

Multi-User Centered Resource Scheduling

for Large Scale Display Wall Environments

BY

SUNGWON NAM

B.E., Hong-Ik University, Republic of Korea, 2002

M.S., University of Southern California, Los Angeles, 2006

THESIS

Submitted as partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of Illinois at Chicago, 2013

Chicago, Illinois

Defense Committee:

 Jason Leigh, Chair and Advisor

 Andrew Johnson

 Robert Kenyon

 Luc Renambot

 Venkatram Vishwanath, Argonne National Laboratory

ii

ACKNOWLEDGEMENTS

During my graduate study at the Electronic Visualization Laboratory, I think I learned more

about myself. I had plenty of occasions to diverge and ponder on what really matters to me. In

addition to the doctorate degree, academic knowledge, research accomplishments, and

professional experiences, I also learned many other skills that would greatly help me in my life

as an engineer and a scientist. These would never have been possible if I did not have chances to

freely choose what I was going to pursue, explore, try, and fail. My advisor Jason once said that

it is the students who have the most power in the laboratory. I think I now understand what it

means. I deeply thank Jason for patiently waiting for me and continuously giving me

opportunities.

I thank Andy and Jason for their contribution to this work and all the other work that led me

here. I have not seen them too tired to discuss ideas and provide advice to me and all the other

students in the laboratory. Whenever I had a discussion with them, I could listen to critical

questions that I had never thought of, dazzling observations from a different perspective, and

invaluable guidance. I also thank Luc for his willingness to share his profound understanding and

experience in broad range of disciplines in the Computer Science domain. I learned many things

just by watching over his shoulder. Lance and Alan made complex technologies possible and

ensured that programs ran all the time with their know-how and knowledge. I kept requesting

them resources and diverse configurations of systems and never had an occasion where I did not

get what I asked. Maxine was always available and instantaneously responded to me when I

struggle with English writing. During all those years, I never worried about various forms and

procedures I had to go through as an international student. I would have had many frustrating

moments without Dana’s exceptional ability and infinite energy to make everything smooth.

iii

ACKNOWLEDGEMENTS (CONTINUED)

I was privileged to be a part of EVL family with its talented faculties, staff, and students. I am so

happy that I have worked with many brilliant students in the laboratory and am grateful to my

wonderful friends at EVL. I admire Ratko’s positive way of viewing the world. He is the

brightest person I’ve ever met. Ratko and I shared lots of thoughts and honest opinions together.

Many times, I could lift off pressures just by having a short conversation with him. He

encouraged me with heart whenever I felt frustrated and led me to uncover positive perspectives.

James and Khairi shared their academic opinions numerous times. They never hesitated to help

when I asked for their time to discuss my work even when they were occupied with their own. I

would not have been able to finish my papers and experiments without their support. Byungil

and Venkat helped me many times too. From them I learned valuable skills to conduct scientific

research early in my doctoral studies.

I extend my sincere appreciation to all of my family members who never stop trusting me

and help me to move forward with confidence. My parents made my study in the United States

possible and comfortable. I am clueless about how to repay them for their unselfish and endless

support. I thank my sisters who have such warm hearts. They are always willing to help me and

encourage me to succeed. Undoubtedly, my wife Seunghee and my daughter Christine have been

my biggest supporters. They had to endure much when I became such a fastidious man during

the tough times. I certainly wouldn’t have been able to do this work alone. We have been

through this together.

iv

ACKNOWLEDGEMENTS (CONTINUED)

This dissertation is based on work supported in part by the National Science Foundation

(NSF), awards OCI-0225642 (OptIPuter) and OCI-0943559 (SAGE), Sharp Laboratories of

America, and the King Abdullah University of Science and Technology (KAUST) award number

US 2008-107/SA-C0064. Any opinions, findings, and conclusions or recommendations

expressed in this publication are those of the authors and do not necessarily reflect the views of

the funding agencies and companies.

SN

v

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION.. 1

1.1 SUMMARY OF CONTRIBUTIONS ... 7

1.2 DOCUMENT STRUCTURE ... 8

2. BACKGROUND .. 9

2.1 GRAPHICS MIDDLEWARE FOR DISPLAY WALLS .. 9

2.2 SAGE-NEXT ARCHITECTURE ... 14

3. RELATED WORK .. 18

3.1 PROCESS SCHEDULER IN OPERATING SYSTEMS .. 18

3.2 HUMAN CENTERED SCHEDULING.. 19

3.3 REAL-TIME SCHEDULING .. 20

3.3.1 Rate-Monotonic and Earliest Deadline First ... 21

3.3.2 Resource Reservation ... 22

3.3.3 Gang Scheduling .. 23

3.3.4 Proportional Sharing ... 24

4. OVERVIEW OF SCHEDULING FRAMEWORK .. 25

4.1 APPLICATIONS .. 25

4.2 DESIGN ... 27

5. PRIORITY MODEL ... 29

5.1 VISUAL FACTORS .. 29

5.2 INTERACTION FACTORS .. 32

5.3 WALL USAGE PATTERN .. 33

5.4 THE PRIORITY FUNCTION .. 35

6. RESOURCE DISTRIBUTION ... 37

6.1 THE DEMANDED QUALITY .. 39

6.2 ESTIMATING AN OPTIMAL AMOUNT ... 40

vi

TABLE OF CONTENTS (CONTINUED)

6.3 TOTAL AVAILABLE RESOURCES ... 43

6.4 WEIGHTED PROPORTIONAL SHARING ... 45

7. EVALUATION .. 49

7.1 PRESENTATION FAIRNESS WITH FIXED ROPT .. 50

7.2 INTERACTIVE APPLICATION (USER STUDY) .. 53

7.2.1 Task .. 54

7.2.2 Procedure ... 56

7.2.3 Metrics ... 57

7.2.4 Results .. 57

8. CONCLUSION .. 62

9. FUTURE RESEARCH DIRECTION .. 64

CITED LITERATURE .. 66

APPENDIX .. 72

VITA... 75

vii

LIST OF FIGURES

FIGURE PAGE

Figure 1. The 100-megapixel LambdaVision tiled-display wall driven by a cluster of 28

computers and run by Scalable Adaptive Graphics Environment (SAGE). 1

Figure 2. LambdaVision displays two ParaView sessions that render NCSA’s storm data

remotely on a high-performance render server. The rendered images are streamed in

parallel to LambdaVision display wall driven by SAGE. ... 2

Figure 3. A single machine-driven tiled-display wall run by SAGE (top) and SAGE-Next

(bottom) at the Electronic Visualization Laboratory in the University of Illinois at

Chicago. The 20′ by 6′ display wall is made up of 18 LCD panels with a total

resolution approximately 18.8 megapixels. .. 4

Figure 4. Examples of application layout on a large-scale display wall. From (a) to (c),

application layout can be classified by amount of overlapped windows; (a) as least

overlapping and (c) as most overlapping. In (d) the wall is partitioned and each

partition can employs a different layout. .. 5

Figure 5. 100-megapixel LambdaVision display used in a research meeting at the

Electronic Visualization Laboratory at the University of Illinois at Chicago. The

participants stream their desktop screens to the display wall using VNC. Multiple

visualizations and HD video of remote participant are streamed to the display wall. 10

Figure 6. The parallel image streaming model of SAGE. The image rendered by a remote

rendering machine is first partitioned into multiple fragments by the SAGE API and

streamed in parallel to SAGE’s display nodes. ... 12

Figure 7. An example where two visualizations each run at different framerate are

streamed and displayed on the 3 by 3 display wall. The display node at the center

[2,2] receives and displays two different streams simultaneously. After the initial

state at time t0, the next image fragments of each visualization (i+1 and j+1) is

received at the display [2,2] while display [1,2] is still waiting for the next image

fragment (i+1) of the visualization 1. The graphics swap buffer is needs at display

[2,2] at time t1 regardless of the visualization 1’s state due to visualization 2’s

higher framerate. ... 12

Figure 8. Architectural diagram of SAGE-Next. Control message flow between

components are illustrated. User interactions reach the scene and the applications in

the scene through UI server. Performance monitor and the scheduler are responsible

for scheduling resources. .. 15

viii

LIST OF FIGURES (CONTINUED)

Figure 9. The components of a SAGE-Next application. An application communicates

with the Scene through the application-scene interface and displays its visual

contents. User interactions are handled by UI components in response to the

interaction manager. The performance tool is responsible for monitoring the

performance information and conforming the scheduler’s demand. 17

Figure 10. The components of the scheduling framework. Applications’ information such

as their relative visibility, frequency of user interactions, and resource utilizations

are collected and processed by the Priority model and the Performance Monitor. The

proportional sharing scheduling algorithm then determines the amount of resources

allowed for each application. .. 28

Figure 11. Application window layout on a display wall is categorized into four with two

variables (the percentage window overlap and the number of application windows). 30

Figure 12. An example of two application windows A and B where A’s window size is

larger than B’s window size. The B’s window is stacked over the A’s window

causing a large portion of the A’s contents are not visible to users. 31

Figure 13. Examples of display walls where users are focusing more and interacting with

the applications on the left. ... 32

Figure 14. Examples of display wall usage and the corresponding black-hot heat map of

the wall. Darker cell indicates higher aggregate priority values. In the top figure,

applications are mostly positioned in the left portion of the wall. In the middle

figure, one application is maximized in the center of the wall. In the bottom figure,

the applications are arbitrarily scattered, but the users are mostly interacting with the

applications in the left portion of the display. ... 34

Figure 15. The presentation qualities (Qcur) of six applications A to F under different

scheduling schemes. Each application has different amount of resource need

represented by the bright red columns (Ropt) in each graph. The amounts of resources

consumed by applications are represented with dark blue columns (Rcur). In (a), the

amounts of resources are fairly allocated to all applications resulting unfair qualities

due to the non-uniform resource needs of the applications. In (b), the amounts of

resources are allocated proportional to each application’s resource need resulting a

fair distribution of qualities as shown by the flat marked line in the graph. 38

ix

LIST OF FIGURES (CONTINUED)

Figure 16. A function that estimates the optimal amount of resources for interactive

applications. The first estimation occurs when the application is newly added to the

system or when it is woken up from an idle state. The second estimation is to

prevent a situation where the application’s potential optimal performance (expressed

by Ropt) is stuck in a local maximum when the system is overloaded. 41

Figure 17. A function that updates the amount of total available resources seen by the

scheduler with the actual amount of resources applications currently consume.

RTOTAL is increased whenever an application is newly added to the system. 44

Figure 18. A pseudo-code of the algorithm that calculates the unit allocation amount to

ensure fine scheduling granularity. ... 45

Figure 19. Partial pseudo-code of resource scheduling algorithm. The algorithm

progressively allocates small amounts of resources, proportional to an application’s

priority until no more resources are available, or until all applications receive the

resources needed for their optimal performance. .. 47

Figure 20. Achieved frame rate for applications used in the experiment under the

operating system’s scheduler (NoSched), and with the presented scheduler running

(Sched) shown with standard erros. The X axis lists frame sizes of the 10

applications which are run simulateneously in the experiment. Application windows

are arranged in a tiled mode as illustrated in Figure 4 (a) giving them equal priority.

The flat line shows indeed that the scheduler assigns equal priority proprtions to all

applications. .. 51

Figure 21. The resource needs for applications (dark red columns) and the amounts of

resources actually utilized by applications are shown with standard errors. While the

four applications that have relatively low resource requirements receive the amounts

they need, the resources are allocated evenly for the rest of the applications

regardless of their different resource needs under NoSched condition. The resources

are distributed based on the applications’ resource needs (Ropt) under Sched

condition. .. 52

Figure 22. An example of the user application window (receiver’s GUI) is shown with

the target and the user’s pointer. A yellow rectangle target appears on a random

position on the application window. A subject is asked to click the target with

his/her pointer as fast as possible. ... 55

x

LIST OF FIGURES (CONTINUED)

Figure 23. An example of the user study setup. Three users are sitting in front of the wall

and interacting with their applications by connecting their laptops to the SAGE-

Next. .. 56

Figure 24. The average hit latency for all groups with and without the presented

scheduling scheme are shown with standard errors. The average hit latencies are

~25% better with the presented scheduling scheme. .. 58

Figure 25. The average frame rate achieved by user applications are shown with standard

errors. The frame rates slightly dropped as the number of users increased in the

NoSched condition, where as the frame rates remained high with the presented

scheduling scheme ensuring better user interactivity even when the system is

overloaded. .. 59

Figure 26. The aggregate number (total counts) of all subject groups’ missed clicks with

and without the presented scheduling scheme. ... 60

Figure 27. The average number of missed clicks with and without the presented

scheduling scheme shown with standard errors. ... 60

Figure 28. The average of total resource utilization breakdown with and without the

presented scheduling scheme. The graph indicates that more resources are utilized

by user applications under the presented scheduling scheme. .. 61

xi

LIST OF ABBREVIATIONS

API Application Program Interface

EDF Earliest Deadline First

GUI Graphical User Interface

HD High-definition

HPC High Performance Computing

LCD Liquid Crystal Display

NSF National Science Foundation

PDF Portable Document Format

QoS Quality of Service

SAGE Scalable Adaptive Graphics Environment

SAGE-Next Next generation of SAGE

UI User Interface

VNC Virtual Network Computing

xii

SUMMARY

Data-intensive e-Science applications are run by global cyberinfrastructure where

visualization platforms, scientific instruments, computing and storage resources are distributed

over several locations and connected by high-speed networks. The enormous amount of data

produced by these applications poses major challenges to researchers who need to look at,

analyze, and make sense these massive troves of scientific data. To ensure high productivity,

researchers need cost-effective tools that can be integrated in their work environments.

Visualization has proven extremely effective throughout the various stages of the scientific

inquiry process when one needs to analyze and interact with large data volumes. With

appropriate visualization, one can verify the correctness of a complex simulation model, get

insight into the model, and communicate results to other in an intuitive way. With large-scale,

high-resolution tiled-display walls, the efficacy of visualizations can be greatly amplified

because of the unique way the display walls can present visualizations to users. Modern large-

scale display wall technology such as the Scalable Adaptive Graphics Environment (SAGE) and

its successor (SAGE-Next) are designed to bring high-resolution visualizations to users over

high-speed networks. Moreover, these display wall technologies are unique in that they enable

highly collaborative visualization environments by supporting multi-user inputs on multiple

visualizations simultaneously.

Traditionally, tiled-display walls have been built from a cluster of computers due to the

limited graphics capability of a single display node. With the emergence of today’s multi-head

technologies however, the graphical capabilities of a single computer node has been greatly

amplified. This empowers a single computer to drive a large-scale collaborative display wall, in

many cases eliminating the need for a computer cluster, which significantly reduces the cost of

xiii

SUMMARY (CONTINUED)

ownership and maintenance of these environments. However, large-scale collaborative display

wall environments create user interaction patterns that are very different from traditional single-

user desktop environments. This poses a challenge in resource management when a collaborative

display wall is driven by a single-machine because traditional Operating System’s resource

management focuses on system-level fairness and job completion throughput without knowing

what users might be interested in.

This dissertation presents a resource scheduling framework for multi-user collaborative thin-

client display wall environments where multiple users can interact simultaneously with multiple

visualizations that are streamed from distributed computing and storage resources over high-

speed network. A model-based application priority assessment that reflects the degree of users’

interests on contents on the wall is presented. The model takes applications’ visual states, user

interactions, and the wall’s usage pattern as inputs and quantifies relative importance of

applications. Resource estimation and allocation scheme determines perceptually fair resource

distribution based on the importance of applications. A user study is conducted to evaluate the

framework’s fair resource distribution based on multi-user awareness.

1

1. INTRODUCTION

The NSF-funded OptIPuter project (Optical networking, Internet Protocol, computer

storage, processing and visualization technologies) where distributed computational resources

are tightly coupled over high-speed optical network is envisioned by a team of researchers at

Electronic Visualization Laboratory (EVL) and University of California, San Diego 10 years ago

[Smarr, '03]. The goal of the OptIPuter project is to deliver an architecture where terabytes and

petabytes of distributed data generated by e-Science applications can be easily accessed over the

optical networks called LambdaGrid in order for scientists to visualize, interact, and analyze

their data. The tiled-display wall system called LambdaVision and graphics middleware called

Scalable Adaptive Graphics Environment (SAGE) [Jeong, '10] that drives the LambdaVision that

is located at users’ end are the outcomes of the OptIPuter project. Figure 1 shows the

LambdaVision driven by SAGE. Essentially, the OptIPuter project’s model where users access

remotely distributed resources over network is an early instantiation of today’s growing Cloud

computing model.

Figure 1. The 100-megapixel LambdaVision tiled-display wall driven by a cluster

of 28 computers and run by Scalable Adaptive Graphics Environment (SAGE).

2

Visualization has an important role in a scientific workflow where a simulation result needs

to be presented in a manner that it can be analyzed easily. It can make the process of verifying a

scientific model simpler by allowing more insight into the model. Many researchers are now

adopting large-scale tiled-display wall environments because it is the only way to view the huge

amount of complex data. It is proven that the ability to juxtapose multiple visualizations

simultaneously on the display walls that have expansive size and exquisite resolution greatly

helps researchers for their scientific analysis and discovery process [Andrews, '10; Ball, '05;

Czerwinski, '06; Haller, '10; Leigh, '06; Plaue, '09; Tan, '03; Yost, '07].

Figure 2. LambdaVision displays two ParaView sessions that render NCSA’s storm

data remotely on a high-performance render server. The rendered images are streamed

in parallel to LambdaVision display wall driven by SAGE.

A common way to build large-scale display walls is to tile multiple individual displays and

connect them to a cluster of computers. Cluster middleware is needed to enable users to work

with the wall as a single contiguous display surface. Traditional tiled display middleware such as

CGLX [Doerr, '11], Chromium [Humphreys, '02] and Equalizer [Eilemann, '09], designed as

large-scale visualization platforms, can be regarded as distributed graphic frameworks. They

emphasis on parallel rendering of large-scale datasets using a computer cluster, and are typically

3

aimed at cases where a single user interacts with a single application spanning the entire display

wall. On the other hand, modern tiled display middleware such as the Scalable Adaptive

Graphics Environment (SAGE) [Jeong, '06] and its successor SAGE-Next let users launch

distributed visualization applications on remote clusters whose outputs are then streamed directly

to display walls. This makes SAGE and SAGE-Next low-cost, “thin-client” visualization

endpoints where such visualizations are rendered by remote computing resources and streamed

over an optical network to a display wall. An example where SAGE is coupled with a well-

known scientific visualization tool, ParaView [Cedilnik, '06] is shown in Figure 2. Details of

ParaView and SAGE integration is presented in [Nam, '09]. SAGE and SAGE-Next also provide

highly collaborative visualization environments by enabling multiple users to simultaneously

view and interact with these streamed visualizations on large-scale display walls [Jagodic, '11].

An overview as well as real-world use cases of the thin-client display wall paradigm is discussed

more in [DeFanti, '09; Smarr, '09].

Middleware for large-scale tiled-display walls are typically designed to run on a computer

cluster because, historically, a computer cluster has been necessary to drive these large-scale

display walls. However, the emergence of multi-headed graphic technologies (such as NVIDIA’s

Scalable Visualization Solutions and AMD’s Eyefinity), has greatly amplified the graphical

capabilities of a single computer node. Also displays’ physical dimension and image resolution

are rapidly increasing. These empower a single computer to drive a large-scale display wall, in

many cases eliminating the need for a computer cluster, which significantly reduces the cost of

ownership and maintenance of these environments. Furthermore, applications can now run

natively on a single-machine without the need to parallelize them, thus simplifying application

development for large-scale display walls. Figure 3 shows a 20x6 foot large-scale collaborative

4

tiled-display wall driven by a single computer machine at the Electronic Visualization

Laboratory at the University of Illinois at Chicago.

Figure 3. A single machine-driven tiled-display wall run by SAGE (top) and

SAGE-Next (bottom) at the Electronic Visualization Laboratory in the University

of Illinois at Chicago. The 20′ by 6′ display wall is made up of 18 LCD panels

with a total resolution approximately 18.8 megapixels.

Driving a large-scale collaborative display wall with a single computer however, presents

significant challenges in resource management. A display wall middleware relying on general-

purpose operating system resource scheduling may fail to provide a good user experience in

large-scale collaborative display wall environments where multiple users interact simultaneously

with multiple applications. A general-purpose operating system schedules resources based on

5

system-wide performance measures such as job completion throughput and fine-grained fairness.

In large-scale collaborative display wall environments, multiple users may simultaneously view

and interact with Cloud media data such as pictures, documents, and movies, VNC-shared

desktop screens, and interactive scientific visualization. Users can also move, resize, and arrange

windows on the display wall in a variety of layouts. The number of applications running on the

system, their layouts on the display, and the user-interaction pattern in these systems can differ

drastically from traditional desktop environments where a single user typically interacts with a

limited number of applications. This difference makes traditional resource scheduling schemes

unfit for collaborative display wall environments.

Figure 4. Examples of application layout on a large-scale display wall. From (a)

to (c), application layout can be classified by amount of overlapped windows; (a)

as least overlapping and (c) as most overlapping. In (d) the wall is partitioned and

each partition can employs a different layout.

Figure 4 shows examples of layouts on a large-scale collaborative display wall with varying

degrees of window overlap. A traditional operating system will try to ensure fair sharing of

system resources in all cases depicted in Figure 4, while fair sharing might only be useful in the

6

case depicted in (a). When the window layout is arbitrary as in (b), giving more system resources

to windows with which users are interacting can achieve a better user experience than a fair

sharing. Similarly, a better user experience can be achieved in (c) if more system resources are

allocated to the application whose window is in the foreground. For the case shown in (d), a fair-

sharing scheme is appropriate for applications in the left section of the display, while the right

section requires a scheduling scheme similar to (c). This dissertation identifies two issues when a

general-purpose operating system scheduler is employed in large-scale collaborative display wall

environments.

 Process priority is typically based on process behavior rather than user behavior. Thus the

priority in traditional scheduling schemes does not reflect the degree of user interest.

 Resource requirements for applications vary and fine-grained, thread-level fairness in a

general-purpose scheduler does not typically consider resource requirement of an application.

Thus it can fail to provide fairness in terms of the quality experienced by users.

Given the variety of layouts in large-scale collaborative display wall environments, the

scheduling policy should not necessarily be based on system-wide job completion throughput or

fine-grained, thread-level fairness. Rather, the scheduling policies should be based on window-

layout and user interaction criteria. For example, an appropriate scheduling policy might allocate

more resources to applications that occupy the largest space on the wall, to applications that are

least occluded, or to applications with which users are interacting. Implementing these policies

can increase the perceived performance of the system, therefore providing a better user

experience in a multi-user collaborative setting. The goal of our scheduling framework is to

fairly distribute system resources to applications to optimize their performances as experienced

by users. This dissertation calls this presentation fairness.

7

In this dissertation, a multi-user centered resource scheduling framework targeting a thin-

client display wall where visualizations are streamed to the display wall from remote high-

performance computers over high-speed networks is presented. To evaluate the effectiveness of

the presented scheduling framework, the author conducted a user study where multiple users in

groups of three subjects interacted simultaneously with applications on the display wall with and

without the scheduling scheme presented in this dissertation.

1.1 Summary of Contributions

This dissertation presents a novel resource scheduling framework and implementation that

achieves better responsiveness and interactivity for multi-user collaborative thin-client display

wall systems by optimizing system’s resource allocations based on the unique usage patterns of

the display wall. Although the framework is implemented for a display wall system driven by a

single machine, the fundamental resource scheduling concept is applicable to a cloud-based

visualization system that allows multi-user interaction on multiple applications simultaneously.

An application priority model for multi-user collaborative display wall environments is

presented. The priority model describes how user interactions with display walls can be

interpreted to determine the applications that users are interested in at a given time. The model

takes applications’ visual and interaction factors and the display wall’s usage pattern as inputs,

and ascribes priorities to indicate the degree of relative importance of applications. This

information is used to distribute resources among applications to achieve a better user

experience.

A scheme to estimate applications’ resource need is presented. Unlike traditional non-

clairvoyant schedulers, the scheduling framework in this dissertation takes applications’ resource

8

needs into account for the resource allocation in order to achieve user-perceived fairness, rather

than system-level fairness. The framework estimates an application’s resource need based on

user interactions to find the optimal resource allocation for the application.

Finally, the scheduling framework is evaluated in a user study that was designed to simulate

typical multi-user interaction patterns in thin-client display wall environments. An

implementation of the graphics middleware called SAGE-Next for a collaborative display wall

driven by a single machine was designed and developed to support the user study. The study

demonstrates the efficacy of the scheduling framework when multiple users are interacting with

applications simultaneously on the display wall.

1.2 Document Structure

Chapter 2 gives background of the presented framework in an aspect of graphics middleware

that runs multi-user display walls in collaborative work environments. The motivation of the

thin-client display wall systems and software architecture of the graphics middleware that

implements the scheduling framework are introduced. Chapter 3 describes previous literature in

job scheduling in traditional operation systems followed by scheduling schemes focusing on

human-centered scheduling and real-time applications. The overview of the scheduling

framework is presented in Chapter 4. The details of the scheduling framework follow. In Chapter

5, the priority model for multi-user display walls is presented. In Chapter 6, the resource

distribution scheme is described in detail. The evaluation of the scheduling framework is given

in Chapter 7. Finally, the summary of the framework and future research direction is presented in

Chapter 8 and 9.

9

2. BACKGROUND

An overview of the collaborative thin-client tiled-display wall and two graphics middleware

that run the display wall are introduced in this chapter. A brief history of the display wall

LambdaVision and its software compartment SAGE are presented in Chapter 2.1. The next

generation of SAGE, called SAGE-Next that was motivated by modern multi-headed graphics

hardware trend, and this dissertation focuses on, is discussed in Chapter 2.2.

2.1 Graphics Middleware for Display Walls

The National Science Foundation’s OptIPuter project [Smarr, '09] inspired by the rapid

growth in wide-area bandwidth with development in optical networking. OptIPuter project’s goal

is to make large-scale data easily accessible to researchers regardless of their geographic

locations by connecting them with optical networks. The ultra-high resolution tiled-display wall

driven by commodity PC clusters that are connected to optical networks is one of the outcomes

of the OptIPuter project. It is to provide a greater display area that can display multiple high-

resolution visualizations that are rendered remotely by high-performance computing resources

and streamed to users through the network. Furthermore it enables communications via high-

definition video with colleagues while maintaining interactivity. The graphics middleware called

SAGE is developed to enable these objectives. Figure 5 shows an array of 55 LCD panels driven

by a cluster of 28 computers providing 100-megapixel seamless display surface (termed

LambdaVision) run by SAGE.

10

SAGE can be viewed as a cluster operating system for thin-client display walls. It presents a

seamless display surface from clustered display nodes, manages to launch visualization

applications remotely, handling multiple parallel streams simultaneously, and provides multi-

user interaction interface. A parallel streaming model where an image is partitioned and streamed

in parallel from a remote application is illustrated in Figure 6. An application embeds the

SAGE’s Application Program Interface (SAGE API) in it. SAGE API is responsible for

partitioning the image passed internally from the application and streaming of the image

fragments to corresponding display nodes in parallel.

Figure 5. 100-megapixel LambdaVision display used in a research meeting at the

Electronic Visualization Laboratory at the University of Illinois at Chicago. The

participants stream their desktop screens to the display wall using VNC. Multiple

visualizations and HD video of remote participant are streamed to the display

wall.

One of the challenges in typical parallel computing is data synchronization. In a clustered

display wall system, proper synchronization between display nodes is crucial to present seamless

imagery to users. The problem arises when there are multiple visualizations, each can run at

11

different frame rate, simultaneously run on a display wall. A single display node might have to

receive and display multiple different image fragments when multiple application windows are

overlapped on the display node. Figure 7 depicts this problem. Two visualizations each run at

different frame rate are streamed and displayed on the 3 by 3 tiled-display wall in Figure 7. The

display node at the center [2,2] receives and displays two different streams simultaneously as

shown in the right side of Figure 7. After the initial state at time t0, the next image fragments of

each visualization (i+1 and j+1) are received at the display [2,2] while display [1,2] is still

waiting for the next image fragment (i+1) of the visualization 1. The graphics swap buffer is

needs at display [2,2] at time t1 regardless of the visualization 1’s state due to visualization 2’s

higher frame rate. As a result, the image fragments of the visualization 1 at the display node [1,2]

and [2,2] shows inconsistent image frames causing discrepancy in the visualization. Intuitively,

one can solve this problem by enforcing each visualization synchronizes its image fragments

before uploading them to the graphics memory at each display node. However, this approach is

not scalable as the number of display nodes and the number of visualizations increases. A

scalable, two-phase inter-node synchronization algorithm where a single synchronization master

node ensures each visualization’s image synchronization and each display node’s graphics swap

buffer synchronization is presented in [Nam, '10].

12

Figure 6. The parallel image streaming model of SAGE. The image rendered by a

remote rendering machine is first partitioned into multiple fragments by the

SAGE API and streamed in parallel to SAGE’s display nodes.

Figure 7. An example where two visualizations each run at different framerate are

streamed and displayed on the 3 by 3 display wall. The display node at the center

[2,2] receives and displays two different streams simultaneously. After the initial

state at time t0, the next image fragments of each visualization (i+1 and j+1) is

received at the display [2,2] while display [1,2] is still waiting for the next image

fragment (i+1) of the visualization 1. The graphics swap buffer is needs at display

[2,2] at time t1 regardless of the visualization 1’s state due to visualization 2’s

higher framerate.

As with the emergence of graphics hardware that can support larger image size and multiple

display heads, new software termed SAGE-Next is designed to utilize this multi-headed graphics

Display
Node

Display
Node

Display
Node

Display
Node

SAGE
API

Rendering

[1,1]

[1,2]
[2,2]

[2,1] [3,1]

[3,2]

[1,3] [2,3] [3,3]

Visualization 1
30 fps

Visualization 2
60 fps

3 by 3 display wall showing three visualizations

ti
m

e

display [1,2] display [2,2]

frame i

frame j

frame i

i

j+1

i+1

t1

t0

i+1

j+2

i+1

t2

initial state of
data buffer

for each vis.

Vis 1 & 2 in [2,2]
received

next images

graphics swap buffer

Vis 1 in [1,2]
now received
next images

Out of synch

13

hardware trend. The motivation that drove the single-machine display wall solution is to make a

large-scale display wall system easier to build and manage for users who are not expert in

managing a computer cluster hardware and software. Thereby wider range of users can benefit

from the highly collaborative work environments.

One of the key differences between SAGE-Next and SAGE is that SAGE-Next simplifies

the parallel streaming architecture of SAGE by running a display wall with a single machine.

The images rendered remotely do not have to be fragmented and streamed in parallel. The

overhead incurred at the display wall side due to the need for synchronization can be lifted. The

simplified architecture also allows application developers to build native applications without

needing them to parallelize their applications.

However, the simplified architecture poses significant challenges in resource management.

Compared to a cluster of computers, a single machine’s resource is much limited. High

resolution images can not be streamed in parallel in order to distribute network overheads over

multiple display nodes as in a cluster-driven display walls. In addition to the SAGE’s core

abilities (image streaming and multi-user interaction), the unique attribute of the SAGE-Next lies

in its resource scheduling framework that is to increase user-perceived performance of a single

machine whose resources are limited compared to that of a cluster. Thus, the multi-user centered

resource scheduling framework presented in this dissertation is based on the single-machine

driven collaborative display wall environments where multiple users can launch and

simultaneously interact on multiple visualizations that are streamed from remote compute and

storage resources. The scheduling framework presented in this dissertation is implemented as a

part of SAGE-Next.

14

2.2 SAGE-Next Architecture

The core components of SAGE-Next are comprised of the Scene, a Scene Management

Layer, a UI server, an Application Launcher, an Interaction Manager, The Performance Monitor,

and the scheduler. Figure 8 illustrates these components and their relationships.

Multiple message streams from users are serialized at the UI server. The serialized messages

are then pre-processed to be handled by other components. If the message is an interaction type

such as interaction with a mouse device then the message is forwarded to the Interaction

Manager. If the message is intended for launching an application instance then the message is

sent to the Application Launcher.

A user launches an application by sending a request to the Application Launcher through the

UI server. Either the Application Launcher or the application itself starts the corresponding

remote process that generates and streams contents to the display wall. Therefore, in most cases,

an application in the Scene consists of a network thread that receives contents from the remote

resources and a mechanism to store and display the streaming contents. Also an application

defines how to interact its contents and provides GUI. The Application Launcher then adds the

instance of the application to the Scene. The Scene contains all the applications whose contents

are displayed on the display wall and interacted by users. The Scene Management Layer

included in the Scene manages applications’ layout on the display wall. It also provides an

interface for users to partition the display wall, save and restore sessions. Once an application is

added to the Scene, user interactions are delivered to the application through the Interaction

Manager that receives a stream of message strings from the UI server. The Interaction Manager

is responsible for finding a valid recipient (typically an application or the Scene itself) of the

15

interaction by querying the Scene Management Layer and triggering a callback operation of the

recipient of the interaction.

Figure 8. Architectural diagram of SAGE-Next. Control message flow between

components are illustrated. User interactions reach the scene and the applications

in the scene through UI server. Performance monitor and the scheduler are

responsible for scheduling resources.

An application’s performance is continuously monitored and analyzed by the Performance

Monitor. This information is sent to the Scheduler to make scheduling decisions. Finally, the

Scheduler controls resource consumptions of applications by modulating their performances. The

details of the Performance Monitor and the Scheduler are discussed in Chapter 4 and 6.

UI Server listens to user interactions

Interaction

Manager

Application

Launcher

Scene

Performance

Monitor
Scheduler

Scene Management Layer

manages applications layout

Multiple users

Interact with applications
share media or

launch applications

Launch an application

runs in a remote computer

and streams contents.

Or receive streams from

remote storages.

ApplicationApplication Application
Application

Remote

computing and

storage servers

Network

communications

Internal

messages

monitors

resource utilizations

allocate

resources

16

Figure 9 shows the in-depth look of an application runs in SAGE-Next. The basic

components of an application are the application-scene interface, GUI components, visual

contents, contents receiving thread, and a performance tool. The application-scene interface

enables the application to communicate with the scene and allows the Scene to manage the

application’s geometry in the Scene. The multi-user-aware GUI components provide base

interactivity that is aware of multi-user interactions and communication with the Interaction

Manager. Application developers use the GUI components to provide multi-user interactions in

their applications. The contents receiving thread receives a network stream of visual contents

from remote resources such as Cloud. The visual contents are then presented on the display wall

by the Scene. The performance tool in an application measures the application’s performance

and reports to the Performance Monitor. It also receives and conforms the performance demand

set by the scheduler. This procedure is discussed in detail in Chapter 6.

17

Figure 9. The components of a SAGE-Next application. An application

communicates with the Scene through the application-scene interface and displays

its visual contents. User interactions are handled by UI components in response to

the interaction manager. The performance tool is responsible for monitoring the

performance information and conforming the scheduler’s demand.

Application

Application-Scene
Interface

Performance
Tool

Contents
Receiving

Thread

scene

Perf.

Monitor

Scheduler

Remote

Resources

Visual
Contents

multi-user-aware
GUI

Interaction

Manager

18

3. RELATED WORK

The job scheduling is deeply researched area in Computer Science. Typically, main agenda

in job scheduling research includes the fairness, no starvation, and resource utilization. This

chapter introduces traditional scheduling policy in general-purpose operating systems first in

Chapter 3.1 followed by early and recent approaches in human-centered scheduling research in

Chapter 3.2. In Chapter 3.3, various scheduling research focusing on real-time applications are

introduced.

3.1 Process Scheduler in Operating Systems

The common objectives of modern general-purpose operating system schedulers are high

job completion throughput, interactivity, and fair sharing. In particular, the time sharing Linux

operating system’s scheduling scheme uses a notion of a time slice which sets the maximum time

during which a process is allowed to use a processor. Thus, high job completion throughput can

be achieved by giving the time slices only to processes that are ready to run. If the process either

finishes or has to wait for resources to be available then it can be preempted so that no idle

process occupy a processor wasting the computing resource. The preemptive, time-sharing

model also enables fair sharing of resources by maintaining a counter that represents a priority of

a process. The counter for a process keeps decreasing its value while the process occupies a

processor. The scheduler may schedule processes in a manner that can keep the counter values as

uniform as possible to be fair. Fast response time for interactive processes can be achieved by

using the counter as well. A process waiting for I/O devices increases its counter so that the

19

process can have higher counter value by the time when the process is ready to run. This can

make processes with smaller counter values (such as a batch process that consumed lots of

processor times while the interactive process was waiting for I/O devices) be preempted by a

scheduler. There are books and articles that explain modern Linux scheduler’s scheduling policy

and designs as in [Bovet, '05; McKusick, '04]. Moreover, there are many research in process

scheduling deal with issues with real-time processes where meeting time-constraints of the

processes is crucial. This is discussed more in Chapter 3.3. Also the issues with efficient process

migration policies in modern multi-core hierarchical memory architecture are well studied too

[Chandra, '05; Corbet, '04; Durand, '96; Vishwanath, '08].

Aforementioned modern time sharing, general-purpose operating system schedulers

characterized as a non-clairvoyant scheduling where the scheduler does not rely on processes’

characteristics [Motwani, '93]. This is because fast turnaround time (a total time taken by a

scheduler to finish a job) is important in the time sharing systems. While the non-clairvoyant

scheduling scheme for a typical desktop environments achieves its goals as explained, it lacks of

ability to discover what users are interested in and schedule jobs in a way that the performance of

the system can be perceived to be responsive and fair in multi-user collaborative environments

mainly because scheduling decisions are made based on processes’ behavior rather than users’

interactions with the applications run in the system.

3.2 Human Centered Scheduling

The main goal of human-centered scheduling schemes oriented toward optimizing user

perceived interactivity rather than system-wide performance measures. It is based on a

hypothesis that performance measures a system wants to achieve might not necessarily be what

20

users’ want. The Interactive Scheduling scheme presented in [Evans, '93] identifies interactive

processes by monitoring input devices’ activities in the X Server. The scheduler then assigns

higher priorities to those processes and prioritizes CPU and memory allocation to them in order

to increase the responsiveness of interactive processes. Etsion et al. takes a similar approach to

improve user interactivity [Etsion, '04]. In addition to monitoring user input events in the X

Server, they also use the ratio of pixel-change to window-size to estimate the application’s

importance to the user. Their experiment results show their approach result very low quality

degradation of user interactive jobs even when the system is overloaded. Zheng et al. presents a

configurable kernel module that monitors I/O channels to identify interactive processes based on

user-access patterns and the usage of those I/O channel [Zheng, '10]. They tested this approach

with various combinations of applications and showed wide-range of applications can be benefit

from their approach.

While the above work aims to improve user experience with interactive applications, the

solutions proposed are limited to traditional desktop environments where a single user interacts

with the system using traditional I/O devices such as keyboard and mouse. Therefore, these

scheduling schemes cannot be applied directly to large-scale collaborative display wall

environments, which introduce user-interaction patterns and application window layouts that are

drastically different from desktop computer systems.

3.3 Real-Time Scheduling

Real-time Schedulers are aimed at time-sensitive real-time applications that impose strict

completion-time requirements (deadlines) even when the system is overloaded. Real-time

schedulers employ an unfair scheduling of resources that is biased towards a specific set of

21

applications to meet their deadlines. Real-time schedulers can be in principle adapted to increase

the perceived performance of a system. In the case of multi-user tiled display wall environments,

resource allocation can be biased towards applications that are presumed to be receiving most of

users’ attention, thus maximizing the perceived performance of the system.

While real-time schedulers have been used in interactive multimedia systems, they have not

been tested in large-scale display wall environments. Moreover, large-scale displays offer unique

affordances that allow collaborative, multiuser interaction with a large number of applications

simultaneously. Therefore, a successful scheduling scheme for these environments should be

specifically tailored to address these unique characteristics in order to increase the user-perceived

performance of the environment. This section briefly surveys work on various real-time

scheduling techniques.

3.3.1 Rate-Monotonic and Earliest Deadline First

Liu and Layland [Liu, '73] showed that their rate-monotonic algorithm meets all periodic

tasks’ deadline, bounded on processor utilization from 69% to nearly 100%. In rate-monotonic

algorithm, priorities are assigned simply based on the progression rate of periodic tasks; tasks

with shorter periods receive high priority. The Earliest Deadline First (EDF) scheduling

algorithm in their work assigns highest priority to the task whose deadline is the nearest. EDF

achieves higher CPU utilization at a cost of dynamic priority assignment. Such real-time

scheduler requires precise prior knowledge in task execution time and cannot be applied when

system is overloaded. Moreover this greedy approach is designed to minimize missed deadlines

rather than to increase user-perceived performance. However, the principle of rate-monotonic

and EDF scheduling is employed in many real-time scheduling schemes.

22

The scheduling scheme presented in this dissertation is different in that the priorities are

assigned based on the degree of users’ interests on applications on a large display wall. Also

supporting dynamic priority assignment is crucial in order to reflect the temporal changes in

users’ interests in the priority.

3.3.2 Resource Reservation

Resource Reservation is a restrictive approach to ensure that time-sensitive applications

meet their deadlines. To be effective, the admission control is required to provide a guarantee on

meeting real-time requirement of running tasks. The admission control rejects an application if

the amount of resource that the application requests exceeds the amount of remaining resource in

the system. A mechanism to reserve processor capacity in conjunction with the rate-monotonic

algorithm is illustrated in [Mercer, '94]. Real-Time Mach adopts the resource reservation

technique in its scheduler to support real-time applications [Tokuda, '90]. Less restrictive forms

of the reservation scheme where a thread is allowed to negotiate CPU-time based on its rate

progression is introduced in [Yau, '97]. Jones et al. present a system with a CPU scheduling

algorithm that ensures minimum guaranteed execution rates of real-time processes [Jones, '97].

In resource reservation scheme, estimating the resource requirement of a task prior to the

reservation can be challenging. Accurate estimation of resource requirement based on application

profiling is well studied in [Urgaonkar, '02].

Conceptually, this dissertation employs similar notion of resource estimation and less

restrictive reservation. The scheduling scheme in this dissertation differs in that it does not reject

an application nor negotiate resources. The resource allocation (resource reservation in this

23

context) is entirely based on applications’ resource requirements and dynamic priorities. Thus, it

estimates resource requirements in real-time by monitoring user interactions on the applications

3.3.3 Gang Scheduling

In Gang Scheduling, similar processes are grouped together (ganged) and form a

hierarchical structure so that different scheduling policies can be applied to different processes

groups. This approach is often combined with the resource reservation scheme. Real-Time Mach

groups one or more processors to form a processor set and applies different scheduling policies

on processor sets. Golub et al. present an improved scheduling paradigm over Real-Time Mach

with emphasis on supporting a combination of time-critical and conventional applications

[Golub, '94]. In the CPU allocation framework for multimedia OS proposed by Goyal et al., CPU

bandwidth is partitioned hierarchically by different groups of applications each with different

resource requirements [Goyal, '01]. Anderson presents an approach to increase cache utilization

for real-time applications by grouping processes in multi-core architecture [Anderson, '06]. The

Gang Scheduling scheme can be useful for a system that needs to support different types of

application instances running simultaneously because it can effectively prevent compute-

intensive batch applications from degrading real-time applications performance. The scheduling

scheme presented in this dissertation is similar in concept where it prevents applications that are

not receiving users interests from degrading the performance of applications that users are

interested with. Thus grouping applications based on their importance is important in this

dissertation whereas the gang scheduling groups applications that have similar performance

characteristics.

24

3.3.4 Proportional Sharing

The goal of proportional sharing is to distribute system resources to all running tasks

proportional to their relative weight. Once the weight of a task is defined, calculating

proportional weight of the task is straightforward. Proportional sharing focuses on fair sharing of

resources based on weight and is analogous to Weighted Fair Queuing. The EDF scheduling in

conjunction with the notion of Virtual Time [Zhang, '90] is introduced in [Stoica, '96]. Stoica et

al. also showed proportional sharing combined with resource reservation scheme in [Stoica, '97].

A virtual time algorithm that focuses on meeting real-time requirements while achieving

proportional fairness is shown in [Duda, '99]. Nieh and Lam also present a similar scheduling

algorithm in detail [Nieh, '03]. Chandra et al. presents how to readjust the weights in their

proportional sharing algorithm in a multiprocessor environment [Chandra, '00]. The scheduling

scheme in this dissertation adopts a similar notion of proportional sharing in which applications’

weights are determined based on a priority assessment model that reflects users’ interest in

applications. However, the proportional sharing employed in the presented scheduling scheme

considers applications’ resource needs in addition to their weights to achieve fair perceptual

performance rather than fair resource distribution.

25

4. OVERVIEW OF SCHEDULING FRAMEWORK

An overview of the scheduling framework presented in this dissertation is described.

Chapter 4.1 discusses the types and the characteristics of applications in thin-client display wall

environments this dissertation is centered on and defines the goals to achieve. The design of the

scheduling framework and the components that consist of the scheduling framework are

explained in Chapter 4.2.

4.1 Applications

In thin-client display wall environments, the content-generating applications typically run on

remote high performance computers such as visualization clusters or Cloud resources. The

rendered visualization is then streamed to the display wall system as a series of image frames

over a high-speed network. In this dissertation, applications refer to processes running in a

display wall whose contents are being streamed over the high-speed network. Therefore, user

interactions on the applications on a display wall are interpreted at the display wall system and

sent to the content-generating applications over the network.

The types of applications in thin-client display wall environments can be distinguished

further. In one case, the content-generating application has an optimal streaming rate that is

known a priori. For examples, an application that streams a live video feed from a HD camera or

a media player that streams a video over the network. Although the actual streaming

performance can change depending on various conditions such as the available network

bandwidth, the bandwidth needed for optimal performance can be derived beforehand. The

resource requirement for the optimal streaming performance in this case can be calculated by

26

multiplying the image size with the frame rate set by the application. In the second case, the

application does not specify an optimal streaming rate and usually run in a best-effort manner.

The image quality or the frame rate varies as a user interacts with the application and thus the

amount of resources needed for the optimal performance cannot be determined beforehand.

Assuming unlimited resources, the resource need for the optimal performance at a given time in

this case can be derived by the application’s actual resource utilization at a given time, which

will vary as the user’s interaction-rate changes. An example of this is a scientific visualization

tool where users can pan, rotate, or scale the visualized data, requiring an update only when users

interact with the visualization. Therefore, the amount of resources for the optimal performance is

defined to be time-varying in this dissertation.

The goal of the scheduling framework is to fairly distribute system resources to applications

to optimize their presentation qualities as perceived by users rather than ensuring fine-grained

thread-level fairness from a system point of view. This is called presentation fairness. The

quality of an application however is highly subjective and multi-dimensional. For example, the

quality of a video game involves responsiveness and frame rate while the quality of an animation

would be determined by image quality and frame rate. There are studies that focus on this matter

[Kuan-Ta, '09; Wu, '09; Zixia, '12]. However, in the context where applications run at remote

locations and stream their images to display walls, the quality of an application is defined as the

ratio of the amount of resources being consumed by the application to the amount of resources it

needs for optimal performance. For interactive applications where the amount of resource needed

for optimal performance is not known a priori, this dissertation uses the application’s current

resource utilization as the basis to estimate the amount needed for optimal performance. Chapter

6.2 explains in detail how to estimate this. Prioritizing applications by estimating users interest in

27

the applications is crucial to achieve improved user-perceived performance. The model-based

approach to prioritize applications is discussed in detail in Chapter 5. Once the priority and the

resource needs of an application are determined, a weighted max-min fair sharing algorithm with

these two variables can be applied to fairly distribute resources in order to achieve the

presentation fairness. Chapter 6.4 discusses this in detail.

4.2 Design

The scheduling framework consists of the Priority model, the Performance Monitor, and the

scheduling algorithm. Figure 10 depicts the relationship between each component. The Priority

model collects information about application states such as the application’s window geometry,

frequency of user interactions in order to assign a priority, reflecting the relative importance for

each application. The Performance Monitor keeps track of performance measures from which it

calculates the current resource utilization and estimates the resources need for the optimal

performance of each application. The scheduling algorithm then uses the assigned priority and

the application’s resource need to allocate resources.

When an applications starts, the Performance Monitor acquires the resource need of the

application. This information is either provided by the application itself or estimated by the

Performance Monitor. For instance, the initial geometry of the application window can be used

by the Performance Monitor to make an initial estimation of resource need of the application.

Finally, the scheduler determines the initial amounts of resources that can be allowed to the

application. The application’s visibility, user interaction information, and resource utilization

changes as users interact with the application. These can change the priority and the resource

28

need for the optimal performance of the application. These two are used by the scheduler to

determine the amounts of resource allowed for the application at every scheduling event.

Figure 10. The components of the scheduling framework. Applications’

information such as their relative visibility, frequency of user interactions, and

resource utilizations are collected and processed by the Priority model and the

Performance Monitor. The proportional sharing scheduling algorithm then

determines the amount of resources allowed for each application.

Performance

Monitor

Application

Scheduling Algorithm

Priority

Model

visibility,

user interactions

resource

utilization

priorities
resource

needs

resource

allowed

29

5. PRIORITY MODEL

The Priority model describes the degree of users’ interests in applications running on a

display wall, thus the priority assigned to applications should reflect what users perceive to be

important as accurately as possible. To achieve this, the model looks at multiple factors related to

the current layout of applications. The model observes three factors and produces a numeric

priority value for each application. The Effective Visible Size (EVS) and the frequency of

interaction with an application indicate spatial and temporal importance of an application,

respectively. The wall usage pattern describes the historical importance of specific areas of the

display wall. These three factors are combined together to produce the priority value. Each of the

three factors are discussed and quantified in the following sections.

5.1 Visual Factors

An intuitive visual factor to determine an application’s importance is the application layout

on the display wall as illustrated in Figure 11. The application layout can be categorized into four

with two variables (the percentage window overlap and the number of application windows). A

fair sharing might be useful in the tiled case (lower right corner) while more system resources

need to be allocated to the application whose window is in the foreground in the stacked case

(upper left corner) in Figure 11. However, prioritizing applications based on their visual factors

can be simplified by using a single factor that tells how much of the application window is

visible to users instead of enumerating various application layouts on the wall.

30

Figure 11. Application window layout on a display wall is categorized into four

with two variables (the percentage window overlap and the number of application

windows).

The visible window size of an application as an indication of user interest is straightforward.

Even though an application might not be receiving user input, a large window size can imply

high interest. Similarly, if an application’s window covers a significant portion of the display

wall, that application is more likely to draw users’ attention. Visible window size is defined as

the total size of the visible, non-occluded areas of the application’s window in pixel. This can be

easily calculated by subtracting the sizes of portions occluded by other applications. In this

dissertation the size of effective visible area of an application’s content window is said to

Effective Visible Size (EVS) and EVS of an application i at time t is denoted with EVS(i, t). The

value of EVS can range from 0 to a maximum of i’s window size. For instances, EVS(i, t) = 0, if

an application i’s window is completely obscured by other windows at time t, and EVS(i, t) = the

size of i’s window if the entirety of i’s window is visible at time t. The EVS is the main factor to

determine application’s visual importance but how much an application revealing its contents has

to be considered too. Let’s assume a case where two different application windows A and B as

Application windows

%
 w

in
d
o

w
 o

v
e

rl
a
p

Tiled

Crowded

(arbitrary)
Stacked

Trivial

Application windows

%
 w

in
d
o

w
 o

v
e

rl
a
p

31

shown in Figure 12. Application A’s window size is larger than B’s window size. However, large

portion of A’s contents are hidden by B’s window. Let the window sizes of A and B are 180 and

100 respectably. The EVS(A) will be smaller than 180 due to the B’s window on top of the A’s

window. Let EVS(A) be 100 in this example. The EVS(B) is equal to its window size because it

is showing all of its content area. As a result, EVS(A) = EVS(B) giving the same visual

importance to both A and B. In some cases a user might be interested equally in both A and B

but generally it is safer to assume that a user is more interested in the application B than A in this

particular application layout on a large display wall.

Figure 12. An example of two application windows A and B where A’s window

size is larger than B’s window size. The B’s window is stacked over the A’s

window causing a large portion of the A’s contents are not visible to users.

32

The Exposure Ratio E is the ratio of EVS to the application’s window size. Thus E tells how

much an application revealing its content on the display wall and it can be denoted by E = EVS /

WindowSize. We multiply the EVS by the exposure ratio E to obtain the priority determined by

the visual factor Pvisual. An application that has large effective visual area and exposure ratio is

considered to be visually important.

5.2 Interaction Factors

The EVS alone is not enough to reflect user intentions. Imagine a display wall with tiled

application layouts and users are focusing mostly on the applications on the left as depicted in

Figure 13. Or assume two application i and j where Pvisual (i, t) >> Pvisual (j, t) at time t. A user

could be interacting more frequently with application j while i’s priority is higher because it has

a larger Pvisual value. Typically, user interactions through input devices such as mouse, gyro

mouse, touch, gesture, or keyboard indicate user’s interest in an application directly.

Figure 13. Examples of display walls where users are focusing more and

interacting with the applications on the left.

33

However, it is hard to state exactly how much certain interactions on a specific application

should increase (or decrease) its priority. There can be many different types of applications with

different user interaction scheme. So, this dissertation provides a simplified mechanism to add

interaction factor in the Priority model by letting application developers to call a function in a

place where a user interaction event is handled in the application. The function simply

increments the interaction counter for the application. Then the rate of changes in the number of

interactions during a single scheduling interval is periodically monitored. This way we can tell

how intense the recent interactions are for the application. The interaction factor Pinteract (i, t) is

defined as the number of user interactions during the scheduling interval t-1 and t.

5.3 Wall Usage Pattern

Spatial layout and window arrangement patterns are likely to emerge if the display wall is

used long enough. For example, in Figure 4 (d) where the wall is partitioned into two sections,

the left section employs a tiled-layout which is appropriate for comparisons while the right

section shows a single large application window. To get an insight into these patterns, imagine a

virtual grid juxtaposed on the display wall, and use that grid to aggregate priority values of

applications in each cell of the grid. The grid can be color-coded by the aggregated priority

values forming a heat map; high priority values are indicated as high temperature. For example,

in the top layout in Figure 14, most of the applications are positioned in the left portions of the

wall, causing an increase in the temperature of the left portion of the wall. In the bottom case of

Figure 14, the left side of the wall has higher temperature even though applications are scattered

arbitrarily on the wall because users are interacting more with the applications on the left side. In

34

these cases, if a user brings an application window from the right side of the wall (cold region) to

the left side of the wall (hot region), then the application will get an immediate priority bonus.

Figure 14. Examples of display wall usage and the corresponding black-hot heat

map of the wall. Darker cell indicates higher aggregate priority values. In the top

figure, applications are mostly positioned in the left portion of the wall. In the

middle figure, one application is maximized in the center of the wall. In the

bottom figure, the applications are arbitrarily scattered, but the users are mostly

interacting with the applications in the left portion of the display.

A display wall is divided into multiple cells of a virtual grid. Each cell in the grid maintains

a priority value calculated for the cell. Each cell c of the grid adds the priority value of each

application i that overlaps with the cell at time t, proportion to the percentage overlap. The

35

percentage overlap (%overlap(c, i, t)) is the ratio of the size of the region of the cell c covered by

the application i to the cell’s size. The temperature of the cell c at time t, Temp(c, t), is denoted as

 Temp(c, t) = Temp(c,t -1)+ Pvisual (i, t) + Pinteract (i, t)() ×
%overlap(c, i, t)

100

æ

èç
ö

ø÷
iÎL

å

where L is a set of applications whose window overlaps with the cell c. Note that Temp(c,t) only

accounts Pvisual and Pinteract. This is because the visual and interaction factors are time-invariant

whereas Ptemp holds historical meaning. Ptemp is meant to record only the spatial changes in users’

interests as time goes by. Finally, the temperature of an application i and time t, Ptemp(i, t), is the

proportion of the sum of the temperature values of the cells on which i’s window span. This is

denoted as

where I is a set of cells under the application i’s window and G is a set of all cells in the grid.

5.4 The Priority Function

The final priority of an application is obtained by combining the three priority factors. The

priority P of an application i at time t is defined as

 P(i, t) = Wv Pvisual (i, t) + Wi Pinteract (i, t) + Wt Ptemp(i, t)

where Wv, Wi, and Wt denotes weight factor for each components. In our framework, an absolute

value of a priority is not important. The scheduler prioritizes resources based on a proportional

basis, with priorities indicating application’s relative importance at a given time. The priority

proportion of an application i at time t can be easily calculated by

36

where L is the set of all applications in the system.

How to weigh each priority factor to produce a priority value for an application? Weighing

each priority factor monotonously for all types of applications is not appropriate because

different applications use different ways of presenting information and can possibly employ

different interaction schemes. Thus, how to weigh each priority factor depends on the type of

each application. For image-centric applications, the Pvisual can be the most important factor

while the Pinteract can be important for interactive applications. For example, an application such

as a movie player where Pinteract can be very low can still receive enough resources by giving it a

high Wv. A scientific visualization tool where a user frequently zoom, rotate, and move a

rendered model will want to set high Wi. The Ptemp will be useful when there is distinct wall

usage pattern after long period of display wall usage. While an application developer can

determine the application-specific weight factors to weigh each of the three priority factors, the

inequality of each weight factors in general can be expressed as Wi > Wv > Wt (where Wi + Wv +

Wt = 1) based on the degree of straightforwardness of each priority component in reflecting users’

interest.

37

6. RESOURCE DISTRIBUTION

Once the Priority model assigns priorities to applications, the scheduler distributes system

resources among application by adjusting their presentation qualities to ensure presentation

fairness. In this dissertation, an application’s presentation quality is the ratio of the amount of

resources the application currently consumes to the amount of resources the application needs to

achieve its optimal performance at a given time. This dissertation denotes the actual amount of

resources an application i consumes at time t as Rcur(i, t) and the amount of resources the

application i needs for the optimal performance at time t as Ropt(i, t). The presentation quality

that the application i currently achieves at time t is denoted as

 Qcur (i, t) = Rcur (i, t) / Ropt (i, t) (1)

where Rcur can be obtained by measuring the amount of resources consumed by the application

and Ropt is either provided by the application if the amount resources required for optimal

performance is known a priori (such as applications streaming a video at a fixed frame rate) or

derived based on Rcur for interactive applications. Chapter 6.2 discusses how to derive the

amount of resources needed for optimal performance at a given time in the latter case.

Presentation fairness is achieved by allocating resources so that the resulting presentation

qualities (Qcur) are in accordance with applications’ priorities (applications with higher priorities

achieve higher presentation qualities) rather than ensuring fine-grained fair sharing of resources

(i.e. fair distribution of Qcur rather than Rcur).

The Figure 15 illustrates the presentation fairness the scheduling framework in this

dissertation tries to achieve. Assume six applications each have different Ropt as shown with red

columns in the graphs. Operating systems ensure fair resource consumptions (Rcur) of all six

38

applications assuming their priorities are equal. This results un-fair presentation qualities

between the applications as shown with the marked green line in Figure 15 (a). The fair quality

(presentation fairness) can be achieved if resources are allocated proportional to each

application’s resource need (Ropt) as shown in (b).

(a) fair distribution of Rcur

(b) fair distribution Qcur

Figure 15. The presentation qualities (Qcur) of six applications A to F under

different scheduling schemes. Each application has different amount of resource

need represented by the bright red columns (Ropt) in each graph. The amounts of

resources consumed by applications are represented with dark blue columns

(Rcur). In (a), the amounts of resources are fairly allocated to all applications

resulting unfair qualities due to the non-uniform resource needs of the

applications. In (b), the amounts of resources are allocated proportional to each

application’s resource need resulting a fair distribution of qualities as shown by

the flat marked line in the graph.

The scheduler also needs a system-wide variable indicating the total amount of available

resources. It is because the scheduling framework determines the amounts of resources allowed

for each application at every scheduling event instead of giving them an amount that is globally

determined a priori. RTOTAL denotes the amount of total available resources seen by the scheduler

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

60

A B C D E F

T
h

e
 q

u
a

li
ty

 (
Q

cu
r)

T
h

e
 a

m
o

u
n

t
o

f
re

so
u

rc
e

s
(R

o
p

t
a

n
d

 R
cu

r)

Rcur Ropt Qcur

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

60

A B C D E F

T
h

e
 q

u
a

li
ty

 (
Q

cu
r)

T
h

e
 a

m
o

u
n

t
o

f
re

so
u

rc
e

s
(R

o
p

t
a

n
d

 R
cu

r)

Rcur Ropt Qcur

39

in the rest of the dissertation. Chapter 6.3 describes how we obtain this amount at every

scheduling event.

6.1 The Demanded Quality

At every scheduling instance, the scheduler determines the maximum amount of resources

allowed for each application. Thus, combined with Ropt of the applications, the scheduler sets the

maximum presentation quality each application is allowed to achieve. This is called the

demanded quality. The demanded quality set by the scheduler for an application i at time t can be

denoted as

 Qsched (i, t) = Rsched (i, t) / Ropt (i, t) (2)

where Rsched (i, t) is the maximum amount of resources allowed for an application i as determined

by the scheduler at time t. The Qsched ranges from 0 to 1 because the scheduler does not demand

resources more than the application needs (Rsched ≤ Ropt). A value of 0 indicates that no resources

are to be allocated for the application, which implies that application should idle. The scheduling

framework defines a special case where an application can consume as much resources as it can

utilize if Qsched of that application is set to 1 (Rsched = Ropt). Thus, Qsched (i, t) = 100% indicates

that the scheduler sets no limit on resource consumption for the application i, until Qsched (i, t + l)

is set to a value less than 1. The amount of resources consumed by an application (Rcur) can be

greater than the amount demanded (Rsched) and the amount derived for the optimal performance

(Ropt) during the time period l under this special condition. This is because the scheduler can not

know the global upper bound of Ropt of an interactive application. How much resources an

interactive application needs varies as a user interacts. Even if the scheduler can set the global

40

upper bound of Ropt , it is not desirable because the resource need varies as a user interacts. For

example, assume the Ropt is set with an upper bound known a priori and the application’s actual

resource consumption (Rcur) is much less than the Ropt then the remaining resources (Ropt - Rcur)

will be wasted. On the other hand, imagine a case where the system is overloaded and Ropt is not

known a priori. Regardless of how actively a user interacts with the application (thus high

priority for the application), Rcur of the application can not increase because the system is

overloaded unless the scheduler finds out this particular situation and allocates more resources to

the application (by taking resources from lower priority applications). The special case where

Qsched = 100% is to find this situation and properly allocate resources.

6.2 Estimating an Optimal Amount

The optimal amount of resources for an application (expressed by Ropt) is the amount of

resources the application needs to achieve its optimal presentation performance. This variable is

defined as a function of time. In non-interactive applications, the optimal amount of resources is

known a priori, thus Ropt is a fixed constant at any given time. For instance, a live video feed will

have a fixed frame rate. On the other hand, imagine a case where a visualization is being

rendered at a remote server and the rendered images are streamed to the display wall. The

visualization server renders and streams images only when users interact with the visualization,

unless the user plays a predefined animation. When the users interact, the visualization server

streams in a best-effort manner. When there is no user interaction however, the scheduler does

not have to allocate resources because there are no images that are being streamed. By changing

the amount of resources for the optimal performance to reflect the resource needs, which can

vary as users interact, the scheduler can allocate resources to applications more effectively by

41

allowing more resources to the ones that actually need those resources. Therefore, Ropt of an

application has to reflect the resource need at a given time. To achieve this for interactive

applications, the Performance Monitor estimates the amount of resource for the optimal

performance at a given time based on the application’s resource utilization.

L is the set of all applications in the system

Ropt_multiplier := M

ESTIMATE_Ropt(t)

 1: for each i in L

 2: if Ropt of i is known a priori then

 3: do nothing

 4: else if i is newly joined or woken up then

 5: Ropt := C // make an initial estimation

 6: else if Rcur = Ropt then

 7: Ropt := Ropt_multiplier  Rcur // the application could use more

 8: else // Rcur<Ropt or Rcur>Ropt because Qsched = 100%

 9: Ropt := Rcur

Figure 16. A function that estimates the optimal amount of resources for

interactive applications. The first estimation occurs when the application is newly

added to the system or when it is woken up from an idle state. The second

estimation is to prevent a situation where the application’s potential optimal

performance (expressed by Ropt) is stuck in a local maximum when the system is

overloaded.

Figure 16 illustrates pseudo-code that estimates and updates the optimal amount (Ropt) for

interactive applications where their resource consumptions (Rcur) vary based on user interactions.

42

Ropt is first estimated with an initial value when the application starts or is woken up from an idle

state. The initial value can differ by application, and the visual layout of the application’s

window such as its frame size can be used to set an initial value. Most of the time Ropt is simply

updated to Rcur, except when the application is consuming the optimal amount (Rcur = Ropt).

Notice that Rcur = Ropt implies the amount of resources the scheduler allows (Rsched) is equal to

the optimal amount (Ropt) which means the demanded quality (Qsched) was set to 1 in equation (2).

This state further implies that the application might be able to consume more resources as long as

there are enough resources in the system. Recall that Qsched = 100% sets no limit on resource

consumption for the application for this case. If there exist enough idle resources in the system

(the system is underloaded) then Rcur of the application is increased as long as the application can

consume more, thus perform better. In this case, the condition Rcur > Ropt can occur and Ropt will

be increased to the Rcur by the line number 9 in Figure 16. The Ropt can reflect the increased

resource need of the application by letting it to run in best-effort manner.

What happens if there are not enough resources in the system (the system is overloaded)

when the Qsched of an application is set to 100%? Since the Ropt is updated to Rcur, the optimal

amount will not reflect the application’s capability because the application is unable to consume

more (Rcur cannot be increased because the system is overloaded). The scheduler allocates

resources based on Ropt of the application. An application with small Ropt (meaning its resource

need is small) will be allowed to use that small amount. In this case, the Performance Monitor

increases the application’s resource need (Ropt := Ropt_multiplier  Rcur) to prevent a situation

where Ropt is bounded to a local maximum when the system is overloaded (line number 7 in

Figure 16). The underestimated Ropt is corrected in this way. However, this can lead to an

overestimation of Ropt. An overestimation, that can happen when the application does not

43

consume the amount of resources it is allowed, is corrected simply by decreasing Ropt to the

amount it currently consumes (line number 9 in Figure 16) in subsequent scheduling instances.

Employing a notion of the optimal amount of resources (Ropt) is necessary to provide

presentation fairness where an application’s quality is the metric for fairness. This in turn makes

our scheduling scheme non work-conserving because the two estimations (the initial estimation

and the estimated increase with Ropt_multiplier) can lead to resource waste when they are

overestimated. However, the evaluation (Chapter 7) shows that the improved user experience in

typical use cases outweighs the waste.

6.3 Total Available Resources

The amount of total available resources in the system (RTOTAL) is bounded by hardware limit.

However, having a fixed total available resources bounded to a particular hardware may not

correctly reflect the capability of the system. For example, if the amount of total available

resources is set to the aggregate bandwidth of all network links in the system, then RTOTAL in this

case reflects the upper bound only if all the applications in the system stream their contents over

a network link. When applications run locally (i.e. running in the machine driving the display

walls) then they will not utilize the network resources. In this case, the amount of total available

resource is not necessarily the same as the aggregate capacity of the network links in the system.

In general, a metric bounded to a particular hardware limitation is not feasible to abstract the

notion of the amount of total available resources in the system

To obtain a better abstract notion of the total available resources, the amount of total

available resources in the system seen by the scheduler is defined as the sum of the actual

44

amount of resources (Rcur) consumed by applications running at the current moment. Thus RTOTAL

ranges from 0 to a constant value that indicates physical limit.

 (3)

However, equation (3) alone isn’t enough for the scheduler to work properly. When a new

application is added to the system, the scheduler cannot know the Rcur of the newly added

application before running it. And the application cannot run before the scheduler determines a

quality for that new application. Thus an estimation of RTOTAL is needed whenever an application

is added to the system. Figure 17 depicts how the RTOTAL is updated. RTOTAL starts with 0 and

increased whenever new application introduced to the system. Although the RTOTAL can be

updated with estimations, it eventually converges to a constant value that reflects the hardware

capacity in an abstract amount.

L is a set of all application in the system

GET_RTOTAL(t)

 1: temp := 0

 2: inc := 0

 3: for each i in L

 4: if i has newly added then

 5: inc := inc + Ropt (i, t) // increase with estimation

 6: else

 7: temp := temp + Rcur (i, t)

 8: RTOTAL := MAX(RTOTAL , temp) // updated only with Rcur

 9: return RTOTAL + inc

Figure 17. A function that updates the amount of total available resources seen by

the scheduler with the actual amount of resources applications currently consume.

RTOTAL is increased whenever an application is newly added to the system.

45

6.4 Weighted Proportional Sharing

A weighted max-min algorithm can be applied to achieve presentation fairness with the

priorities and resource needs. The weighted max-min fair share algorithm is often used in QoS

aware packet scheduling network as described in [Keshav, '97]. In a weighted max-min fair

sharing, resources are allocated to applications proportional to their priorities (weights) as well as

the amounts the applications demand. Thus the demand is first normalized by priority. No

application is allocated more than it demands. An application whose allocation does not meet its

demand is maximized as long as there exist resources to allocate.

L is an ordered set of all applications (ordered by the priority)

unitAllocAmount := []

fraction := F

COMPUTE_UNIT_ALLOC_AMOUNT(t)

 1: sum := iL P(i, t)

 2: for each i in L

 3: if Rcur(i,t) = 0 then

 4: L := L – {i}

 5: sum := sum – P(i,t)

 6: unitAllocAmnt[i] := fraction  Ropt (i,t)  P (i,t) / sum

Figure 18. A pseudo-code of the algorithm that calculates the unit allocation

amount to ensure fine scheduling granularity.

The scheduling algorithm takes the priorities assigned by the Priority model, the optimal

amount of resources for each application, and the amount of total available resources in the

system. The algorithm then assigns a demanded quality (Qsched) for each application to adjust its

quality (Qcur), providing presentation fairness across the display wall.

46

Figure 18 shows a function used by the scheduling algorithm to determine the unit allocation

amount (unitAllocAmnt) for each application in the scheduling loop. The unitAllocAmnt is an

empty array that holds the fraction of the amount of resources that can be allocated for each

application at every iteration in the loop in the COMPUTE_Qsched() function shown in Figure

19.

(4)

where L is a set of all applications. The values in the unitAllocAmnt array differ by applications

and are calculated for each application from its Ropt and the priority proportion at a given time.

The unitAllocAmnt of application i at time t is defined as the fraction of Ropt(i, t) multiplied by i’s

priority proportion at time t in (4). An application’s Ropt is first multiplied by the application’s

priority proportion. This means, at every iteration in the scheduling loop, an application receives

only a portion of the optimal amount based on its priority proportion. Then each application’s

portion of the amount it receives is further fragmented by the global variable fraction. This is to

ensure fine granularity in resource allocation at a cost of increased execution time of the

algorithm.

The scheduling algorithm is illustrated with partial pseudo-code in Figure 19. The

array_Rsched is an empty array that will hold the values of Rsched in (2) for each application. The

COMPUTE_Qsched() starts with obtaining the current Ropt and the unitAllocAmnt for each

application and the RTOTAL. Then Rsched for each application is calculated progressively in the loop

(line 11-12) until no more resources can be allocated to any application. This is to maximize the

amount of resources the lowest priority application can be allocated (thus it’s a weighted max-

min algorithm). The termination conditions can arise when either all the available resources are

47

allocated (line number 8 in Figure 19) or all the application is allocated with the amount equal to

their Ropt (line number 9 in Figure 19). Once the scheduler sets the quality of an application as in

line number 15, each application i adjusts its resource consumption to comply with the

scheduler’s demand.

L is an ordered set of all applications (ordered by the priority)

array_Rsched := []

unitAllocAmount := []

fraction := F

COMPUTE_Qsched()

 1: t := NOW

 2: for each i in L

 3: array_Rsched[i] := 0

 4: ESTIMATE_Ropt(t)

 5: COMPUTE_UNIT_ALLOC_AMOUNT(t)

 6: rt := GET_RTOTAL(t)

 7: forever

 8: if rt  0 then break

 9: if for each i in L array_Rsched[i] = Ropt(i, t) then

10: break

11: for each i in L // allocate progressively

12: array_Rsched[i] := array_Rsched[i] + unitAllocAmnt[i]

13: rt := rt - unitAllocAmnt[i]

14: for each i in L // set the demanded quality

15: Qsched(i, t) := array_Rsched[i] / Ropt(i, t)

Figure 19. Partial pseudo-code of resource scheduling algorithm. The algorithm

progressively allocates small amounts of resources, proportional to an

application’s priority until no more resources are available, or until all

applications receive the resources needed for their optimal performance.

48

To find the worst case running time of the algorithm, let the RTOTAL be infinite. The

algorithm will terminate only after all the applications are allocated with the amounts that they

require. Formally, the algorithm terminates when for all application A, Rsched(A) = Ropt(A). Then

the maximum number of iterations the forever loop (line number 7) is determined by the lowest

priority application A and the size of the fraction F defined globally as shown in Figure 18.

Therefore, the maximum number of iterations of the outer loop (line 7-13) of the algorithm

shown in Figure 19 is Ropt(A, t) / unitAllocAmnt[A, t]. Using the equation (4), we obtain

 (5)

where i is the application with the lowest priority at time t.

The ESTIMATE_Ropt() , COMPUTE_UNIT_ALLOC_AMOUNT(), GET_RTOTAL(), and the

inner loop of the algorithm (line 11-13) takes O(n) time where n is the number of applications in

the system. Therefore, the worst case running time of the algorithm is O(num_iter(t) * n) using

the equation (5).

49

7. EVALUATION

This chapter describes two experiments to demonstrate that the presented scheduling scheme

achieves presentation fairness on a display wall with non-interactive as well as interactive

applications, and with multiple users interacting with the display wall simultaneously. The tiled-

display wall system employed in the experiments consists of 18 LCD displays, as shown in

Figure 3, with a total resolution of approximately 18.8 megapixels (8,196 × 2,304 pixels). A

single machine equipped with dual Intel X5650 quad core processors, 12 gigabyte of main

memory, and 3 Nvidia GeForce GTX580 dual DVI graphics was used to drive the entire display.

A separate, equally powerful machine is used to simulate content-generating applications that

stream images to the display wall system over a high-speed network to simulate a thin-client

display wall environment. The two machines are network connected with a 10Gbps optical

switch. The bit-rate of an application is used as a metric for the amount of resources. Thus the

amount of resources an application consumes (Rcur) indicates its image streaming bandwidth in

bits-per-second. Both machines were run by a 64-bit Linux operating system (kernel 3.1).

The first experiment evaluates the presented scheduling scheme with non-interactive

applications streaming at a fixed rate. Thus, the optimal amounts of resources (streaming

bandwidth) for these applications are known a priori (Ropt is constant). The second experiment

evaluates the scheduling scheme with interactive applications, and with multiple users

simultaneously interacting with the display wall, causing a variable demand on system resources

(Ropt can vary). In both experiments the display wall system was overloaded to simulate heavy

usage. Each experiment is performed twice, once with the presented scheduler running, and a

50

second time without the presented scheduler, leaving the system to rely solely on the operating

system’s scheduler.

7.1 Presentation Fairness with Fixed Ropt

In the first experiment, the effectiveness of the scheduling scheme with non-interactive

applications is evaluated. Ten applications with different image sizes (shown on the X axis in

Figure 20) are run simultaneously, streaming their contents to the display wall at 30 frames per

second. Thus the bandwidth needed by each application for optimal performance (Ropt) is their

image size in bits multiplied by 30 Hz. Although the applications’ frame sizes are fixed, their

window sizes on the display wall, which determines their Pvisual, can be arbitrary.

Imagine a case where a user wants to compare multiple time-varying visualizations and the

bandwidth requirements for the visualizations are not uniform. If the system does not have

enough network bandwidth for all of the visualizations the user wants to compare

simultaneously, the user will experience disparate perceptual performance because the system

tries to achieve low-level fairness between the visualization even if their resource needs are

different. The scheduling scheme presented in this dissertation tries to achieve fairness perceived

by a user with the approach explained in previous chapters.

To demonstrate presentation fairness, the application windows are arranged in a tiled mode

as illustrated in Figure 4 (a), thus giving the applications the same priority. Therefore Pvisual is the

same for all applications, Pinteract is 0 and, Ptemp is negligible in this case because the application

layout is static. The flat line in Figure 20 shows that the scheduler indeed assigns equal priority

proportions to all applications.

51

Figure 20. Achieved frame rate for applications used in the experiment under the

operating system’s scheduler (NoSched), and with the presented scheduler

running (Sched) shown with standard erros. The X axis lists frame sizes of the 10

applications which are run simulateneously in the experiment. Application

windows are arranged in a tiled mode as illustrated in Figure 4 (a) giving them

equal priority. The flat line shows indeed that the scheduler assigns equal priority

proprtions to all applications.

When the presented scheduling scheme is not running (NoSched condition), the operating

system distributes resources evenly between applications. Since applications have varying frame

sizes, this fine-grained distribution of resources leads to diverging performance as evident in

Figure 20. Applications with larger frame sizes suffer a big performance hit with their frame rate

dropping below 15 FPS, while applications with smaller frame sizes achieve their optimal 30

FPS. This disparity in performance is particularly evident to users, which detracts from the user

experience. On the other hand when the presented scheduling scheme is in effect (Sched

0

20

40

60

80

100

0

5

10

15

20

25

30

6
4

0
 x

 4
8

0

6
4

0
 x

 4
8

0

1
2

8
0

x
7

2
0

1
2

8
0

 x
 7

2
0

1
6

0
0

 x
 1

2
0

0

1
6

0
0

 x
 1

2
0

0

1
9

2
0

 x
 1

0
8

0

1
9

2
0

 x
 1

0
8

0

2
5

6
0

 x
 1

6
0

0

2
5

6
0

 x
 1

6
0

0

P
ri

o
ri

ty
 P

ro
p

o
rt

io
n

 (
%

)

A
ch

ie
ve

d
 f

ra
m

e
 r

a
te

(f

ra
m

e
s

p
e

r
se

co
n

d
)

List of applications running simultaneously
ordered by their streaming overhead

FPS (NoSched)

FPS (Sched)

Priority Proportion (%)

52

condition), all applications achieve a comparable performance with their frame rate around 22

FPS, thus achieving presentation fairness. This is because the Priority model assigns the same

priority to all applications, and the scheduling algorithm allocates resources taking applications’

Ropt into account.

Figure 21. The resource needs for applications (dark red columns) and the

amounts of resources actually utilized by applications are shown with standard

errors. While the four applications that have relatively low resource requirements

receive the amounts they need, the resources are allocated evenly for the rest of

the applications regardless of their different resource needs under NoSched

condition. The resources are distributed based on the applications’ resource needs

(Ropt) under Sched condition.

Figure 21 illustrates the resource needs for applications and the amounts of resources

actually utilized by applications in this experiment. While the four applications that have

0

500

1000

1500

2000

2500

3000

3500
6

4
0

 x
 4

8
0

6
4

0
 x

 4
8

0

1
2

8
0

x
7

2
0

1
2

8
0

 x
 7

2
0

1
6

0
0

 x
 1

2
0

0

1
6

0
0

 x
 1

2
0

0

1
9

2
0

 x
 1

0
8

0

1
9

2
0

 x
 1

0
8

0

2
5

6
0

 x
 1

6
0

0

2
5

6
0

 x
 1

6
0

0

R
e

so
u

rc
e

 N
e

e
d

s
a

n
d

 U
sa

g
e

(M

b
p

s)

List of applications running simultaneously
ordered by their streaming overhead

Resource need for optimal framerate

Resource allocated (NoSched)

Resource allocated (Sched)

53

relatively low resource requirements receive the amounts they need, the resources are allocated

evenly for the rest of the applications regardless of their different resource needs under NoSched

condition. This is because the Non-clairvoyant operating system scheduler is unaware of the

different resource need of each application. The resources are allocated in a manner that it is

proportional to the applications’ resource needs (Ropt) under Sched condition.

7.2 Interactive Application (User Study)

Imagine a scenario where a user interacts with a scientific visualization tool by rotating,

panning, and scaling a 3D model, or a piece of video production software where the user works

with multiple media assets, traverses video frames, make rough cuts, etc. The application’s

responsiveness (as determined by the time the application takes to update its content from the

moment of user interaction) is crucial to meeting the users’ expectation for these types of

applications. This scenario is simulated in the user study in order to evaluate the effectiveness of

the presented scheduling scheme with multiple interactive applications.

The applications utilized in the user study comprised of a streamer that runs on a separate

machine and streams images over network to a receiver that runs on the display wall system,

which renders the user interface. Also the receiver applications are referred as user applications

throughout the remainder of the dissertation. The streamer is analogous to scientific visualization

software that runs on a high-performance computer and generates visual contents. The receiver is

analogous to a corresponding GUI process that runs on the display wall system displaying the

contents it receives from the visualization software (Figure 22). The streamer streams images to

the receiver in a best-effort fashion whenever a user interacts with the receiver. The size of the

image streamed by the streamer is fixed at 2560 × 1600 × 24 bits but its frame rate varies and is

54

determined by the rate of user interaction (Rcur and Ropt vary as the user interacts). Therefore, the

Pvisual of the applications is fixed while the Pinteract changes as users interact. The scheduler

determines Ropt based on Rcur, which changes depending on user interaction rate as discussed in

Chapter 6. The receiver process (user application) conforms to the Qsched determined by the

scheduler by altering its frame rate. During the experiment, the display wall system was

overloaded with 6 non-interactive applications streaming a 2560 × 1600 video sequence with 24

bits per pixel at a fixed rate of 30Hz (Ropt = 2,949.12 Mbps). We refer to these applications as the

overhead. A scenario this dissertation adopts with the notion of the overhead for the user study is

to simulate a case where users are interacting some of the applications on the display wall that

has many application instances. As discussed earlier, the system will allocate uniform amount of

resources to all of the applications regardless of their different resource needs and what users are

interested in at the moment. What would happen if all applications have to be treated equally

important even though users are interacting with only some of the applications? The presented

scheduling scheme will ensure fair resource allocation based on the applications’ resource needs

as shown in Chapter 7.1.

7.2.1 Task

The user study comprised of single and multi-user interaction with user applications on the

display wall within groups of 3 subjects at a time. Each user interacts exclusively with a single

receiver dedicated to that user using a mouse. The user application’s window is displayed on the

display wall, with subjects sitting side-by-side approximately 8 foot in front of the display wall.

An example of the user study setup is shown in Figure 23. The user application presented the

user with a target acquisition task in which the user is asked to move the mouse cursor and click

55

on a target appearing in a random location inside the user application’s window. An example of

the user application’s window is shown in Figure 22. The user application’s window is updated

only when a new frame is received from the streamer. Therefore, smoothness of the cursor

movement, which is the visual feedback the user receives, depends on the frame rate, which will

ultimately influences subject performance. If the user application’s frame rate is too low, the

user’s interaction will be lost thereby the user will experience stuttered pointer movement

making the user to hard to precisely position the pointer on the target. The rationale behind this

task is that performance in the target acquisition task will demonstrate the responsiveness of the

system. This will in turn reflect objective performance as well as subjective user experience in

more complex scenarios such as scientific visualization and interactive, multimedia applications.

Figure 22. An example of the user application window (receiver’s GUI) is shown

with the target and the user’s pointer. A yellow rectangle target appears on a

random position on the application window. A subject is asked to click the target

with his/her pointer as fast as possible.

A target on

a random position

A subject's

pointer

optimal path

and distance

to travel

56

7.2.2 Procedure

Figure 23. An example of the user study setup. Three users are sitting in front of

the wall and interacting with their applications by connecting their laptops to the

SAGE-Next.

18 subjects were recruited for the study. All subjects were computer science students (both

graduate and undergraduate). Subjects are divided into groups of three, with a total of 6 groups,

which referred to as groups A through F. Each group goes through a series of 7 rounds to vary

the number of users interacting simultaneously. In the first three rounds, a single subject interacts

with the system to perform the task (one of the three subjects in the group per round). In the

second set of three rounds, two subjects perform the task simultaneously. In the final round all

three subjects perform the task simultaneously. The 7 rounds are repeated twice under two

different conditions: once with our scheduling scheme running (referred to as Sched condition),

and a second time without our scheduling scheme (referred to as NoSched condition), leaving the

57

system to rely solely on operating system scheduling. This order is balanced across the 6 groups.

(groups A, B, and C started with the Sched condition, while groups D, E, and F started with the

NoSched condition).

7.2.3 Metrics

For each subject, the hit latency (the time it takes the subject to move the mouse cursor and

successfully click the target from the moment it appears in the subject’s assigned window) and

the miss count (the number of clicks that missed the targets) are measured to compare the

subjects’ interaction performance with the presented scheduling scheme and operating system

default. These indicate the responsiveness of the system that has to support multiple interactive

applications simultaneously. Also the user applications’ (receivers) frame rates are measured as

subjects interact. And lastly, the overall resource utilization is measured to compare the

presented scheduling scheme’s reduced resource utilization (due to the resource estimation) with

operating system default.

7.2.4 Results

A 2 (factor #1: NoSched versus Sched conditions) x 3 (factor #2: 1, 2, and 3 users interacting

simultaneously) factorial ANOVA is computed to see the differences between average hit

latencies under various conditions. The result indicates that there are significant main effects

(factor #1: F(1,3234) = 927, p < .000, factor #2: F(2,3234) = 6.12, p = 0.002) but no interaction

effect (F(2,3234) = 0.13, p = 0.88). Figure 24 shows the average hit latency of all groups with

and without the presented scheduling scheme. With the presented scheduling scheme, the

average hit latency of all subject groups is reduced by approximately 28% while the system is

58

overloaded with the overheads as explained in Chapter 7.2. This increased user performance is

due to the higher frame rate achieved with the scheduling scheme as shown in Figure 25 at a cost

of reduced frame rates for overheads which were not interacted by users. The user applications

achieve minimum of approximately 17.5Hz with our scheduling scheme. This is higher than a

frame rate threshold (10~15Hz) where human performance can be adversely affected [Apteker,

'95; Chen, '07; Claypool, '09; Gulliver, '04]. Even with a high workload that might run in

background as simulated with the overheads in the experiment and increasing number of users

interacting simultaneously, the presented scheduler was able to maintain a sufficient frame rate,

which helped subjects maintain their task performance.

Figure 24. The average hit latency for all groups with and without the presented

scheduling scheme are shown with standard errors. The average hit latencies are

~28% better with the presented scheduling scheme.

When the scheduling scheme is not running (NoSched condition), all the streaming instances

(user applications that subjects were interacting and the overheads that have fixed streaming

0

500

1000

1500

2000

2500

1 2 3

A
v
g
 H

it
 L

a
te

n
cy

(m
il

li
se

co
n

d
)

Number of users interacting simultaneously

lower the better

NoSched Sched

59

rates) are treated equally by the operating system. This results in poor interaction performance

for the applications that are interacted by the users as shown in Figure 24 and Figure 25.

Figure 25. The average frame rate achieved by user applications are shown with

standard errors. The frame rates slightly dropped as the number of users increased

in the NoSched condition, where as the frame rates remained high with the

presented scheduling scheme ensuring better user interactivity even when the

system is overloaded.

The aggregate number of missed clicks of all subject groups was reduced by 19%, 42%, and

33% for one, two and three users, respectively (shown in Figure 26). However, the difference in

the average number of missed clicks is insignificant as shown in Figure 27. During the user

study, the author observed that the number of missed clicks is highly dependent on subject

interaction characteristics rather than resource scheduling policies. Users who are careful in

clicking targets miss the target less often whether the presented scheduler is employed or not.

0

5

10

15

20

25

30

1 2 3

A
v
g

 f
ra

m
e

ra
te

 o
f

u
se

r
st

u
d

y
 a

p
p

li
ca

ti
o
n

(f
ra

m
es

 p
er

 s
ec

o
n

d
)

Number of users interacting simultaneously

Higher the better

NoSched Sched

60

Figure 26. The aggregate number (total counts) of all subject groups’ missed

clicks with and without the presented scheduling scheme.

Figure 27. The average number of missed clicks with and without the presented

scheduling scheme shown with standard errors.

Figure 28 depicts the total resource utilization breakdown. The graph shows that fewer

resources are allocated to the overhead, allocating more to user applications under the presented

scheduling scheme as the design dictates, which ultimately led to the improved user

0

10

20

30

40

50

60

70

80

90

100

1 2 3

A
g
g
re

g
a
te

 n
u

m
b

er
 o

f

 m
is

se
d

 c
li

ck
s

Number of users interacting simultaneously

Lower the better

NoSched

Sched

0

1

2

3

4

1 2 3

A
v
er

a
g
e

n
u

m
b

er
 o

f

m
is

se
d

 c
li

ck
s

Number of users interacting simultaneously

Lower the better

NoSched

Sched

61

performance. As expected, the overall resource utilization of the presented scheduling scheme is

lower than the operating system’s scheduler. This is because resources are allocated based on an

application’s Ropt, which is not known a priori, and needs to be estimated based on its current

performance. In current Ropt estimation mechanism, the user’s interaction characteristic is the

major factor determining the precision of Ropt estimation and the estimation tends to be preciser

(meaning the Ropt precisely reflects the amount of resources a user will utilize thereby the

difference between the Ropt and the Rcur can be small) when the rate of changes in user

interactions is steady, thereby increasing resource utilization.

Figure 28. The average of total resource utilization breakdown with and without

the presented scheduling scheme. The graph indicates that more resources are

utilized by user applications under the presented scheduling scheme.

0

2000

4000

6000

8000

10000

N
o

S
ch

ed
,

1

S
ch

ed
,
1

N
o
S

ch
ed

,
2

S
ch

ed
,
2

N
o

S
ch

ed
,

3

S
ch

ed
 3

R
es

o
u

rc
e

U
ti

li
za

ti
o
n

(M
b

p
s)

Number of users interacting simultaneously

under NoSched and Sched conditions

Higher the better

User(NoSched) Overhead(NoSched)

User(Sched) Overhead(Sched)

62

8. CONCLUSION

Thin-client display wall systems are used for displaying multiple high-resolution

visualizations that are rendered at remote resources such as high-performance computers and

storage cloud. Modern thin-client display wall systems provide multi-user collaborative

environments by enabling multi-user interactions with multiple visualizations simultaneously.

While display walls traditionally ran on a computer cluster, recent hardware improvements in

multi-headed graphics hardware allows for display walls that can be driven by a single computer.

However, this poses challenges in resource management due to the limited capability of a single

machine compared to a cluster.

In this dissertation, a novel multi-user centered resource scheduling scheme for collaborative

display wall environments is presented. Unlike traditional resource scheduling in modern

operating systems, the scheduling scheme presented in this dissertation adopts a user-centered

scheduling to maximize user-perceived performance, favoring applications that are most likely to

draw user attention when the system is overloaded.

The presented scheduling scheme ensures the presentation fairness by considering

applications’ visual and interaction factors as well as resource needs of the applications. A

Priority model is used to describe the degree of users’ interest in applications on the display wall.

The effective visible size of an application’s window, the frequency of user interactions, and the

wall usage patterns are used to determine the priority of an application. For interactive

applications where the optimal resource requirement is time-varying and can not be determined a

priori, the scheduler estimates these amounts based on current application performance

determined by user interactions. The scheduler then finds a proportionally fair distribution of

63

system resources and adjusts resource consumption indirectly by modulating presentation

qualities of applications.

Experimental results show that the presented resource scheduler achieves presentation

fairness in non-interactive applications where resource needs are known a priori. This is achieved

by allocating resources to applications based on the amounts of resources applications need to

achieve optimal performance. A user study was conducted to evaluate the effect of the scheduler

on user performance with interactive applications running on an overloaded display wall. The

user study shows improved user performance in a target acquisition task with the scheduling

scheme over general-purpose operating system scheduling. The resources are allocated based on

user interactions and estimated resource needs of the applications under the presented scheduling

scheme while the general-purpose operating system allocates resources regardless of the user

interactions and the resource needs. This demonstrates the effectiveness of the presented

scheduling scheme when employed in interactive tiled display walls that are used in

collaborative settings where multiple users interact simultaneously with the system.

64

9. FUTURE RESEARCH DIRECTION

In the future the author plans to extend the Priority model. Currently, the application’s

visible window size and the frequency of interaction with applications are major factors in

determining the priority of the application. The contribution of these two factors is reconsidered

only when a user actually interacts with the application. However, a user may desire high

performance for an application even though he/she is not currently interacting with the

application. To address this case, the Priority model could anticipate user intention without

relying on application’s internal states by monitoring the users. For example, tracking devices

can be used to capture a user’s interest in applications by sensing the user’s head orientation or

his/her location relative to the application. This information can then be incorporated into the

Priority model. Furthermore, the current model treats each visualization independently, which

may not be the case when multiple different visualizations of the same data need to be analyzed.

The scheduling scheme presented in this dissertation maintains the notion of an optimal

amount of resources for an application based on its current resource consumption. In particular,

when the system is overloaded, the scheduler increases the optimal amount for an application

assuming that the application might be able to consume more. As a result the resource can be

wasted when the amount is overestimated. Thus the scheduling framework is not work-

conserving. Precise estimation of the optimal amount of resources for an interactive application

is crucial to keep the system’s resource utilization high. A Kalman filter [Brown, '97] where an

estimation of variables of interest is obtained using a recursive algorithm might be used. Or an

online application profiling technology might be adapted to provide better estimation of resource

requirements. However, this is a hard problem for an application whose resource needs can vary

greatly as user interacts because the system cannot precisely predict what a user will do.

65

Also, the optimal amount of resources for an interactive application can have lower and

upper bound in order to keep the estimation in a reasonable range. For example, an interactive

application would not want to allow its frame rate below certain lower bound (such as 15Hz) to

ensure reasonable user performance. A video editing application may set an upper bound to its

maximum frame rate. The application can skip some frames instead of increasing its frame rate

when a user is scrubbing a video, for instance.

The types of the resources an application requires can be diverse. Therefore, defining a

global metric that can be applied a various set of application is challenging. However, a better

resource abstraction can make the scheduling scheme to support wider range of applications.

Also the current resource consumption rate of an application might not precisely reflect the

application’s quality as perceived by users. However, a better abstraction for the application

quality could be achieved given a set of different types of applications that are mostly used in

collaborative display wall environments.

66

CITED LITERATURE

[Anderson, '06] Anderson, J. H., Calandrino, J. M. and Devi, U. C. 2006. Real-Time

Scheduling on Multicore Platforms. In Proceedings of the Real-Time and Embedded Technology

and Applications Symposium, 2006. Proceedings of the 12th IEEE, pages 179-190.

[Andrews, '10] Andrews, C., Endert, A. and North, C. 2010. Space to think: large high-

resolution displays for sensemaking. In Proceedings of the 28th international conference on

Human factors in computing systems, pages 55-64.

[Apteker, '95] Apteker, R. T., Fisher, J. A., Kisimov, V. S. and Neishlos, H. 1995. Video

acceptability and frame rate. MultiMedia, IEEE, 2(3):32-40.

[Ball, '05] Ball, R. and North, C. 2005. Analysis of User Behavior on High-

Resolution Tiled Displays. In Human-Computer Interaction, INTERACT 2005, pages 350-363.

[Bovet, '05] Bovet, D. P. and Cesati, M. 2005. Understanding the Linux Kernel, Third

Edition. O'Reilly Media, Inc.

[Brown, '97] Brown, R. G. and Hwang, P. Y. C. 1997. Introduction to Random Signals

and Applied Kalman Filtering. Wiley.

[Cedilnik, '06] Cedilnik, A., Geveci, B., Moreland, K., Ahrens, J. and Favre, J. 2006.

Remote large data visualization in the paraview framework. In Proceedings of the Eurographics

Parallel Graphics and Visualization, pages 162-170.

[Chandra, '00] Chandra, A., Adler, M., Goyal, P. and Shenoy, P. 2000. Surplus fair

scheduling: a proportional-share CPU scheduling algorithm for symmetric multiprocessors. In

Proceedings of the 4th conference on Symposium on Operating System Design & Implementation

- Volume 4, pages 4-4.

[Chandra, '05] Chandra, D., Guo, F., Kim, S. and Solihin, Y. 2005. Predicting inter-

thread cache contention on a chip multi-processor architecture. In Proceedings of the High-

Performance Computer Architecture, 2005. HPCA-11. 11th International Symposium on, pages

340-351.

[Chen, '07] Chen, J. Y. C. and Thropp, J. E. 2007. Review of Low Frame Rate Effects

on Human Performance. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE

Transactions on, 37(6):1063-1076.

67

[Claypool, '09] Claypool, M. and Claypool, K. 2009. Perspectives, frame rates and

resolutions: it's all in the game. In Proceedings of the 4th International Conference on

Foundations of Digital Games, pages 42-49.

[Corbet, '04] Corbet. Scheduling Domains. http://lwn.net/Articles/80911/

[Czerwinski, '06] Czerwinski, M., Robertson, G., Meyers, B., Smith, G., Robbins, D. and

Tan, D. 2006. Large display research overview. In CHI '06 extended abstracts on Human factors

in computing systems, pages 69-74.

[DeFanti, '09] DeFanti, T. A., Leigh, J., Renambot, L., Jeong, B., Verlo, A., Long, L.,

Brown, M., Sandin, D. J., Vishwanath, V., Liu, Q., Katz, M. J., Papadopoulos, P., Keefe, J. P.,

Hidley, G. R., Dawe, G. L., Kaufman, I., Glogowski, B., Doerr, K.-U., Singh, R., Girado, J.,

Schulze, J. P., Kuester, F. and Smarr, L. 2009. The OptIPortal, a scalable visualization, storage,

and computing interface device for the OptiPuter. Future Generation Computer Systems,

25(2):114-123.

[Doerr, '11] Doerr, K. and Kuester, F. 2011. CGLX: A Scalable, High-Performance

Visualization Framework for Networked Display Environments. Visualization and Computer

Graphics, IEEE Transactions on, 17(3):320-332.

[Duda, '99] Duda, K. J. and Cheriton, D. R. 1999. Borrowed-virtual-time (BVT)

scheduling: supporting latency-sensitive threads in a general-purpose scheduler. In Proceedings

of the seventeenth ACM symposium on Operating systems principles, pages 261-276.

[Durand, '96] Durand, D., Montaut, T., Kervella, L. and Jalby, W. 1996. Impact of

memory contention on dynamic scheduling on NUMA multiprocessors. Parallel and Distributed

Systems, IEEE Transactions on, 7(11):1201-1214.

[Eilemann, '09] Eilemann, S., Makhinya, M. and Pajarola, R. 2009. Equalizer: A Scalable

Parallel Rendering Framework. Visualization and Computer Graphics, IEEE Transactions on,

15(3):436-452.

[Etsion, '04] Etsion, Y., Tsafrir, D. and Feitelson, D. G. 2004. Desktop scheduling: how

can we know what the user wants? In Proceedings of the 14th international workshop on

Network and operating systems support for digital audio and video, pages 110-115.

[Evans, '93] Evans, S., Clarke, K., Singleton, D. and Smaalders, B. 1993. Optimizing

Unix resource scheduling for user interaction. In Proceedings of the USENIX Summer 1993

Technical Conference on Summer technical conference - Volume 1, pages 205-218.

[Golub, '94] Golub, D. B. Operating System Support for Coexistence of Real-Time and

Conventional Scheduling. School of Computer Science, Carnegie Mellon University, 1994.

68

[Goyal, '01] Goyal, P., Guo, X. and Vin, H. M. 2001. A hierarchical CPU scheduler for

multimedia operating systems. In Readings in multimedia computing and networking. Morgan

Kaufmann Publishers Inc., pages 491-505.

[Gulliver, '04] Gulliver, S. R. and Ghinea, G. 2004. Changing frame rate, changing

satisfaction? [multimedia quality of perception]. In Proceedings of the IEEE International

Conference on Multimedia and Expo, ICME '04, pages 177-180.

[Haller, '10] Haller, M., Leitner, J., Seifried, T., Wallace, J. R., Scott, S. D., Richter, C.,

Brandl, P., Gokcezade, A. and Hunter, S. 2010. The NiCE Discussion Room: Integrating Paper

and Digital Media to Support Co-Located Group Meetings. In Proceedings of the 28th

international conference on Human factors in computing systems, pages 609-618.

[Humphreys, '02] Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P. D.

and Klosowski, J. T. 2002. Chromium: a stream-processing framework for interactive rendering

on clusters. ACM Trans. Graph., 21(3):693-702.

[Jagodic, '11] Jagodic, R., Renambot, L., Johnson, A., Leigh, J. and Deshpande, S. 2011.

Enabling multi-user interaction in large high-resolution distributed environments. Future Gener.

Comput. Syst., 27(7):914-923.

[Jeong, '10] Jeong, B. 2010. Ultrascale Collaborative Visualization Using a Display-

Rich Global Cyberinfrastructure. Computer Graphics and Applications, IEEE, 30(3):71-83.

[Jeong, '06] Jeong, B., Renambot, L., Jagodic, R., Singh, R., Aguilera, J., Johnson, A.

and Leigh, J. 2006. High-Performance Dynamic Graphics Streaming for Scalable Adaptive

Graphics Environment. In Supercomputing, 2006. SC '06. Proceedings of the ACM/IEEE SC

2006 Conference, pages 24-24.

[Jones, '97] Jones, M. B., Roşu, D. and Roşu, M.-C. 1997. CPU reservations and time

constraints: efficient, predictable scheduling of independent activities. SIGOPS Oper. Syst. Rev.,

31(5):198-211.

[Keshav, '97] Keshav, S. 1997. An Engineering Approach to Computer Networking.

Addison-Wesley.

[Kuan-Ta, '09] Kuan-Ta, C., Cheng-Chun, T. and Wei-Cheng, X. 2009. OneClick: A

Framework for Measuring Network Quality of Experience. In Proceedings of the INFOCOM

2009, IEEE, pages 702-710.

[Leigh, '06] Leigh, J., Renambot, L., Johnson, A., Jeong, B., Jagodic, R., Schwarz, N.,

Svistula, D., Singh, R., Aguilera, J., Wang, X., Vishwanath, V., Lopez, B., Sandin, D., Peterka,

T., Girado, J., Kooima, R., Ge, J., Long, L., Verlo, A., DeFanti, T. A., Brown, M., Cox, D.,

69

Patterson, R., Dorn, P., Wefel, P., Levy, S., Talandis, J., Reitzer, J., Prudhomme, T., Coffin, T.,

Davis, B., Wielinga, P., Stolk, B., Bum Koo, G., Kim, J., Han, S., Kim, J., Corrie, B.,

Zimmerman, T., Boulanger, P. and Garcia, M. 2006. The global lambda visualization facility: An

international ultra-high-definition wide-area visualization collaboratory. Future Generation

Computer Systems, 22(8):964-971.

[Liu, '73] Liu, C. L. and Layland, J. W. 1973. Scheduling Algorithms for

Multiprogramming in a Hard-Real-Time Environment. J. ACM, 20(1):46-61.

[McKusick, '04] McKusick, M. K. and Neville-Neil, G. V. 2004. Thread Scheduling in

FreeBSD 5.2. Queue, 2(7):58-64.

[Mercer, '94] Mercer, C. W., Savage, S. and Tokuda, H. 1994. Processor capacity

reserves: operating system support for multimedia applications. In Proceedings of the

International Conference on Multimedia Computing and Systems, pages 90-99.

[Motwani, '93] Motwani, R., Phillips, S. and Torng, E. 1993. Non-clairvoyant scheduling.

In Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, pages 422-

431.

[Nam, '10] Nam, S., Deshpande, S., Vishwanath, V., Jeong, B., Renambot, L. and

Leigh, J. 2010. Multi-application inter-tile synchronization on ultra-high-resolution display

walls. In Proceedings of the first annual ACM SIGMM conference on Multimedia systems, pages

145-156.

[Nam, '09] Nam, S., Jeong, B., Renambot, L., Johnson, A., Gaither, K. and Leigh, J.

2009. Remote visualization of large scale data for ultra-high resolution display environments. In

Proceedings of the 2009 Workshop on Ultrascale Visualization, pages 42-44.

[Nieh, '03] Nieh, J. and Lam, M. S. 2003. A SMART scheduler for multimedia

applications. ACM Trans. Comput. Syst., 21(2):117-163.

[Plaue, '09] Plaue, C. and Stasko, J. 2009. Presence & placement: exploring the

benefits of multiple shared displays on an intellective sensemaking task. In Proceedings of the

ACM 2009 international conference on Supporting group work, pages 179-188.

[Smarr, '09] Smarr, L., Brown, M. and de Laat, C. 2009. Special section: OptIPlanet --

The OptIPuter global collaboratory. Future Generation Computer Systems, 25(2):109-113.

[Smarr, '03] Smarr, L. L., Chien, A. A., DeFanti, T., Leigh, J. and Papadopoulos, P. M.

2003. The OptIPuter. Commun. ACM, 46(11):58-67.

70

[Stoica, '97] Stoica, I., Abdel-Wahab, H. and Jeffay, K. 1997. On the Duality between

Resource Reservation and Proportional Share Resource Allocation. In Proc. of Multimedia

Computing and Networking, pages 207-214.

[Stoica, '96] Stoica, I., Abdel-Wahab, H., Jeffay, K., Baruah, S. K., Gehrke, J. E. and

Plaxton, C. G. 1996. A proportional share resource allocation algorithm for real-time, time-

shared systems. In Proceedings of the Real-Time Systems Symposium, 1996., 17th IEEE, pages

288-299.

[Tan, '03] Tan, D. S., Gergle, D., Scupelli, P. and Pausch, R. 2003. With similar

visual angles, larger displays improve spatial performance. In Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 217-224.

[Tokuda, '90] Tokuda, H., Nakajima, T. and Rao, P. 1990. Real-Time Mach: Towards

Predictable Real-Time Systems. In USENIX Mach Symposium, pages 73-82.

[Urgaonkar, '02] Urgaonkar, B., Shenoy, P. and Roscoe, T. 2002. Resource overbooking

and application profiling in shared hosting platforms. In Proceedings of the 5th symposium on

Operating systems design and implementation, pages 239-254.

[Vishwanath, '08] Vishwanath, V., Leigh, J., Nam, S., Renambot, L., Shimizu, T., Kamatani,

O., Hirokazu, T. and Takizawa, M. 2008. The Rails Toolkit - Enabling End-System Topology-

Aware High End Computing. In 4th IEEE International Conference on e-Science, pages 309-

316.

[Wu, '09] Wu, W., Arefin, A., Rivas, R., Nahrstedt, K., Sheppard, R. and Yang, Z.

2009. Quality of experience in distributed interactive multimedia environments: toward a

theoretical framework. In Proceedings of the 17th ACM international conference on Multimedia,

pages 481-490.

[Yau, '97] Yau, D. K. Y. and Lam, S. S. 1997. Adaptive rate-controlled scheduling

for multimedia applications. Networking, IEEE/ACM Transactions on, 5(4):475-488.

[Yost, '07] Yost, B., Haciahmetoglu, Y. and North, C. 2007. Beyond visual acuity:

the perceptual scalability of information visualizations for large displays. In Proceedings of the

SIGCHI conference on Human factors in computing systems, pages 101-110.

[Zhang, '90] Zhang, L. 1990. Virtual clock: a new traffic control algorithm for packet

switching networks. In Proceedings of the ACM symposium on Communications architectures &

protocols, pages 19-29.

71

[Zheng, '10] Zheng, H. and Nieh, J. 2010. RSIO: automatic user interaction detection

and scheduling. In Proceedings of the ACM SIGMETRICS international conference on

Measurement and modeling of computer systems, pages 263-274.

[Zixia, '12] Zixia, H., Ahsan, A., Pooja, A., Klara, N. and Wanmin, W. 2012. Towards

the understanding of human perceptual quality in tele-immersive shared activity. In Proceedings

of the 3rd Multimedia Systems Conference, pages 29-34.

72

APPENDIX

Exemption Granted

August 7, 2012

Sungwon Nam, MS

Computer Science

851 S Morgan St. Room 1120 SEO

M/C 152

Chicago, IL 60612

Phone: (312) 996-3002 / Fax: (312) 413-7585

RE: Research Protocol # 2012-0643

“Multiuser-Aware Resource Scheduling for Large-scale Display Wall

Environments”

Sponsors: None

Dear Sungwon Nam:

Your Claim of Exemption was reviewed on August 5, 2012 and it was determined

that your research protocol meets the criteria for exemption as defined in the U. S.

Department of Health and Human Services Regulations for the Protection of

Human Subjects [(45 CFR 46.101(b)]. You may now begin your research.

Exemption Period: August 5, 2012 – August 5, 2015

73

Performance Site: UIC

Subject Population: Adult (18+ years) subjects only

Number of Subjects: 20

The specific exemption category under 45 CFR 46.101(b) is:

(2) Research involving the use of educational tests (cognitive, diagnostic, aptitude, achievement),

survey procedures, interview procedures or observation of public behavior, unless: (i) information

obtained is recorded in such a manner that human subjects can be identified, directly or through

identifiers linked to the subjects; and (ii) any disclosure of the human subjects' responses outside

the research could reasonably place the subjects at risk of criminal or civil liability or be damaging

to the subjects' financial standing, employability, or reputation.

You are reminded that investigators whose research involving human subjects is determined to be exempt from the federal

regulations for the protection of human subjects still have responsibilities for the ethical conduct of the research under state

law and UIC policy. Please be aware of the following UIC policies and responsibilities for investigators:

1. Amendments You are responsible for reporting any amendments to your research protocol

that may affect the determination of the exemption and may result in your research no longer

being eligible for the exemption that has been granted.

2. Record Keeping You are responsible for maintaining a copy all research related records in a

secure location in the event future verification is necessary, at a minimum these documents

include: the research protocol, the claim of exemption application, all questionnaires, survey

instruments, interview questions and/or data collection instruments associated with this

research protocol, recruiting or advertising materials, any consent forms or information

sheets given to subjects, or any other pertinent documents.

3. Final Report When you have completed work on your research protocol, you should submit a

final report to the Office for Protection of Research Subjects (OPRS).

4. Information for Human Subjects UIC Policy requires investigators to provide information

about the research protocol to subjects and to obtain their permission prior to their

participating in the research. The information about the research protocol should be presented

to subjects in writing or orally from a written script. When appropriate, the following

information must be provided to all research subjects participating in exempt studies:

a. The researchers affiliation; UIC, JBVMAC or other institutions,

b. The purpose of the research,

c. The extent of the subject’s involvement and an explanation of the procedures to be

followed,

d. Whether the information being collected will be used for any purposes other than the

proposed research,

74

e. A description of the procedures to protect the privacy of subjects and the

confidentiality of the research information and data,

f. Description of any reasonable foreseeable risks,

g. Description of anticipated benefit,

h. A statement that participation is voluntary and subjects can refuse to participate or can

stop at any time,

i. A statement that the researcher is available to answer any questions that the subject

may have and which includes the name and phone number of the investigator(s).

j. A statement that the UIC IRB/OPRS or JBVMAC Patient Advocate Office is available

if there are questions about subject’s rights, which includes the appropriate phone

numbers.

Please be sure to:

Use your research protocol number (listed above) on any documents or correspondence with

the IRB concerning your research protocol.

We wish you the best as you conduct your research. If you have any questions or

need further help, please contact me at (312) 355-2908 or the OPRS office at

(312) 996-1711. Please send any correspondence about this protocol to OPRS at

203 AOB, M/C 672.

Sincerely,

 Charles W. Hoehne, B.S., C.I.P.

Assistant Director, IRB # 2

Office for the Protection of Research

Subjects

cc: Peter C. Nelson, Computer Science, M/C 152

 Jason Leigh, Computer Science, M/C 152

75

VITA

EDUCATION
Ph.D., Electronic Visualization Laboratory (EVL), Computer Science Department,

University of Illinois at Chicago (UIC) [Aug, 2006 – May, 2013]

M.S. Computer Science Department,

University of Southern California (USC) [Aug, 2003 – May, 2006]

B.E. Electronic and Electric Engineering Department,

Hong-Ik University, Seoul, South Korea [Mar, 1995 – Feb, 2002]

PROFESSIONAL EXPERIENCE
Research Assistant, EVL, UIC [2008 – 2013]

Teaching Assistant, UIC [2007 – 2008]

PROFESSIONAL ACTIVITIES

Demonstrations:

 Electronic Visualization Laboratory (EVL), Chicago, IL. Assist with EVL technology

demonstrations to University administration, students (Engineering Week, CS Open House,

Engineering 100), and VIPs (Disney Studios, NTT Network Innovation Laboratories, etc.)

 Supercomputing 2011 (SC’11), Seattle, WA. Demonstrated SAGE’s multi-user collaboration

and interaction technologies and real-time high-definition (HD) image streaming on tiled-

display walls.

 Supercomputing 2010 (SC’10), New Orleans, LA. Demonstrated SAGE.

 ON*VECTOR International Photonics Workshop 2009, Calit2, UCSD, San Diego, CA.

Demonstrated SAGE’s ability to stream uncompressed 4K (4 times the resolution of HDTV)

to a tiled-display wall.

76

Presentations:

 Supercomputing 2011 (SC’11), Seattle, WA. Presented “Single machine driven tiled-display

wall: SAGE-Next,” SAGE Birds-of-a-Feather session attended by ~50 international SAGE

users.

 ACM Multimedia System 2010, Scottsdale, AZ. Presented the paper “Multi-Application

Inter-Tile Synchronization on Ultra-High-Resolution Display Walls”.

 ACM Ultrascale Visualization Workshop, Supercomputing 2009, Portland, OR. Presented

“Remote Visualization of Large Scale Data for Ultra-High Resolution Display

Environments”.

JOURNAL PUBLICATIONS
1. Nam, S., Reda, K., Renambot, L., Johnson, A., Leigh, J., “Multiuser-Centered Resource

Scheduling for Collaborative Display Wall Environments,” Future Generation Computer

Systems. (Under review)

2. Leigh, J., Johnson, A., Renambot, L., Peterka, T., Jeong, B., Sandin, D.J., Talandis, J.,

Jagodic, R., Nam, S., Hur, H., Sun, Y., “Scalable Resolution Display Walls,” Proceedings of

the IEEE, Vol. 101, No. 1, pp. 115-129, Jan. 2013.

3. Jeong, B., Leigh, J., Johnson, A., Renambot, L., Brown, M., Jagodic, R., Nam, S., Hur, H.,

“Ultrascale Collaborative Visualization Using Display-Rich Global Cyberinfrastructure,”

IEEE Computer Graphics and Applications, Vol. 30, No. 3, May/June 2010.

CONFERENCE PUBLICATIONS
4. Nam, S., Deshpande, S., Vishwanath, V., Jeong, B., Renambot, L., and Leigh, J., “Multi-

Application Inter-Tile Synchronization on Ultra-High-Resolution Display Walls” Multimedia

Systems, Arizona, ACM, 2010.

5. Takahashi, H., Yamamoto, T., Takizawa, M., Kamatani, O., Nam, S., Renambot, L., Leigh,

J., Vishwanath, V., “Leveraging end-host parallelism to achieve scalable communication

bandwidth utilization,” Photonics Society Winter Topical Meeting Series, IEEE, 2010.

6. Nam, S., Jeong, B., Renambot, L., Johnson, A., Gaither, K., and Leigh, J., “Remote

Visualization of Large Scale Data for Ultra-High Resolution Display Environments,”

Ultrascale Visualization Workshop, Portland, Oregon, ACM/IEEE Supercomputing 2009.

7. Vishwanath, V., Nam, S., Renambot, L., Leigh, J., Takahashi, H., Takizawa, M., Kobayashi,

S., Kamatani, O., Ishida, “Achieving large bandwidth by leveraging parallelism in end-hosts

and networks,” Summer Topical Meeting, 2009. LEOSST '09. IEEE/LEOS, 2009.

8. Vishwanath, V., Leigh, J., Nam, S., Renambot, L., Shimizu, T., Kamatani, O., Hirokazu, T.,

Takizawa, M. “The Rails Toolkit - Enabling End-System Topology-Aware High End

Computing,” 4th IEEE International Conference on e-Science, Indianapolis, Indiana, IEEE,

2008.

77

9. Tsukishima, Y., Hirano, A., Taniguchi, A., Imajuku, W., Jinno, M., Hibino, Y., Takigawa,

Y., Hagimoto, K., Xi, W., Renambot, L., Jeong, B., Jagodic, R., Nam, S., Leigh, J., DeFanti,

T., and Verlo, A., “The First Optically-Virtual-Concatenated Lambdas over Multiple

Domains in Chicago Metro Area Network Achieved Through Interworking of Network

Resource Managers,” 12th Optoelectronics and Communications Conference (OECC 2007) /

16th International Conference on Integrated Optics and Optical Fiber Communication

(IOOC), Yokohama, Japan, July 9-13, 2007. (Best Paper Award)

S KILLS
C/C++, Object Oriented Programming, UI framework (Qt SDK), Multithreading, Message

Passing Interface (MPICH2), Scientific Visualization (VTK), Scripting languages (Shell, Perl,

Tcl/Tk), Revision Control (SVN/GIT), and Unix/Linux servers.

PROFESSIONAL MEMBERSHIP

[2009 – present] ACM and IEEE student member.

