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Abstract

We present the design of a novel framework for the visual integration, comparison, and 

exploration of correlations in spatial and non-spatial geriatric research data. These data are in 

general high-dimensional and span both the spatial, volumetric domain – through magnetic 

resonance imaging volumes – and the non-spatial domain, through variables such as age, gender, 

or walking speed. The visual analysis framework blends medical imaging, mathematical analysis 

and interactive visualization techniques, and includes the adaptation of Sparse Partial Least 

Squares and iterated Tikhonov Regularization algorithms to quantify potential neurology-mobility 

connections. A linked-view design geared specifically at interactive visual comparison integrates 

spatial and abstract visual representations to enable the users to effectively generate and refine 

hypotheses in a large, multidimensional, and fragmented space. In addition to the domain analysis 

and design description, we demonstrate the usefulness of this approach on two case studies. Last, 
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we report the lessons learned through the iterative design and evaluation of our approach, in 

particular those relevant to the design of comparative visualization of spatial and non-spatial data.

Index Terms

Design studies; methodology design; task and requirements analysis; integrating spatial and non-
spatial data visualization; visual comparison; high-dimensional data; applications of visualization

1 Introduction

Current imaging techniques make possible the acquisition of both volumetric and non-

spatial neurological and functional measurements in longitudinal public health studies of 

unprecedented scale, involving large numbers of subjects. For example, epidemiologists 

study the relationship between neurological aging and mobility impairment in hundreds of 

older individuals. Studying the relationship between brain and mobility can help researchers 

identify structural changes in the brain associated with neurological aging; for example, 

balance difficulty and slow gait can indicate brain structural and functional abnormalities, 

which can be used to predict a greater risk for dementia [18]. Once recognized, these 

structural changes could be targeted for interventions that can prevent the loss of 

independence that occurs as physical mobility declines in elderly individuals.

The datasets resulting from these studies are typically high-dimensional and fragmented, and 

pose manifold problems from an analysis perspective. First, the data span both the spatial, 

volumetric domain – through medical volume images –, and the non-spatial domain – 

through variables such as age, gender, or walking speed; integrating these data is a 

challenge. Second, there is the issue of scale: there are a large number of potential predictors 

of each functional measurement (such as slowing gait), including numerous brain regions 

and health-related measures. Third, due to the high interconnectedness of the brain 

structures there is a high level of collinearity among neurological measurements. Thus, the 

problem of quantifying the correlations in the data is ill-conditioned and sensitive to the 

numerical algorithms employed.

Furthermore, considering the scale and diversity in the data and the processing algorithms, 

the data analysis has a fundamentally exploratory nature. Researchers are interested not only 

in data acquisition and analysis, but also in developing, adapting or selecting the appropriate 

numerical analysis method, and in hypothesis generation, testing and refinement. Flexible, 

scalable and exploratory analysis methodologies for identifying correlations in the data thus 

require the development of novel infrastructures that blend medical imaging, mathematical 

and statistical methods, and interactive visualization.

Finally, the integration of spatial and non-spatial data – in the context of high-

dimensionality and visual comparison – prompts a combination of visual encodings and 

techniques. The challenge lies in designing the right combination of appropriate techniques, 

given the application domain and the analysis needs of the expert users. These challenges 

are typical of other spatial and non-spatial domains, such as geospatial analysis, 

bioinformatics, or neuroscience applications in general. While multiple successful examples 
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of visual tools exist across these domains, we do not have a comprehensive understanding of 

the parameters that influence successful spatial and non-spatial integrated visualization, nor 

is it easy to determine how close we are to achieving such an understanding. Domain-

specific analyses and design studies can help in this direction.

In this paper we describe the design and development of a novel visual tool for the 

integration, analysis, and exploration of functional geriatric research data. The tool (Fig. 1) 

blends medical imaging, mathematical and statistical analysis and visualization in an attempt 

to support Geriatric Research In Ambulatory and Cognitive Excellence (GRACE). The 

contributions of this work are as follows: 1) We provide a description of the problem 

domain and an analysis of the questions typically asked in this problem domain. 2)We adapt 

two methods for quantifying correlations between brain and functional patterns such as gait: 

Sparse Partial Least Squares regression and iterated Tikhonov Regularization. 3) We 

describe the design and implementation of an interactive visual comparison tool based on a 

mixture of visual encodings. 4) We demonstrate the usefulness of the visual tool in two case 

studies and 5) Report the lessons learned based on feedback from experts in the 

epidemiology and statistical domains.

2 Related Work

The issue of combining scientific visualization with information visualization in the context 

of spatial and non-spatial integration was highlighted in 2003 by Theresa-Marie Rhyne, who 

wonders if the difference between the two sub-fields really matters [34]. Some of the early 

work to integrate both spatial and non-spatial visualizations includes [10, 5, 21], which, in 

addition to 3D views, include mathematical abstractions of the data. More recently, 

bioinformatics has provided a constant stream of datasets that contain both spatial and non-

spatial data to be visualized [37, 49, 26].

Although a large number of brain visualization packages exist, attempting to integrate with 

such packages functional data visualization, while taking into account the domain 

requirements was not feasible. For example, one core requirement was to allow researchers 

to visually explore correlations between functional and neurological variables mapped to 

regions at different depths inside the structure of the brain. MindSeer [27] and BrainMiner 

[28] rely on iso-surface rendering of the brain, which leads to occlusion, making difficult the 

mapping of functional data and the interactive selection of significant regions while 

maintaining context. Another project [22] does allow the user to see transparent images, but 

has limited interaction, which it tries to overcome by providing ”magic mirrors”, three 

projections that attempt to unambiguously reveal the locations of regions inside the brain. 

Another important requirement was to enable epidemiologists to see how correlations vary 

across groups of regions that are functionally similar (for example involved in mobility or 

visuospatial attention). While 3D Slicer [33], BrainVoyager [9] and a system built for 

visualization of MS lesions [45] allow interactive direct volume rendering, they do not 

provide a way to encode and visualize the functional structure of the brain. Finally, LONI 

[4] provides a brain ontology viewer; however, the viewer is not linked to the rest of the 

visualization.
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Many techniques have been proposed (and explored in this project) for the visualization of 

hierarchies; among them are traditional node-edge displays such as DOITrees [13] and 

space-filling techniques: treemaps [16, 40], radial layouts [19] or circle-packing techniques 

[47]. Dendrograms are a type of node-edge display and have been used for clustering genes 

[38] and brain fiber tracts [15]. Starplots are a common approach for visualizing of 

multidimensional data [20, 29].

Visual comparison has drawn significant attention in recent years. Gleicher et al. [7] identify 

three fundamental visual paradigms: juxtaposition, overlays, and abstraction; the latter 

category encompasses a large number of possible difference abstractions. Earlier work by 

Taylor [42] examines the benefits of visualizing multiple fields in a layered approach 

(similar to Gleicher’s overlay paradigm) by using difference visual channels such as color, 

transparency, texture etc. He found, however, that visualization began to fail when “more 

than a few techniques were applied at once”; and also noted on the importance of spatial 

frequency. While perceptual studies on multilayered representations exist in information 

visualization [14], little is known about visual comparison in the context of integrated spatial 

and non-spatial data. In our approach, we pursue a linked-view hybrid paradigm which 

blends juxtaposition, volume rendering transparency, and abstractions of non-spatial data.

Finally, our work builds upon uncertainty research in the visual perception field. 

MacEachren et al [23] identify nine possible types of information uncertainty, ranging from 

accuracy/error and precision to credibility and subjectivity. While most spatial uncertainty 

visualization techniques focus on encoding strictly accuracy or error [17, 32, 2], our focus is 

on encoding the credibility of a particular relationship.

3 Methods

Our first contribution is an analysis of the GRACE problem domain, its data, and its tasks. 

We then introduce our tool framework, which blends medical imaging, statistical analysis, 

and visual encoding (Fig. 2). We briefly describe the data normalization procedure, which 

we perform to enable the computation of variable correlations. Next, we describe the 

adaptation of two numerical algorithms for computing correlations. We then describe the 

design of the analysis tool; the design is informed by the domain analysis, following the 

principles outlined by Munzner in [30].

3.1 Data and Task Abstraction

3.1.1 Data Analysis—Neuroimaging datasets may include hundreds of subjects, with 

more than 50 neurological dimensions (brain volumetric measurements) and multiple 

functional variables (such as gait speed, balance etc.) for each subject. Voxels in a volume 

image may be grouped together in “regions of interest”, to facilitate cross-subject 

comparison. A step further, individual brain regions may be grouped together based on 

similarities in their function in the brain. For example, some regions are involved in 

mobility, others in visuospatial attention and others in motor imagery.

Furthermore, there are a large number of potential predictors of functional characteristics, 

including numerous brain regions and health-related measures. In general, the number of 
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observations is lower than the number of brain regions of interest. Even when applying a 

selected number of regions based on a priori hypotheses, the number of variables could 

include more than 30 regions of interest for each hemisphere, which yields a total of over 60 

comparisons. The interactions between functional variables and the different types of brain 

measurements give rise, for each brain region, to 5 to 10 correlational values computed with 

varying degrees of confidence. Brain regions are likely to be correlated due to the inherent 

brain interconnectedness. Analysis of neuroimaging correlates of behavioral characteristics 

typically involve a very high number of comparisons and require conservative methods to 

correct for false positive results.

Finally, the results of statistical analyses are typically sensitive to scaling, selection, and 

normalization of variables for statistical interpretations. Multiple algorithms may be used to 

compute the correlations, and researchers are typically interested in comparing the different 

algorithmic outputs. A particular algorithm’s confidence in the strength of a hypothesized 

correlation may be encoded as a p-value. The regression coefficients computed by a 

particular algorithm may also be of interest.

To summarize, the domain data consist of both spatial and non-spatial multivariate 

measurements; to these we add computed data, which may result in several other attributes. 

The datasets feature high-dimensionality, in the number of subjects considered, in the 

number of variables, and in the number of possible correlations and comparisons. Finally, 

spatially-related correlations may be computed with varying degrees of confidence through a 

variety of algorithms, further emphasizing the need for visual comparison.

Datasets: The data we use in our case studies come from two sources. The first dataset is 

used to study the relationship between brain and gait in 324 community-dwelling older 

adults [36]. The gait data was recorded on a 4-meter long instrumented walking surface, the 

GaitMat II [1], and included gait measurements such as gait speed, stride length, base of 

support, double support time, and latency. The gait data was further summarized as three 

variables: bradykinesia, gait disturbance and tremor. Bradykinesia is a measure of slow or 

hesitant motion during activities such as heel tapping. Gait disturbance is a measure of 

abnormality in gait (e.g., small amplitude or poverty of movement in general), posture, etc. 

Tremor is rated as present if detected, either at rest or during action in either foot.

The neurological data for this dataset was acquired through Magnetic Resonance Imaging 

(MRI) of the subject brains. The resulting volume images were an assessment of the macro- 

and micro-structure of the brain. The macro-structure was measured as volume of gray 

matter and of white matter tract hyperintensities (lesions in white matter). Diffusion Tensor 

MRI (DTI) was used to quantify the microstructure of normal-appearing gray (mean 

diffusivity) and white (fractional anisotropy) matter.

A second dataset is used to validate several algorithms that are used to compute associations 

between dependent and independent predictors. The dataset was used to verify known 

results in epidemiology literature, namely the effect of certain regions in the brain on the 

subjects’ performance on the Modified Mini-Mental State Examination (3MSE) and the 

Digit Symbol Substitution Test (DSST). The former is a brief, general cognitive test which 
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evaluates the subject’s orientation, concentration, language, praxis and immediate and 

delayedmemory [43]. The latter is a pencil-and-paper test designed to examine the subject’s 

psychomotor performance. The subject is presented with a series of digit-symbol pairs and 

then required to recall the symbols associated with a sequence of (repeated) digits. The score 

on the test consists of the number of pairs the subject correctly identifies during a 90-second 

span [24].

The data was obtained from participants in two on-going longitudinal studies, the 

Cardiovascular Health Study [6], and the Healthy Brain Project, which is a sub-study of the 

larger Health, Aging & Body Composition Study, [41]. In both studies, the neurological data 

was acquired in the same manner as described above and collected from 324 subjects in the 

former study and 314 in the latter.

3.1.2 Task Analysis—Through repeated on-site interviews and job shadowing, we 

abstracted the list of tasks most commonly performed when analyzing brain/functional task 

data shown in Table 1. The second column states the task abstraction, while the third column 

shows typical instantiations revealed through user interviews.

Analyzing the domain tasks abstracted (Table 1), we find first that many of the tasks involve 

pairwise comparisons, some between spatial/non-spatial variables, and some between 

spatial/non-spatial outputs of various correlation algorithms (Tasks T1–T3, T5–T6). 

Furthermore, the comparisons are almost always comparisons of correlations, normalized 

over many human subjects, and are thus in a certain sense “2nd order” comparisons. Finally, 

while the comparisons almost always involve spatial patterns, some domain experts appear 

to initiate their analysis with non-spatial variables, while others start their analysis with 

spatial variables.

As anticipated, many of the tasks rely on detection of spatial patterns, suggesting the need 

for direct spatial manipulation such as rotation and slicing. Most of the questions asked 

during the analysis are, in fact, either of the How or Where variety; this observation suggests 

a need for either linking or overlaying the various types of information. Some of the tasks 

(e.g., T7) require interactive filtering and conditioning.

Additional user requirements revealed include the ability to explore regions mapped at 

different depths inside the spatial structure; spatial-context visibility; ease of use, low visual-

complexity, flexibility, and cross-platform portability of the resulting tool.

3.2 Spatial Data Normalization

To enable the cross-population analysis of correlations, the MRI volume images for each 

subject are first divided into anatomically-defined regions of interest (ROI). The ROIs have 

been previously drawn on a template brain according to the automated anatomical labeling 

(AAL) neuroanatomical atlas [46]. After skull and scalp stripping, and segmentation of gray 

matter, white matter, and cerebrospinal fluid, the brain atlas and the brain of each subject 

were aligned. Intensity normalization was done on each individual’s volume image as well 

as on the brain template. This gives each individual the same orientation and image-intensity 

distribution as the template and improves the registration accuracy. The registration 
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procedure used a fully deformable, non-rigid registration algorithm [44] that does not warp 

or stretch the individual brain and thus minimizes measurement inaccuracies. It also allows 

for a high degree of spatial deformation compared to other standard registration packages. 

Each ROI was summarized in terms of its voxel volume, for each imaging modality.

3.3 Correlation Quantification

When studying multiple brain region volumes as predictors of an outcome, the regions are 

likely to be correlated due to the interconnected nature of the brain. Another problem is that 

there may be a large number of potential predictors, including the many brain regions and 

demographic confounders. Additionally, brain imaging techniques are often costly and thus 

the number of observations tends to be low relative to the number of regions of interest.

Various approaches have been used for the type of problem considered, including PCA, 

PLS, Sparse PLS (SPLS), machine learning techniques (Mutual Information, Independent 

Component Analysis, Local Linear Embedding, IsoMap), and Tikhonov regularization 

(ridge regression.) Of these, SPLS and Tikhonov are the most popular for data selection; 

both address the risk of over fitting (the number of parameters is larger than the sample size 

problem), and possible colinearity and its resulting magnification of noise/experimental 

error. For this reason, in this study, SPLS and Tikhonov regularization were of particular 

interest to the domain experts.

Sparse Partial Least Squares Regression—Sparse PLS has been introduced to add 

variable selection to the classic PLS regression [3]. The variable selection is accomplished 

by imposing sparsity in the middle of the dimension-reducing step. As a result, the approach 

simultaneously reduces the dimensionality of the data and selects a subset of predictors.

In our adaptation of SPLS, the matrices were initialized with the subject’s spatial and 

abstract measurements: brain regions specified as the volume of gray matter, and numerical 

equivalents for age, obesity, race, gender and total gray matter volume. Models were fit for 

many values of the tuning parameters, and the percentage of times a variable was chosen 

was used to quantify the strength of a particular association. Furthermore, instead of a p-

value, we implemented bootstrapping (drawing random samples with replacement) to create 

a 95% confidence interval for the SPLS parameter estimates. From this, a variable was 

deemed significant if its confidence interval did not include zero. The SPLS analysis was 

performed in SAS and R using custom code.

Iterative Tikhonov Regularization—The workhorse and most commonly used method 

for the accurate and reliable solution of ill-posed problems (in which solutions are either 

over- or under-determined and small errors in data are magnified greatly in the solution) is 

Tikhonov Regularization. In this method, a regularization parameter α > 0 is selected and an 

approximation to the solution of the system Ax = b is computed by solving

(1)

where I is the identity matrix, b is the known outcome matrix, and A is the predictor matrix.
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In our application of the Tikhonov algorithm, the MRI brain data as well as other correlates 

to non-spatial quantities (such as age, gender, race) are contained within the matrix A, where 

the columns are these variables and the rows are the patients involved in the study. The 

observable variables are contained within the matrix b, where each row corresponds to a 

patient and the columns correspond to the measured characteristic (e.g., gait speed.)

We extend the Tikhonov algorithm by combining an iterative version of it with an L-curve 

method [11] to find the optimal regularization parameter α. To provide an estimate of the p-

values for the regression coefficients, we take a novel approach to examining the sensitivity 

of each coefficient to random noise. We perform this step by bootstrapping (random 

selection with replacement) of scaled residuals ε onto the initially solved regression vector x 
to generate a pseudo b vector

(2)

from which a new regression vector xpseudo can be solved using again the iterated 

Tikhonov algorithm. After T such bootstrapping processes, we sort the collection of T 

coefficients for each regression variable and we estimate the p-value for the i-th variable 

using

(3)

where k is the index where the coefficient changes sign. The iterated Tikhonov results are 

obtained from custom code written in Matlab and in Fortran 90.

While for this particular domain we have adapted two correlation algorithms – Sparse Partial 

Least Squares and Iterative Tikhonov regression – other correlation algorithms can be 

swapped for these two, interchangeably.

3.4 Visual Design and Encodings

After data normalization and correlation computation, the core phase of this project was 

deciding on the overall design for visualization, data graphical representations, visual 

encodings, and interactions to support the domain data, tasks and requirements summarized 

earlier.

Several design approaches to visual comparison are known, including juxtaposition (side-

by-side views), overlays and explicit encodings of differences [7]. Considering the 

collaborative nature of the domain, in which users with complementary expertise contribute 

different viewpoints —such as brain function versus brain structure, our top design pursues 

a hybrid approach augmented by a linked multiview paradigm. We posit that the linked 

multi-view approach would help generate insights [35] by allowing users who are trained to 

start their analysis with either spatial or non-spatial features to explore the data from both 

viewpoints.
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Based on the data and task analysis, the application layout consists of five linked views 

containing spatial and non-spatial visual representations of the data: two volume rendering 

panels, two corresponding dendrogram panels and a Kiviat diagram panel (Fig. 1). Kiviat 

diagrams are also known as Radar Charts, and are a variation of a starplot representation. 

Additional widgets allow data selection, filtering and manipulation. Correlations are 

encoded across all panels: the volume renderings and dendrograms show the p-values of 

correlations between spatial and non-spatial measurements, while the Kiviat diagram can 

also show the absolute value of coefficients computed for those correlations. Finally, the 

multiple views are connected through interaction, including dynamic queries and brushing 

and linking. This flexible top-design can be used to support both pairwise comparison of 

cohorts or variables, and pairwise comparison of algorithm outputs. Below we describe each 

component in detail.

3.4.1 Spatial Data Encoding for Comparison

The two volume rendering panels were designed to allow detection of spatial contiguity in 

brain regions of interests (Tasks T1, T4, T5; and indirectly tasks T2, T6, T7). For these 

spatial encodings, we chose hardware-accelerated direct volume rendering of the ROI brain 

template, as opposed to iso-surface rendering, in order to include filtered-out brain regions 

and thus help maintain spatial context. Filtered-out regions are rendered transparently. Given 

the richness of the data and to avoid unwanted visual complexity, for this type of 

comparison tasks we pursued a juxtaposed layout.

Correlations between a particular non-spatial variable and the spatial brain regions of 

interest are color-mapped to the two volume renderings based on ColorBrewer.org [12] 

schemes, against the dark background familiar to the geriatric researchers. We selected two 

sequential multihue color schemes (green-blue for gray matter and orange-red for white 

matter), to ensure contrast between spatial variable categories. Both schemes were modified 

slightly to increase the contrast, especially towards the higher end (blue and red). 

Considering the expert analysis needs with respect to placing brain regions into categories of 

correlation strengths (rather than inferring exact values), we map colors to five p-value 

ranges. The ranges can be interactively updated. Following Sanyal et al. [39], high p-values 

(i.e., low credibility of a correlation) are mapped to low saturation and high value (S and V 

in the HSV color space). At the request of the domain experts, we also include a rainbow 

color scheme. We note that alternative “credibility” encodings such as transparency, 

fuzziness, animation or glyphs would conflict in this particular domain with satisfying the 

user requirements regarding context visibility and ease of use.

Users can interact with the brain model using either standard direct manipulation or rotation 

widgets, for stricter control. A slicing widget is also provided to allow exploration of regions 

which are in the central part of the brain and are obscured by cortical regions. To facilitate 

spatial comparison, the two volume renderings are synchronized during manipulation. To 

further preserve context during manipulation, a small axis-aligned coordinate system is 

shown in the corner of each rendering. Finally, on-demand pop-up labels specify the names 

of regions of interest.
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3.4.2 Non-Spatial Data Encoding for Comparison

Non-spatial information such as brain region function was equally important to the domain 

experts (Tasks T3, T5, T6). To support comparison of this rich information, we selected a 

hybrid (juxtaposed and overlay) layout. The dendrogram panels and Kiviat diagram are 

abstractions of hierarchical information about neurological function, respectively an 

abstraction of correlation strength.

Two side-by-side dendrogram panels enable the user to compare functional, hierarchical 

information for different groups of regions, for both white matter and gray matter regions. 

The dendrogram encoding was selected to represent the functional structure of the brain 

from a variety of other prototypes, winning as a simple, traditional technique for displaying 

hierarchies and, consequently, easier to understand and more familiar to the domain experts. 

The leaves of the dendrogram encoding represent individual regions while their parents 

correspond to groups of regions associated with particular functions. For example, some 

regions are involved in mobility, others in visuospatial attention and yet others in motor 

imagery (Fig. 3.)

Correlations are color-mapped to the dendrograms using the same color scheme as for the 

volume renderings, further emphasizing the strength of a computed correlation. Similarly, 

linking and brushing are used to gray out the regions filtered out by the user. Mnemonic 

labels are provided for groups of regions, while on-demand pop-up labels specify the full 

name of each region (Fig. 3.) We note that the linear dendrogram layout, as well as the full 

replica of the tree structure in the two panels were design choices informed by the domain 

expert preference: prototype circular layouts, respectively reducing or reverting the bottom 

dendrogram collided with the experts’ understanding of a hierarchical structure.

The Kiviat diagram view panel further enables the pairwise comparison of correlation values 

across regions for different spatial and non-spatial variables (Task T6); and can be used 

alternatively as an overview. Per the request of the domain experts, the Kiviat diagram can 

also be used to visualize regression coefficients, when available. The experts emphasized, 

nevertheless, that the primary information they pursued was related to p-values, and that the 

regression coefficients were secondary information. This encoding follows an overlay 

approach: during the prototyping phase it became clear that the Kiviat diagram 

representation was the user-preferred option for the overview visualization of correlations. 

Alternative representations evaluated by the domain experts during parallel prototyping 

were regular star plots, stacked displays, mosaic plots and Chernoff faces, parallel 

coordinate plots and linked histograms.

In this encoding, the Kiviat diagram axes correspond to brain regions, and the value mapped 

to each axis represents the significance level. Correlation or regression coefficients are 

mapped according to their absolute values, per the domain expert request. Radio buttons 

allow the user to filter out either positive or negative correlation/regression coefficients. The 

color-mapping for the Kiviat diagram is distinct from the other panels, in order to emphasize 

the information separation between the regression coefficients (a byproduct of the numerical 

algorithms) and the rest of the data.
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3.4.3 Linked-Views and Interaction

The view panels are linked through color-coding and through interaction, to facilitate the 

integration of the various types of information (all tasks). Several widgets (Fig. 1) allow data 

selection (datasets, variables, and algorithms), filtering (data types, correlations and 

significance values) and data manipulation. Data selection and filtering are facilitated 

through combo-boxes, check-boxes, and radio-buttons (Fig. 1), and correspond to the T1-T7 

tasks outlined by the domain analysis. Direct data manipulation (Tasks T1, T4, T6) is further 

facilitated by rotation and slicing widgets.

Dynamic queries through the widgets are employed to enable the user to filter the 

correlations to the desired significance level (Tasks T1-T7). Linking and brushing are used 

consistently to filter out regions of interest across the multiple views, as well as to remove 

the significance level mapping for the regions not displayed in the two volume rendering 

panels. Brushing and linking are also used to visually connect the separate panels, including 

the dendrograms and the Kiviat diagram. Finally, correlations are encoded using the same 

color-map across the separate panels.

The interface implementation uses custom code written in C++ with OpenGL and QT, 

including a hardware-accelerated module for volume rendering [25].

4 Evaluation

We demonstrate the usefulness of our application on two case studies. Feedback on the 

design was acquired through repeated validation and evaluation sessions with our target 

users, some of whom are co-authors of this paper: three epidemiologists, two neurologists, 

two mathematicians, one statistician and two computational scientists; as well as three other 

research groups located off site. Some of this feedback is already reported in earlier sections. 

Three of our end-users (co-authors CR, MOH and KFW) provide the following two detailed 

case studies, while the larger group feedback is reported in Section 4.3.

For the two case studies, a think-aloud protocol and targeted questions were used. The first 

case study examines neurological-mobility correlations: we compare two different non-

spatial gait variables, bradykinesia and gait disturbance. The second case study is a 

comparison of algorithms used to compute associations in neurological-functional data.

4.1 Brain-Gait Correlation Analysis

The lead GRACE researcher studies the correlations between neurological aging and 

mobility impairment in the elderly. She had previously discovered an association between 

specific gait variables and neurological data using a partial least squares algorithm and 

spreadsheet analysis and was particularly interested in visualization as a means to explore 

more complex and subtle spatial patterns in the data. In particular, she wanted to know how 

two gait variables (bradykinesia and gait disturbance) were similar or different in terms of 

the brain regions correlated with each. The researcher’s team is well-versed in state of the 

art brain visualization software, and was unable to perform this type of analysis using such 

packages.
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Correlations among the data were computed using SPLS and loaded into the visual 

comparison tool. Once some of the more significant p-value categories were selected, the 

researcher noticed that the brain regions correlated with bradykinesia were distributed more 

cortically than those for gait disturbance (volume rendering, Fig. 4). However, she found the 

fact that only two of the mobility regions and only one motor imagery region associated with 

gait disturbance were significant at the 5% level suspicious. She decided that this had to be 

investigated further.

The next step was to switch to correlations between gait variables and microstructure brain 

measurements (Fig. 1), where the senior researcher immediately noticed that the two 

mobility regions associated with gait disturbance were neuro-anatomically contiguous. Two 

significant mobility regions associated with gait disturbance (thalamus and caudate, 

observed in the lower dendrogram, Mobility branch), do not appear to correlate with 

bradykinesia (upper dendrogram). The Kiviat diagram further emphasizes the coverage 

difference between the two variables. However, the shape of the gait disturbance Kiviat 

diagram (purple, two protruding arms) indicates the correlation algorithm is confident about 

the association. Adding this to the expert’s prior knowledge about the position of the two 

regions in the basal ganglia, the researcher concluded the association could indeed be a 

biological possibility. The researcher stated that people with severe damage in the basal 

ganglia (such as a result of Parkinson’s disease) also have severe gait disturbances. Even 

though participants in the study from which the data was collected are ”normal” individuals, 

less severe damage in the same area could be correlated with mild gait disturbance.

When prompted about usage of the individual visual components in her analysis, the 

researcher reported that she used the dendrogram panels to easily identify the extent of 

overlap between two mobility measures. The volume renderings further facilitated 

interpretation of neuroanatomical contiguity, sparing the researcher the mental computation 

to figure out which regions are located next to others. Being able to interactively manipulate 

the volume renderings was important, and so was brushing and linking of the 

complementary visual representations. The Kiviat diagram was thought to have two 

benefits: when displaying regression coefficients, 1) the Kiviat diagram would give the user 

an idea about the strength of association, and 2) it would reinforce the idea of overlap. 

Overall, the researcher was using the combined visual encodings to identify whether specific 

associations might be spurious or not. The complementary visual encodings helped her 

decide if the finding was worth pursuing or not. A finding such as the example above would 

strengthen the belief that the finding is worth pursuing. The lead researcher also stressed that 

she would often use the visualization as an exploratory tool, where there is large, highly-

dimensional data to sift through. This type of exploration was particularly cumbersome in 

existing brain or statistics visualization packages. This target user has adopted early the 

prototype as a screening research tool.

4.2 Correlation Algorithm Analysis

Researchers in the School of Public Health are interested in either adopting or developing 

numerical algorithms capable of capturing complex relationships in the mobility-neurology 

Maries et al. Page 12

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data. This second case study focuses on regression algorithm comparison: SPLS and 

iterative Tikhonov regularization.

Given the exploratory nature of the brain-gait data, which features few a priori known 

associations, two junior researchers in the group decided to test the two algorithms instead 

on the DSST and 3MSE datasets. In each of these datasets the brain regions were used, 

along with a few commonly examined demographics to predict two different outcomes, 

DSST and 3MSE, for two different patient cohorts. Specifically, the researchers aimed to 

verify that the two algorithms confirmed the following hypotheses: the dorsolateral 

prefrontal and the lateral superior and inferior parietal regions are predictive of DSST, while 

the hippocampus, parahippocampus and entorhinal cortex are associated with 3MSE. In 

addition, the researchers wanted to further explore the datasets for potential associations that 

might be worth pursuing. For example, if non-hypothesized regions had low p-values 

consistently over different algorithms and/or cohorts, the researchers may study those new 

regions in the future.

Exploring the dataset, the two researchers noticed that the results generated using the two 

algorithms generally agree on the hypothesized regions – the regions tend to appear in most 

outcome/cohort combinations. One thing the visualization tool allowed them to do was zero-

in on the one combination where the results disagreed. As emphasized by all panels in Fig. 

5, none of the 10 regions which are significant at the 5% level overlap. After further 

exploration, the researchers agreed that, at least in this specific outcome/dataset 

combination, the two algorithms were sensitive to different aspects of the data, with SPLS 

being stricter in variable selection than iterative Tikhonov.

Both researchers were enthusiastic about the tool. They stated that having different ways 

(abstract and spatial) of seeing the data really helped, and particularly emphasized the value 

of the interactive, linked volume renderings (”when you rotate the brain, you feel like you 

can almost touch it”.) They also commented that the visualization tool could be very useful 

for epidemiologists, medical school students and policy-makers of the health care system 

who are not very familiar with the brain structure and function, as using the tool would 

improve their understanding of the brain regions locations and functions.

4.3 Domain Expert Feedback

The domain expert feedback from repeat evaluation meetings showed remarkable 

enthusiasm for the framework and its implementation in a tool; specific comments included 

“elegant”, “GRACEful”, “scales appropriately”, “simple enough to use that we could do an 

epidemiologic study”. The most important aspect of the tool was its ability to support the 

domain tasks and data, and the overall user workflow. The ability to seamlessly integrate 

spatial and non-spatial information was particularly appreciated, as well as the ability to 

interactively filter regions based on p-values; also the ability to interact directly with the 3D 

data.

From the individual components of the visual interface, the mapped volume renderings with 

the p-value filtering and dynamic queries were most eagerly embraced by the multiple 

research groups, followed by the dendrogram representations. The Kiviat diagram was 
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initially unfamiliar to the experts, and required most training; it took a few rounds of 

demonstrations until the experts endorsed its enhancing effect on exploratory analyses, and 

became enthusiastic about its usage. Visual support from the familiar volume renderings and 

hierarchical representations was essential in this training period.

Some of the researchers were well versed in functional MRI tools such as FSL, SPM, and 

BrainVoyager, as well as more general packages like Slicer/VTK or AFNI. While they 

agreed that they would use these particular tools “if under duress” and for explanatory 

purposes, they also stated that almost without exception the existing tools were appropriate 

for individual-subject analyses, and did not support their research workflow: “nice looking 

but difficult to use in a statistical setting” and sometimes simply “not good”. Tools that link 

machine learning or statistics with spatial data (FSL, AFNI, R) were particularly 

appreciated, but not adopted for research on account of their lack of integration of 

tractography, and sometimes spatial data altogether. To complete analyses of a single non-

spatial variable correlation with spatial data, the researchers would typically complete the 

statistical analysis in SPSS, and then use their own mental model of neurological data to 

interpret the resulting tables. Visualization tools would be used only in post-processing, to 

generate images for explanatory purposes (publications, training, and presentations.) 

Complex, flexible, exploratory analyses like the ones reported in the case studies in this 

paper — which involve comparisons and correlations among more than one non-spatial 

variable at a time — would be, in the experts’ opinion, nearly impossible in the absence of 

GRACE. Several of the domain experts have adopted the tool for research purposes.

5 Discussion

The two case studies and the expert feedback indicate that the visual analysis tool is of 

significant help in the comparative exploration of correlations between high-dimensional 

spatial and non-spatial geriatric data. While the individual visual encodings are not novel, 

the exploration of this relatively large design space and the combination of visual encodings 

in a tool to handle spatial and non-spatial information in geriatry is novel. The chosen spatial 

and non-spatial visual encodings have shown complementary strengths: interactive volume 

rendering was particularly useful for detecting spatial patterns, while the dendrograms and 

Kiviat diagrams captured both correlation overlap and similarities among correlation 

algorithms. The use of linked-views and interaction, in the context of comparison tasks, to 

navigate uncertainty in this hypothesis space is also novel. When connected through 

interactive filtering, these multiple views on the data provided insight into domain problems, 

steered the investigation, and allowed for the generation of new hypotheses – a holy grail of 

visual analysis in general. A measure of the success of our software is the adoption of the 

tool for research purposes by our epidemiologist co-authors and their research labs. The 

senior epidemiologist refers to the resulting tool as “incredibly close to [her original] 

dream”.

Spatial and non-spatial visual integration challenges are common across domains, from 

geospatial applications to bioinformatics to functional neurology applications. We believe 

the lessons learned in terms of linked-views and successful spatial and non-spatial visual 

encodings from this specific design study have application to other domains, as well.
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The most important lesson that emerged is that users with different backgrounds may 

employ a spatial and non-spatial visualization application differently. This may be 

particularly important for the design of collaborative meeting environments, in which users 

contribute complementary expertise; in the words of a domain expert, “everyone has holes 

in their knowledge”. In our case studies, epidemiologists who are not very familiar with the 

spatial structure of the brain tended to start their analysis with the dendrogram panels – to 

see if they can detect a pattern. Only then would they look at the volume rendering panels to 

see if the spatial layout might give them any additional information. In contrast, neurologists 

tended to start their analysis directly with the spatial volume rendering, and use the non-

spatial abstractions to further strengthen or refute their observations.

This observation supports a multi-view design of visual tools that seek to integrate spatial 

and non-spatial information; while the information would thus be somewhat fragmented, our 

evidence points to the benefits of separating the views. In view of the Baldonado et al [48] 

guidelines, the disadvantages of context-switching between the views were clearly 

outweighed by the user familiarity with a particular type of analysis (spatial or non-spatial). 

Similar designs may benefit other spatial and non-spatial application domains. For example, 

bioinformatics also features complementary user-expertise; this expertise covers 3D spatial 

protein structure and non-spatial information such as gene sequencing. Simplifying the data 

available in any one view has further advantages, by allowing a stronger emphasis on 

similarities and discrepancies in the data. Finally, linking the views allows the user to 

harness and expand their previous analysis experience.

We credit much of the success of the tool to its explicit “comparative” design, fueled by the 

domain analysis. The theory of design for visual comparison, in particular in the context of 

spatial and non-spatial data, is largely unexplored. We note that Globus argued in 1994 that 

the question ”Compared to what?” lies at the heart of quantitative reasoning; he advocated 

the use of comparative, rather than descriptive visualizations [8]. Munzner cites previous 

research to conclude that side-by-side visual comparisons outperform both animations and 

zooming [31]. Gleicher et al. further showed that visual comparisons is typically performed 

through juxtaposition, superposition, explicit encoding or a combination of any two of them 

[7]. Nevertheless, there are very few guidelines to visual comparison design. In most 

instances in our design we favored juxtaposed (side-by-side) layouts, in order to avoid the 

clutter issues that come with superposition. One exception is the Kiviat diagram panel, 

where the lack of a physical structure supports superposition. As in [7], we found overall 

that a hybrid approach supported best the tasks revealed by the domain analysis.

Furthermore, our domain analysis highlights the wide range of tasks that “comparison” 

actually may cover, from analysis of similarities to detecting patterns. Our experience 

indicates that linked multi-view designs can successfully address this range of comparison 

tasks. In both case studies, the juxtaposed spatial views were found very useful in detecting 

and comparing spatial patterns; the spatial views seem to be more useful the more expert the 

user is in brain neurology (spatially-oriented). In contrast, the task of comparing subgroups 

of regions based on the functional structure of the brain seemed to be easily solved by the 

non-spatial panels. Finally, the combination of Kiviat diagram and volume rendering panels 

was helpful in comparing different variables in the datasets: the Kiviat diagram panel 
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worked as an overview, where users could see and compare in detail p-values for all selected 

regions for both selected variables; the spatial dimension views then strengthened or 

weakened the expert’s belief in a particular hypothesis. The layout of our comparative 

panels was guided by the user preference. Nevertheless, the question of recommended 

juxtaposed layout arrangements remains open.

In terms of combining scientific visualization paradigms with information visualization 

paradigms, we note that while our target users were well versed in using spatial encodings 

though brain imaging software – in particular surface and volume renderings to present data 

and findings – they posed initially significant resistance to non-spatial abstractions. It was 

encouraging to see that persistence helped and, in the longer run, that these visual 

abstractions were found to be intuitive and rather essential in understanding the spatial data. 

A similar observation follows the encoding of correlation strength through linked hue and 

saturation in both the spatial and abstract representations, despite the researchers’ being used 

to qualitative (rainbow) color mappings; however, for presentation and publication of results 

the target users still prefer qualitative colormaps.

Finally, we note that while current visual perception work tends to examine particular iconic 

encodings of uncertainty, integrating both data and data uncertainty representations in the 

same visual encoding is still an open question. We empirically found that saturation and 

value mapped to volumetric data can encode successfully the credibility of a correlation. A 

step further, scientific visualization in general would benefit from a better understanding of 

specific uncertainty components – beyond accuracy – and their relationships to specific 

application domains, to expert users and to their analysis needs. In particular, limited 

attention has been directed to the use of interactive techniques such as brushing, linking, 

dynamic queries and conditioning in the context of uncertainty exploration. Our tools points 

to the benefits of matching such interaction types to spatial and non-spatial correlation 

analysis tasks, yet few guidelines exist for interactive visualization in general.

6 Conclusion

In conclusion, we have designed, developed and validated a novel framework for the 

comparative visual analysis and exploration of spatial and non-spatial correlations in 

functional geriatric research data. In this process, we have generated an analysis of the 

application domain – with emphasis on spatial and non-spatial information integration and 

comparison tasks. Our domain task analysis may be built upon across application domains to 

extract a consistent taxonomy of tasks typical of spatial and non-spatial integration.

Furthermore, we have created a novel infrastructure which blends medical imaging, 

mathematical and statistical methods, and interactive visualization. We also adapted and 

extended two algorithms – Sparse Partial Least Squares and iterated Tikhonov 

Regularization – to quantify correlation strengths in neurology-functional data.

Our design study points to the benefits of linked-views in the context of spatial and non-

spatial integration, in particular when domain users have complementary expertise. The 

visual comparison tool successfully connects highly-dimensional spatial and non-spatial 

geriatric information through a novel, interactive, linked-view hybrid design. The separation 
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into multi-views allows users to gradually build up confidence in the tool; despite initial 

resistance to some non-spatial representations, the approach may make the learning-curve 

less steep and facilitate early adoption of a tool. This flexible design supports the 

information needs of the domain users, while maintaining the user-required low visual-

complexity.

As far as we know, this is the first evaluation of the benefits of linked views for visual 

comparison in the context of spatial and non-spatial information. Our approach allows 

experts to use any view to form a base, exploratory belief, and the other views to strengthen 

or refute that initial belief. The lessons reported though this design study may inform the 

design of visual tools across other domains which seek to integrate spatial and non-spatial 

information, including geospatial analysis, bioinformatics, and neuroimaging. Evaluation on 

two geriatry case studies shows that the resulting interface enables the users to effectively 

generate and refine hypotheses in a large, multidimensional, and fragmented space.
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Fig. 1. 
GRACE collaborative layout, supporting visual integration and comparison of spatial and 

non-spatial geriatric data. Following a hybrid visual comparison design, the layout consists 

of five linked views: Two juxtaposed volume rendering panels (left) encode spatial 

information; Two linked, juxtaposed dendrogram panels and one overlayed Kiviat diagram 

panel (center) encode non-spatial information; Additional widgets (right, top, bottom) allow 

data selection (datasets, variables, and algorithms), filtering (data types, correlations and 

significance values) and data manipulation. Correlations are encoded across all panels using 

two sequential multihue color schemes (green-blue for gray matter, and orange-red for white 

matter). This flexible design successfully supports the comparison of spatial and non-spatial 

variables, functional attributes, datasets, and algorithms, while interaction enables seamless 

formation and refinement of hypotheses.
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Fig. 2. 
GRACE framework. Medical images acquired through a multitude of imaging protocols are 

first normalized against a region of interest (ROI) anatomical brain template, in order to 

enable spatial analysis across hundreds of subjects. The resulting ROI-based measurements, 

as well as the non-spatial measurements are then numerically processed to quantify 

correlations. The results, together with the original template and additional hierarchical ROI 

information are then visually encoded and presented to the user. The domain-expert controls 

the visual interface, and uses this interface to formulate new hypotheses.

Maries et al. Page 21

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2015 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Dendrogram panel encoding the functional structure of the brain. Leaves represent brain 

regions, e.g. cerebellum, while inner nodes correspond to groups of regions, i.e., regions 

associated with Mobility (Mob), Visuospatial Attention (VA), Motor Imagery (MI), 

Cognitive Processing Speed (CPS), or Memory (Mem). The ”Cerebellum (R)” label is the 

result of a mouse hovering action. The color-map is linked to the one used for volume 

rendering and encodes the significance level of the correlations.
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Fig. 4. 
Comparison of two gait variables, bradykinesia (top) vs. gait disturbance (bottom) using 

macro-structure brain measurements. The brain regions correlated with bradykinesia (upper 

volume rendering panel) were distributed more cortically than those for gait disturbance 

(lower volume rendering panel). Also noticed here is that only two of the mobility regions 

and only one motor imagery region associated with gait disturbance (lower dendrogram) 

were significant at the 5% level. This prompted the lead GRACE researcher to examine next 

the correlations between gait variables and microstructure brain measurements.
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Fig. 5. 
Comparison of two algorithms (iterative Tikhonov Regularization vs. SPLS) used to 

compute the associations between brain regions and DSST. Visual analysis of all visual 

encodings indicates very limited overlap between the results generated by the two 

algorithms. To the researchers’ surprise, the correlated regions selected by the two 

algorithms were significantly different.
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Table 1

Task Abstractions and Instantiations for Spatial and Non-Spatial Geriatric Analysis

Index Task Abstraction Instantiation

T1 For the same non-spatial variable, compare correlations of a particular 
spatial variable to the correlations of another spatial variable

Compare correlations of microstructure to correlations of 
macrostructure for the same gait variable.

T2 For the same spatial variable, compare correlations of a particular non-
spatial variable to the correlations of another non-spatial variable

Compare correlations of one gait variable to correlations 
of another gait variable

T3 Compare correlations of a subgroup of spatial locations, for a particular 
non-spatial, hierarchical attribute

Compare correlations of subgroups of brain regions, 
according to the functions they perform (e.g., in Mobility)

T4 Detect spatial patterns for a particular non-spatial variable Visually see brain spatial patterns for tremor

T5 Detect non-spatial variables that vary in the same way, followed by T1 Visually see spatial patterns for gait variables that vary in 
the same way

T6 Compare correlations computed through a particular algorithm to 
correlations computed through a different algorithm

Visually see whether SPLS and Tikhonov yield similar 
correlations

T7 Dynamically query correlations based on confidence level, followed by 
T1–T6

Form and refine gait-brain hypotheses by filtering 
correlations to a desired confidence level
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