, the fceri fyn model generates a

reaction network of 1,281 species and 15,256 reactions, and the fceri fyn trimer

model generates 20,881 species and 407,308 reactions. In their interactive contact

map representations, the models in this family are captured as graphs with between

16 and 21 nodes and 4 to 5 edges.

The model set includes the nine models reported below in the first case study,

plus eleven duplicates of these nine models to reach a total of twenty. This duplicate

set construction enables the performance evaluation of our approach on a larger

set models of the same significant size as the original fceri family. The duplicate

approach is reasonable in this case: because it iterates through models in the same

fashion regardless of their structure, the comparison algorithm computing time is

not reduced when duplicate models are compared. We found that computing the

four similarity matrices on this set (see “Sorting Models”) required 0.25 seconds

and that sorting the models based on their similarity to the most complete model

required 0.0052 seconds. This computation time stands in contrast to the 14.56

seconds required to load the collection of models from disk and build the contact

maps.

To evaluate the performance of our browsing system, we calculated the average

computing time for model comparison. We evaluated computing both similarities

and differences across five model families, including the three families reported in

the case studies and feedback section (Fig. 5). Smaller model families ranging from

21 to 121 combined nodes and edges took less than 100 milliseconds for comparison

runs. The largest model family we attempted had a combined 295 nodes and edges;

the mean comparison time was slightly over one second.

Using the same test set of models and identical machine configuration as in the

previous experiment, we computed the amount of time required to (i) locate a node

in the family of models, (ii) locate an edge in the family of models, (iii) compare

the similarities between a pair of models, and (iv) compare the differences between

a pair of models. In all cases, the comparison took less than a quarter of a second

to complete, including the call to the Comparison Engine and the display refresh.

Case Study 1: Comparison of a Model Family

In this case study, a computational biologist explores a family of rule-based models

that describes signaling through the FcεRI membrane receptor [41], looking at

various properties of the set of models. The biologist begins by loading the family

of models; a directory is selected through a standard dialog box and all models



Wenskovitch Jr. et al. Page 10 of 22

in that directory are loaded into the system. Reading the models from disk and

generating the contact maps from the rules requires roughly one second per model.

As the models are loaded, the Comparison Engine computes the similarity matrices

for the family, sorts the models, and lays them out appropriately into the small

multiples panel. This reflects Task 3 from our task analysis.

Next, the biologist enables layout stabilization across the model family (Task 7).

With this new layout, the biologist notices that all of the models seem to have a

common core structure, with a large Rec molecule centrally located, and surrounded

by Syk, Lyn, Lig, and occasionally Fyn molecules. To confirm that this common

structure does indeed exist, the biologist selects the “Compare similarities” radio

button, then begins to select pairs of models to compare. Through this selection

process (which maps to Task 1), the biologist confirms via a bubbleset overlay

that this core structure does exist throughout the model family, with a few small

differences. One such comparison is shown in Fig. 6.

To investigate some of these differences more closely, the biologist switches the

radio button selection to “Compare differences,” which generates a different bub-

bleset overlay. In one case, comparing the fceri fyn and fceri fyn trimer models, the

biologist notices that a single binding site in the Lig molecule differs between the

two models (Fig. 7). This “compare differences” action maps to Task 2 from our

task analysis. Noting this difference of a single binding site, the biologist now wishes

to learn how this change in the model affects the concentrations of certain species

in the model simulations. Even subtle changes to the model can result in significant

changes in the network output. By selecting the “Open Simulations” option from

a context menu on either highlighted model, the most recent simulations for each

model are identified and opened for the researcher to compare. These simulations

are shown in Fig. 8, which addresses Tasks 4 and 5. It should be noted that to

validate the significance of this comparison the user would need to check that the

parameter values governing reaction rates and initial species concentrations were

the same between the two models. This can be done in several in MOSBIE by

opening the corresponding model input files and comparing the parameter blocks.

With the simulation outputs displayed, the researcher can note that, while the

concentrations of the observables follow similar curves, the fceri fyn trimer out-

puts grow at a rate roughly 50% faster than those in the fceri fyn model (Fig. 8).

Additionally, the concentration of RecSykPS is higher than the concentration of

RecPbeta throughout the full simulation of fceri fyn trimer, whereas the opposite

occurs in fceri fyn. From this observation, the researcher notes that it is clear that

the addition of a third ligand site significantly increases the rate of phosphorylation

of the receptor (RecPbeta and RecPgamma curves in Fig. 8) and of Syk (RecSykPS

curve). The effect on Syk phosphorylation is amplified in comparison to the effect

on receptor phosphorylation, which is seen by a change in the ordering of the curves

in the top and bottom panels.

It is worth emphasizing that the comparisons shown in Figs. 6 and 7 involve large

models. The fceri fyn model generates 1,281 species and 15,256 reactions and the

fceri fyn trimer model generates 20,881 species and 407,308 reactions. These models

may take several hours to generate and simulate. As noted by the domain experts,

MOSBIE reveals structural differences between models based on existing simulation



Wenskovitch Jr. et al. Page 11 of 22

data, without the user having to regenerate the results. Thus, MOSBIE potentially

saves hours of simulation time.

Case Study 2: Comparison of Models from a Database

In this second case study a researcher is developing a model of the EGFR signaling

network. The researcher wants to see what molecules and interactions have been in-

cluded in previous models, with an eye toward integrating these into the new model.

The researcher finds two models of EGFR signaling in the BioModels database [14],

with model IDs BIOMD0000000019 (Model 19) and BIOMD0000000048 (Model 48),

and downloads them as reaction networks in SBML format. Both models are fairly

large — MOdel 19 has 87 species and 236 reactions and Model 48 has 23 species

and 47 reactions — and the only visual representations of the models provided in

the respective papers [42, 43] use different nomenclature and layout, making them

difficult to compare visually.

These models are not rule-based and the molecular compositions of the species

in each model are not explicitly provided. However, the models can be converted

into a rule-based format and the species’ molecular compositions recovered using a

recent web-based tool called the Atomizer [44]. Following successful translation to

BioNetGen language (BNGL) format, both models are loaded into MOSBIE and

their contact maps displayed. Because the two models use slightly different names

to refer to some of the molecules they share in common, these mappings had to be

identified and modified manually in the model editor.

Manual layout of the contact maps reveals the implicit molecular components

and interactions of the original model (top row of Fig. 9). The initial layout of the

contact maps for the two models is somewhat different. To facilitate comparison,

layout stabilization is applied using the layout for the larger model, followed by

correction of the position of the PLCg molecule in Model 48 and its corresponding

binding site in EGFR to line up with other molecules and components in the contact

map. Selecting the “compare similarities” radio button, followed by zooming and

recentering, results in the view shown in the bottom row of Fig. 9.

The similarity comparison immediately highlights a core set of elements common

to both models. In fact, Model 19 contains all molecules and interactions present

in Model 48, except for the PLCg molecule. The comparison in Fig. 9 also shows

that, in addition to containing a number of additional molecules and interactions,

Model 19 also considers synthesis and degradation of EGF and EGFR, which are

represented by the unstructured nodes connecting to those molecules.

The similarity in the core structures of the models was not noted in the paper

describing Model 19 [42], even though this model was published after the paper

presenting Model 48 [43]. Without MOSBIE, it is difficult to identify similarities

and differences between models published in the literature because they are usually

presented in the form of long lists of equations that use different nomenclature.

Although the nomenclature problem must still be addressed manually, in our opinion

this case study demonstrates the power of MOSBIE to enable model comparisons

that would be prohibitive without monumental effort.



Wenskovitch Jr. et al. Page 12 of 22

Domain Expert Feedback

In addition to the two case studies reported above, three computational biologist

domain experts (co-authors on this work) requested the MOSBIE system for the

purpose of exploring model sets. The experts were most interested in using the

system for locating core structures that are common across model families, including

the TLR4 family shown in Fig. 10. These core structures can be ideal sites for

merging similar models into a larger structure.

As noted in “Performance Analysis,” comparison times for a pair of models of the

size of those in the TLR4 family (contact map representations with a maximum

combined 295 nodes and edges) approach one second, which is still roughly equiv-

alent to the time required to load each model from disk and generate the contact

map. Figure 10 shows a similarity comparison between two models in this family.

We found that the researchers were still pleased with this comparison computation

time, as it is still significantly faster than a manual comparison.

The domain experts expressed satisfaction with the Layout Stabilization module.

They noted that, in addition to making it easier to visually compare models in the

explorer view, they could also package the layout information with the model files

when sharing models with other researchers. This allows the experts to highlight

certain structures in discussions without either providing a screenshot or worrying

about differences in the layout computed on each machine. It also enabled the

experts to store their own custom layouts for models across multiple sessions.

Discussions with our domain experts led us to develop additional features that

were not explicitly presented in the case studies. For example, the experts felt that

the ability to highlight the location of a single node or edge across the entire model

family (as opposed to the previously mentioned pairwise comparisons) would be

useful for identifying which models in a family are missing a key structure. These

discussions were also useful for refining some features of the system overall, such

as using a grayscale color scheme for the small multiples so that the similarity and

difference bubblesets stand out even more.

Finally, our domain experts also praised the ability to browse the results of past

simulations, as some model structures result in very large networks that take signifi-

cant resources to run. In this case, researchers would not want to rerun simulations.

Specific to our first case study, the fceri fyn trimer model requires close to an hour

to perform the network generation stage of the simulation.

Discussion and Conclusion
In the absence of a contact map, obtaining a global understanding of the contents

of even a single rule-based model from a set of rules in text form is difficult. This

difficulty is compounded when doing model comparison. While a binary comparison

of two models based on . 30 rules could be done by hand — by someone well versed

in reading rules — MOSBIE offers the power to compare many models at once, as

shown in the first case study. This first case study, where we compare nine different

models with relatively subtle structural differences, illustrates this scaling issue.

As shown in both case studies, MOSBIE allows detection of patterns that might

otherwise be difficult to see.



Wenskovitch Jr. et al. Page 13 of 22

The results of our case studies indicate that MOSBIE effectively meets the tasks

we have identified for browsing sets of models (Tasks 1–5 in “Task Analysis”) with-

out requiring specialized training on the system. Our domain experts were able to

begin to explore the families of models immediately, noticing similarities and differ-

ences in model structures and identifying relationships between the model results

that were being compared.

Task 6, organizing and browsing online repositories, is not discussed in the case

studies because there is currently no such online repository for rule-based models.

However, introducing an online database of models is an interesting research di-

rection that we are currently pursuing [45]. When such a repository is developed,

our system will be useful for comparing models that overlap in their composition,

provided that a consistent annotation scheme is used to allow for accurate determi-

nation of common model components.

The visual comparison features that we have implemented could facilitate model

merging in situations where models are developed by multiple research groups

(Task 7). A prerequisite step for comparison of models developed by different

groups is the modification of identifiers — molecule names, component names,

and component states — such that shared elements have the same identifiers in

all of the models being compared or merged. Differences in protein nomenclature

are, however, common in the literature [46]. Annotations such as UniProt ID num-

bers (http://www.uniprot.org/) could also be employed to facilitate identification

of common identifiers. A tool that allows synonyms in the protein nomenclature

is an interesting direction of future work. In addition, to fully accomplish cross-

group model merging additional interface features would be required, such as visual

molecule and rule merging.

A limitation of MOSBIE is that the browser-view model comparison is currently

based only on contact maps. It is possible for models with similar but distinct rule

sets to yield identical contact map representations in this browser view. Detecting

such differences would require performing comparisons on more fine-grained repre-

sentations of model structure, using for example the interactive approach described

in [? ]. However, performing comparisons on more fine-grained representations of

model structure in MOSBIE is beyond the scope of the current work.

In conclusion, we have introduced a novel, powerful tool for analyzing structures

and dynamics within biochemical model families. Our open-source system uses a

compact, scalable visual abstraction called an interactive contact map and a sim-

ilarity metric over this abstraction to enable the clustering of similar models. An

intuitive interface further allows researchers to seamlessly compare pairs of models

directly, to identify similarities and differences in the structure of models, and to

directly compare model simulation outputs. This approach effectively streamlines

the analysis of models, both existing and newly created. Domain expert feedback

and two case studies highlight the benefits of using this exploratory system in the

context of systems biology.

List of abbreviations used
RBM: Rule-Based Modeling; MOSBIE: MOdel Simulation Browser and Interactive Explorer; EGFR: Epidermal

Growth Factor Receptor; SBML: Systems Biology Markup Language; RCP: Rich Client Platform; Y317: Tyrosine

317; Shc: Src homology 2 domain-containing-transforming protein C1; FcεRI: high affinity immunoglobulin epsilon

http://www.uniprot.org/


Wenskovitch Jr. et al. Page 14 of 22

receptor; Rec: receptor; Syk: spleen tyrosine kinase; Lyn: tyrosine-protein kinase Lyn; Lig: ligand; Fyn:

tyrosine-protein kinase Fyn; RecSykPS: Syk-phosphorylated Syk-receptor complex; RecPbeta: beta-subunit

phosphorylated receptor; RecPgamma: gamma-subunit phosphorylated receptor; PLCg: phospholipase C gamma;

TLR4: toll-like receptor 4.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

JW wrote the implementation of the explorer interface, with links back to the original RuleBender software. JRF

and LAH provided expert systems biology feedback and helped to direct the design of the tool and case studies. JJT

contributed to the design and implementation of the second case study. GEM conceived and directed the design,

implementation, and testing of the tool. All authors listed contributed to and approved the final manuscript.

Acknowledgements

This work has been supported by grant NSF-IIS-0952720, the Pitt Clinical Translational Science Institute (Fellows

Program) 5UL1RR024153-05, and NIH/NIGMS grant P41GM103712. Many thanks to Tim Luciani and Adam

Smith for help in testing and debugging, and to the other members of the Marai VisLab and Faeder Lab for their

feedback and useful discussions.

Author details
1Department of Computer Science, Allegheny College, 16335 Meadville, PA, USA. 2Department of Cancer Biology,

Vanderbilt University School of Medicine, 37235 Vanderbilt, TN, USA. 3Department of Computational and Systems

Biology, University of Pittsburgh, 15260 Pittsburgh, USA. 4Electronic Visualization Lab, Department of Computer

Science, University of Illinois at Chicago, 60607 Chicago, USA.

References
1. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. J. Comput. Biol. 9,

67–103 (2002)

2. Aldridge, B.B., Burke, J.M., Lauffenburger, D.A., Sorger, P.K.: Physicochemical modelling of cell signalling

pathways. Nat. Cell Biol. 8, 1195–1203 (2006)

3. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Perelson, A.S., Goldstein, B.: The complexity of complexes in

signal transduction. Biotechnol. Bioeng. 84, 783–794 (2003)

4. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling

signal-transduction systems. Sci. STKE 2006, 6 (2006)

5. Chylek, L.A., Harris, L.A., Tung, C.-S., Faeder, J.R., Lopez, C.F., Hlavacek, W.S.: Rule-based modeling: a

computational approach for studying biomolecular site dynamics in cell signaling systems. WIREs Syst. Biol.

Med. 6, 13–36 (2014)

6. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical systems with BioNetGen.

Methods Mol. Biol. 500, 113–167 (2009)

7. Sekar, J.A.P., Faeder, J.R.: Rule-based modeling of signal transduction: A primer. Methods Mol. Biol. 880,

139–218 (2012)

8. Xu, W., Smith, A., Faeder, J.R., Marai, G.E.: Rulebender: A visual interface for rule-based modeling.

Bioinformatics 27, 1721–1722 (2011)

9. Smith, A.M., Xu, W., Sun, Y., amd G. E. Marai, J.R.F.: Rulebender: Integrated visualization for biochemical

rule-based modeling. In: IEEE Visualization 2011, IEEE BioVIs: Symposium on Biological Data Visualization,

pp. 1–8 (2011)

10. Smith, A.M., Xu, W., Sun, Y., Faeder, J.R., Marai, G.E.: Rulebender: integrated modeling, simulation and

visualization for rule-based intracellular biochemistry. BMC Bioinformatics 13, 3 (2012)

11. Tiger, C.-F., Krause, F., Cedersund, G., Palmér, R., Klipp, E., Hohmann, S., Kitano, H., Krantz, M.: A

framework for mapping, visualisation and automatic model creation of signal-transduction networks. Mol. Syst.

Biol. 8, 1–20 (2012)

12. Cheng, H.-C., Angermann, B.R., Zhang, F., Meier-Schellersheim, M.: NetworkViewer: Visualizing biochemical

reaction networks with embedded rendering of molecular interaction rules. BMC Syst. Biol. 8, 70 (2014)

13. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. Lect.

Notes Comput. Sci. 4703, 17–41 (2007)

14. Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L., He, E., Henry, A., Stefan, M.,

Snoep, J., Hucka, M., Le Novere, N., Laibe, C.: BioModels database: An enhanced, curated and annotated

resource for published quantitative kinetic models. BMC Syst. Biol. 4, 92 (2010)

15. Yu, T., Lloyd, C.M., Nickerson, D.P., Cooling, M.T., Miller, A.K., Garny, A., Terkildsen, J.R., Lawson, J.,

Britten, R.D., Hunter, P.J., Nielsen, P.M.F.: The Physiome Model Repository 2. Bioinformatics 27, 743–744

(2011)

16. Lloyd, C.M., Lawson, J.R., Hunter, P.J., Nielsen, P.F.: The CellML model repository. Bioinformatics 24,

2122–2123 (2008)

17. Olivier, B.G., Snoep, J.L.: Web-based kinetic modelling using JWS Online. Bioinformatics 20, 2143–2144

(2004)

18. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin, A.P., Bornstein, B.J., Bray, D.,

Cornish-Bowden, A., Cuellar, A.A., Dronov, S., Gilles, E.D., Ginkel, M., Gor, V., Goryanin, I.I., Hedley, W.J.,

Hodgman, T.C., Hofmeyr, J.-H., Hunter, P.J., Juty, N.S., Kasberger, J.L., Kremling, A., Kummer, U., Le

Novere, N., Loew, L.M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E.D., Nakayama, Y., Nelson, M.R.,

Nielsen, P.F., Sakurada, T., Schaff, J.C., Shapiro, B.E., Shimizu, T.S., Spence, H.D., Stelling, J., Takahashi,

K., Tomita, M., Wagner, J., Wang, J.: The systems biology markup language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)



Wenskovitch Jr. et al. Page 15 of 22

19. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Vis. Lang. Comput. 6,

183–210 (1995)

20. Eades, P., Lai, W., Misue, K., Sugiyama, K.: Preserving the mental map of a diagram. Proc. 1st Int. Conf.

Comput. Graph. Vis. Tech., 24–33 (1991)

21. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: On approximating graph edit distance.

Proc. VLDB Endow. 2, 25–36 (2009)

22. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recogn.

Lett. 19, 255–259 (1998)

23. Ullmann, J.R.: An algorithm for subgraph detection. J. ACM 23, 31–42 (1976)

24. Waser, J., Fuchs, R., Ribicic, H., Schindler, B., Bloschl, G., Groller, E.: World lines. IEEE Trans. Vis. Comput.

Graph. 16, 1458–1467 (2010)

25. Schindler, B., Waser, J., Ribicic, H., Fuchs, R., Peikert, R.: Multiverse data-flow control. IEEE Trans. Vis.

Comput. Graph. 19, 1005–1019 (2013)

26. Ribicic, H., Waser, J., Gurbat, R., Sadransky, B., Groller, M.E.: Sketching uncertainty into simulations. IEEE

Trans. Vis. Comput. Graph. 18, 2255–2264 (2012)

27. Widanagamaachchi, W., Christensen, C., Bremer, P.-T., Pascucci, V.: Interactive exploration of large-scale

time-varying data using dynamic tracking graphs. In: 2012 IEEE Symposium on Large Data Analysis and

Visualization (LDAV), pp. 9–17 (2012)

28. Pinaud, B., Melancon, G., Dubois, J.: PORGY: A visual graph rewriting environment for complex systems.

Comput. Graph. Forum 31, 1265–1274 (2012)

29. Bezerianos, A., Chevalier, F., Dragicevic, P., Elmqvist, N., Fekete, J.-D.: GraphDice: A system for exploring

multivariate social networks. Comput. Graph. Forum 29, 863–872 (2010)

30. Federico, P., Aigner, W., Miksch, S., Windhager, F., Zenk, L.: A visual analytics approach to dynamic social

networks. In: Proceedings of the 11th International Conference on Knowledge Management and Knowledge

Technologies, p. 47 (2011)

31. Farrugia, M., Hurley, N., Quigley, A.: Exploring temporal ego networks using small multiples and tree-ring

layouts. In: 4th International Conference on Advances in Human Computer Interfaces ACHI (2011)

32. Andrews, K., Wohlfahrt, M., Wurzinger, G.: Visual graph comparison. In: Information Visualisation, 2009 13th

International Conference, pp. 62–67 (2009). IEEE

33. Tversky, B., Morrison, J.B., Betrancourt, M.: Animation: can it facilitate? Int. J. Hum.-Comput. Stud. 57,

247–262 (2002)

34. Heer, J., Robertson, G.: Animated transitions in statistical data graphics. IEEE Trans. Vis. Comput. Graph. 13,

1240–1247 (2007)

35. Card, S.K., Suh, B., Pendleton, B.A., Heer, J., Bodnar, J.W.: Time tree: Exploring time changing hierarchies.

In: 2006 IEEE Symposium On Visual Analytics Science And Technology, pp. 3–10 (2006)

36. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an Open Source Software for Exploring and Manipulating

Networks. In: International AAAI Conference on Weblogs and Social Media, vol. 8, pp. 361–362 (2009)

37. Shanmugasundaram, M., Irani, P.: The effect of animated transitions in zooming interfaces. In: Proceedings of

the Working Conference on Advanced Visual Interfaces, pp. 396–399 (2008)

38. Dragicevic, P., Bezerianos, A., Javed, W., Elmqvist, N., Fekete, J.-D.: Temporal distortion for animated

transitions. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp.

2009–2018 (2011)

39. Collins, C., Penn, G., Carpendale, S.: Bubble sets: Revealing set relations with isocontours over existing

visualizations. IEEE T. Vis. Comput. Gr. 15, 1009–1016 (2009)

40. Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and coarse-graining of biological

complexity with NFsim. Nat. Methods 8, 177–183 (2011)

41. Stone, K.D., Prussin, C., Metcalfe, D.D.: IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immun.

125, 73–80 (2010)

42. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Muller, G.: Computational modeling of the dynamics of the

MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20, 370–375 (2002)

43. Kholodenko, B.N., Demin, O.V., Moehren, G., Hoek, J.B.: Quantification of short term signaling by the

epidermal growth factor receptor. J. Biol. Chem. 274, 30169–30181 (1999)

44. Tapia, J., Faeder, J.: The Atomizer: Extracting implicit molecular structure from reaction network models. In:

Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical

Informatics (BCB’13), pp. 726–727 (2013)

45. Tapia, J.J., Faeder, J.R.: RuleHub: An environment for developing and sharing rule-based models. In:

Proceedings of 8th Annual q-bio Conference on Cellular Information Processing (2014).

http://q-bio.org/w/images/8/84/135.pdf

46. Le Novere, N., Finney, A., Hucka, M., Bhalla, U.S., Campagne, F., Collado-Vides, J., Crampin, E.J., Halstead,

M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H., Shapiro, B., Snoep, J.L., Spence, H.D., Wanner, B.L.:

Minimum information requested in the annotation of biochemical models (MIRIAM). Nat. Biotechnol. 23,

1509–1515 (2005)



Wenskovitch Jr. et al. Page 16 of 22

Figures

Figure 1 EGFR Contact Map. An example contact map from the EGFR family. The model
contains five distinct types of molecules (shown as grey aggregates), each comprised of one or
more components (yellow and purple rectangles), which can have one or more states (green
rectangles). Each edge represents a possible binding interaction to a component (possibly in a
given state), specified by one or more rules. Components shown in purple have states that are
modified by the action of one or more rules. The rule-based model represented by this contact
map generates a reaction network with 356 species and 3,749 reactions.

Figure 2 Model Overlaps. (Left) Two graphs that share a large number of nodes and edges. The
only difference between these two graphs is the red highlighted node and edge. (Right) Two
graphs that share a common structure. The blue highlighted region has an identical structure, and
so the second graph is a subgraph of the first.



Wenskovitch Jr. et al. Page 17 of 22

Figure 3 EGFR Models. Four sample multiples from the EGFR family of models sorted by
similarity score relative to the most complete model (upper left). The most complete model
generates a reaction network with 356 species and 3,749 reactions.



Wenskovitch Jr. et al. Page 18 of 22

Figure 4 Similarity Comparison. The Comparison Engine in action, showing the similar nodes and
edges (green highlighted region) between two models from the EGFR family. The model (lower
left) being compared to the most complete model (upper left) generates a reaction network with
155 species and 1,200 reactions.



Wenskovitch Jr. et al. Page 19 of 22

Figure 5 Comparison Time. The average calculation time of 10 similarity and difference
comparisons on five different model families. The error bars represent one standard deviation in
comparison time. The curve of best fit follows a quadratic equation, which follows from the O(n2)
comparison algorithm (see “Methods” for a complete algorithm description).

Figure 6 fceri Similarity Comparison. A similarities comparison within the fceri model family,
highlighting the similarities between the fceri fyn and fceri fyn trimer models. The fceri fyn model
(top right) generates a reaction network with 1,281 species and 15,256 reactions, while the
fceri fyn trimer model (top middle) generates a reaction network with 20,881 species and 407,308
reactions.



Wenskovitch Jr. et al. Page 20 of 22

Figure 7 fceri Differences Comparison. A differences comparison between the fceri fyn trimer
(left) and fceri fyn (right) models, showing a binding site in fceri fyn trimer that does not exist in
fceri fyn.

Figure 8 Simulation Outputs. The simulation outputs for fceri fyn trimer and fceri fyn, showing
similar curves for the concentrations of RecPbeta, RecPgamma, RecSyk, and RecSykPS, but with
fceri fyn trimer having concentrations 50% higher than fceri fyn.



Wenskovitch Jr. et al. Page 21 of 22

Figure 9 Comparison of two models of EGFR signaling from the BioModels database [14]. Left
column: BIOMD0000000019 (Model 19) [42]; right column: BIOMD0000000048 (Model 48) [43].
Contact maps with custom layout (top row) and similarity comparison with layout stabilization
(bottom row) for the two models are shown. The region highlighted in green shows that the two
models share a core set of molecules, components, and interactions. Model 19 is comprised of 87
species and 236 reactions, whereas Model 48 is comprised of 23 species and 47 reactions. Note
that both models are encoded in SBML and are not rule-based models. Contact map
representations were generated by extracting the implicit molecular structures of these models
using the Atomizer [44].



Wenskovitch Jr. et al. Page 22 of 22

Figure 10 The TLR4 family of models. A similarity comparison between models TLR4 v15 and
TLR4 RPS v1 in the TLR4 family. TLR4 v15 generates a reaction network with 337 species and
2,284 reactions, while TLR4 RPS v1 generates a reaction network with 657 species and 3,368
reactions.


	Abstract

