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SUMMARY 

Data-intensive e-Science applications are run by global cyberinfrastructure where 

visualization platforms, scientific instruments, computing and storage resources are distributed 

over several locations and connected by high-speed networks. The enormous amount of data 

produced by these applications poses major challenges to researchers who need to look at, 

analyze, and make sense these massive troves of scientific data. To ensure high productivity, 

researchers need cost-effective tools that can be integrated in their work environments. 

Visualization has proven extremely effective throughout the various stages of the scientific 

inquiry process when one needs to analyze and interact with large data volumes. With 

appropriate visualization, one can verify the correctness of a complex simulation model, get 

insight into the model, and communicate results to other in an intuitive way. With large-scale, 

high-resolution tiled-display walls, the efficacy of visualizations can be greatly amplified 

because of the unique way the display walls can present visualizations to users. Modern large-

scale display wall technology such as the Scalable Adaptive Graphics Environment (SAGE) and 

its successor (SAGE-Next) are designed to bring high-resolution visualizations to users over 

high-speed networks. Moreover, these display wall technologies are unique in that they enable 

highly collaborative visualization environments by supporting multi-user inputs on multiple 

visualizations simultaneously.  

Traditionally, tiled-display walls have been built from a cluster of computers due to the 

limited graphics capability of a single display node. With the emergence of today’s multi-head 

technologies however, the graphical capabilities of a single computer node has been greatly 

amplified. This empowers a single computer to drive a large-scale collaborative display wall, in 

many cases eliminating the need for a computer cluster, which significantly reduces the cost of  
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SUMMARY (CONTINUED) 

ownership and maintenance of these environments. However, large-scale collaborative display 

wall environments create user interaction patterns that are very different from traditional single-

user desktop environments. This poses a challenge in resource management when a collaborative 

display wall is driven by a single-machine because traditional Operating System’s resource 

management focuses on system-level fairness and job completion throughput without knowing 

what users might be interested in.  

This dissertation presents a resource scheduling framework for multi-user collaborative thin-

client display wall environments where multiple users can interact simultaneously with multiple 

visualizations that are streamed from distributed computing and storage resources over high-

speed network. A model-based application priority assessment that reflects the degree of users’ 

interests on contents on the wall is presented. The model takes applications’ visual states, user 

interactions, and the wall’s usage pattern as inputs and quantifies relative importance of 

applications. Resource estimation and allocation scheme determines perceptually fair resource 

distribution based on the importance of applications. A user study is conducted to evaluate the 

framework’s fair resource distribution based on multi-user awareness. 
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1. INTRODUCTION 

The NSF-funded OptIPuter project (Optical networking, Internet Protocol, computer 

storage, processing and visualization technologies) where distributed computational resources 

are tightly coupled over high-speed optical network is envisioned by a team of researchers at 

Electronic Visualization Laboratory (EVL) and University of California, San Diego 10 years ago 

[Smarr, '03]. The goal of the OptIPuter project is to deliver an architecture where terabytes and 

petabytes of distributed data generated by e-Science applications can be easily accessed over the 

optical networks called LambdaGrid in order for scientists to visualize, interact, and analyze 

their data. The tiled-display wall system called LambdaVision and graphics middleware called 

Scalable Adaptive Graphics Environment (SAGE) [Jeong, '10] that drives the LambdaVision that 

is located at users’ end are the outcomes of the OptIPuter project. Figure 1 shows the 

LambdaVision driven by SAGE. Essentially, the OptIPuter project’s model where users access 

remotely distributed resources over network is an early instantiation of today’s growing Cloud 

computing model.  

 

Figure 1. The 100-megapixel LambdaVision tiled-display wall driven by a cluster 

of 28 computers and run by Scalable Adaptive Graphics Environment (SAGE). 
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Visualization has an important role in a scientific workflow where a simulation result needs 

to be presented in a manner that it can be analyzed easily. It can make the process of verifying a 

scientific model simpler by allowing more insight into the model. Many researchers are now 

adopting large-scale tiled-display wall environments because it is the only way to view the huge 

amount of complex data. It is proven that the ability to juxtapose multiple visualizations 

simultaneously on the display walls that have expansive size and exquisite resolution greatly 

helps researchers for their scientific analysis and discovery process [Andrews, '10; Ball, '05; 

Czerwinski, '06; Haller, '10; Leigh, '06; Plaue, '09; Tan, '03; Yost, '07].  

 

Figure 2. LambdaVision displays two ParaView sessions that render NCSA’s storm 

data remotely on a high-performance render server. The rendered images are streamed 

in parallel to LambdaVision display wall driven by SAGE. 

 

A common way to build large-scale display walls is to tile multiple individual displays and 

connect them to a cluster of computers. Cluster middleware is needed to enable users to work 

with the wall as a single contiguous display surface. Traditional tiled display middleware such as 

CGLX [Doerr, '11], Chromium [Humphreys, '02] and Equalizer [Eilemann, '09], designed as 

large-scale visualization platforms, can be regarded as distributed graphic frameworks. They 

emphasis on parallel rendering of large-scale datasets using a computer cluster, and are typically 
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aimed at cases where a single user interacts with a single application spanning the entire display 

wall. On the other hand, modern tiled display middleware such as the Scalable Adaptive 

Graphics Environment (SAGE) [Jeong, '06] and its successor SAGE-Next let users launch 

distributed visualization applications on remote clusters whose outputs are then streamed directly 

to display walls. This makes SAGE and SAGE-Next low-cost, “thin-client” visualization 

endpoints where such visualizations are rendered by remote computing resources and streamed 

over an optical network to a display wall. An example where SAGE is coupled with a well-

known scientific visualization tool, ParaView [Cedilnik, '06] is shown in Figure 2. Details of 

ParaView and SAGE integration is presented in [Nam, '09]. SAGE and SAGE-Next also provide 

highly collaborative visualization environments by enabling multiple users to simultaneously 

view and interact with these streamed visualizations on large-scale display walls [Jagodic, '11]. 

An overview as well as real-world use cases of the thin-client display wall paradigm is discussed 

more in [DeFanti, '09; Smarr, '09].  

Middleware for large-scale tiled-display walls are typically designed to run on a computer 

cluster because, historically, a computer cluster has been necessary to drive these large-scale 

display walls. However, the emergence of multi-headed graphic technologies (such as NVIDIA’s 

Scalable Visualization Solutions and AMD’s Eyefinity), has greatly amplified the graphical 

capabilities of a single computer node. Also displays’ physical dimension and image resolution 

are rapidly increasing. These empower a single computer to drive a large-scale display wall, in 

many cases eliminating the need for a computer cluster, which significantly reduces the cost of 

ownership and maintenance of these environments. Furthermore, applications can now run 

natively on a single-machine without the need to parallelize them, thus simplifying application 

development for large-scale display walls. Figure 3 shows a 20x6 foot large-scale collaborative 
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tiled-display wall driven by a single computer machine at the Electronic Visualization 

Laboratory at the University of Illinois at Chicago. 

 

 

Figure 3. A single machine-driven tiled-display wall run by SAGE (top) and 

SAGE-Next (bottom) at the Electronic Visualization Laboratory in the University 

of Illinois at Chicago. The 20′ by 6′ display wall is made up of 18 LCD panels 

with a total resolution approximately 18.8 megapixels. 

 

Driving a large-scale collaborative display wall with a single computer however, presents 

significant challenges in resource management. A display wall middleware relying on general-

purpose operating system resource scheduling may fail to provide a good user experience in 

large-scale collaborative display wall environments where multiple users interact simultaneously 

with multiple applications. A general-purpose operating system schedules resources based on 
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system-wide performance measures such as job completion throughput and fine-grained fairness. 

In large-scale collaborative display wall environments, multiple users may simultaneously view 

and interact with Cloud media data such as pictures, documents, and movies, VNC-shared 

desktop screens, and interactive scientific visualization. Users can also move, resize, and arrange 

windows on the display wall in a variety of layouts. The number of applications running on the 

system, their layouts on the display, and the user-interaction pattern in these systems can differ 

drastically from traditional desktop environments where a single user typically interacts with a 

limited number of applications. This difference makes traditional resource scheduling schemes 

unfit for collaborative display wall environments. 

 

Figure 4. Examples of application layout on a large-scale display wall. From (a) 

to (c), application layout can be classified by amount of overlapped windows; (a) 

as least overlapping and (c) as most overlapping. In (d) the wall is partitioned and 

each partition can employs a different layout. 

 

Figure 4 shows examples of layouts on a large-scale collaborative display wall with varying 

degrees of window overlap. A traditional operating system will try to ensure fair sharing of 

system resources in all cases depicted in Figure 4, while fair sharing might only be useful in the 
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case depicted in (a). When the window layout is arbitrary as in (b), giving more system resources 

to windows with which users are interacting can achieve a better user experience than a fair 

sharing. Similarly, a better user experience can be achieved in (c) if more system resources are 

allocated to the application whose window is in the foreground. For the case shown in (d), a fair-

sharing scheme is appropriate for applications in the left section of the display, while the right 

section requires a scheduling scheme similar to (c). This dissertation identifies two issues when a 

general-purpose operating system scheduler is employed in large-scale collaborative display wall 

environments. 

 Process priority is typically based on process behavior rather than user behavior. Thus the 

priority in traditional scheduling schemes does not reflect the degree of user interest. 

 Resource requirements for applications vary and fine-grained, thread-level fairness in a 

general-purpose scheduler does not typically consider resource requirement of an application. 

Thus it can fail to provide fairness in terms of the quality experienced by users. 

Given the variety of layouts in large-scale collaborative display wall environments, the 

scheduling policy should not necessarily be based on system-wide job completion throughput or 

fine-grained, thread-level fairness. Rather, the scheduling policies should be based on window-

layout and user interaction criteria. For example, an appropriate scheduling policy might allocate 

more resources to applications that occupy the largest space on the wall, to applications that are 

least occluded, or to applications with which users are interacting. Implementing these policies 

can increase the perceived performance of the system, therefore providing a better user 

experience in a multi-user collaborative setting. The goal of our scheduling framework is to 

fairly distribute system resources to applications to optimize their performances as experienced 

by users. This dissertation calls this presentation fairness. 
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In this dissertation, a multi-user centered resource scheduling framework targeting a thin-

client display wall where visualizations are streamed to the display wall from remote high-

performance computers over high-speed networks is presented. To evaluate the effectiveness of 

the presented scheduling framework, the author conducted a user study where multiple users in 

groups of three subjects interacted simultaneously with applications on the display wall with and 

without the scheduling scheme presented in this dissertation. 

 

1.1 Summary of Contributions 

This dissertation presents a novel resource scheduling framework and implementation that 

achieves better responsiveness and interactivity for multi-user collaborative thin-client display 

wall systems by optimizing system’s resource allocations based on the unique usage patterns of 

the display wall. Although the framework is implemented for a display wall system driven by a 

single machine, the fundamental resource scheduling concept is applicable to a cloud-based 

visualization system that allows multi-user interaction on multiple applications simultaneously.  

An application priority model for multi-user collaborative display wall environments is 

presented. The priority model describes how user interactions with display walls can be 

interpreted to determine the applications that users are interested in at a given time. The model 

takes applications’ visual and interaction factors and the display wall’s usage pattern as inputs, 

and ascribes priorities to indicate the degree of relative importance of applications. This 

information is used to distribute resources among applications to achieve a better user 

experience.  

A scheme to estimate applications’ resource need is presented. Unlike traditional non-

clairvoyant schedulers, the scheduling framework in this dissertation takes applications’ resource 
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needs into account for the resource allocation in order to achieve user-perceived fairness, rather 

than system-level fairness. The framework estimates an application’s resource need based on 

user interactions to find the optimal resource allocation for the application. 

Finally, the scheduling framework is evaluated in a user study that was designed to simulate 

typical multi-user interaction patterns in thin-client display wall environments. An 

implementation of the graphics middleware called SAGE-Next for a collaborative display wall 

driven by a single machine was designed and developed to support the user study. The study 

demonstrates the efficacy of the scheduling framework when multiple users are interacting with 

applications simultaneously on the display wall. 

 

1.2 Document Structure 

Chapter 2 gives background of the presented framework in an aspect of graphics middleware 

that runs multi-user display walls in collaborative work environments. The motivation of the 

thin-client display wall systems and software architecture of the graphics middleware that 

implements the scheduling framework are introduced. Chapter 3 describes previous literature in 

job scheduling in traditional operation systems followed by scheduling schemes focusing on 

human-centered scheduling and real-time applications. The overview of the scheduling 

framework is presented in Chapter 4. The details of the scheduling framework follow. In Chapter 

5, the priority model for multi-user display walls is presented. In Chapter 6, the resource 

distribution scheme is described in detail. The evaluation of the scheduling framework is given 

in Chapter 7. Finally, the summary of the framework and future research direction is presented in 

Chapter 8 and 9. 
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2. BACKGROUND 

 

An overview of the collaborative thin-client tiled-display wall and two graphics middleware 

that run the display wall are introduced in this chapter. A brief history of the display wall 

LambdaVision and its software compartment SAGE are presented in Chapter 2.1. The next 

generation of SAGE, called SAGE-Next that was motivated by modern multi-headed graphics 

hardware trend, and this dissertation focuses on, is discussed in Chapter 2.2.  

 

2.1 Graphics Middleware for Display Walls 

The National Science Foundation’s OptIPuter project [Smarr, '09] inspired by the rapid 

growth in wide-area bandwidth with development in optical networking. OptIPuter project’s goal 

is to make large-scale data easily accessible to researchers regardless of their geographic 

locations by connecting them with optical networks. The ultra-high resolution tiled-display wall 

driven by commodity PC clusters that are connected to optical networks is one of the outcomes 

of the OptIPuter project. It is to provide a greater display area that can display multiple high-

resolution visualizations that are rendered remotely by high-performance computing resources 

and streamed to users through the network. Furthermore it enables communications via high-

definition video with colleagues while maintaining interactivity. The graphics middleware called 

SAGE is developed to enable these objectives. Figure 5 shows an array of 55 LCD panels driven 

by a cluster of 28 computers providing 100-megapixel seamless display surface (termed 

LambdaVision) run by SAGE.  
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SAGE can be viewed as a cluster operating system for thin-client display walls. It presents a 

seamless display surface from clustered display nodes, manages to launch visualization 

applications remotely, handling multiple parallel streams simultaneously, and provides multi-

user interaction interface. A parallel streaming model where an image is partitioned and streamed 

in parallel from a remote application is illustrated in Figure 6. An application embeds the 

SAGE’s Application Program Interface (SAGE API) in it. SAGE API is responsible for 

partitioning the image passed internally from the application and streaming of the image 

fragments to corresponding display nodes in parallel.  

 

Figure 5. 100-megapixel LambdaVision display used in a research meeting at the 

Electronic Visualization Laboratory at the University of Illinois at Chicago. The 

participants stream their desktop screens to the display wall using VNC. Multiple 

visualizations and HD video of remote participant are streamed to the display 

wall. 

 

One of the challenges in typical parallel computing is data synchronization. In a clustered 

display wall system, proper synchronization between display nodes is crucial to present seamless 

imagery to users. The problem arises when there are multiple visualizations, each can run at 
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different frame rate, simultaneously run on a display wall. A single display node might have to 

receive and display multiple different image fragments when multiple application windows are 

overlapped on the display node. Figure 7 depicts this problem. Two visualizations each run at 

different frame rate are streamed and displayed on the 3 by 3 tiled-display wall in Figure 7. The 

display node at the center [2,2] receives and displays two different streams simultaneously as 

shown in the right side of Figure 7. After the initial state at time t0, the next image fragments of 

each visualization (i+1 and j+1) are received at the display [2,2] while display [1,2] is still 

waiting for the next image fragment (i+1) of the visualization 1. The graphics swap buffer is 

needs at display [2,2] at time t1 regardless of the visualization 1’s state due to visualization 2’s 

higher frame rate. As a result, the image fragments of the visualization 1 at the display node [1,2] 

and [2,2] shows inconsistent image frames causing discrepancy in the visualization. Intuitively, 

one can solve this problem by enforcing each visualization synchronizes its image fragments 

before uploading them to the graphics memory at each display node. However, this approach is 

not scalable as the number of display nodes and the number of visualizations increases. A 

scalable, two-phase inter-node synchronization algorithm where a single synchronization master 

node ensures each visualization’s image synchronization and each display node’s graphics swap 

buffer synchronization is presented in [Nam, '10]. 
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Figure 6. The parallel image streaming model of SAGE. The image rendered by a 

remote rendering machine is first partitioned into multiple fragments by the 

SAGE API and streamed in parallel to SAGE’s display nodes. 

 

Figure 7. An example where two visualizations each run at different framerate are 

streamed and displayed on the 3 by 3 display wall. The display node at the center 

[2,2] receives and displays two different streams simultaneously. After the initial 

state at time t0, the next image fragments of each visualization (i+1 and j+1) is 

received at the display [2,2] while display [1,2] is still waiting for the next image 

fragment (i+1) of the visualization 1. The graphics swap buffer is needs at display 

[2,2] at time t1 regardless of the visualization 1’s state due to visualization 2’s 

higher framerate.  

 

As with the emergence of graphics hardware that can support larger image size and multiple 

display heads, new software termed SAGE-Next is designed to utilize this multi-headed graphics 
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hardware trend. The motivation that drove the single-machine display wall solution is to make a 

large-scale display wall system easier to build and manage for users who are not expert in 

managing a computer cluster hardware and software. Thereby wider range of users can benefit 

from the highly collaborative work environments.  

One of the key differences between SAGE-Next and SAGE is that SAGE-Next simplifies 

the parallel streaming architecture of SAGE by running a display wall with a single machine. 

The images rendered remotely do not have to be fragmented and streamed in parallel. The 

overhead incurred at the display wall side due to the need for synchronization can be lifted. The 

simplified architecture also allows application developers to build native applications without 

needing them to parallelize their applications.  

However, the simplified architecture poses significant challenges in resource management. 

Compared to a cluster of computers, a single machine’s resource is much limited. High 

resolution images can not be streamed in parallel in order to distribute network overheads over 

multiple display nodes as in a cluster-driven display walls. In addition to the SAGE’s core 

abilities (image streaming and multi-user interaction), the unique attribute of the SAGE-Next lies 

in its resource scheduling framework that is to increase user-perceived performance of a single 

machine whose resources are limited compared to that of a cluster. Thus, the multi-user centered 

resource scheduling framework presented in this dissertation is based on the single-machine 

driven collaborative display wall environments where multiple users can launch and 

simultaneously interact on multiple visualizations that are streamed from remote compute and 

storage resources. The scheduling framework presented in this dissertation is implemented as a 

part of SAGE-Next.  
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2.2 SAGE-Next Architecture 

The core components of SAGE-Next are comprised of the Scene, a Scene Management 

Layer, a UI server, an Application Launcher, an Interaction Manager, The Performance Monitor, 

and the scheduler. Figure 8 illustrates these components and their relationships.  

Multiple message streams from users are serialized at the UI server. The serialized messages 

are then pre-processed to be handled by other components. If the message is an interaction type 

such as interaction with a mouse device then the message is forwarded to the Interaction 

Manager. If the message is intended for launching an application instance then the message is 

sent to the Application Launcher.  

A user launches an application by sending a request to the Application Launcher through the 

UI server. Either the Application Launcher or the application itself starts the corresponding 

remote process that generates and streams contents to the display wall. Therefore, in most cases, 

an application in the Scene consists of a network thread that receives contents from the remote 

resources and a mechanism to store and display the streaming contents. Also an application 

defines how to interact its contents and provides GUI. The Application Launcher then adds the 

instance of the application to the Scene. The Scene contains all the applications whose contents 

are displayed on the display wall and interacted by users. The Scene Management Layer 

included in the Scene manages applications’ layout on the display wall. It also provides an 

interface for users to partition the display wall, save and restore sessions. Once an application is 

added to the Scene, user interactions are delivered to the application through the Interaction 

Manager that receives a stream of message strings from the UI server. The Interaction Manager 

is responsible for finding a valid recipient (typically an application or the Scene itself) of the 
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interaction by querying the Scene Management Layer and triggering a callback operation of the 

recipient of the interaction.  

 

Figure 8. Architectural diagram of SAGE-Next. Control message flow between 

components are illustrated. User interactions reach the scene and the applications 

in the scene through UI server. Performance monitor and the scheduler are 

responsible for scheduling resources. 

 

An application’s performance is continuously monitored and analyzed by the Performance 

Monitor. This information is sent to the Scheduler to make scheduling decisions. Finally, the 

Scheduler controls resource consumptions of applications by modulating their performances. The 

details of the Performance Monitor and the Scheduler are discussed in Chapter 4 and 6. 
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Figure 9 shows the in-depth look of an application runs in SAGE-Next. The basic 

components of an application are the application-scene interface, GUI components, visual 

contents, contents receiving thread, and a performance tool. The application-scene interface 

enables the application to communicate with the scene and allows the Scene to manage the 

application’s geometry in the Scene. The multi-user-aware GUI components provide base 

interactivity that is aware of multi-user interactions and communication with the Interaction 

Manager. Application developers use the GUI components to provide multi-user interactions in 

their applications. The contents receiving thread receives a network stream of visual contents 

from remote resources such as Cloud. The visual contents are then presented on the display wall 

by the Scene. The performance tool in an application measures the application’s performance 

and reports to the Performance Monitor. It also receives and conforms the performance demand 

set by the scheduler. This procedure is discussed in detail in Chapter 6. 
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Figure 9. The components of a SAGE-Next application. An application 

communicates with the Scene through the application-scene interface and displays 

its visual contents. User interactions are handled by UI components in response to 

the interaction manager. The performance tool is responsible for monitoring the 

performance information and conforming the scheduler’s demand.  
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3. RELATED WORK 

 

The job scheduling is deeply researched area in Computer Science. Typically, main agenda 

in job scheduling research includes the fairness, no starvation, and resource utilization. This 

chapter introduces traditional scheduling policy in general-purpose operating systems first in 

Chapter 3.1 followed by early and recent approaches in human-centered scheduling research in 

Chapter 3.2. In Chapter 3.3, various scheduling research focusing on real-time applications are 

introduced. 

 

3.1 Process Scheduler in Operating Systems 

The common objectives of modern general-purpose operating system schedulers are high 

job completion throughput, interactivity, and fair sharing. In particular, the time sharing Linux 

operating system’s scheduling scheme uses a notion of a time slice which sets the maximum time 

during which a process is allowed to use a processor. Thus, high job completion throughput can 

be achieved by giving the time slices only to processes that are ready to run. If the process either 

finishes or has to wait for resources to be available then it can be preempted so that no idle 

process occupy a processor wasting the computing resource. The preemptive, time-sharing 

model also enables fair sharing of resources by maintaining a counter that represents a priority of 

a process. The counter for a process keeps decreasing its value while the process occupies a 

processor. The scheduler may schedule processes in a manner that can keep the counter values as 

uniform as possible to be fair. Fast response time for interactive processes can be achieved by 

using the counter as well. A process waiting for I/O devices increases its counter so that the 
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process can have higher counter value by the time when the process is ready to run. This can 

make processes with smaller counter values (such as a batch process that consumed lots of 

processor times while the interactive process was waiting for I/O devices) be preempted by a 

scheduler. There are books and articles that explain modern Linux scheduler’s scheduling policy 

and designs as in [Bovet, '05; McKusick, '04]. Moreover, there are many research in process 

scheduling deal with issues with real-time processes where meeting time-constraints of the 

processes is crucial. This is discussed more in Chapter 3.3. Also the issues with efficient process 

migration policies in modern multi-core hierarchical memory architecture are well studied too 

[Chandra, '05; Corbet, '04; Durand, '96; Vishwanath, '08]. 

Aforementioned modern time sharing, general-purpose operating system schedulers 

characterized as a non-clairvoyant scheduling where the scheduler does not rely on processes’ 

characteristics [Motwani, '93]. This is because fast turnaround time (a total time taken by a 

scheduler to finish a job) is important in the time sharing systems. While the non-clairvoyant 

scheduling scheme for a typical desktop environments achieves its goals as explained, it lacks of 

ability to discover what users are interested in and schedule jobs in a way that the performance of 

the system can be perceived to be responsive and fair in multi-user collaborative environments 

mainly because scheduling decisions are made based on processes’ behavior rather than users’ 

interactions with the applications run in the system. 

 

3.2 Human Centered Scheduling 

The main goal of human-centered scheduling schemes oriented toward optimizing user 

perceived interactivity rather than system-wide performance measures. It is based on a 

hypothesis that performance measures a system wants to achieve might not necessarily be what 
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users’ want. The Interactive Scheduling scheme presented in [Evans, '93] identifies interactive 

processes by monitoring input devices’ activities in the X Server. The scheduler then assigns 

higher priorities to those processes and prioritizes CPU and memory allocation to them in order 

to increase the responsiveness of interactive processes. Etsion et al. takes a similar approach to 

improve user interactivity [Etsion, '04]. In addition to monitoring user input events in the X 

Server, they also use the ratio of pixel-change to window-size to estimate the application’s 

importance to the user. Their experiment results show their approach result very low quality 

degradation of user interactive jobs even when the system is overloaded. Zheng et al. presents a 

configurable kernel module that monitors I/O channels to identify interactive processes based on 

user-access patterns and the usage of those I/O channel [Zheng, '10]. They tested this approach 

with various combinations of applications and showed wide-range of applications can be benefit 

from their approach.  

While the above work aims to improve user experience with interactive applications, the 

solutions proposed are limited to traditional desktop environments where a single user interacts 

with the system using traditional I/O devices such as keyboard and mouse. Therefore, these 

scheduling schemes cannot be applied directly to large-scale collaborative display wall 

environments, which introduce user-interaction patterns and application window layouts that are 

drastically different from desktop computer systems.  

 

3.3 Real-Time Scheduling 

Real-time Schedulers are aimed at time-sensitive real-time applications that impose strict 

completion-time requirements (deadlines) even when the system is overloaded. Real-time 

schedulers employ an unfair scheduling of resources that is biased towards a specific set of 
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applications to meet their deadlines. Real-time schedulers can be in principle adapted to increase 

the perceived performance of a system. In the case of multi-user tiled display wall environments, 

resource allocation can be biased towards applications that are presumed to be receiving most of 

users’ attention, thus maximizing the perceived performance of the system.  

While real-time schedulers have been used in interactive multimedia systems, they have not 

been tested in large-scale display wall environments. Moreover, large-scale displays offer unique 

affordances that allow collaborative, multiuser interaction with a large number of applications 

simultaneously. Therefore, a successful scheduling scheme for these environments should be 

specifically tailored to address these unique characteristics in order to increase the user-perceived 

performance of the environment. This section briefly surveys work on various real-time 

scheduling techniques.  

 

3.3.1 Rate-Monotonic and Earliest Deadline First 

Liu and Layland [Liu, '73] showed that their rate-monotonic algorithm meets all periodic 

tasks’ deadline, bounded on processor utilization from 69% to nearly 100%. In rate-monotonic 

algorithm, priorities are assigned simply based on the progression rate of periodic tasks; tasks 

with shorter periods receive high priority. The Earliest Deadline First (EDF) scheduling 

algorithm in their work assigns highest priority to the task whose deadline is the nearest. EDF 

achieves higher CPU utilization at a cost of dynamic priority assignment. Such real-time 

scheduler requires precise prior knowledge in task execution time and cannot be applied when 

system is overloaded. Moreover this greedy approach is designed to minimize missed deadlines 

rather than to increase user-perceived performance. However, the principle of rate-monotonic 

and EDF scheduling is employed in many real-time scheduling schemes.  
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The scheduling scheme presented in this dissertation is different in that the priorities are 

assigned based on the degree of users’ interests on applications on a large display wall. Also 

supporting dynamic priority assignment is crucial in order to reflect the temporal changes in 

users’ interests in the priority. 

 

3.3.2 Resource Reservation 

Resource Reservation is a restrictive approach to ensure that time-sensitive applications 

meet their deadlines. To be effective, the admission control is required to provide a guarantee on 

meeting real-time requirement of running tasks. The admission control rejects an application if 

the amount of resource that the application requests exceeds the amount of remaining resource in 

the system. A mechanism to reserve processor capacity in conjunction with the rate-monotonic 

algorithm is illustrated in [Mercer, '94]. Real-Time Mach adopts the resource reservation 

technique in its scheduler to support real-time applications [Tokuda, '90]. Less restrictive forms 

of the reservation scheme where a thread is allowed to negotiate CPU-time based on its rate 

progression is introduced in [Yau, '97]. Jones et al. present a system with a CPU scheduling 

algorithm that ensures minimum guaranteed execution rates of real-time processes [Jones, '97]. 

In resource reservation scheme, estimating the resource requirement of a task prior to the 

reservation can be challenging. Accurate estimation of resource requirement based on application 

profiling is well studied in [Urgaonkar, '02].  

Conceptually, this dissertation employs similar notion of resource estimation and less 

restrictive reservation. The scheduling scheme in this dissertation differs in that it does not reject 

an application nor negotiate resources. The resource allocation (resource reservation in this 
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context) is entirely based on applications’ resource requirements and dynamic priorities. Thus, it 

estimates resource requirements in real-time by monitoring user interactions on the applications 

 

3.3.3 Gang Scheduling 

In Gang Scheduling, similar processes are grouped together (ganged) and form a 

hierarchical structure so that different scheduling policies can be applied to different processes 

groups. This approach is often combined with the resource reservation scheme. Real-Time Mach 

groups one or more processors to form a processor set and applies different scheduling policies 

on processor sets. Golub et al. present an improved scheduling paradigm over Real-Time Mach 

with emphasis on supporting a combination of time-critical and conventional applications 

[Golub, '94]. In the CPU allocation framework for multimedia OS proposed by Goyal et al., CPU 

bandwidth is partitioned hierarchically by different groups of applications each with different 

resource requirements [Goyal, '01]. Anderson presents an approach to increase cache utilization 

for real-time applications by grouping processes in multi-core architecture [Anderson, '06]. The 

Gang Scheduling scheme can be useful for a system that needs to support different types of 

application instances running simultaneously because it can effectively prevent compute-

intensive batch applications from degrading real-time applications performance. The scheduling 

scheme presented in this dissertation is similar in concept where it prevents applications that are 

not receiving users interests from degrading the performance of applications that users are 

interested with. Thus grouping applications based on their importance is important in this 

dissertation whereas the gang scheduling groups applications that have similar performance 

characteristics. 
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3.3.4 Proportional Sharing 

The goal of proportional sharing is to distribute system resources to all running tasks 

proportional to their relative weight. Once the weight of a task is defined, calculating 

proportional weight of the task is straightforward. Proportional sharing focuses on fair sharing of 

resources based on weight and is analogous to Weighted Fair Queuing. The EDF scheduling in 

conjunction with the notion of Virtual Time [Zhang, '90] is introduced in [Stoica, '96]. Stoica et 

al. also showed proportional sharing combined with resource reservation scheme in [Stoica, '97]. 

A virtual time algorithm that focuses on meeting real-time requirements while achieving 

proportional fairness is shown in [Duda, '99]. Nieh and Lam also present a similar scheduling 

algorithm in detail [Nieh, '03]. Chandra et al. presents how to readjust the weights in their 

proportional sharing algorithm in a multiprocessor environment [Chandra, '00]. The scheduling 

scheme in this dissertation adopts a similar notion of proportional sharing in which applications’ 

weights are determined based on a priority assessment model that reflects users’ interest in 

applications. However, the proportional sharing employed in the presented scheduling scheme 

considers applications’ resource needs in addition to their weights to achieve fair perceptual 

performance rather than fair resource distribution. 
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4. OVERVIEW OF SCHEDULING FRAMEWORK  

An overview of the scheduling framework presented in this dissertation is described. 

Chapter 4.1 discusses the types and the characteristics of applications in thin-client display wall 

environments this dissertation is centered on and defines the goals to achieve. The design of the 

scheduling framework and the components that consist of the scheduling framework are 

explained in Chapter 4.2. 

 

4.1 Applications  

In thin-client display wall environments, the content-generating applications typically run on 

remote high performance computers such as visualization clusters or Cloud resources. The 

rendered visualization is then streamed to the display wall system as a series of image frames 

over a high-speed network. In this dissertation, applications refer to processes running in a 

display wall whose contents are being streamed over the high-speed network. Therefore, user 

interactions on the applications on a display wall are interpreted at the display wall system and 

sent to the content-generating applications over the network.  

The types of applications in thin-client display wall environments can be distinguished 

further. In one case, the content-generating application has an optimal streaming rate that is 

known a priori. For examples, an application that streams a live video feed from a HD camera or 

a media player that streams a video over the network. Although the actual streaming 

performance can change depending on various conditions such as the available network 

bandwidth, the bandwidth needed for optimal performance can be derived beforehand. The 

resource requirement for the optimal streaming performance in this case can be calculated by 



 

 

26 

multiplying the image size with the frame rate set by the application. In the second case, the 

application does not specify an optimal streaming rate and usually run in a best-effort manner. 

The image quality or the frame rate varies as a user interacts with the application and thus the 

amount of resources needed for the optimal performance cannot be determined beforehand. 

Assuming unlimited resources, the resource need for the optimal performance at a given time in 

this case can be derived by the application’s actual resource utilization at a given time, which 

will vary as the user’s interaction-rate changes. An example of this is a scientific visualization 

tool where users can pan, rotate, or scale the visualized data, requiring an update only when users 

interact with the visualization. Therefore, the amount of resources for the optimal performance is 

defined to be time-varying in this dissertation. 

The goal of the scheduling framework is to fairly distribute system resources to applications 

to optimize their presentation qualities as perceived by users rather than ensuring fine-grained 

thread-level fairness from a system point of view. This is called presentation fairness. The 

quality of an application however is highly subjective and multi-dimensional. For example, the 

quality of a video game involves responsiveness and frame rate while the quality of an animation 

would be determined by image quality and frame rate. There are studies that focus on this matter 

[Kuan-Ta, '09; Wu, '09; Zixia, '12]. However, in the context where applications run at remote 

locations and stream their images to display walls, the quality of an application is defined as the 

ratio of the amount of resources being consumed by the application to the amount of resources it 

needs for optimal performance. For interactive applications where the amount of resource needed 

for optimal performance is not known a priori, this dissertation uses the application’s current 

resource utilization as the basis to estimate the amount needed for optimal performance. Chapter 

6.2 explains in detail how to estimate this. Prioritizing applications by estimating users interest in 
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the applications is crucial to achieve improved user-perceived performance. The model-based 

approach to prioritize applications is discussed in detail in Chapter 5. Once the priority and the 

resource needs of an application are determined, a weighted max-min fair sharing algorithm with 

these two variables can be applied to fairly distribute resources in order to achieve the 

presentation fairness. Chapter 6.4 discusses this in detail. 

 

4.2 Design  

The scheduling framework consists of the Priority model, the Performance Monitor, and the 

scheduling algorithm. Figure 10 depicts the relationship between each component. The Priority 

model collects information about application states such as the application’s window geometry, 

frequency of user interactions in order to assign a priority, reflecting the relative importance for 

each application. The Performance Monitor keeps track of performance measures from which it 

calculates the current resource utilization and estimates the resources need for the optimal 

performance of each application. The scheduling algorithm then uses the assigned priority and 

the application’s resource need to allocate resources.  

When an applications starts, the Performance Monitor acquires the resource need of the 

application. This information is either provided by the application itself or estimated by the 

Performance Monitor. For instance, the initial geometry of the application window can be used 

by the Performance Monitor to make an initial estimation of resource need of the application. 

Finally, the scheduler determines the initial amounts of resources that can be allowed to the 

application. The application’s visibility, user interaction information, and resource utilization 

changes as users interact with the application. These can change the priority and the resource 



 

 

28 

need for the optimal performance of the application. These two are used by the scheduler to 

determine the amounts of resource allowed for the application at every scheduling event. 

 

 

Figure 10. The components of the scheduling framework. Applications’ 

information such as their relative visibility, frequency of user interactions, and 

resource utilizations are collected and processed by the Priority model and the 

Performance Monitor. The proportional sharing scheduling algorithm then 

determines the amount of resources allowed for each application. 
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5. PRIORITY MODEL 

 

The Priority model describes the degree of users’ interests in applications running on a 

display wall, thus the priority assigned to applications should reflect what users perceive to be 

important as accurately as possible. To achieve this, the model looks at multiple factors related to 

the current layout of applications. The model observes three factors and produces a numeric 

priority value for each application. The Effective Visible Size (EVS) and the frequency of 

interaction with an application indicate spatial and temporal importance of an application, 

respectively. The wall usage pattern describes the historical importance of specific areas of the 

display wall. These three factors are combined together to produce the priority value. Each of the 

three factors are discussed and quantified in the following sections. 

 

5.1 Visual Factors 

An intuitive visual factor to determine an application’s importance is the application layout 

on the display wall as illustrated in Figure 11. The application layout can be categorized into four 

with two variables (the percentage window overlap and the number of application windows). A 

fair sharing might be useful in the tiled case (lower right corner) while more system resources 

need to be allocated to the application whose window is in the foreground in the stacked case 

(upper left corner) in Figure 11. However, prioritizing applications based on their visual factors 

can be simplified by using a single factor that tells how much of the application window is 

visible to users instead of enumerating various application layouts on the wall.  
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Figure 11. Application window layout on a display wall is categorized into four 

with two variables (the percentage window overlap and the number of application 

windows).  

 

The visible window size of an application as an indication of user interest is straightforward. 

Even though an application might not be receiving user input, a large window size can imply 

high interest. Similarly, if an application’s window covers a significant portion of the display 

wall, that application is more likely to draw users’ attention. Visible window size is defined as 

the total size of the visible, non-occluded areas of the application’s window in pixel. This can be 

easily calculated by subtracting the sizes of portions occluded by other applications. In this 

dissertation the size of effective visible area of an application’s content window is said to 

Effective Visible Size (EVS) and EVS of an application i at time t is denoted with EVS(i, t). The 

value of EVS can range from 0 to a maximum of i’s window size. For instances, EVS(i, t) = 0, if 

an application i’s window is completely obscured by other windows at time t, and EVS(i, t) = the 

size of i’s window if the entirety of i’s window is visible at time t. The EVS is the main factor to 

determine application’s visual importance but how much an application revealing its contents has 

to be considered too. Let’s assume a case where two different application windows A and B as 
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shown in Figure 12. Application A’s window size is larger than B’s window size. However, large 

portion of A’s contents are hidden by B’s window. Let the window sizes of A and B are 180 and 

100 respectably. The EVS(A) will be smaller than 180 due to the B’s window on top of the A’s 

window. Let EVS(A) be 100 in this example. The EVS(B) is equal to its window size because it 

is showing all of its content area. As a result, EVS(A) = EVS(B) giving the same visual 

importance to both A and B. In some cases a user might be interested equally in both A and B 

but generally it is safer to assume that a user is more interested in the application B than A in this 

particular application layout on a large display wall. 

 

 

Figure 12. An example of two application windows A and B where A’s window 

size is larger than B’s window size. The B’s window is stacked over the A’s 

window causing a large portion of the A’s contents are not visible to users.  
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The Exposure Ratio E is the ratio of EVS to the application’s window size. Thus E tells how 

much an application revealing its content on the display wall and it can be denoted by E = EVS / 

WindowSize. We multiply the EVS by the exposure ratio E to obtain the priority determined by 

the visual factor Pvisual. An application that has large effective visual area and exposure ratio is 

considered to be visually important. 

  

 

5.2 Interaction Factors 

The EVS alone is not enough to reflect user intentions. Imagine a display wall with tiled 

application layouts and users are focusing mostly on the applications on the left as depicted in 

Figure 13. Or assume two application i and j where Pvisual (i, t) >> Pvisual (j, t) at time t. A user 

could be interacting more frequently with application j while i’s priority is higher because it has 

a larger Pvisual value. Typically, user interactions through input devices such as mouse, gyro 

mouse, touch, gesture, or keyboard indicate user’s interest in an application directly.  

 

Figure 13. Examples of display walls where users are focusing more and 

interacting with the applications on the left. 
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However, it is hard to state exactly how much certain interactions on a specific application 

should increase (or decrease) its priority. There can be many different types of applications with 

different user interaction scheme. So, this dissertation provides a simplified mechanism to add 

interaction factor in the Priority model by letting application developers to call a function in a 

place where a user interaction event is handled in the application. The function simply 

increments the interaction counter for the application. Then the rate of changes in the number of 

interactions during a single scheduling interval is periodically monitored. This way we can tell 

how intense the recent interactions are for the application. The interaction factor Pinteract (i, t) is 

defined as the number of user interactions during the scheduling interval t-1 and t. 

 

5.3 Wall Usage Pattern 

Spatial layout and window arrangement patterns are likely to emerge if the display wall is 

used long enough. For example, in Figure 4 (d) where the wall is partitioned into two sections, 

the left section employs a tiled-layout which is appropriate for comparisons while the right 

section shows a single large application window. To get an insight into these patterns, imagine a 

virtual grid juxtaposed on the display wall, and use that grid to aggregate priority values of 

applications in each cell of the grid. The grid can be color-coded by the aggregated priority 

values forming a heat map; high priority values are indicated as high temperature. For example, 

in the top layout in Figure 14, most of the applications are positioned in the left portions of the 

wall, causing an increase in the temperature of the left portion of the wall. In the bottom case of 

Figure 14, the left side of the wall has higher temperature even though applications are scattered 

arbitrarily on the wall because users are interacting more with the applications on the left side. In 
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these cases, if a user brings an application window from the right side of the wall (cold region) to 

the left side of the wall (hot region), then the application will get an immediate priority bonus.  

 

 

Figure 14. Examples of display wall usage and the corresponding black-hot heat 

map of the wall. Darker cell indicates higher aggregate priority values. In the top 

figure, applications are mostly positioned in the left portion of the wall. In the 

middle figure, one application is maximized in the center of the wall. In the 

bottom figure, the applications are arbitrarily scattered, but the users are mostly 

interacting with the applications in the left portion of the display. 

 

A display wall is divided into multiple cells of a virtual grid. Each cell in the grid maintains 

a priority value calculated for the cell. Each cell c of the grid adds the priority value of each 

application i that overlaps with the cell at time t, proportion to the percentage overlap. The 
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percentage overlap (%overlap(c, i, t)) is the ratio of the size of the region of the cell c covered by 

the application i to the cell’s size. The temperature of the cell c at time t, Temp(c, t), is denoted as 

 Temp(c, t) = Temp(c,t -1)+ Pvisual (i, t) + Pinteract (i, t)( ) ×
%overlap(c, i, t)

100

æ

èç
ö

ø÷
iÎL

å   

where L is a set of applications whose window overlaps with the cell c. Note that Temp(c,t) only 

accounts Pvisual and Pinteract. This is because the visual and interaction factors are time-invariant 

whereas Ptemp holds historical meaning. Ptemp is meant to record only the spatial changes in users’ 

interests as time goes by. Finally, the temperature of an application i and time t, Ptemp(i, t), is the 

proportion of the sum of the temperature values of the cells on which i’s window span. This is 

denoted as 

   

where I is a set of cells under the application i’s window and G is a set of all cells in the grid. 

 

5.4 The Priority Function 

The final priority of an application is obtained by combining the three priority factors. The 

priority P of an application i at time t is defined as 

 P(i, t) = Wv Pvisual (i, t) + Wi Pinteract (i, t) + Wt Ptemp(i, t) 

where Wv, Wi, and Wt denotes weight factor for each components. In our framework, an absolute 

value of a priority is not important. The scheduler prioritizes resources based on a proportional 

basis, with priorities indicating application’s relative importance at a given time. The priority 

proportion of an application i at time t can be easily calculated by 
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where L is the set of all applications in the system. 

How to weigh each priority factor to produce a priority value for an application? Weighing 

each priority factor monotonously for all types of applications is not appropriate because 

different applications use different ways of presenting information and can possibly employ 

different interaction schemes. Thus, how to weigh each priority factor depends on the type of 

each application. For image-centric applications, the Pvisual can be the most important factor 

while the Pinteract can be important for interactive applications. For example, an application such 

as a movie player where Pinteract can be very low can still receive enough resources by giving it a 

high Wv. A scientific visualization tool where a user frequently zoom, rotate, and move a 

rendered model will want to set high Wi. The Ptemp will be useful when there is distinct wall 

usage pattern after long period of display wall usage. While an application developer can 

determine the application-specific weight factors to weigh each of the three priority factors, the 

inequality of each weight factors in general can be expressed as Wi > Wv > Wt  (where Wi + Wv + 

Wt = 1) based on the degree of straightforwardness of each priority component in reflecting users’ 

interest. 
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6. RESOURCE DISTRIBUTION 

 

Once the Priority model assigns priorities to applications, the scheduler distributes system 

resources among application by adjusting their presentation qualities to ensure presentation 

fairness. In this dissertation, an application’s presentation quality is the ratio of the amount of 

resources the application currently consumes to the amount of resources the application needs to 

achieve its optimal performance at a given time. This dissertation denotes the actual amount of 

resources an application i consumes at time t as Rcur(i, t) and the amount of resources the 

application i needs for the optimal performance at time t as Ropt(i, t). The presentation quality 

that the application i currently achieves at time t is denoted as  

 Qcur (i, t) = Rcur (i, t) / Ropt (i, t) (1) 

where Rcur can be obtained by measuring the amount of resources consumed by the application 

and Ropt is either provided by the application if the amount resources required for optimal 

performance is known a priori (such as applications streaming a video at a fixed frame rate) or 

derived based on Rcur for interactive applications. Chapter 6.2 discusses how to derive the 

amount of resources needed for optimal performance at a given time in the latter case. 

Presentation fairness is achieved by allocating resources so that the resulting presentation 

qualities (Qcur) are in accordance with applications’ priorities (applications with higher priorities 

achieve higher presentation qualities) rather than ensuring fine-grained fair sharing of resources 

(i.e. fair distribution of Qcur rather than Rcur). 

The Figure 15 illustrates the presentation fairness the scheduling framework in this 

dissertation tries to achieve. Assume six applications each have different Ropt as shown with red 

columns in the graphs. Operating systems ensure fair resource consumptions (Rcur) of all six 
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applications assuming their priorities are equal. This results un-fair presentation qualities 

between the applications as shown with the marked green line in Figure 15 (a). The fair quality 

(presentation fairness) can be achieved if resources are allocated proportional to each 

application’s resource need (Ropt) as shown in (b). 

 
(a) fair distribution of Rcur  

 
(b) fair distribution Qcur  

Figure 15. The presentation qualities (Qcur) of six applications A to F under 

different scheduling schemes. Each application has different amount of resource 

need represented by the bright red columns (Ropt) in each graph. The amounts of 

resources consumed by applications are represented with dark blue columns 

(Rcur). In (a), the amounts of resources are fairly allocated to all applications 

resulting unfair qualities due to the non-uniform resource needs of the 

applications. In (b), the amounts of resources are allocated proportional to each 

application’s resource need resulting a fair distribution of qualities as shown by 

the flat marked line in the graph. 

 

The scheduler also needs a system-wide variable indicating the total amount of available 

resources. It is because the scheduling framework determines the amounts of resources allowed 

for each application at every scheduling event instead of giving them an amount that is globally 

determined a priori. RTOTAL denotes the amount of total available resources seen by the scheduler 
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in the rest of the dissertation. Chapter 6.3 describes how we obtain this amount at every 

scheduling event.  

 

6.1 The Demanded Quality 

At every scheduling instance, the scheduler determines the maximum amount of resources 

allowed for each application. Thus, combined with Ropt of the applications, the scheduler sets the 

maximum presentation quality each application is allowed to achieve. This is called the 

demanded quality. The demanded quality set by the scheduler for an application i at time t can be 

denoted as  

 Qsched (i, t) = Rsched (i, t) / Ropt (i, t)  (2) 

 

where Rsched (i, t) is the maximum amount of resources allowed for an application i as determined 

by the scheduler at time t. The Qsched ranges from 0 to 1 because the scheduler does not demand 

resources more than the application needs (Rsched ≤ Ropt). A value of 0 indicates that no resources 

are to be allocated for the application, which implies that application should idle. The scheduling 

framework defines a special case where an application can consume as much resources as it can 

utilize if Qsched of that application is set to 1 (Rsched = Ropt). Thus, Qsched (i, t) = 100% indicates 

that the scheduler sets no limit on resource consumption for the application i, until Qsched (i, t + l) 

is set to a value less than 1. The amount of resources consumed by an application (Rcur) can be 

greater than the amount demanded (Rsched) and the amount derived for the optimal performance 

(Ropt) during the time period l under this special condition. This is because the scheduler can not 

know the global upper bound of Ropt of an interactive application. How much resources an 

interactive application needs varies as a user interacts. Even if the scheduler can set the global 
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upper bound of Ropt , it is not desirable because the resource need varies as a user interacts. For 

example, assume the Ropt is set with an upper bound known a priori and the application’s actual 

resource consumption (Rcur) is much less than the Ropt then the remaining resources (Ropt - Rcur) 

will be wasted. On the other hand, imagine a case where the system is overloaded and Ropt is not 

known a priori. Regardless of how actively a user interacts with the application (thus high 

priority for the application), Rcur of the application can not increase because the system is 

overloaded unless the scheduler finds out this particular situation and allocates more resources to 

the application (by taking resources from lower priority applications). The special case where 

Qsched = 100% is to find this situation and properly allocate resources.  

 

6.2 Estimating an Optimal Amount  

The optimal amount of resources for an application (expressed by Ropt) is the amount of 

resources the application needs to achieve its optimal presentation performance. This variable is 

defined as a function of time. In non-interactive applications, the optimal amount of resources is 

known a priori, thus Ropt is a fixed constant at any given time. For instance, a live video feed will 

have a fixed frame rate. On the other hand, imagine a case where a visualization is being 

rendered at a remote server and the rendered images are streamed to the display wall. The 

visualization server renders and streams images only when users interact with the visualization, 

unless the user plays a predefined animation. When the users interact, the visualization server 

streams in a best-effort manner. When there is no user interaction however, the scheduler does 

not have to allocate resources because there are no images that are being streamed. By changing 

the amount of resources for the optimal performance to reflect the resource needs, which can 

vary as users interact, the scheduler can allocate resources to applications more effectively by 
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allowing more resources to the ones that actually need those resources. Therefore, Ropt of an 

application has to reflect the resource need at a given time. To achieve this for interactive 

applications, the Performance Monitor estimates the amount of resource for the optimal 

performance at a given time based on the application’s resource utilization. 

 

L is the set of all applications in the system 

Ropt_multiplier  := M  

ESTIMATE_Ropt(t) 

  1: for each i in L   

  2:     if Ropt of i is known a priori then  

  3:          do nothing  

  4:     else if i is newly joined or woken up then   

  5:          Ropt := C   // make an initial estimation 

  6:     else if Rcur = Ropt then        

  7:          Ropt := Ropt_multiplier  Rcur   // the application could use more 

  8:     else  // Rcur<Ropt  or  Rcur>Ropt because Qsched = 100% 

  9:          Ropt := Rcur    

Figure 16. A function that estimates the optimal amount of resources for 

interactive applications. The first estimation occurs when the application is newly 

added to the system or when it is woken up from an idle state. The second 

estimation is to prevent a situation where the application’s potential optimal 

performance (expressed by Ropt) is stuck in a local maximum when the system is 

overloaded. 

 

Figure 16 illustrates pseudo-code that estimates and updates the optimal amount (Ropt) for 

interactive applications where their resource consumptions (Rcur) vary based on user interactions. 
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Ropt is first estimated with an initial value when the application starts or is woken up from an idle 

state. The initial value can differ by application, and the visual layout of the application’s 

window such as its frame size can be used to set an initial value. Most of the time Ropt is simply 

updated to Rcur, except when the application is consuming the optimal amount (Rcur = Ropt). 

Notice that Rcur = Ropt implies the amount of resources the scheduler allows (Rsched) is equal to 

the optimal amount (Ropt) which means the demanded quality (Qsched) was set to 1 in equation (2). 

This state further implies that the application might be able to consume more resources as long as 

there are enough resources in the system. Recall that Qsched = 100% sets no limit on resource 

consumption for the application for this case. If there exist enough idle resources in the system 

(the system is underloaded) then Rcur of the application is increased as long as the application can 

consume more, thus perform better. In this case, the condition Rcur > Ropt can occur and Ropt will 

be increased to the Rcur by the line number 9 in Figure 16. The Ropt can reflect the increased 

resource need of the application by letting it to run in best-effort manner.  

What happens if there are not enough resources in the system (the system is overloaded) 

when the Qsched of an application is set to 100%? Since the Ropt is updated to Rcur, the optimal 

amount will not reflect the application’s capability because the application is unable to consume 

more (Rcur cannot be increased because the system is overloaded). The scheduler allocates 

resources based on Ropt of the application. An application with small Ropt (meaning its resource 

need is small) will be allowed to use that small amount. In this case, the Performance Monitor 

increases the application’s resource need (Ropt := Ropt_multiplier  Rcur) to prevent a situation 

where Ropt is bounded to a local maximum when the system is overloaded (line number 7 in 

Figure 16). The underestimated Ropt is corrected in this way. However, this can lead to an 

overestimation of Ropt. An overestimation, that can happen when the application does not 
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consume the amount of resources it is allowed, is corrected simply by decreasing Ropt to the 

amount it currently consumes (line number 9 in Figure 16) in subsequent scheduling instances. 

Employing a notion of the optimal amount of resources (Ropt) is necessary to provide 

presentation fairness where an application’s quality is the metric for fairness. This in turn makes 

our scheduling scheme non work-conserving because the two estimations (the initial estimation 

and the estimated increase with Ropt_multiplier) can lead to resource waste when they are 

overestimated. However, the evaluation (Chapter 7) shows that the improved user experience in 

typical use cases outweighs the waste.  

 

6.3 Total Available Resources 

The amount of total available resources in the system (RTOTAL) is bounded by hardware limit. 

However, having a fixed total available resources bounded to a particular hardware may not 

correctly reflect the capability of the system. For example, if the amount of total available 

resources is set to the aggregate bandwidth of all network links in the system, then RTOTAL in this 

case reflects the upper bound only if all the applications in the system stream their contents over 

a network link. When applications run locally (i.e. running in the machine driving the display 

walls) then they will not utilize the network resources. In this case, the amount of total available 

resource is not necessarily the same as the aggregate capacity of the network links in the system. 

In general, a metric bounded to a particular hardware limitation is not feasible to abstract the 

notion of the amount of total available resources in the system 

To obtain a better abstract notion of the total available resources, the amount of total 

available resources in the system seen by the scheduler is defined as the sum of the actual 
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amount of resources (Rcur) consumed by applications running at the current moment. Thus RTOTAL 

ranges from 0 to a constant value that indicates physical limit. 

  (3) 

However, equation (3) alone isn’t enough for the scheduler to work properly. When a new 

application is added to the system, the scheduler cannot know the Rcur of the newly added 

application before running it. And the application cannot run before the scheduler determines a 

quality for that new application. Thus an estimation of RTOTAL is needed whenever an application 

is added to the system. Figure 17 depicts how the RTOTAL is updated. RTOTAL starts with 0 and 

increased whenever new application introduced to the system. Although the RTOTAL can be 

updated with estimations, it eventually converges to a constant value that reflects the hardware 

capacity in an abstract amount. 

L is a set of all application in the system 

GET_RTOTAL(t) 

  1:  temp := 0 

  2:  inc := 0 

  3:  for each i in L 

  4:       if i has newly added then   

  5:             inc := inc + Ropt (i, t)  // increase with estimation 

  6:       else   

  7:             temp := temp + Rcur (i, t)  

  8:  RTOTAL := MAX(RTOTAL , temp)  // updated only with Rcur 

  9:  return RTOTAL + inc   

Figure 17. A function that updates the amount of total available resources seen by 

the scheduler with the actual amount of resources applications currently consume. 

RTOTAL is increased whenever an application is newly added to the system. 
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6.4 Weighted Proportional Sharing  

A weighted max-min algorithm can be applied to achieve presentation fairness with the 

priorities and resource needs. The weighted max-min fair share algorithm is often used in QoS 

aware packet scheduling network as described in [Keshav, '97]. In a weighted max-min fair 

sharing, resources are allocated to applications proportional to their priorities (weights) as well as 

the amounts the applications demand. Thus the demand is first normalized by priority. No 

application is allocated more than it demands. An application whose allocation does not meet its 

demand is maximized as long as there exist resources to allocate. 

L is an ordered set of all applications (ordered by the priority) 

unitAllocAmount := [ ] 

fraction := F 

 

COMPUTE_UNIT_ALLOC_AMOUNT(t) 

  1:  sum := iL P(i, t)  

  2:  for each i in L  

  3:      if Rcur(i,t) = 0 then  

  4:            L := L – {i} 

  5:            sum := sum – P(i,t) 

  6:      unitAllocAmnt[i] := fraction  Ropt (i,t)  P (i,t) / sum  

Figure 18. A pseudo-code of the algorithm that calculates the unit allocation 

amount to ensure fine scheduling granularity. 

 

The scheduling algorithm takes the priorities assigned by the Priority model, the optimal 

amount of resources for each application, and the amount of total available resources in the 

system. The algorithm then assigns a demanded quality (Qsched) for each application to adjust its 

quality (Qcur), providing presentation fairness across the display wall.  
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Figure 18 shows a function used by the scheduling algorithm to determine the unit allocation 

amount (unitAllocAmnt) for each application in the scheduling loop. The unitAllocAmnt is an 

empty array that holds the fraction of the amount of resources that can be allocated for each 

application at every iteration in the loop in the COMPUTE_Qsched() function shown in Figure 

19.  

  

(4) 

where L is a set of all applications. The values in the unitAllocAmnt array differ by applications 

and are calculated for each application from its Ropt and the priority proportion at a given time. 

The unitAllocAmnt of application i at time t is defined as the fraction of Ropt(i, t) multiplied by i’s 

priority proportion at time t in (4). An application’s Ropt is first multiplied by the application’s 

priority proportion. This means, at every iteration in the scheduling loop, an application receives 

only a portion of the optimal amount based on its priority proportion. Then each application’s 

portion of the amount it receives is further fragmented by the global variable fraction. This is to 

ensure fine granularity in resource allocation at a cost of increased execution time of the 

algorithm. 

The scheduling algorithm is illustrated with partial pseudo-code in Figure 19. The 

array_Rsched is an empty array that will hold the values of Rsched in (2) for each application. The 

COMPUTE_Qsched() starts with obtaining the current Ropt and the unitAllocAmnt for each 

application and the RTOTAL. Then Rsched for each application is calculated progressively in the loop 

(line 11-12) until no more resources can be allocated to any application. This is to maximize the 

amount of resources the lowest priority application can be allocated (thus it’s a weighted max-

min algorithm). The termination conditions can arise when either all the available resources are 
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allocated (line number 8 in Figure 19) or all the application is allocated with the amount equal to 

their Ropt (line number 9 in Figure 19). Once the scheduler sets the quality of an application as in 

line number 15, each application i adjusts its resource consumption to comply with the 

scheduler’s demand. 

 

L is an ordered set of all applications (ordered by the priority) 

array_Rsched := [ ] 

unitAllocAmount := [ ] 

fraction := F 

 

COMPUTE_Qsched( ) 

  1:  t := NOW 

  2:  for each i in L 

  3:      array_Rsched[i] := 0 

  4:  ESTIMATE_Ropt(t) 

  5:  COMPUTE_UNIT_ALLOC_AMOUNT(t) 

  6:  rt := GET_RTOTAL(t) 

  7:  forever 

  8:      if rt  0 then break 

  9:      if for each i in L  array_Rsched[i] = Ropt(i, t) then 

10:           break 

11:      for each i in L   // allocate progressively 

12:           array_Rsched[i] := array_Rsched[i] + unitAllocAmnt[i] 

13:           rt := rt - unitAllocAmnt[i] 

14:  for each i in L   // set the demanded quality 

15:      Qsched(i, t) := array_Rsched[i] / Ropt(i, t) 

Figure 19. Partial pseudo-code of resource scheduling algorithm. The algorithm 

progressively allocates small amounts of resources, proportional to an 

application’s priority until no more resources are available, or until all 

applications receive the resources needed for their optimal performance. 
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To find the worst case running time of the algorithm, let the RTOTAL be infinite. The 

algorithm will terminate only after all the applications are allocated with the amounts that they 

require. Formally, the algorithm terminates when for all application A, Rsched(A) = Ropt(A). Then 

the maximum number of iterations the forever loop (line number 7) is determined by the lowest 

priority application A and the size of the fraction F defined globally as shown in Figure 18. 

Therefore, the maximum number of iterations of the outer loop (line 7-13) of the algorithm 

shown in Figure 19 is Ropt(A, t) / unitAllocAmnt[A, t]. Using the equation (4), we obtain  

   (5) 

where i is the application with the lowest priority at time t. 

The ESTIMATE_Ropt() , COMPUTE_UNIT_ALLOC_AMOUNT(), GET_RTOTAL(), and the 

inner loop of the algorithm (line 11-13) takes O(n) time where n is the number of applications in 

the system. Therefore, the worst case running time of the algorithm is O(num_iter(t) * n) using 

the equation (5). 
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7. EVALUATION 

 

This chapter describes two experiments to demonstrate that the presented scheduling scheme 

achieves presentation fairness on a display wall with non-interactive as well as interactive 

applications, and with multiple users interacting with the display wall simultaneously. The tiled-

display wall system employed in the experiments consists of 18 LCD displays, as shown in 

Figure 3, with a total resolution of approximately 18.8 megapixels (8,196 × 2,304 pixels). A 

single machine equipped with dual Intel X5650 quad core processors, 12 gigabyte of main 

memory, and 3 Nvidia GeForce GTX580 dual DVI graphics was used to drive the entire display. 

A separate, equally powerful machine is used to simulate content-generating applications that 

stream images to the display wall system over a high-speed network to simulate a thin-client 

display wall environment. The two machines are network connected with a 10Gbps optical 

switch. The bit-rate of an application is used as a metric for the amount of resources. Thus the 

amount of resources an application consumes (Rcur) indicates its image streaming bandwidth in 

bits-per-second. Both machines were run by a 64-bit Linux operating system (kernel 3.1). 

The first experiment evaluates the presented scheduling scheme with non-interactive 

applications streaming at a fixed rate. Thus, the optimal amounts of resources (streaming 

bandwidth) for these applications are known a priori (Ropt is constant). The second experiment 

evaluates the scheduling scheme with interactive applications, and with multiple users 

simultaneously interacting with the display wall, causing a variable demand on system resources 

(Ropt can vary). In both experiments the display wall system was overloaded to simulate heavy 

usage. Each experiment is performed twice, once with the presented scheduler running, and a 
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second time without the presented scheduler, leaving the system to rely solely on the operating 

system’s scheduler. 

 

7.1 Presentation Fairness with Fixed Ropt  

In the first experiment, the effectiveness of the scheduling scheme with non-interactive 

applications is evaluated. Ten applications with different image sizes (shown on the X axis in 

Figure 20) are run simultaneously, streaming their contents to the display wall at 30 frames per 

second. Thus the bandwidth needed by each application for optimal performance (Ropt) is their 

image size in bits multiplied by 30 Hz. Although the applications’ frame sizes are fixed, their 

window sizes on the display wall, which determines their Pvisual, can be arbitrary.  

Imagine a case where a user wants to compare multiple time-varying visualizations and the 

bandwidth requirements for the visualizations are not uniform. If the system does not have 

enough network bandwidth for all of the visualizations the user wants to compare 

simultaneously, the user will experience disparate perceptual performance because the system 

tries to achieve low-level fairness between the visualization even if their resource needs are 

different. The scheduling scheme presented in this dissertation tries to achieve fairness perceived 

by a user with the approach explained in previous chapters.  

To demonstrate presentation fairness, the application windows are arranged in a tiled mode 

as illustrated in Figure 4 (a), thus giving the applications the same priority. Therefore Pvisual is the 

same for all applications, Pinteract is 0 and, Ptemp is negligible in this case because the application 

layout is static. The flat line in Figure 20 shows that the scheduler indeed assigns equal priority 

proportions to all applications.  
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Figure 20. Achieved frame rate for applications used in the experiment under the 

operating system’s scheduler (NoSched), and with the presented scheduler 

running (Sched) shown with standard erros. The X axis lists frame sizes of the 10 

applications which are run simulateneously in the experiment. Application 

windows are arranged in a tiled mode as illustrated in Figure 4 (a) giving them 

equal priority. The flat line shows indeed that the scheduler assigns equal priority 

proprtions to all applications. 

 

When the presented scheduling scheme is not running (NoSched condition), the operating 

system distributes resources evenly between applications. Since applications have varying frame 

sizes, this fine-grained distribution of resources leads to diverging performance as evident in 

Figure 20. Applications with larger frame sizes suffer a big performance hit with their frame rate 

dropping below 15 FPS, while applications with smaller frame sizes achieve their optimal 30 

FPS. This disparity in performance is particularly evident to users, which detracts from the user 

experience. On the other hand when the presented scheduling scheme is in effect (Sched 
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condition), all applications achieve a comparable performance with their frame rate around 22 

FPS, thus achieving presentation fairness. This is because the Priority model assigns the same 

priority to all applications, and the scheduling algorithm allocates resources taking applications’ 

Ropt into account. 

 

Figure 21. The resource needs for applications (dark red columns) and the 

amounts of resources actually utilized by applications are shown with standard 

errors. While the four applications that have relatively low resource requirements 

receive the amounts they need, the resources are allocated evenly for the rest of 

the applications regardless of their different resource needs under NoSched 

condition. The resources are distributed based on the applications’ resource needs 

(Ropt) under Sched condition. 

 

Figure 21 illustrates the resource needs for applications and the amounts of resources 

actually utilized by applications in this experiment. While the four applications that have 
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relatively low resource requirements receive the amounts they need, the resources are allocated 

evenly for the rest of the applications regardless of their different resource needs under NoSched 

condition. This is because the Non-clairvoyant operating system scheduler is unaware of the 

different resource need of each application. The resources are allocated in a manner that it is 

proportional to the applications’ resource needs (Ropt) under Sched condition. 

 

7.2 Interactive Application (User Study) 

Imagine a scenario where a user interacts with a scientific visualization tool by rotating, 

panning, and scaling a 3D model, or a piece of video production software where the user works 

with multiple media assets, traverses video frames, make rough cuts, etc. The application’s 

responsiveness (as determined by the time the application takes to update its content from the 

moment of user interaction) is crucial to meeting the users’ expectation for these types of 

applications. This scenario is simulated in the user study in order to evaluate the effectiveness of 

the presented scheduling scheme with multiple interactive applications. 

The applications utilized in the user study comprised of a streamer that runs on a separate 

machine and streams images over network to a receiver that runs on the display wall system, 

which renders the user interface. Also the receiver applications are referred as user applications 

throughout the remainder of the dissertation. The streamer is analogous to scientific visualization 

software that runs on a high-performance computer and generates visual contents. The receiver is 

analogous to a corresponding GUI process that runs on the display wall system displaying the 

contents it receives from the visualization software (Figure 22). The streamer streams images to 

the receiver in a best-effort fashion whenever a user interacts with the receiver. The size of the 

image streamed by the streamer is fixed at 2560 × 1600 × 24 bits but its frame rate varies and is 
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determined by the rate of user interaction (Rcur and Ropt vary as the user interacts). Therefore, the 

Pvisual of the applications is fixed while the Pinteract changes as users interact. The scheduler 

determines Ropt based on Rcur, which changes depending on user interaction rate as discussed in 

Chapter 6. The receiver process (user application) conforms to the Qsched determined by the 

scheduler by altering its frame rate. During the experiment, the display wall system was 

overloaded with 6 non-interactive applications streaming a 2560 × 1600 video sequence with 24 

bits per pixel at a fixed rate of 30Hz (Ropt = 2,949.12 Mbps). We refer to these applications as the 

overhead. A scenario this dissertation adopts with the notion of the overhead for the user study is 

to simulate a case where users are interacting some of the applications on the display wall that 

has many application instances. As discussed earlier, the system will allocate uniform amount of 

resources to all of the applications regardless of their different resource needs and what users are 

interested in at the moment. What would happen if all applications have to be treated equally 

important even though users are interacting with only some of the applications? The presented 

scheduling scheme will ensure fair resource allocation based on the applications’ resource needs 

as shown in Chapter 7.1.  

 

7.2.1 Task 

The user study comprised of single and multi-user interaction with user applications on the 

display wall within groups of 3 subjects at a time. Each user interacts exclusively with a single 

receiver dedicated to that user using a mouse. The user application’s window is displayed on the 

display wall, with subjects sitting side-by-side approximately 8 foot in front of the display wall. 

An example of the user study setup is shown in Figure 23. The user application presented the 

user with a target acquisition task in which the user is asked to move the mouse cursor and click 
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on a target appearing in a random location inside the user application’s window. An example of 

the user application’s window is shown in Figure 22. The user application’s window is updated 

only when a new frame is received from the streamer. Therefore, smoothness of the cursor 

movement, which is the visual feedback the user receives, depends on the frame rate, which will 

ultimately influences subject performance. If the user application’s frame rate is too low, the 

user’s interaction will be lost thereby the user will experience stuttered pointer movement 

making the user to hard to precisely position the pointer on the target. The rationale behind this 

task is that performance in the target acquisition task will demonstrate the responsiveness of the 

system. This will in turn reflect objective performance as well as subjective user experience in 

more complex scenarios such as scientific visualization and interactive, multimedia applications.  

 

Figure 22. An example of the user application window (receiver’s GUI) is shown 

with the target and the user’s pointer. A yellow rectangle target appears on a 

random position on the application window. A subject is asked to click the target 

with his/her pointer as fast as possible.  

 

A target on 

a random position

A subject's

pointer

optimal path

and distance

to travel
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7.2.2 Procedure 

 

Figure 23. An example of the user study setup. Three users are sitting in front of 

the wall and interacting with their applications by connecting their laptops to the 

SAGE-Next. 

 

18 subjects were recruited for the study. All subjects were computer science students (both 

graduate and undergraduate). Subjects are divided into groups of three, with a total of 6 groups, 

which referred to as groups A through F. Each group goes through a series of 7 rounds to vary 

the number of users interacting simultaneously. In the first three rounds, a single subject interacts 

with the system to perform the task (one of the three subjects in the group per round). In the 

second set of three rounds, two subjects perform the task simultaneously. In the final round all 

three subjects perform the task simultaneously. The 7 rounds are repeated twice under two 

different conditions: once with our scheduling scheme running (referred to as Sched condition), 

and a second time without our scheduling scheme (referred to as NoSched condition), leaving the 
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system to rely solely on operating system scheduling. This order is balanced across the 6 groups. 

(groups A, B, and C started with the Sched condition, while groups D, E, and F started with the 

NoSched condition). 

 

7.2.3 Metrics 

For each subject, the hit latency (the time it takes the subject to move the mouse cursor and 

successfully click the target from the moment it appears in the subject’s assigned window) and 

the miss count (the number of clicks that missed the targets) are measured to compare the 

subjects’ interaction performance with the presented scheduling scheme and operating system 

default. These indicate the responsiveness of the system that has to support multiple interactive 

applications simultaneously. Also the user applications’ (receivers) frame rates are measured as 

subjects interact. And lastly, the overall resource utilization is measured to compare the 

presented scheduling scheme’s reduced resource utilization (due to the resource estimation) with 

operating system default. 

 

7.2.4 Results 

A 2 (factor #1: NoSched versus Sched conditions) x 3 (factor #2: 1, 2, and 3 users interacting 

simultaneously) factorial ANOVA is computed to see the differences between average hit 

latencies under various conditions. The result indicates that there are significant main effects 

(factor #1: F(1,3234) = 927, p < .000, factor #2: F(2,3234) = 6.12, p = 0.002) but no interaction 

effect (F(2,3234) = 0.13, p = 0.88). Figure 24 shows the average hit latency of all groups with 

and without the presented scheduling scheme. With the presented scheduling scheme, the 

average hit latency of all subject groups is reduced by approximately 28% while the system is 
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overloaded with the overheads as explained in Chapter 7.2. This increased user performance is 

due to the higher frame rate achieved with the scheduling scheme as shown in Figure 25 at a cost 

of reduced frame rates for overheads which were not interacted by users. The user applications 

achieve minimum of approximately 17.5Hz with our scheduling scheme. This is higher than a 

frame rate threshold (10~15Hz) where human performance can be adversely affected [Apteker, 

'95; Chen, '07; Claypool, '09; Gulliver, '04]. Even with a high workload that might run in 

background as simulated with the overheads in the experiment and increasing number of users 

interacting simultaneously, the presented scheduler was able to maintain a sufficient frame rate, 

which helped subjects maintain their task performance.  

 

Figure 24. The average hit latency for all groups with and without the presented 

scheduling scheme are shown with standard errors. The average hit latencies are 

~28% better with the presented scheduling scheme. 

 

When the scheduling scheme is not running (NoSched condition), all the streaming instances 

(user applications that subjects were interacting and the overheads that have fixed streaming 
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rates) are treated equally by the operating system. This results in poor interaction performance 

for the applications that are interacted by the users as shown in Figure 24 and Figure 25. 

 

 

Figure 25. The average frame rate achieved by user applications are shown with 

standard errors. The frame rates slightly dropped as the number of users increased 

in the NoSched condition, where as the frame rates remained high with the 

presented scheduling scheme ensuring better user interactivity even when the 

system is overloaded. 

 

The aggregate number of missed clicks of all subject groups was reduced by 19%, 42%, and 

33% for one, two and three users, respectively (shown in Figure 26). However, the difference in 

the average number of missed clicks is insignificant as shown in Figure 27. During the user 

study, the author observed that the number of missed clicks is highly dependent on subject 

interaction characteristics rather than resource scheduling policies. Users who are careful in 

clicking targets miss the target less often whether the presented scheduler is employed or not. 
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Figure 26. The aggregate number (total counts) of all subject groups’ missed 

clicks with and without the presented scheduling scheme. 

 

 

Figure 27. The average number of missed clicks with and without the presented 

scheduling scheme shown with standard errors. 

 

Figure 28 depicts the total resource utilization breakdown. The graph shows that fewer 

resources are allocated to the overhead, allocating more to user applications under the presented 

scheduling scheme as the design dictates, which ultimately led to the improved user 
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performance. As expected, the overall resource utilization of the presented scheduling scheme is 

lower than the operating system’s scheduler. This is because resources are allocated based on an 

application’s Ropt, which is not known a priori, and needs to be estimated based on its current 

performance. In current Ropt estimation mechanism, the user’s interaction characteristic is the 

major factor determining the precision of Ropt estimation and the estimation tends to be preciser 

(meaning the Ropt precisely reflects the amount of resources a user will utilize thereby the 

difference between the Ropt and the Rcur can be small) when the rate of changes in user 

interactions is steady, thereby increasing resource utilization. 

 

Figure 28. The average of total resource utilization breakdown with and without 

the presented scheduling scheme. The graph indicates that more resources are 

utilized by user applications under the presented scheduling scheme. 
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8. CONCLUSION 

 

Thin-client display wall systems are used for displaying multiple high-resolution 

visualizations that are rendered at remote resources such as high-performance computers and 

storage cloud. Modern thin-client display wall systems provide multi-user collaborative 

environments by enabling multi-user interactions with multiple visualizations simultaneously. 

While display walls traditionally ran on a computer cluster, recent hardware improvements in 

multi-headed graphics hardware allows for display walls that can be driven by a single computer. 

However, this poses challenges in resource management due to the limited capability of a single 

machine compared to a cluster. 

In this dissertation, a novel multi-user centered resource scheduling scheme for collaborative 

display wall environments is presented. Unlike traditional resource scheduling in modern 

operating systems, the scheduling scheme presented in this dissertation adopts a user-centered 

scheduling to maximize user-perceived performance, favoring applications that are most likely to 

draw user attention when the system is overloaded.  

The presented scheduling scheme ensures the presentation fairness by considering 

applications’ visual and interaction factors as well as resource needs of the applications. A 

Priority model is used to describe the degree of users’ interest in applications on the display wall. 

The effective visible size of an application’s window, the frequency of user interactions, and the 

wall usage patterns are used to determine the priority of an application. For interactive 

applications where the optimal resource requirement is time-varying and can not be determined a 

priori, the scheduler estimates these amounts based on current application performance 

determined by user interactions. The scheduler then finds a proportionally fair distribution of 
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system resources and adjusts resource consumption indirectly by modulating presentation 

qualities of applications.  

Experimental results show that the presented resource scheduler achieves presentation 

fairness in non-interactive applications where resource needs are known a priori. This is achieved 

by allocating resources to applications based on the amounts of resources applications need to 

achieve optimal performance. A user study was conducted to evaluate the effect of the scheduler 

on user performance with interactive applications running on an overloaded display wall. The 

user study shows improved user performance in a target acquisition task with the scheduling 

scheme over general-purpose operating system scheduling. The resources are allocated based on 

user interactions and estimated resource needs of the applications under the presented scheduling 

scheme while the general-purpose operating system allocates resources regardless of the user 

interactions and the resource needs. This demonstrates the effectiveness of the presented 

scheduling scheme when employed in interactive tiled display walls that are used in 

collaborative settings where multiple users interact simultaneously with the system. 
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9. FUTURE RESEARCH DIRECTION 

In the future the author plans to extend the Priority model. Currently, the application’s 

visible window size and the frequency of interaction with applications are major factors in 

determining the priority of the application. The contribution of these two factors is reconsidered 

only when a user actually interacts with the application. However, a user may desire high 

performance for an application even though he/she is not currently interacting with the 

application. To address this case, the Priority model could anticipate user intention without 

relying on application’s internal states by monitoring the users. For example, tracking devices 

can be used to capture a user’s interest in applications by sensing the user’s head orientation or 

his/her location relative to the application. This information can then be incorporated into the 

Priority model. Furthermore, the current model treats each visualization independently, which 

may not be the case when multiple different visualizations of the same data need to be analyzed. 

The scheduling scheme presented in this dissertation maintains the notion of an optimal 

amount of resources for an application based on its current resource consumption. In particular, 

when the system is overloaded, the scheduler increases the optimal amount for an application 

assuming that the application might be able to consume more. As a result the resource can be 

wasted when the amount is overestimated. Thus the scheduling framework is not work-

conserving. Precise estimation of the optimal amount of resources for an interactive application 

is crucial to keep the system’s resource utilization high. A Kalman filter [Brown, '97] where an 

estimation of variables of interest is obtained using a recursive algorithm might be used. Or an 

online application profiling technology might be adapted to provide better estimation of resource 

requirements. However, this is a hard problem for an application whose resource needs can vary 

greatly as user interacts because the system cannot precisely predict what a user will do.  
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Also, the optimal amount of resources for an interactive application can have lower and 

upper bound in order to keep the estimation in a reasonable range. For example, an interactive 

application would not want to allow its frame rate below certain lower bound (such as 15Hz) to 

ensure reasonable user performance. A video editing application may set an upper bound to its 

maximum frame rate. The application can skip some frames instead of increasing its frame rate 

when a user is scrubbing a video, for instance. 

The types of the resources an application requires can be diverse. Therefore, defining a 

global metric that can be applied a various set of application is challenging. However, a better 

resource abstraction can make the scheduling scheme to support wider range of applications. 

Also the current resource consumption rate of an application might not precisely reflect the 

application’s quality as perceived by users. However, a better abstraction for the application 

quality could be achieved given a set of different types of applications that are mostly used in 

collaborative display wall environments.  
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