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Figure 1: Interactive Oncological Risk Estimator. (A) Panel for inputting the current case features and for calculating the corre-
sponding disease stage. (B) 10-year prediction of the probability for overall survival (OS), local control (LC), and regional control
(RC), and outcome table showing cumulative probabilities per year over those 10 years. (C) Stratified risk probability for the cor-
responding cohort over 10 years, based on client-selected thresholds and the current patient risk. Question markers link to the
published AI models behind the calculation.

ABSTRACT

In the precision medicine paradigm, oncological treatment lever-
ages complex ensemble datasets of similar patients to estimate the
outcomes for a current patient. A key challenge is developing
and deploying easy-to-understand AI predictive models for the out-
comes of a specific patient, based on patient data from multiple
institutions. We describe the lessons learned from the development
and deployment of an interactive dashboard to support the analysis
of individual head and neck cancer patient outcomes based on co-
hort data. As required by the project, the dashboard design aims to
handle a large client base. The dashboard combines an AI solution
with a multi-view interface featuring domain-specific plots to facil-
itate the visual analysis of patient outcomes and to quickly stratify
new patients into risk groups. A year after the successful public de-
ployment of the dashboard, we evaluate it with clinician domain ex-
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perts. We report the feedback and we reflect on the lessons learned
through this experience.

Index Terms: VA-machine intelligence for healthcare data vi-
sualization, Human-centered AI for health decision-making, Dash-
board, Risk Stratification, Precision Medicine.

1 INTRODUCTION

Under the precision medicine paradigm in oncology [28], clinicians
seek to tailor treatment for a current patient based on data collected
from cohorts of similar patients. In head and neck cancer (HNC)
treatment, such patient cohorts are an instance of heterogeneous
multivariate spatio-temporal data, where clinical and demographic
information is provided by electronic health records, and outcome
predictions are temporal data over several months to several years.

While several visual analysis systems support cohort analy-
sis [14, 15, 50], relatively little work has been done in supporting
the outcome analysis of a single-patient based on cohort data [42].
This type of analysis also requires a mix of human expertise and
machine learning models for predicting treatment outcomes. These
models would be using large data with both clinical and demo-
graphic attributes. Last but not least, there is a paucity of inter-
active tools that can effectively handle a large client base, spanning
multiple countries and multiple centers, who are focused on under-
standing outcomes for a specific patient in the context of a similar
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Figure 2: System architecture. The system integrates a pre-trained outcome model based on 4611 HNC patients, alongside a 2-year cohort
mortality risk based on 3027 MDACC patients, and an AJCC-8th edition stage detection algorithm. Clinicians interact with the dashboard by
inputting new patient data, which is used to compute AJCC stage, overall 10-year survival outcomes, and visualize the results. The input for risk
thresholds is then used to retrieve 2-year mortality outcomes and visualize risk-based cohort stratification.

cohort, and who generally have low data visualization literacy.
This work describes the design, development, and deployment

of an interactive dashboard to support the analysis of individual pa-
tient outcomes in head and neck cancer (HNC) patient data. A data
dashboard is a type of graphical user interface that provides at-a-
glance views of key performance indicators relevant to a particular
objective (in our case, mortality risk calculators). The dashboard
leverages machine learning models and large HNC patient datasets
from multiple treatment centers. It predicts the outcome and strat-
ification of a new individual patient into high-risk or low-risk. A
multi-view interface leverages domain-specific encodings to sup-
port visual analysis of patient outcomes. The contributions of this
work are: 1) a description of the application-domain data and tasks,
with an emphasis on analyzing individual new patient survival out-
comes and stratification risks; 2) a description of the design and im-
plementation of the cohort-based dashboard; 3) an evaluation with
domain experts a year after public deployment; and (4) a discussion
of the lessons learned.

2 RELATED WORK

EMR Cohort Visualization. In cancer [32, 37] and HNC [49], pa-
tient longitudinal electronic medical records (EMR) are visualized
using time-series visualization techniques such as line graphs [18],
parallel coordinate plots [21] or stacked bar charts [1]. Many vi-
sual computing frameworks have been introduced to show outcome
trajectories of cohort patients [34] and analyze outliers and trends
for dense clinical data [23, 44, 43, 45, 46, 47, 26]. In contrast to
our focus, these approaches do not support analyzing temporally
individual new patients.

Several other cohort visual analysis systems have been pro-
posed to identify disease evolution [19, 48], survival risk analy-
sis [28, 3, 10], cohort history [11, 7], and attribute comparison [30].
These works also leverage conventional visualization techniques
such as time-series plots [16], bar charts [25], histograms [5], ra-
dial plots [17], scatterplots [14], and matrices [13]. We also visu-
alize patient cohort data, however, with an emphasis on individual

new patients, their survival outcomes, and risk thresholds.
Dashboards in Medical Visualization. Dashboards are com-

monly used in various business organizations [24] and personal
applications [33] due to their easy-to-use visual representations.
In healthcare, hospitals use dashboard design tools to monitor
quality improvements across hospitals, improve patient care out-
comes [12, 6], enable surveillance of potential drug events [41], and
monitor general health management [31]. Healthcare is particularly
interested in designing effective dashboards to achieve clinical rele-
vance, efficiency, and an optimal end-user experience. Various eval-
uation criteria, such as user customization, knowledge discovery,
information delivery, and user interaction, are crucial for dashboard
design. A single-screen, minimalist visual design with no scrolling
is also necessary to meet these criteria [22]. Our dashboard design
was informed by these factors.

3 METHODS

3.1 Project Setting
The project was developed over the course of a year through a re-
mote, interdisciplinary collaboration. The core group included two
radiation oncologists, one data mining expert, and two visual com-
puting researchers. The larger group included clinicians and data
scientists at three medical centers who partnered to pool data and
create the AI models.

3.2 Activity Analysis
Our visual computing framework uses an Activity-Centered De-
sign (ACD) approach, an extension of the Human-Centered Design
Paradigm, focusing on user activities and workflows [29]. Using
this approach, the core team met multiple times to identify func-
tional requirements, prototype, evaluate visual encodings, and pro-
vide feedback on necessary changes. We summarize the resulting
workflow and functional requirements for the project as tasks be-
low, where local failure denotes the recurrence of cancer at the orig-
inal site of the primary tumor or within the surrounding area treated
with local therapy, such as surgery or radiation, and regional failure
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Figure 3: Kaplan-Meier plots showing survival probabilities of overall survival, local control, and regional control of patient subcohorts, with a
low-risk threshold of 5% and a high-risk threshold of 25%. The tables at the bottom indicate the number of patients at risk over ten years.

refers to the recurrence or persistence of cancer within the region
surrounding the primary tumor site, specifically involving the re-
gional lymph nodes or nearby tissues, signifying that the cancer
has spread or returned beyond the initial tumor location, but not to
distant parts of the body:

• T1. Input the data for a new individual patient, calculate and
show their HNC stage.

• T2. For the new individual patient, use an AI solution to cal-
culate and show the following predicted outcomes over the
next ten years: survival probability, local tumor failure prob-
ability, and regional tumor failure probability.

• T3. Given a user-specified set of risk thresholds for each out-
come, calculate and show the risk group for the individual
patient, along with the patient subcohorts used for the calcu-
lation.

Non-functional requirements included visual scaffolding that
would include visual encodings familiar to the oncologists [27],
scalable design that can display patient outcomes along with a large
cohort information, and 24/7 online availability for clinicians at
multiple sites.

3.3 Data Abstraction
In this study, we aim to investigate individual new patient outcomes
based on an AI solution leveraging machine learning models. These
models are trained using a total of 4611 HNC patient data collected
at the MD Anderson Cancer Center (MDACC) (3027 patients) in
the U.S., University Medical Center Groningen (UMCG) (1087
patients), and Princess Margret Hospital (PMH) (497 patients) in
the Netherlands. Patients with proven squamous cell carcinoma
of the head and neck, who received radiotherapy with or without
chemotherapy as definitive or adjuvant treatment, and had no prior
head and neck radiation, were included in these cohorts. The pa-
tients were treated at MDACC, UMCG, and PMH between 2001
and 2020, with prescribed tumor radiotherapy doses of 60-72 Gy.

The clinician team extracted from the Electronic Health Records
structured data several features for each patient. Each patient in

the datasets had several categorical clinical attributes such as gen-
der, smoking status, performance score, T-stage, N-stage, tumor
site, HPV status, tumor stage according to the AJCC-8th (American
Joint Committee on Cancer 8th edition) standard, and numerical at-
tribute age. For a new patient, the models used these attributes as
input, and generated temporal data of 10 years of outcome predic-
tion based on overall survival, local control, and regional control,
and categorical attributes of the patient’s 2-year-risk threshold.

3.4 AI Solution

The AI solution we leverage implements three outcome models
based on Cox regression (Fig. 2). These models are used to pre-
dict the following outcomes: overall survival (OS) probability, local
tumor failure probability (LC, or local control) [35], and regional
tumor failure probability (RC, or regional control) (T1).

To generate these models, the MDACC dataset was split into
training and validation groups with a 60:40 ratio. External vali-
dation was carried out on the UMGC and PMH datasets. Patients
with missing attributes were used for the training set, and only com-
plete cases were used for validation. The step-wise forward variable
selection method (i.e., the process of choosing the most relevant
attributes to include in a regression model) was used to select at-
tributes for the Cox regression models of OS, LC, and RC. This
process was carried out on 10 imputed datasets using multivariate
imputation (i.e., the process of replacing missing data) with predic-
tive mean matching [38]. After analyzing the results of variable se-
lection and inter-variable correlation, potential models were chosen
and tested in the validation cohorts. OS with AJCC-8th stage, per-
formance score, pack years, and age, LC with T-stage, performance
score, HPV status, and pack years, and RC with AJCC stage, per-
formance, and tumor site were selected as the final Cox regression
models for individual patient analysis and patient cohort stratifica-
tion. These models were selected based on the c-index, a metric
used to evaluate risk models in patient survival analysis. For a se-
lected patient, the regression models predict the survival probability
of OS, LC, and RC over ten years.
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Figure 4: Intermediate design iteration of the dashboard. Note the
toned-down color scheme and the additional annotations with careful
font formatting in the final deployed version.

3.5 Cohort Stratification
Clinicians wished to understand how different HNC subcohorts
were stratified into high-risk or low-risk, to better contextualize the
predicted outcomes for their current patient (T3). To support this
goal, we selected the MDACC patient cohort and calculated the 2-
year mortality risk using the Cox regression models for OS, LC,
and RC. Then, we stratified the patients into three groups - high-
risk, intermediate-risk, and low-risk based on their risk levels. Us-
ing the risk threshold determined by the clinicians for low-risk and
high-risk groups, we calculated the OS, LC, and RC survival prob-
abilities along with the number of patients at risk per group over ten
years for each risk group (Fig. 2).

3.6 AJCC-8th Stage Detection
When evaluating a cancer patient, it is important to determine the
disease stage, which plays a significant role in deciding the appro-
priate treatment plan for them. The American Joint Committee on
Cancer (AJCC) 8th edition provides a standard-of-care tumor, node,
and metastasis (TNM) staging system, which can be used to de-
scribe the extent of cancer in a patient’s body. The stage ranges
from one (I) to four (IV), with IV being the most advanced stage. It
is determined based on the size and location of the tumor, its spread
to regional lymph nodes, and whether it has metastasized (spread)
to distant organs or tissues [2]. In order to help clinicians iden-
tify the AJCC-8th stage of a new patient, we use a procedure based
on the T-stage, N-stage, tumor site, and HPV status. For a patient
whose HPV status was unknown, we considered the unknown sta-
tus as negative. For a selected patient, the procedure first checks
the tumor site and the HPV status. It then determines the AJCC-8th

stage based on the T-stage and N-stage of the patient (T1).

4 VISUAL FRONT-END

We designed the front-end based on the specific instructions and
suggestions from the core group, with many iterations using a range
of colors and formats (Fig. 4). While we had access to a larger
group of radiologists, we worked closely with one of them (LVD)
as our primary contact point for the project. Based on guidance
from LVD, the front end final design consists of three main views:
1) Input Variables (Fig. 1.A) Panel assists in adding the clinical at-
tributes of a new patient; 2) Outcome Prediction View (Fig. 1.B)
supports the examination of patient outcomes over time; 3) Model-
based Stratification View (Fig. 1.C) allows exploring cohort-based
risks over time. In our prior visual design experience, we have fol-
lowed the Tufte principle of maximizing information density [39],
by populating and displaying each panel of a visual analysis system
as soon as the interface loads. In this case, however, as explicitly
requested by the clinicians, only the input variables panel is dis-
played when the dashboard loads. The remaining panels are only

shown after the data is inputted or selected in the input panel, to em-
phasize the workflow aspect of the dashboard, and the connection
between the input data and the outcomes.

4.1 Input Panel

This panel allows inputting the attributes of a new patient (T1).
The attributes are grouped into two categories: patient specifics
such as age, performance score, and smoking pack per year, and
tumor specifics such as tumor site, T-stage, N-stage, and HPV sta-
tus (Fig. 1.A). Instead of using medical image data or patient chart
notes, our focus is on presenting structured features extracted from
the Electronic Health Record (EHR) data by our domain scientists.
These features were chosen by domain experts based on histori-
cal data related to HNC risk and for the purpose of identifying ro-
bust treatment outcomes based on patient and tumor-specific clini-
cal variables. Providing patient and tumor-specific information will
update the outcome prediction view and model-based stratification
view. In addition, this panel interactively calculates and displays
the patient’s AJCC-8th stage in real-time (T1).

4.2 Outcome Prediction View

This view shows the predicted risk probability of overall survival
(OS), local control (LC), and regional control (RC) over the course
of ten years using line curves based on the clinical attributes of the
patient (T2) (Fig. 1.B top). The lines are color-coded according to
their respective outcomes. Hovering over the lines or the legend
will highlight the outcome in order to enhance readability. In ad-
dition, this view also includes an outcome table that presents the
cumulative probabilities per year over ten years (T2) (Fig. 1.B bot-
tom). This makes it easier for clinicians to identify the survival
probability of the current patient. Initially, each row in the table
was color-coded based on its respective outcome prediction curve
(Fig. 4). However, this approach was found to impede rather than
aid the interpretation of outcome probabilities, so we decided to re-
move the color of the table for better readability. Instead, we added
the functionality to highlight the survival curve in the plot when
hovering over an outcome in the table.

4.3 Model-based Stratification View

This view helps to analyze the survival chances of a group of pa-
tients over a period of ten years (T3). It shows the overall sur-
vival probabilities for a selected low-risk and high-risk threshold,
using Kaplan-Meier survival curves [28] (Fig. 1.C). These static
survival curves are commonly used in the application domain to
explain therapy outcomes across different patient cohorts by show-
ing survival probability and standard deviation over time. The view
shows three plots that correspond to the survival outcomes of pa-
tients with low, intermediate, and high risks. Users can select the
risk probability of OS, LC, or RC survival (Fig. 3). Each risk group
is color-coded in the graph, with a lighter ribbon of the same hue
surrounding each plot representing the 95% confidence interval of
the prediction. Additionally, the view provides a table of the num-
ber of patients at risk (i.e., the total number of survivors at the be-
ginning of each year) in each group over ten years (Fig. 3 bottom).
Clinicians can utilize this view to identify the risk level of the cur-
rent patient. Selecting a low-risk and high-risk threshold will auto-
matically update the risks of the patient accordingly (T3) (Fig. 1.C
bottom). LVD estimated this view would have the highest learning
curve for clinicians. As a result, a single set of survival plots is
shown at any time.

4.4 Implementation and Release

Our computational back-end was built using R and Python with
Flask and Numpy, and the front end was developed using JavaScript
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with D3.js [8], and React libraries (Fig. 2). The dashboard is pub-
licly accessible via https://risk-calculator.evl.uic.edu/, and it’s de-
signed to handle large user traffic on multiple devices, including
laptops, desktops, and tablets, although not phones.

5 EVALUATION AND RESULTS

We conducted several demonstrations of our system and received
valuable qualitative feedback from our main contact point through-
out the development of the dashboard. We demonstrate below the
functionality of the dashboard. Furthermore, at this point the dash-
board has been deployed and used by clinicians across multiple
sites and countries. We report feedback collected using the system
usability scale (SUS) [9].

5.1 Use Case Demonstration
This use case investigates the outcomes of a new patient, in terms
of their AJCC-8th HNC stage, overall risks, and patient cohort con-
text. A radiation oncologist input information about the new patient
(T1), who was in the age group of 65-75, had a performance score
of 0, and had been smoking for 25-50 years. The patient’s tumor
was located in the oropharynx (OPC) and was categorized as T4 T-
stage, N2c N stage, and HPV positive. The AJCC-8th stage calcu-
lation (T1) (Fig. 1.A) indicated stage III. The oncologist explained
that this was accurate because the tumor was large (T4 T-stage) and
had spread to the lymph nodes (N2c). Additionally, she noted the
cancer was located in the oropharynx, and that this type of can-
cer can develop on the rear third of the tongue, the tonsils, the soft
palate, as well as the side and back walls of the throat, with a spread
consistent with stage III.

Next, she focused on the outcome prediction view and noticed
that the overall survival decreased significantly over time (T2)
(Fig. 1.B). The patient had a 94% chance of survival in the first
year, and above 80% up to the third year, but it decreased to 37%
in the tenth year. She noted that as the patient was in an advanced
stage, this made sense. While examining the local control and re-
gional control, she found that the patient had over 90% local control
for up to 4 years and regional control for up to 10 years.

Finally, the expert explored the patient cohort based on the risk
thresholds, so she focused on the model-based stratification panel
(T3) (Fig. 1.C). She selected overall survival for a risk threshold of
5% low and 25% high. The Kaplan-Meier plot confirmed that low-
risk patients had better survivability than high-risk patients. She
also noted that a higher number of patients had survivability in the
first few years, which was correct, as patient survivability would
decrease over time. Based on the low-risk threshold, the current
patient had an intermediate risk for mortality (2yr risk 13%), local
tumor failure (2yr risk 8%), and regional tumor failure (2yr risk
5%) (T3). Due to the advanced stage of cancer and intermediate
mortality risk, the expert recommended that the patient start the
treatment right away.

5.2 Deployment Questionnaire Evaluation
A year after deployment, we collected feedback from eight clini-
cians at the three medical centers, who responded to our survey. We
presented thirteen questions based on the System Usability Score
guidelines (SUS) [9], where the first 12 questions used a Likert
scale from one to five and the last question (likelihood of recom-
mending the dashboard to a colleague) used a Likert scale from one
to ten. Additionally, we included optional questions about the most
liked features and points for improvement.

The dashboard obtained a usability score of 87.81, which indi-
cates clinicians’ high satisfaction (SUS scores between 80-90 are
equivalent to an adjective rating of excellent [4]). In particu-
lar, evaluators agreed that they would use the dashboard frequently
(M=4±.93), that the dashboard was easy to use (M=4.75±.46), that
the functions were well integrated (M=4.63±.52), and that most

people would learn to use it very quickly (M=4.63±.52). Evaluators
were also confident in using the dashboard (M=4.13±.99). Further-
more, evaluators disagreed on the following items: the dashboard
was unnecessarily complex (M=1.13±.35), they would need sup-
port from a developer to use the dashboard (M=1.38±0.52), the
dashboard had too much inconsistency (M=1.38±.74), the dash-
board was cumbersome to use (M=1.38±.52), and they need to
learn many things before starting to use it (M=1.75±1.16). In addi-
tion, evaluators agreed that they would recommend our dashboard
to their colleagues (7.88/10), that the dashboard met their expecta-
tions (M=4.38±.52), and that they got a very positive impression of
the dashboard (M=4.38±.75).

The dashboard has received positive feedback for its effective
layout, ease of use, and clear visualizations. Clinicians appreci-
ated the dashboard’s ability to provide individualized risk stratifi-
cation and found the predicted outcomes at various time points to
be valuable. The simplicity of the design, along with appealing
colors and easy-to-understand metrics, was noted as a significant
strength. Some minor points for improvement were also identi-
fied. One responder mentioned browser compatibility issues, not-
ing that the right panel did not update properly in certain browsers
like Edge. Additionally, it was suggested that the dashboard in-
clude further clarification on variable definitions, such as perfor-
mance scores. One clinician also recommended the inclusion of
treatment input options to explore potential changes in predictions.
Overall, the dashboard was well-received.

In general, we observed that the clinician onboarding process
tends to be very fast, as most clinicians are familiar with Kaplan-
Meier and survival curves and thus found the interface intuitive.
Only the stratification model required at most a 5-minute learning
curve. Tutorials, workshops, or other guides were not requested or
provided, although LVD provided an interactive demo when pre-
senting the system at various venues. In terms of challenges, the
most common challenge was related to some clinicians unrealis-
tically expecting the AI solution, which had been trained on ret-
rospective data, to be able to adapt to additional input decisions
(e.g., I would like to input chemo). In terms of trust, there were no
documented instances where the clinicians encountered a counter-
intuitive prediction, as the prediction models are relatively intuitive
(i.e., increasing age, smoking, or performance scores result in worse
patient outcomes). From the three prediction tasks, the survival
model was most trusted, because the data in this case is binary (dead
or alive). In contrast, local and regional control are harder to assess,
because the data (whether the tumor has recurred or not) is murkier.

6 DISCUSSION AND LESSONS LEARNED

Our dashboard is designed to help HNC clinicians assess potential
outcomes for a specific patient, in particular survival outcomes and
the chances of local and regional treatment failure. The dashboard
also provides the cohort information used to make these determi-
nations. In terms of clinical impact, the current HNC radiotherapy
practice relies on a “one-dose-fits-all” strategy, where all HNC pa-
tients receive the same tumor radiation doses based on clinical trials
that pre-date the recent dramatic increase in HPV positive HNC pa-
tients [40]. This strategy does not account for the patient disease
specifics, in particular the fact that HPV-positive HNC responds
well to radiation therapy. Thus, the current approach can lead to
suboptimal treatment in terms of balancing survival and radiation-
induced toxicity. By calibrating the treatment of individual patients
based on the risk predictions based on cohorts of similar patients,
clinicians can make better decisions that improve patient outcomes.

Several important lessons emerged from this development and
deployment experience:

L1. Designing for Lower Information Density, with Grad-
ual Reveal. Most visual analytics solutions build on visual design
recommendations made by Tufte [39]. We found that some of the
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Tufte recommendations, such as maximizing information density,
are sound in the context of statistical visual analysis, given that
Tufte himself is a statistician, but are not necessarily sound in the
clinical context of an AI predictive solution. According to visual
analysis design principles, our initial design was rich and showed,
by default, the cohort data. In contrast, the clinicians asked that
the dashboard be initially unpopulated except for the input panel.
Specifically, our collaborators indicated that presenting visual out-
comes when the data has not been provided, or has been auto-filled,
would mislead the viewer.

L2. Designing for Constrained Interaction. The dashboard
also does not feature extensive interaction or exploration of the
patient characteristics; these characteristics are provided through
the input panel only. Even though earlier iterations allowed hover-
ing over the plots and displaying details-on-demand, the clinicians
asked for the actual values or numbers to be shown below the charts.
Furthermore, the dashboard is characterized by a fixed flow of infor-
mation, from input to outcome prediction, as opposed to repeated
linked observations across multiple views. This type of extremely
constrained interaction was also the result of clinician input. The
resulting interface resembles more closely a banking application
than a traditional visual analytics interface, with the explicit goal of
minimizing error possibilities.

L3. Transparency in Data Sources and Published Model.
One of the strengths of our AI solution is that it was built using
multi-institutional data. Many AI healthcare solutions have been
built in the past using single-race, single-institution datasets that did
not generalize well to other populations. Due to increasing skepti-
cism in AI solutions [42, 20], our dashboard provides explicit links
to the peer-reviewed manuscript describing the datasets and the pre-
diction model.

L4. Open Access Implications on Patient and Patient Family
Access. Building a risk prediction tool that is completely open-
access means it could also be accessed by patients and their fami-
lies. Since the deployment of the dashboard, which was designed
for use by clinicians, our group has been contacted by patients and
family members of patients who had accessed and used the tool. In
response to ethical concerns, e.g., the fact that, as a result, some pa-
tients might feel discouraged or experience increased anxiety, our
clinician collaborators countered firmly that patients already come
to appointments armed with incorrect information provided by in-
fluencers on social media. Our collaborators consider open public
access to real institutional data and validated prediction models as
a clear informational benefit to patients and their families.

L5. Building for Reliable Access. Once our solution was de-
ployed, we learned that clinicians across the world were happy to
use it, but would only contact us when the system was down. We de-
signed our visual interface to be stable across different display sizes
and browsers. We also encountered multiple challenges in achiev-
ing reliable access. Initially, we hosted the dashboard on GitHub
Pages and used a virtual server for the AI solution. However, we
faced cross-origin resource sharing (CORS) issues that made it dif-
ficult for the frontend and AI solution to communicate. To solve
this problem, we moved both our frontend and backend to a sin-
gle virtual server. Although this solved the CORS issue, some of
our collaborators were still unable to access the dashboard. More-
over, the dashboard would occasionally go down, requiring us to
restart the front and backend manually. To resolve these issues, we
used Docker containers to host our frontend and backend with a
proxy setting to serve the dashboard to the internet using the stan-
dard ports. This approach has enabled us to provide clinicians with
a reliable and secure platform that they can access anytime and from
anywhere.

L6. Tracking Access and Adoption. As in our other projects
that have been adopted at more than 40 institutions across the
world [36], tracking access and adoption is difficult. We know the

community is using the dashboard because they occasionally con-
tact us with requests. Since the dashboard is being used in clinical
practice, we do not expect a large number of citations to our work.
We did not require client registration on purpose, to make the dash-
board as easy to access as possible. We also did not instrument the
dashboard with cookies, which would have degraded performance.
The cost of these decisions is an impaired ability to track access and
adoption.

6.1 Assumptions and Limitations
The case study and the domain expert feedback demonstrate the
dashboard’s ability to help clinicians identify the cancer stage, sur-
vival outcomes over time, mortality rate, local and regional failure
risk of a patient, and overall risk-based outcomes of their respec-
tive patient cohorts. We leveraged visual encodings familiar to our
domain experts [27], facilitating wider adoption of the dashboard
within the head and neck oncology community.

In terms of scalability and generalizability, the outcome predic-
tion view can be generalized to show and compare several temporal
datasets, including for other cancer patient data. There are sev-
eral assumptions and limitations to the current design of our dash-
board. First, the dashboard assumes users have an understanding of
Kaplan-Meier plots, which may limit its accessibility to the general
public. Anecdotally, the family members of patients who reached
out to us were college-educated. Second, patient-specific attributes
such as age and pack years are limited to a few options. Future work
includes the ability to update the models and to allow clinicians to
add more patient attributes to observe outcomes. Adding gradually
more functionality could further enhance the system without sacri-
ficing usability.

7 CONCLUSION

In this work, we presented the design, implementation, and lessons
resulting from the deployment of an interactive dashboard for the
analysis of individual HNC patient outcomes. We described the ap-
plication domain data and workflow related to assessing the survival
outcomes and stratification risks of a specific patient, within the
context of precision medicine. Our dashboard leverages an AI so-
lution to generate individual outcomes based on large HNC patient
cohorts. An evaluation with domain experts demonstrates the func-
tionality and usefulness of the resulting dashboard. Last, we believe
the lessons we extracted from this experience, 1.5+ years after de-
ployment, benefit the wider visualization-in-healthcare community.
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