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SUMMARY 

 

Visualization is the key methodology that gives the research scientist /analyst an insight 

into data that may be generated from various sources such as computational simulations 

and scientific experiments. A recent trend has been towards the use of Virtual Reality 

(VR) technology for data visualization, to give the user a realistic insight into the data.  

Teleimmersion is the amalgamation of data mining and significant computation with 

collaborative virtual reality. It allows multiple networked users to participate in a shared 

virtual environment. The collaborators can talk to each other and can see each other in the 

environment.  Teleimmersion augments the data visualization and analysis process to 

produce a new genre of applications.  

With advances in the fields of computational science and engineering we now have faster 

computers that generate data, which is in the range of a few hundred megabytes to several 

terabytes. Large data visualization poses a new challenge to the visualization community, 

as most of the existing systems are not capable of visualizing vast amounts of data.  

Massive data sets and collaborative visualization add a new dimension to ongoing 

research on visualization in virtual environments. Collaborative extensions have been 

added to existing non-VR systems. A number of dedicated single user systems allow the 

user to visualize large datasets in virtual environments. Most of these systems are 

application specific and cannot be extended. Even though these systems cater to a diverse 

set of application domains, some trends and patterns in their approach to visualize data 

are discernable. These design features can be reused in future applications.  
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SUMMARY (continuation) 

The main contribution of this thesis is in proposing the Teleimmersive Data Explorer 

(TIDE): a general architecture that blends collaboration with the visualization, which can 

be used by application developers for rapidly building teleimmersive applications for 

large data visualization. A basis of the TIDE architecture has been implemented. 

The following chapters describe in detail existing visualization systems, this forms the 

basis to identify the characteristics of visualization systems. An analysis of the problem 

of large data visualization and collaborative visualization is done to identify possible 

solutions. A framework for TIDE is proposed, implemented and evaluated. 
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CHAPTER 1 

 

INTRODUCTION TO VIRTUAL REALITY AND SCIENTIFIC VISUALIZATION 

Currently most scientific visualization systems limit the user to visualize data on a two 

dimensional (2D) desktop. Since Virtual Reality (VR) can make the data visualization 

process more realistic by providing a third dimension, it seems natural to make use of this 

technology for visualization instead of the traditional 2D desktops.  

VR systems such as the CAVE(CAVE Automatic Virtual Environment)[16] immerse the 

user in a virtual environment by using surround screen rear projection technology[16], in 

which the user is fully immersed in the Virtual Environment (VE). Immersive systems were 

designed primarily for scientific visualization purposes, to provide the user with the ability to 

walk around and analyze scientific data and to make the data exploration process more 

realistic. Allowing a user to interact and collaborate with other users in the environment can 

further enrich the immersive experience.  

However very little effort has been made in the development of general-purpose problem 

solving environments for data exploration in immersive environments. Even less work has 

been done in the development of collaborative scalable immersive visualization systems. 

Hence the focus of this thesis is to develop an extensible framework for data exploration that 

allows multiple users at different geographic locations to collaborate in a data analysis 

session involving a very large data set, in an environment. 
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1.1 Limitations of Current Scientific Visualization Systems 

There exist a number of general-purpose scientific visualization systems that aide the user in 

performing a variety of tasks such as data exploration and visualization, however they 

confine the user to a 2D environment, the workstation. The users of these systems use a two-

dimensional interface to interact with and visualize data containing more than two-

dimensions. This can be very limiting in that the spatial relationships between various data 

points may be unclear. Virtual Reality systems such as the CAVE[16] (CAVE Automatic 

Virtual Environment) make three-dimensional spatial interaction possible. 

Another problem that the Scientific Visualization community faces pertains to the 

visualization of large data. Simulation results today can surpass 100Gbytes, and these are 

expected to scale with the ability of supercomputers to generate them. Most general-purpose 

scientific visualization systems are based on a data flow model that needs to hold all the data 

to be visualized in core, and hence cannot be applied to visualize large data sets in the range 

of hundreds of megabytes to a few terabytes as it is impossible to fit this large a data set into 

the virtual and physical memory of the workstation used for visualization. Neither do these 

systems allow multiple remotely connected users to collaborate on the data being visualized, 

though extensions have been added to make some of the systems collaborative, as an 

afterthought. 

Recent research has led to the development of immersive visualization applications designed 

specifically for VR devices and for accommodating large data sets; these systems focus more 

on a particular task and are not collaborative. The goal of TIDE is to define the infrastructure 
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for scientific visualization applications that can handle large data sets and allow users to 

visualize data immersively and collaboratively.  

1.2 Application of Tele-Immersion to Scientific Visualization     

Consider the visualization of data resulting from a Computational Fluid Dynamics (CFD) 

simulation. The numerical data collected consists of time varying scalar and vector fields, in 

three-dimensional space. Traditional two-dimensional visualization systems would   generate 

three dimensional time dependent models from the data and finally project them on a two-

dimensional screen, causing the visualization model to loose an important depth cue: 

binocular disparity (stereoscopic depth).  If the display monitor supports stereo then 

binocular disparity can also be implemented by projecting different images for the left and 

the right eye and using shutter glasses to provide the correct image to each eye. Two-

dimensional graphics systems generally implement perspective projection, occlusion, lighting 

and shading to give the notion of depth.  

VR systems provide the cues of binocular disparity, motion parallax and convergence in 

addition to those provided by two-dimensional graphics systems. Motion parallax is 

implemented by tracking the position of the user’s eyes and re-rendering the scene based on 

the user’s perspective. Implementing additional depth cues in a system causes the final 

rendered image to be more realistic and convincing. One of the benefits gained from using 

virtual environments for visualization systems, is the near real-time three-dimensional 

interaction that these systems provide to the users. However, non-immersive VR devices 

render the images on screens which are perpendicular to the users, many a times causing the 

user to loose a sense of immersion if he/she looks beyond the screen.  
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In immersive VR systems such as the CAVE, four rear-projection based screens surround the 

user. Three screens form the three walls: front, left and right and one forms the floor.  

Projectors render stereoscopic images onto these screens. This gives the user a sense of 

immersion into the data, as they get a computer generated realistic view of the data. 

Contemporary tracking devices that accommodate six degrees-of- freedom i.e. a position in 

three dimensional space (x, y and z) and orientation (i.e. yaw, pitch and roll), can be used as 

input devices to give the user the ability to interact with the data spatially in three-

dimensions.  The Visualization of data collected from other sources such as geographic 

information systems and medical scans can also reap the benefits that these systems offer due 

to their employment of perspective projection, binocular disparity, motion parallax, and six 

degree-of-freedom.  

Immersive virtual environments are evolving from being mere display environments for 

rendering the final output of a visualization process[10], to interactive environments.  Many 

of today’s applications focus not only on the display of a stereoscopic image on VR display 

devices, but also on interaction with the data or models being displayed. This adds new 

capabilities to the field of scientific visualization. Many computational steering[14] and data 

visualization applications [13] now make use of immersive virtual environments. 

Networked Virtual Environments (net-VEs) or Collaborative Virtual Environments (CVEs) 

form the base for a new generation of applications, which allow users, located at different 

locations to interact with each other in real time in a shared space. Immersive scientific 

visualization systems can be made collaborative by utilizing existing high bandwidth Local 

Area Networks (LANs), Wide Area Networks (WANs) and the Internet as communication 

channels. Currently most visualization systems are stand-alone systems, where a single user 
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analyzes data on a conventional two-dimensional screen or in some cases in an immersive 

environment. If more that one person wishes to study a given data set, then they either have 

to share a single interface or work individually and then confer on their views. This can 

prove to be quite cumbersome, especially if the users are situated at different locations. If 

both the users could share their virtual environment and data with each other and interact 

with each other in real-time then they will be able to confer on their analysis more 

interactively, and thus avoid any unnecessary procedures. 

Tele-Immersion (TI) is defined as the integration of audio and video conferencing, via image 

based modeling, with collaborative virtual reality (CVR) in the context of data mining and 

significant computation. TI differs from CVEs as it encompasses a wider range on scientific 

computation and data mining technology. Tele-immersive visualization environments allow 

users to collaboratively analyze data; digital audio/video may be streamed between the sites 

to allow the participants in the environment to talk to each other. A wide range of 

visualization applications can be based on tele-immersive environments, to give their end 

users a better interface for collaboration and interaction both with remote users as well as the 

data.  

Developing tele-immersive data visualization applications for large data involves merging 

the fields of networking, visualization and virtual reality. This poses a new challenge to the 

application developer, for the application needs to accommodate a wide range of 

technologies. The application should allow the user to collaborate with remote participants 

when performing the visualization task concurrently. Any changes that a collaborator makes 

in the virtual environment should be visible to the user. Besides leveraging collaboration the 

application should allow the user to visualize the contents of a dataset that is larger than the 
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memory (virtual, physical and disk) capacity of the users workstation. The focus of my 

dissertation is to bridge the gap between these technologies by proposing and implementing a 

framework that resolves most of the design issues for building such applications.  

Many of the existing visualization systems have been extended to incorporate some of the 

features mentioned above, however these extensions are often specific to the particular 

application domain.   The following chapter delves deeper into such systems, to identify 

common traits and shortcomings. Some good features of existing systems are incorporated in 

the TIDE architecture along with additional features. A distributed Client/Server architecture 

is proposed and its framework and implementation is described.  
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CHAPTER 2 

 

BACKGROUND 

 

Data visualization is a technology that has been evolving for quite some time now. This 

chapter is a survey of the current data visualization systems. There exist several 

commercially available scientific visualization systems for two-dimensional desktop 

environments. Currently there does not exist a single commercial visualization application, 

which has been tailored for Tele-immersive environments. There is ongoing research in the 

development of visualization applications that use VR systems for display and interaction.  

Some systems focus on visualizing the end results of computational simulations, like 

visualization of the results of computational fluid dynamics (CFD) simulations or tornado 

simulations. Another class of applications not only allows the user to see the end results of 

simulations but also enable the user to steer and control a simulation in progress on remote 

supercomputers. Regardless of their goal and approach each of these systems contribute 

something to the field of Scientific Visualization. 

In the sections that follow a number of these systems are described in detail, starting with the 

commercially available non-VR systems followed by VR systems being researched at 

various universities. Their approach to solving the problem of visualization is studied and 

their advantages and shortcomings are enumerated.  A brief introduction to the approach 

taken by TIDE is given and a comparison is made with the existing systems to bring out their 

differences, similarities and capabilities. 
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2.1 Scientific visualization systems: from two dimensions to virtual reality 

Commercial problem solving environments for data visualization have existed since the late 

1980s. These are systems like IRIS Explorer[5], Khoros[6], IBM Data Explorer[8], and 

AVS[9]. SCIRun[22], which is a scientific programming environment for Computational 

Steering is one recent application that allows the construction, debugging and steering of 

large-scale scientific computations. MineSet[23], an integrated suite of software tools for 

data mining and data visualization developed by Silicon Graphics is yet another data 

visualization system.  

Research on utilizing virtual environments for data visualization has gained momentum since 

early 1990s. One of the early systems is the Virtual Wind Tunnel[12], which was created at 

the NASA Ames Research Center in 1992. Some of the recently developed systems are 

CAVEvis, a visualization tool for interactively exploring large time-varying three-

dimensional scalar and vector fields developed at the National Center for Supercomputing 

Applications[13], and CAVEstudy a system that enables scientists to interactively steer a 

simulation from a virtual reality environment developed by Vrije University, Amsterdam. Of 

the above-mentioned systems only CAVEvis is immersive and can handle large data. None 

of these systems are collaborative. Immersive VR technology is being widely used to aide 

geoscientists in interpreting and analyzing three-dimensional geophysical and geological 

data. Such an application that visualizes geoscience data in an immersive environment is 

described in [25]. 

Very little research has been done in the development of tele-immersive applications that can 

handle large data. This could primarily be because totally immersive systems such as the 
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CAVE were developed only in 1993, whereas most of the visualization systems were 

developed in the late 1980s and early 1990s. Additionally VR requires three-dimensional 

interfaces, and these interfaces are currently being researched. Menu systems for two-

dimensional interfaces have been well defined over the years, whereas three-dimensional 

widgets are not well defined.  

As immersive systems gain popularity and well-defined 3D widgets for VR interfaces 

emerge along with the availability of high bandwidth good Quality of Service (QoS) 

networks and the prevalence of computational simulations that generate tera-bytes of data; 

the trend will be towards the development of tele-immersive applications that can visualize 

large massive data sets. 

2.2  Comparison  of Visualization Systems 

Different approaches have been taken to visualize data collected from various sources such 

as medical scans, simulations and satellites, etc. Some visualization systems, are based on a 

data flow model that allow the user to define a pipeline of filters/transformations that the data 

goes through before being rendered on a two-dimensional device. AVS, IBM Data Explorer, 

Khoros, IRIS Explorer and SCIRun fall into this category. These are non-VR systems. 

Mineset is another non-VR system that provides visual tools for data mining algorithms, 

applicable to large multidimensional data sets. 

Visualization systems that use the VR technology are more dedicated towards solving a 

particular problem domain. The Virtual Wind Tunnel focuses on visualization of the results 

of CFD simulations. CAVEstudy is an immersive computational steering system, and 

CAVEvis is an immersive system for visualization of tornado simulations. 
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In the following sections each of the aforementioned systems is described in detail. The 

approach taken by each system to solve the problem of data visualization, method of 

interaction with the system, their benefits and shortcomings are discussed. Internal 

architectures of the systems are also described where necessary.  

2.2.1 Earlier Problem Solving Environments (PSEs) 

This section will describe PSEs like IRIS Explorer[5], Khoros[6], IBM Data Explorer[8], 

AVS[9] and SCIRun[21]. These systems are collectively discussed here, as they have a 

similar approach towards data visualization. They provide the user with a collection of 

modules, the user then uses visual programming techniques to connect these modules 

together into a visualization network; data is read in by the initial module in the network, 

each subsequent module in the pipeline acts on the data transforming it, till the final module, 

which is generally a rendering module, renders it on a display device. 

Modules are represented on a two-dimensional screen as objects that can be manipulated via 

a familiar point-and-click interface. The modules are connected such that the output of one 

module is connected into the input of another. These connections define the path through 

which the data flows through the system. Each module is a routine that operates on its input 

data to produce some output. The user can set parameters for these routines through standard 

widgets, to define the behavior of the module; examples of typical parameters are threshold 

value for which an isosurface has to be calculated or the percentage decimation value for a 

decimation module. The first module can either read data streamed from a computational 

simulation on a socket or can import data from a file. The final module can either be a 

rendering module, which converts the data into an image to be generated on a two-
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dimensional display device or a module, which exports the data to a file.  Figure 1(a) bellow 

shows the visualization network for generating an isosurface and a slice from input data, 

Figure 1(b) shows the resulting visualization. 

 

IBM Data Explorer[8] has a client/server architecture; the client is the GUI and the server 

process operates as a computational engine. The server accepts a well-defined protocol (a 

scripting language), which is generated by the interface.  The server is controlled by a data 

flow executive, which determines what tasks need to be executed based on user requests and 

schedules their execution. The executive can be operated independently of the user interface 

via the scripting language. 

An advantage of these systems is their extensibility; users can extend the system by 

supplementing the set of data types that can be processed by the modules. New types can be 

defined (by deriving from existing types) for handling data structures that could not be fitted 

into existing types, new modules can then be written to process this data. Hence these 

systems can easily be adapted to new applications and data. These systems allow the user to 

interactively create applications using visual programming techniques, thus alleviating them 

 
Figure 1(b): AVS: Visualization  
 

 
Figure 1(a): AVS Interface: A visualization network 
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of the task of writing complex programs. Since these modular systems need to operate on the 

entire data, they are not well suited for visualization of large amounts of data.  

 

In addition to the functionalities provided by other systems SCIRun implements several 

methods to avoid the excessive memory use inherent in standard dataflow implementations. 

This inefficiency in the use of memory is due to the implementation of the data flow 

paradigm and not in the data flow model. Most dataflow systems maintain a copy of the 

dataset at each stage in the dataflow network, this will cause excessive thrashing when data 

sets are large and hence will result in poor response time. SCIRun overcomes this by 

allowing multiple modules to have shared pointers to common data sets or by letting the user 

decide which intermediate data sets are to be retained. SCIRun also allows interactive 

steering of the design and computation phases of a simulation. 

2.2.2 MineSet 

Operational data generated by business transactions is consolidated in a data warehouse, 

which often is a Relational Database Management System (RDBMS). The analysis of this 

data to find relevant information i.e. patterns in the data that will support future business 

decisions, is called data mining[19]. To gain a deeper understanding of the data, Silicon 

Graphics developed MineSet, which merges data visualization technology with data mining, 

by providing an integrated suite of software tools for data mining and data visualization. 

MineSet provides users with a rich set of visual tools for faster discovery of meaningful 

trends and relationships.  



13 

Underlying the interfaces to the visual tools, are analytic data mining algorithms that build 

comprehensive data models for analysis.  Data mining results and visualizations can be easily 

deployed across corporate networks, and are available to users through point and click 

access. Analytical models developed in MineSet can be applied to any data set with the touch 

of a button. MineSet has a distributed, client/server architecture where in a MineSet client 

can connect to several MineSet servers thus allowing for explosive data growth.  

Though MineSet has been developed as an integrated tool for data mining for large corporate 

data warehouses, it has the same goals as any other data visualization application for massive 

data sets: to gain a deeper insight into large data sets. Data mining algorithms find trends and 

relationships in the data, which is complemented by the data visualization that utilizes the 

visual bandwidth to help the user gain a deeper, intuitive understanding of the data. Even 

 
Figure 2: MineSet : Splat Visualizer view of a three-dimensional landscape with columns 
from the adult94 sample dataset mapped to axes, sliders, color, and opacity 
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though MineSet produces information rich visualizations, these are still visualized on two-

dimensional screens. Figure 2 shows the interface provided by MineSet and a splat visualizer 

view of a three-dimensional landscape from a sample dataset mapped to axes, sliders, color 

and opacity. 

2.2.3 Virtual Reality Systems 

Recent research in data visualization has focused on the use of virtual environments as an 

environment for data exploration and visualization. This has led to the development of a new 

class of applications/frameworks for data visualization. These systems have a more focused 

application domain for the purpose of high performance. The Virtual Wind Tunnel[12] and 

CAVEvis[13] are virtual reality based scientific visualization applications. The Cosmic 

Worm[11] and CAVEStudy[14] are systems that enable scientists to steer and control a 

computational simulation from a virtual environment such as the CAVE.   

2.2.3.1 Virtual Wind Tunnel 

The Virtual Wind Tunnel created at the NASA Ames Research Center in 1992, is an 

application designed to study Computational Fluid Dynamics (CFD) Simulations. The VR 

system consists of the BOOM (Binocular Omni-Orientation Monitor) as the display device 

and the VPL Data Glove for input.  The wind tunnel generates visualizations, from scalar and 

vector data, such as streamlines, streaklines, particle streams, isosurfaces and contours. 

Visualizations in the virtual wind tunnel are associated with points in space. This allows a 

direct manipulation paradigm to be applied to the control of the visualizations. These points 

in space are controlled with visualization control tools, such as emitters. The user can move 



15 

these tools around in the wind tunnel. The use of these tools allows the user to move groups 

of visualizations about at the same time.  

The Virtual wind tunnel is designed to support both high rendering rates as well as large 

amounts of computations. The client-server distributed architecture has a graphics process 

group executing the draw function of environment objects and the computation process group 

executing the compute functions, both operating asynchronously from each other. The 

graphics process groups are on a client system and the computational process group is on a 

server. The virtual wind tunnel can be applied to visualize scalar and vector fields, for 

example to visualize velocity vector fields and density vector fields around aircrafts.  

In a BOOM, screens and optical system are housed in a box that is attached to a multi-link 

arm. The user looks into the box through two holes, sees the virtual world, and can guide the 

box to any position within the operational volume of the device. This might encumber the 

visualization process for some users. The Virtual Wind Tunnel is also limited in its 

application domain to the visualization of scalar and vector fields and is not easily extensible. 

2.2.3.2 CAVEvis 

CAVEvis is very similar to the Virtual Wind Tunnel, in principle. It also is a visualization 

tool for interactively exploring large time-varying three-dimensional scalar and vector fields 

and utilizes a virtual environment. CAVEvis utilizes the CAVE as the VR system and unlike 

the BOOM, the stereoscopic images are projected onto screens that surround one or multiple 

simultaneous users. The users wear lightweight LCD shutter glasses to see in 3D. The user 

uses a wand, as an input device. Trackers are attached to the glasses and the wand to track 

their position and orientation, in the virtual space. The object space is divided into a user 
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space and domain space. 3D-menus and other widgets are drawn in user space, where as the 

actual visualizations and associated direct manipulation tools are drawn in domain space. 

Objects in the user space are always relative to the user, and are always in sight.  

 

Like Virtual Wind Tunnel, CAVEvis also has a distributed architecture, however CAVEvis 

focuses only on rendering tasks and user interface functionality.  It interacts with a 

Functional Module (FM), which is a server to handle CAVEvis requests. Both CAVEvis and 

the FM operate independently of each other. CAVEvis is only aware of the domain time and 

space and the visualization objects that need to be rendered in the current time frame. It 

makes requests to the FM based on user input and the FM merely fulfils one request after 

another.  

Though CAVEvis uses immersive VR systems, it does not make use of networking 

capabilities to link remote users for collaborative analysis sessions, it does support large data 

sets though. 

2.2.3.3 Cosmic Worm & CAVEStudy 

High-speed networks and powerful graphics workstations make it possible to directly interact 

with scientific simulations running on massively parallel computers. Virtual reality systems 

can be used to not only see the end results of a computational simulation, but also to control 

such a simulation running on a remote computer. Some desktop scientific visualization 

applications already offer the capability to steer a remote simulation(SCIRun[22]). Research 

has been going on to provide the same functionality from within a virtual environment. The 

Cosmic Worm[11] is one such application developed to allow research scientists in NCSA’s 
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astrophysics group to study cosmic behavior. CAVEstudy[14] is yet another system that 

allows immersive and interactive analysis of a simulation running on a remote computer. 

In the Cosmic Worm interaction with the remote simulation is accomplished via a menu 

system invoked with the wand. The simulation can be stopped/paused at anytime, the user 

cane see a visual representation of the latest time step, and can examine accumulated time 

steps. The user can modify the input parameters of a stopped simulation and restart it.  

CAVEstudy is a more extensible system, in that it allows the user to describe the simulation 

by a description file, from which a server component for the simulation is generated and a 

server-proxy is generated for integration with the VR framework. The interface for the server 

allows one to start, stop, pause and resume the simulation. The server-proxy forwards the 

commands and input values to the server through the network and manages incoming data 

from the simulation. CAVEstudy has been used in the development of several applications 

such as Interactive Soccer, Diode laser simulation and molecular dynamics.  

These systems are affected by the latency of the simulation program and the delays caused by 

the underlying network. Simulations are generally run on massively parallel computers such 

as CM-5, IBM’s SP1 and SP2, etc. Computational steering systems such as these broaden the 

scope of applications of immersive environments.  

2.2.3.4 Visualization Systems for Geoscience Data 

The number of visualization centers in the oil and gas industry that use VR technology have 

increased from 2 in 1997, to more than 20 in the recent years. This increase in the use of VR 

systems is due to the immense utility of these systems. VR systems reduce the amount of 
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time required in analysis of the data and help in the rapid detection of significant gas and oil 

reserves.  

A number of VR applications for geoscience visualization have been developed, some of 

which are commercially available.  These systems include a multitude of data exploration 

and analysis tasks such as engineering reservoirs, plant walk through, viewing seismic slices 

etc.  One such application is described and evaluated in [25]. The application pre-processes 

the data and converts it into a format (Open Inventor) that can be understood by the 

application. The VR system consists of a CAVE and three sensors are used to track the head 

and both the hands of the user. A six-degree-of-freedom input device such as the wand is 

used for user interaction. Three-dimensional seismic data sets comprise of a regularly spaced 

orthogonal volumes of data samples.  This application provides a set of VR tools to select 

and manipulate an object. Constraint based virtual tools are used for selection and defining 

regions of interest and input parameters.  

These systems provide an effective visualization tool for geoscience data, however they are 

not collaborative. A standard paradigm for the rapid development of three-dimensional 

widgets like the two-dimensional Windows, Icons, Mouse and Pointer (WIMP) user interface 

for conventional computers does not exist, and is still a field of research. Analysis and 

management of large data is still a challenge to geoscience visualization.  

2.3 Common Traits in Visualization Systems 

The systems described here have different application domains and they also differ in their 

approach to data visualization. The systems can be classified based on their application 

domain, the environment used for visualization and their approach to visualization. Based on 
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application domain we have systems like IRIS Explorer, Khoros, IBM Data Explorer, AVS, 

CAVEvis, Virtual Wind Tunnel, Cosmic Worm and SCIRun, which focus on visualization of 

data generated as a result of scientific simulations and digital instrumentation systems. 

MineSet on the other hand focuses on visualization of corporate data using data mining 

algorithms. Of the scientific visualization systems, IRIS Explorer, Khoros, IBM Data 

Explorer, AVS and SCIRun allow the user to use visual programming techniques to build 

visualization applications, these are termed as modular systems. These systems are highly 

extensible, and can be applied to visualize a wide variety of scientific engineering and 

graphics data. CAVEvis and Virtual Wind Tunnel focus more on visualization of time 

varying scalar and vector data resulting from CFD simulations and tornado experiments. 

SCIRun, Cosmic Worm and CAVEstudy allow the user to not only visualize scientific data 

but also control simulations running on remote supercomputers.  

IRIS Explorer, Khoros, IBM Data Explorer, AVS, MineSet and SCIRun are primarily 

desktop systems. They use traditional two-dimensional screens for interaction with the user 

and rendering of the final visualization. Virtual Wind Tunnel, Cosmic Worm, CAVEstudy 

and CAVEvis are designed to utilize VR display devices. Of these only Virtual Wind Tunnel 

uses a non-immersive virtual environment, the rest use immersive environments for user 

interaction and display. 

The modular systems follow an approach wherein each of the modules can be assigned to 

different processes, which may be assigned to different processors for better performance. 

The virtual reality based systems use a common approach where, a distributed Client/Server 

architecture is implemented. A visualization client handles the rendering, and the server 

handles the computational tasks. The server handles client requests; both the client and the 
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server can operate asynchronously. This takes the onus of performing intense computations 

from client, which can now focus on rendering at an immersive frame rate. The TIDE 

framework implements a similar distributed architecture. 

Though the systems described here, have different architectures and interaction methods, 

they all have a common goal: gain insight into data, which is collected from various sources 

such as medical scans, computational simulations, scientific experiments and even statistical 

data. Analysis of data can provide valuable information regarding the correctness of the data 

and the trends and relationships in the data. This information can even decide the future 

course of action that needs to be taken. 

2.4 Shortcomings of current systems and ways to overcome them 

One problem that the data visualization community faces is the visualization of large data. 

Simulation results today can surpass 100Gbytes easily. Not all systems are designed to 

handle large data, systems which require to read all the data into main memory (in core) 

cannot be utilized to visualize 100GB of data. Large data sets can easily overwhelm the 

physical and virtual memory of the visualization system. A new approach to data 

visualization is needed.  

In some cases it is possible to segment the data based on its spatial, temporal or logical 

characteristics, and load only required segments into main memory. However the segments 

themselves could be too large to fit into the operating systems virtual memory or they may 

lead to excessive thrashing. Hence such applications need to define their own memory 

management techniques instead of wholly relying on the operating system[20]. 
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Hence if the data is very large, in the range of several hundred Megabytes to a few Terabytes, 

it is only feasible to visualize a small subset of the data that can fit into main memory. Of the 

systems described here only CAVEvis and SCIRun, mention being able to visualize large 

data. MineSet handles large data, by having data distributed over a number of servers and 

clients can query these servers for data, which they are interested in. Another approach to 

visualize large data is to have multi resolution versions of the data. A user is presented with a 

coarse low-resolution version of the data and can then focus on particular regions of the data 

to see finer resolution versions. If the size of the region that the user is interested in is still 

large, the higher resolution version can still exceed the memory limits. Large data 

visualization is still an active research topic, and no perfect solution is available to the 

problem. 

Most of the current visualization systems (immersive or otherwise) allow a single user to 

interact with the data at a given point in time. Research is generally a group activity wherein 

a number of scientists bring different skill sets to the table. If a group of research scientists 

wish to collaborate during a data visualization session they would have to share one interface 

to interact with the data; this can prove to be quite cumbersome and inconvenient especially 

if the people involved are geographically at different co-ordinates.  

Availability of high bandwidth low latency networks makes collaborative visualization a 

possibility. Collaborative visualization applications tend to be complex, because of the 

presence of multiple users. Since the users interact in a collaborative context, they need to 

operate synchronously with each other and for this it is necessary that they operate in a 

shared space and are aware of the activities of other users in the environment. Collaborative 

Visualization applications have great potential in that expertise of a particular user can be 
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shared without having to relocate the user from their geographic position and users can 

collaborate on the visualization. Having realized this, collaborative extensions[21] were 

added to AVS, and IRIS Explorer[3]. In Collaborative AVS data may move from one module 

to another in the same AVS network or to a module in an AVS network on a different 

computer by means of a collaboration module. This allows users to access a central data set 

or multiple local copies, and for multiple users to interactively share any visualization 

parameters. In IRIS Explorer, too, each user can build their own network, but has the 

opportunity to make a connection to a collaboratively aware module that can pass data to and 

from other collaborators’ network. 

2.5 Characteristics of Data  

2.5.1 Data types 

Visualization techniques are dependent on the dimensions of the domain of the quantity 

being visualized and the type of the quantity i.e. scalar or vector. Time dependency adds 

another dimension to the domain. Scientific data generally consists of 3D scalar and vector 

fields. The type and the dimensionality of the data being visualized largely determines the 

requirements of the scientific visualization method. The complexity of geometric modeling 

algorithms increases if there are fewer restrictions on the data and/or if the dimensionality of 

the data increases.  

2.5.2 Data Visualization  

To gain better insight into data, it is important that the visualization is an accurate 

representation of the data. “How” the data is visually represented determines the 

effectiveness of the visualization experience, hence the geometric models derived from the 

data should be comprehensible and should utilize appropriate visual cues to aide the user in 
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finding trends and relationships in the data. For the visualization of 3D scalar data generally 

geometric modeling algorithms generate scalar glyphs, isosurfaces, slices and orthogonal 

slices. 3D vector data can be visualized using 3D vector glyphs, streamlines, streaklines (if 

the vector quantity is time varying) and particle advection. Most modular visualization 

systems described, support visualization of all types of data. These systems also provide 

imaging algorithms for the visualization of 2D images. CAVEvis and the Virtual Wind 

Tunnel visualize 3D scalar and vector fields. TIDE currently supports 3D scalar data and 

generates scalar glyphs from the data, the color, opacity, dimension and position of the 

glyphs in space are mapped to different attributes. The TIDE framework is extendible to 

support other visualization techniques and data types. 

2.5.3 Data Storage and Retrieval 

Different formats exist for the archiving data on high capacity disks. In some cases the data 

may be pre-processed and converted into a format understood by the visualization system for 

example octree-decomposition techniques are used to decompose the data into a spatial 

hierarchy, and the data is then stored to disk. Hierarchical data formats allow users to retrieve 

a subset of the data based on spatial or temporal proximity, most of these data archiving 

systems have their own API for data retrieval[26]. The Relational Database Managements 

System is also used for storing scientific data. Data can be retrieved from the archive using a 

Structured Query Language (SQL).  

2.6 Summary 

Applications that merge immersive environments (which inherently allow participants to 

collaborate with each other) with data visualization, can give users a ‘true’ sense of presence 

in an environment with remote users and visualization tools and objects. This is the research 
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goal of TIDE. The TIDE architecture implements some of the good features, which exist in 

the current systems, and provides additional capabilities, which overcome the shortcomings 

of the existing systems. It retains the client/server architecture that is found in many of the 

immersive systems.  Unlike existing collaborative systems[3] [21] that have added extensions 

for collaboration, TIDE focuses on making interaction and collaboration an inherent part of 

the architecture. Applications of TIDE have basic inbuilt collaborative capabilities, which 

can be further enhanced as per application needs.  

Figure 3. Comparison of visualization systems. 

 

TIDE has a command driven architecture, wherein a client communicates with the server 

based on an application specific protocol. This implementation is similar in concept to a 

Remote Procedure Call (RPC) mechanism. The client sends command requests to the server 

and the server implements handlers that execute these requests. To handle large data sets, the 
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client can query for a subset of the data and can further refine its queries to get a higher 

resolution version of subset. 

Figure 3. gives a better picture of the capabilities of TIDE in comparison to other existing 

systems. TIDE merges immersive technology with data mining and computation, for a new 

genre of tele-immersive applications for data exploration. Details of the TIDE architecture 

and one of its applications, is discussed in the following chapters. 
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CHAPTER 3 

 

IMPLEMENTATION OF TIDE 

 

The research focus of TIDE is to provide a skeleton for developing applications for data 

exploration and analysis from tele-immersive environments (and study its effectiveness??). 

Merging immersive VR technology with massive data visualization will pave the way for a 

new class of applications that can effectively use VR devices for visualization of large data 

sets, (and give more insight to the user). The TIDE framework defines the architecture of 

such applications.  

3.1 Features of TIDE 

The TIDE framework allows groups of scientists each at a geographically disparate location 

to collectively participate in a data analysis session, in a virtual environment. The data being 

analyzed can be stored on data servers, which are at a different location from the clients’ 

Imagine a scenario where there are three scientists who wish to confer on the effects of ocean 

currents on the earth’s climate. However all the three scientists are located at geographically 

disparate locations and so is the data. One of the scientists is an oceanographer, all the 

oceanographic data is situated in his laboratory. Another scientist is a climatic expert, and has 

the climate data in his laboratory and the third is a geoscientist.  The climate data is defined 

by attributes such as temperature, precipitation and pressure. Whereas the oceanographic data 

has attributes such as salinity, direction and strength of the ocean current and sea surface 
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temperature.  The scientists decide to participate in a collaborative data exploration and 

analysis session. Each scientist can access both data sets.  

The scientists visualize and interact with the data using a device such as the CAVE or an 

ImmersaDesk. A virtual environment is created wherein each scientist can see the 

representation of the remote scientists in his own environment. This representation is called 

an avatar, which is a three-dimensional model that may constitute of various parts of the 

human body. The position and orientation of each user in the virtual environment is tracked 

and his/her remote representation is updated accordingly. So if the oceanographer points to a 

certain location in the data-set, the climatic expert and the geoscientist will see his avatar 

pointing to that location in their own world. Digital audio is set up between the sites to allow 

the participants to speak to each other. The scientists can work synchronously, in 

collaboration with each other or asynchronously, in a standalone mode. Consider a 

synchronous session where all the participants in the session share the visual representation 

of the data.  The scientists can interact with the data using three-dimensional tools. 

The oceanographer decides to play the lead role and loads the atmospheric data and chooses 

to visualize the temperature over the earth’s surface. The climatic expert notices an anomaly 

in the surface temperature over Europe. However the oceanographer knows the reason 

behind this are the strong currents that flow from the hot tropical regions towards the poles 

and loads the ocean current information from the database. Now the scientists can see the 

ocean currents that are displayed as vectors, the magnitude and direction of which depend on 

the strength and direction of the current.  The oceanographer correlates this with the 

temperature information and gives a detailed explanation of the anomaly in the temperature 

of the European region. During his discourse, the oceanographer can rotate or scale the data 
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set to focus on certain aspects of the visualization. He/she can also navigate to a particular 

point in the virtual space. For example say if he/she wants to talk by keeping both the 

climatic expert and the geoscientist in view then he/she can navigate to a suitable position 

where both the remote participants and the data are within his/her filed of view. 

Now that the geoscientist, has gained enough knowledge of the effects of the ocean currents, 

he/she decides to work asynchronously and leaves the session, the other collaborators see the 

geoscientists avatar exit the virtual space. After this point, no information is shared between 

the geoscientist and the rest of the participants. He/she then explores some other region 

specific data and finds similar effects of the ocean currents on the climate. The climatic 

expert and the geoscientist, could access Dr. A’s expertise even though they were not in the 

same physical space. Neither of the participants needed to have the data being visualized 

stored locally. Figure 4. shows two clients collaborating with each other. 

 

 
Figure 4: A Client collaborating with remote Client (seen as an avatar) 
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3.2 Object Oriented Design 

The scalability and extensibility of an application largely depends on the design. Designing 

Object Oriented Software is a difficult task, as one needs to identify relevant objects in the 

design and define their class interface and the relationships between different classes, such 

that they function together to solve a particular problem. Designing reusable Object Oriented 

Software is even more difficult as the designer may not be aware of the components of future 

applications or their behavior. The task then is to identify reusable design components from 

applications already developed to solve related problem domains and define the behavior of 

those for future use. This is what TIDE tries to achieve. 

Over the years trends and patterns have evolved in the structure and relationships between 

objects (classes). These Design Patterns[24] can be reapplied to solve similar problems in 

other application domains. Knowing that a design pattern exists to solve a particular problem, 

allows the designer to reuse them in the context of the application domain. TIDE uses design 

patterns wherever applicable this makes the framework more reusable.  

3.3 Frameworks 

A Framework constitutes of a set of interrelated abstract classes that define the skeleton for a 

particular class of applications. These set of classes characterize the design of applications 

developed to solve a particular problem domain. Frameworks are developed to facilitate 

design reuse rather than code reuse. An application developer provides application specific 

subclasses for the abstract classes. A good framework is one that can be understood easily 

and provides enough features that are useful to the application developer and is generic 

enough to be used in a variety of applications. Such a framework will effectively reduce the 
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cost involved in designing the application, and more attention can be given to application 

specific details.   

Frameworks describe the basic approach that needs to be taken to solve a particular problem 

and provides hooks where application specific code can be added. Frameworks evolve as 

more applications are developed based on them. Some components of the framework can be 

discarded or modified if they do not contribute towards an effective reusable design. New 

components can be identified and added with time. Writing a good framework can prove to 

be a daunting task as it is not possible to know the requirements and structure of all possible 

applications. 

3.4 Basic components of tele-immersive applications for visualization of large data 

There are some constituent parts, which any tele-immersive application needs to be 

composed of, irrespective of its application domain. Some of the more prominent ones are 

identified here. 

3.4.1 Data Visualization 

Data that needs to be analyzed does not have one uniform format; the type of the data 

depends largely on its source. For example CFD simulations may generate data that is 

comprised of an unstructured grid of scalar and vector fields. Whereas data collected from 

remote sensing satellites may be in the form of a regular grid of scalar fields. A geometrical 

representation of this data needs to be generated for visualization purposes, the data may be 

processed before this transformation i.e. it may be passed through filters for decimation and 

isosurface extraction. These operations can be time consuming and may even take several 

hours to compute.  
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Three-dimensional input tools need to be provided to allow the users to directly manipulate 

the data for example to slice through the data or specify the seed points for streamlines. Users 

should be allowed to indirectly manipulate the data i.e. to save the visualization to a file, to 

specify input parameters to transformation modules, etc. Any user interaction should be done 

in real time and the display should be refreshed at a frame rate higher than the minimum 

required to give the user a sense of immersion. 

3.4.2. Handling large data 

As it is feasible to visualize only a subset of the data at any given time, users should be 

allowed to specify accurately what portions of the data they are interested in. The data can be 

segmented spatially, temporally or logically. Multiple resolution versions of the data can be 

provided, and the user can start off by visualizing a low-resolution version and higher 

resolution versions are generated as the user narrows down on particular region of interest 

within the data. 

3.4.3 Leveraging Collaboration 

For a collaborative session to be effective the following issues need to be managed: 
 

• All collaborating participants should have a sense of shared space i.e. they are 

immersed in the same virtual environment with similar characteristics and objects. 

• Each participant should be aware of the presence of the other remote participants and 

should be able to interact and communicate with them in real-time, audio may be 

streamed between them to allow them to talk to each other.  An avatar, a geometric 

representation of the remote user is used to represent a remote user in local space.  

• If a user modifies any object in a shared space, be it the visualization, an object in the 

virtual environment or moves in the virtual space, then these state changes need to be 
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transmitted to all the participants in the environment, at the same time any state 

information received from remote participants should be applied to respective shared 

objects.  

• Large delay in the transmission and reception of the information, caused by low 

bandwidth high latency networks or computational delays, degrades the effectiveness 

of the collaboration. 

3.5 Conceptual Organization of TIDE 

Data visualization involves the conversion of raw data into a geometric representation 

(polygons, cubes etc.) that can be rendered onto a display device as shown in Figure 1. 

The conversion process is responsible for fetching the data from the data source, 

representing it in the computer’s physical/virtual memory using a domain specific data 

model, performing operations such as feature extraction and decimation (if required) and 

finally generating a geometrical representation of the model. The rendering process is 

responsible for drawing the geometrical representation on a display device. Both these tasks 

when performed by a single application can prove to be computation intensive and would 

generally use up most of the resources such as memory, disk space and CPU cycles, 

especially for large complex data. This results in very low frame rates, unacceptable by 

immersive systems such as the CAVE. 

TIDE separates the conversion process from the rendering process by allocating the tasks to 

different computing environments. The conversion of the data, and the rendering of the 

visualization are done by separate applications. As shown in Figure 5 the visualization 

process is split up by implementing a Client/Server architecture. The server application does 
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the conversion and generates the geometry that is sent to the client, which renders it on a 

display device to be visualized by the user. In this way the conversion of the data into a three 

dimensional visualization can be done on a high end supercomputer (the tele-immersion 

server), that has the resources to carry out intensive computations and the geometrical model 

can be rendered on tele-immersive display systems such as the CAVE (tele-immersion 

client). In addition to this the server application also handles collaborative visualization 

sessions, where in you have a group of clients collectively analyzing/visualizing the data.  

Splitting up the visualization process this way allows the server process to focus on the data 

conversion and manipulation and the client process on rendering and user interaction.  

Thus the conceptual organization of TIDE consists of three primary components: the Remote 

data and computation services (RDCS); the Tele-Immersion Server (TIS); and one or more 

Figure 5: TIDE’s Visualization Process 
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Tele-Immersion Client (TIC). This is shown in the Figure 5. There can be one or more tele-

immersion clients, which connect to a central server called the Tele-immersion server. The 

Tele-immersion clients are the visualization end points that allow the user to participate in 

the collaborative virtual environment. The Tele-immersion server is in turn connected to one 

or more remote data and computation services, and mediates the interaction between the 

client and these services. 

3.5.1 Remote Data and Computation  Services 

RDCS refer to external databases (or data mining servers) and/or simulations/compute-

intensive tasks running on supercomputers or compute clusters.  The databases hold data 

generated by computational simulations and digital instrumentation systems.  Since the size 

of the data may vary from a few Megabytes to several Terabytes, the data may be distributed 

over several such nodes. Also it is impossible to visualize all the data, as it will not fit in core 

memory, only a subset on the data can be visualized at a time. Hence this data itself may be 

processed in such a way that from the entire data set, a smaller data set is extracted, which is 

a more coarse version of the original large data set, which can be rendered by the TIC at a 

desirable frame rate. Hence a trade-off is made between the resolution of the data set and 

better interactivity. The coarse version can be obtained by averaging, i.e. by replacing a set of 

values by their average and/or by decimating. In addition to this several attributes can be 

mapped to distinct visually perceptible cues such as stereoscopic depth, hue, size and opacity. 

 

3.5.2 Tele-Immersion Server 

The TIS mediates interaction between the TIC and the RDCS and also serves as a persistent 

entry point for the clients so that they may initiate long-running data-intensive queries and 
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come back at a later time to view their progress.  The TIS handles multiple clients and 

synchronizes their interaction with the RDCS. The TIS allows each TIC connected to it to 

operate on it own local sub-set of the data. It is the TIS that actually retrieves the raw data 

from the RDCS and converts it into a three dimensional geometrical representation that can 

then be visualized by the TIC. 

The TIS is designed such that each client has control over its own data. If the client is 

working synchronously with other participants in a session then the final geometric model 

can be broadcast to all the clients or if the client is working asynchronously then the results 

are sent only to that particular client. Inventor is used as the graphical description language 

for the geometrical model. Since Inventor’s geometry information is consistent with that 

specified in VRML 1.0, the visualization can also be loaded into a VRML browser. The TIS 

uses an Inventor writer to create the file, another writer, which uses a graphics file format 

compatible with the client’s, can easily replace this.  

3.5.3 Tele-immersion Client 

The Tele-immersion client (TIC) consists of the virtual reality display device (such as the 

CAVE, ImmersaDesk, PowerWall etc.) and the interface to allow collaborative retrieval and 

visualization of data. The TIC handles the rendering of the three dimensional visualization, 

which it receives from the TIS, on the VR display device. It allows the user to interact with 

the data and to specify any input parameters required for generating the next visualization 

step.  The TIC also provides the user with the tools to directly manipulate the visual 

representation of the data. If the TIC is a participant in a collaborative session, then any 

changes made to the visualization such as rotation or scaling, are propagated to all the clients 
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and any such information received from the remote participants is applied to the its local 

model. In addition to this the TIC also handles the rendering of avatars to allow participants 

to collaborate with each other effectively. 

3.6 The TIDE Architecture  

The distributed client/server architecture of TIDE is as diagrammed in Figure 6.    

 

Figure 6: Distributed Architecture of TIDE 

3.6.1 The Tele-Immersion Client 

The process of data visualization is one that involves several steps to reach the end rendered 

result.  A user must first query a data archive for specific information.  Filtering operations 

provide more specific details about the particular aspects of the data to visualize.  These 

operations may include partitioning data, specifying correlations between different types of 

data, or other filtering methods.  All of these specifications are consolidated to produce a 

rendered visual image.  It is this rendered image that represents the data visually.  A user 
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may, depending upon the visualization application, perform additional operations based on 

the visualization itself.  These include manipulations like translations and rotations as well as 

data-related functions like zooming in on specific parts of the visualization. 

TIDE has been designed to maintain a conceptual separation between these two modes of 

interaction: data querying pertains to communicating with data archives to specify and 

obtain information about the data; and visualization interaction is any interaction performed 

in the context of the tele-immersive virtual environment.  These latter actions by the user 

could also communicate with the data servers.  Information about actions in the tele-

immersive environment need to be communicated to other users to indicate the user is 

performing an action.  The query interface address communications relating to the data itself, 

while the visualization interface addresses interactions related to the shared environment and 

the visualization geometry. 

The visualization environment utilized by TIDE is a shared virtual environment inhabited by 

multiple users.  When collaborating in a virtual environment, the user should be able to 

interact with the remote participants. This can be done by streaming audio between the 

participants to allow them to talk to each other and by providing a representation of the 

remote user, an avatar, that is exactly reflects the users position in space. Depending on the 

tracking abilities of the VR system, the users position and/or orientation can be tracked by 

electromagnetic sensors. Any changes to the client’s position and orientation also need to be 

broadcast to everyone in the environment. This is information that needs to be updated 

regularly at high frequencies. An environment server leverages the flow of this information 
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between various clients. A separate environment server is dedicated to this task, as long 

delays degrade the effectiveness of the collaborative experience.   

After a query has been completed by the data servers, visualization geometry is sent to each 

of the connected clients.  That geometry is loaded into the environment for viewing. The user 

can scale and rotate the visualization to get the correct view of the data, or to bring a 

particular region of interest into focus. There is a time interval between the moment that the 

user submits a query and the visual image is rendered on the screen. This delay depends on 

the amount of information queried, the available bandwidth of the network, the time taken to 

convert the data into a visual model, file download time and time taken for rendering the 

image. This time interval varies from a couple of milliseconds to a few seconds. For 

improving the performance of the system, the client starts the process of loading the new 

visualization in a new thread, which runs in the background. The old visualization is removed 

only after the new one is ready. This way the user does not have to stay idle for long 

intervals. Whenever any client changes the state of the visualization, this change is 

propagated to all the other clients participating in the collaboration.  

Although the visualization has been reduced in complexity from the fidelity of the original 

data, the geometry can still be quite intricate.  Complex geometry can hinder the performance 

of the interaction due to increased time between frame updates.  To reduce the polygon count 

of the geometry during manipulation, level of detail features have been introduced.  This 

switch to a significantly lower number of polygons makes the manipulation updates much 

more fluid in response to the user's actions.  As soon as a manipulation begins, the geometry 

view switches to a lower-resolution bounding box.  This switch takes place for all users in 
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the environment.  It also serves to provide an indication that a user has initiated a 

manipulation operation on the geometry. 

In order to provide additional status information about the current state of operations, the 

client uses audio cues.  These cues indicate when a visualization download has begun.  

Additionally, a 3D watch icon indicates that the client is performing processing--in this case, 

background loading the geometry into the scene graph. 

3.6.2 The Teleimmersion Server 

The TIS abstracts the TIC from the actual data, the TIC need not be aware of how and where 

the data is stored. It only needs to specify to the server what data it is interested in and how it 

wants to visualize the data i.e. as a three-dimensional plot, extract an isosurface from the data 

or correlate several attributes by generating a histogram etc. 

In this way the TIS server acts as a mediator decoupling the TIC from the source of data, 

ideally, allowing any client to visualize any data. The TIC can then concentrate on making 

the rendering process more efficient i.e. focus on tasks that improves the interactivity with 

the visualization and increase the frame rate.   

The TIS is multiprocessed i.e. for every new client a separate server handler process is 

created.  When a client connects it can specify what view of the data set it wants to visualize 

and the corresponding server process retrieves that data from the data server. Every handler 

process stores locally, the subset of the data being visualized by the client.  The client can 

specify operations on its own subset of the data set like feature extraction, decimation, 

mapping attributes of the data set to various visual dimensions etc. The handler process 
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performs these operations on the data, converts the data into a three dimensional 

representation and notifies all the clients that new data is ready. The client then downloads 

the visualization from the server (Figure. 6).   

 The clients share only the geometric representation in a collaborative session, not the data. 

The novelty of the TIDE architecture lies here, where it decouples the data from its 

visualization, thus allowing them to be treated as separate entities. If a new client connects to 

an already existing session then the TIS automatically sends commands to the new client 

enabling it to visualize the current data being explored. To visualize another data set a client 

needs to submit a fresh query, the handler process again retrieves the necessary data from the 

data source. 

Since every handler process has the data for its client, the client can perform multiple 

operations on this data, without having to query the data servers repeatedly. Huge amounts of 

data transfers lead to an increased delay in responding to the client. If the dataset that the 

client is interested in fits in to the physical memory of the TIS then the data can be retrieved 

once and different views can be generated off the same data, this improves the response time 

as the TIS does not have to execute expensive data retrieval operations always. 

For example consider a scenario where there are two clients (A and B) visualizing an 

atmospheric data set, which is characterized by attributes such as wind velocity, 

precipitation, temperature and vegetation. Client A is analyzing the effect of precipitation on 

the vegetation and Client B is correlating the temperature to the wind velocity. Client B 

discovers an anomalous trend in the correlation and needs Client A’s opinion to support his 

finding, hence he/she asks client A to participate in the analysis session. Client B then shares 



41 

his visualization with Client A. After discussing with client B, A can still go back to his own 

visualization by asking the TIS handler process to generate a visualization from his copy of 

the data, without having to re-query for the data. 

A shared memory arena is used for communication between the various handler processes 

and the parent process. Communication between the TIC and TIS is established using 

CAVERNsoft G2, a C++ toolkit for building collaborative networked applications [1].  

3.6.2.1 Co-Servers of the Teleimmersion Server 

To efficiently handle the communication between various participants in the collaborative 

session, separate dedicated servers are allocated the tasks of handling exchange of shared 

information and file operations, namely the file server and the world server. 

3.6.2.1.1 The World Server 

Information about the immersive environment is communicated among multiple users 

through the TIDE world server.  This server allows for collaboration between researchers 

examining a particular dataset.  Each user has hand and head tracking data available from the 

CAVE library.  This information is shared among users to provide the location information 

for each avatar within the environment.  Whenever a manipulation is initiated from within 

the visualization, the other users need to be aware of that operation as well. 

The TIDE world server is comprised of three primary components.  First, a UDP reflector 

transmits UDP packets from one client to another.  Second, when information being 

transmitted is essential, a TCP reflector transmits reliable TCP packets.  Finally, a database 

component manages state information such as the transformations of the visualization 
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geometry.  An identifier string identifies each of these manipulations, this allows for multiple 

manipulations within the environment. 

The CAVE library handles the tracking of the user’s position and orientation.  This 

information is transmitted during each frame to the TIDE world server.  The high frequency 

of the transmission does not require a very reliable service.  Therefore, a UDP connection is 

made between each client and the server.  During each frame update, the client packages the 

position and orientation of the user's hand and head, and sends them via a UDP connection to 

the server.  The server reflects this information to each of the other connected users in the 

environment.  Each client in turn updates the avatar for the particular user. 

Client commands involving direct manipulation of the interface are signaled with reliable 

TCP transmissions, as any loss of this information could lead to misunderstandings in the 

communication between participants.  For example, when a user begins to rotate an object, 

the client sends a rotation initialization command to the server.  When this command is 

reflected to the other remote clients, they each switch their views to the bounding box 

representation of the geometry.  After manipulation is completed, the client sends a rotation 

complete command.  Each remote client receives the reflected command from the server and 

switches the visualization back to the full-resolution geometry. In the time duration between 

the beginning and the end of a rotation the client sends state information that reflects the 

amount/degree of rotation to the remote clients, which use this information to rotate their 

view. 
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The TIDE world server's primary function is to serve as a central connection point for each 

of the clients.  The server reflects commands and operations to each of the connected clients 

to enforce the shared states of the environment. 

3.6.2.1.2 The File Server 

A dedicated file server allows multiple clients to down load the geometry files generated by 

the TIS. This improves the performance of the TIS as it does not have to deal with uploads to 

all the clients, additionally the architecture can be further modified to allow the clients to 

download the files only if they wish to.  

The file server is based on CAVERNSofts remote file I/O networking class.  

3.7 The TIDE Framework 

TIDE provides an application developer with the infrastructure to build collaborative tele-

immersive applications to explore large multi-dimensional data sets. TIDE has a distributed 

command driven architecture as shown in Figure 2. A message-passing interface is used for 

exchanging information between the TIS and the TIC over the network. A typical application 

of TIDE would consist of a number of TICs on various VR display devices requesting 

services from the central TIS. The TIDE framework defines how the client handles 

collaboration, user interaction, rendering of the visualization and querying the TIS for 

information. It specifies how the TIS handles: multiple requests from multiple clients, data 

representation and conversion. Communication with the TIC is established using a reliable 

TCP channel.  

The implementation of the framework is done in C++ and effectively uses design 

patterns[24] such as Template method, Command, Observer and Mediator. 
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3.7.1 The Tele-Immersion Server 

It is not possible to define every operation that the TIS needs to carry out, as some tasks are 

application specific. However, some key tasks remain common to all applications and these 

are: handling multiple requests from multiple clients, data representation and conversion. 

“What” the client requests are and “how” they are to be handled may be application specific. 

Similarly  “what” the data is and “how” the geometric modeling is done may depend on the 

application domain. The TIS provides a network of interrelated abstract classes that define 

the interface for handling client requests etc., the task of providing the application specific 

functionality is deferred to specialized sub-classes, which need to be implemented by the 

application developer. 

Figure 7 shows the interrelationships between various classes using the UML notation. The 

classes belonging to the framework are blue in color. The Tide_Client_Manager maintains a 

client database for the Tide_Server. Every client request is packaged into a command object 

and a handler is implemented to execute one or more commands. For example if a client 

wishes to visualize a subset of the data then the TIS gets a message from the client that 
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Figure 7: UML Class diagram for the TIS 
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specifies all the parameters required for data segmentation. The TIS implements a 

segmentation command to wrap the client request into an object and then identifies a handler 

which is aware of the data source and knows how to get the subset of the data the client is 

interested in. So every time a client asks for a data subset the segmentation command-handler 

pair is sufficient to handle the request. Command-Handler pairs can be created based on the 

abstract Tide_BaseCommand and Tide_BaseCommandMediator classes.  

The framework also has an abstract converter class that specifies the algorithm for converting 

the data into a geometric model and sending the reply back to the client. Hooks are provided 

wherever application specific code needs to be added, this code is provided by concrete 

converters. The handlers that do geometric modeling use these converters. For example: if 

the client wishes to extract an isosurface based on a threshold value it sends a message to the 

TIS, the TIS sets the isosurface_command and isosurface_handler objects to execute the 

request, The isosurface_handler uses an isosurface_converter to generate the isosurface, the 

geometry information for which is then sent back to the requesting client.  Currently the 

framework has a Writer object that generates the geometry as an Open Inventor file. Writers 

for other formats can easily replace this one.  

3.7.1.1 Communication with the Clients 

For every client that connects, the TIS forks a new handler process, which is responsible for 

carrying out any requests made by a client. However the type of requests made by a client, 

are application specific, hence all the tasks performed by the handler process cannot be 

defined a priori. A template method, handleClient(), is used to define the function associated 

with the handler process. This method defines the steps to: read incoming requests from the 
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TIC, handle those commands (a hook method handleCommand() is provided for this 

purpose) and send the reply to the main parent TIS process to be sent back to the client(s). A 

hook method processHandleRequest() is provided to allow concrete server classes to 

interpret the reply , and package it and send it to one or more clients. 

The concrete sub classes can define the behavior that can vary by implementing these 

handleCommand() and the processHandleRequest() functions, which are called when a 

new client request arrives and before sending data back to the client (i.e. unmarshal/marshal 

the client request/reply). The Tide_Server class therefore provides the basic framework to 

handle multiple client connections and to send commands, state information and data to these 

clients. The TIC uses a reliable TCP connection to send commands to the server using a 

message-passing interface. 

3.7.1.2 Handling Client Requests 

The task of interpreting the client requests and performing the operations needed to carry 

them out is deferred to application specific concrete subclasses of Tide_BaseCommand and 

Tide_BaseCommandMediator, these classes are based on the Command pattern.  The 

concrete subclasses understand the client requests and are aware of the operations to be 

performed to fulfill those requests. The TIDE framework provides a generic way in which 

requests can be coupled to handler objects that execute the request. It uses the Command 

pattern for this[24].  

The Tide_BaseCommand provides the interface to wrap the client request into an object and 

stores the receiver of the request as an instance variable. Once this is done a client of this 

class invokes the command by calling the execute() function, which internally calls the 
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executeCmd() function of the handler(instances of Tide_BaseCommandMediator). Concrete 

subclasses of Tide_BaseCommandMediator override the executeCmd() operation and 

perform application specific tasks to handle the requests.  

In this way an application can handle any user request by implementing  

• A concrete subclass of Tide_BaseCommand that stores the state of the user request and 

implements execute () (e.g. Tide_Concrete_Command) 

• A concrete subclass of Tide_Base-CommandMediator that implements executeCmd() 

and has the knowledge to carry out the request (e.g. Tide_Concrete_CommandMediator) 

The Tide_ConcreteServer class creates both the command and the corresponding mediator 

object and links them together.  Thus it is easy for an application to add new commands, as it 

does not have to modify existing classes.  

3.7.1.3 Data Representation and Conversion 

As mentioned in section 3.7.1, the Tide_Converter class is an abstract class that defines the 

interface for data conversion. The Tide_Converter class provides hooks for concrete sub 

classes to override for application specific code. Concrete instances of this class will have a 

reference to the user defined data model, the result is a geometrical representation of the data, 

which is currently represented in Open Inventor format and is written to a file. This file is 

then downloaded by the TIC.  Handler objects use a converter to generate a specific type of 

model, for example if the TIC needs streamlines to be generated from a data set, then the 

handler would use a streamlineConverter defined for the purpose and a streaklineConverter if 

streaklines were required. 
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3.7.2 Tele-Immersion Client 

The TIC provides an interface to the data, hence its prime responsibility is to handle user 

interaction and creation of the shared virtual environment for the participants. Currently two 

types of interfaces are provided for user interaction: a query interface to interact with the TIS 

and a 3D interface to directly interact with the visual model. The virtual environment is 

created based on Limbo, which provides a set of basis classes for creating teleimmersive 

applications. 

3.7.2.1 Limbo 

CAVERN_perfLimbo0 is a part of the CAVERNsoft G2 toolkit. CAVERN_perfLimbo0 

provides the   basic shell to build teleimmersive applications. Several other modules included 

within the toolkit are used for basic functionality within the TIDE client.   

An avatar module, namely CAVERN_perfAvatar_c, manages connections between multiple 

users in a virtual environment. The information pertaining to each remote user is wrapped 

into a CAVERN_perfBaseAvatar object. The avatar module manages this collection and 
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Figure 8: UML Class diagram for the TIC 
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makes sure that information of the local user is transmitted to remote users and vice versa. 

This module creates two network connections with the world server (which is the central 

collaboration server for the avatars): a TCP connection is used as a hailing channel to signal 

the entry and exit of users to and from the environment; and a UDP connection is used as a 

tracking channel to continuously transmit information about the local users' tracking of body 

positions. The CAVERN_perfLimbo0 class provides the functionality to load a set of default 

scene objects into the environment, TIDE uses these objects as elements for providing 

feedback about the visualization environment.  These can be further refined as needed in the 

future. 

The TIDEclient_c class inherits from the CAVERN classes, the basic functionalities to 

manage avatars and extends this capability to support user interaction and collaborative 

visualization.    This class implements a process() function which is executed once every 

time after the scene is rendered. It is here that most of the user related events are handled. 

The TIDEclient_c class also references a background loader namely the TcGfxBgLoader, 

which is responsible for loading the visualization in a background process. The TIDEclient_c 

class also references an abstract TIDEnet_mediator class that handles the communication 

with the TIS and the world server for visualization data and collaboration respectively. So in 

its implementation of the process() function, a TIDEclient_c object calls the 

handleRequest() function of the background loader  to handle new load requests since the 

last call to it and the doInteraction() function of the TIDEnet_mediator to handle 

communication of user requests etc. 
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 3.7.2.2 User Interface Protocols 

Limbo only provides the capability to navigate through a static virtual environment.  TIDE 

has the additional requirements of the ability to query a remote data computation service as 

well as manipulating the resulting visualization geometry.  The framework breaks these 

interfaces into two classes, TIDEui_query and TIDEui_vis respectively as shown in Figure 

8.  Both these classes inherit from the abstract CAVERNmisc_subject class, and hence are 

subjects, which are observed by the CAVERNmisc_observer class (see Observer Pattern). 

These classes implement a basic notify() function, whenever this function is called all the 

observers interested in this event are updated. Concrete implementations of these classes 

need to provide application specific details to build a user interface for querying and 

visualization and to notify observers of all events. These abstract classes also specify a 

handleInteraction() function that needs to be called to check for any user interaction. 

3.7.2.2.1 Query Interface 

The role of the query class is to communicate with the TIDE server. Its implementation will 

provide a user interface for the user to make queries with the data server.  The abstract class 

leaves the application specific details to be implemented by the application programmer.  The 

query can be done through interaction within the virtual environment, communicating with a 

handheld device, or using a 2D/3D widget interface.  The query interface may or may not 

have any coupling with the virtual environment itself, and implementing it as a separate class 

allows for a wider range of extensibility. A concrete TIDEui_query class needs to provide 

application specific notify() and handleInteraction() functions. 



51 

3.7.2.2 .2 Visualization Interface 

Interaction within the visualization geometry is contained within a concrete implementation 

of the TIDEui_vis class.  Like the query interface class, the abstract base class provides no 

concrete functionality. It serves only to provide a base class for references with other parts of 

the framework.  The visualization interface can extract information about the user's actions 

within the virtual environment in order to apply changes to the visualization.  These 

extractions could involve obtaining information such as CAVE Wand button presses or any 

other input device such as the data glove. 

After a query process has been completed, it is typically the visualization interface, which 

adds the geometry to the virtual environment.  Any interactions or manipulations of that 

geometry are the responsibility of the concrete visualization interface, though some basic 

manipulations such as rotation and scaling are provided. A concrete TIDEui_vis class needs 

to provide application specific notify() and handleInteraction() functions. 

3.7.2.3 Network Mediator 

The Network mediator (TIDEnet_mediator) handles network communication for the client. It 

inherits from the CAVERNmisc_observer class and hence is based on the Observer software 

design pattern[24], the mediator observes instances of each of the TIDE user interface 

clients.  When an operation is performed on any of the interfaces, a notification is sent to the 

mediator.  The responsibility of the mediator is to then transmit appropriate data to the server 

and other connected users (through the world server), if required. 

The network mediator implements a doInteraction() function which is called once between 

two consecutive frame updates, it is this function that concrete subclasses need to override to 
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handle application specific functionalities. For example: in a simple case this function would 

call the handleInteraction() functions of the query interface object and the visualization 

objects to see if any user interaction has occurred, any user interaction would in turn trigger 

other events i.e. as observers are notified of events. The network mediator is also an observer 

of a CAVERNdb_client_c, which allows a seamless collaboration infrastructure for 

visualization states. Whenever a remote collaborator modifies the state of his/her 

visualization, the update() function of the network mediator is called, as it is a registered 

observer for this event. Similarly if the local user modifies (i.e. rotates or scales) the 

visualization, this information is sent to other remote users. The TIDEmpi_TIS provides a 

TCP communication channel to the TIS. The network mediator implements the 

newDataArrived() function to be updated when new data arrives from the TIS, this is called 

when the notify function of  the TIDEmpi_TIS object is called.. The network mediator 

checks if any new data has arrived by calling the checkForNewData() function. Concrete 

classes of TIDEmpi_TIS need to specialize the notify() and checkForNewData() member 

functions. 

The TIDE client class has a single network mediator to broker all the network 

communications for the querying and visualization services of the client application.  The 

mediator contains references to concrete instances of the query and visualization interfaces.  

When the mediator receives network information, it propagates the data to the appropriate 

interface for updating. For example if an application programmer needed to capture a 

particular user input say the threshold value for an isosurface extraction module on the TIS 

the query interface would provide a widget to get the user value when its 

handleInteraction() function is called by the doInteraction() function of the base network 
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mediator. A concrete CAVERNnet_mediator would implement a specialized queryUpdate() 

function that will be invoked when a user enters a threshold value.  This function would in 

turn  send the information to the TIS through the message-passing interface (i.e. by using the 

sendCmd() function). The sendCmd() function send a packet of data to the TIS, each packet 

has an integer ID and a data buffer.  

3.8 A Simple TIDE Application 

The previous sections gave a description of the TIDE framework, how a simple application 

can be written using this framework is dealt with in this section. A very simple application is 

considered wherein a user interface button click causes the TIC to request the TIS to reverse 

a character string. I shall call this application myApplication. 

The TIS and TIC exchange packets of information over a TCP channel. The basic packet is 

defined by a CMD_PACKET structure as follows:  

typedef struct  
{ 
   int cmd; 
   int size; 
   double timestamp; 
   char   data[DATA_SIZE]; 
}CMD_PACKET;   
 
Where: 
cmd:  Command/Request/Reply identifier 
size:  Size of the packet 
data:  Data being sent 
timestamp:  This field is unused but may be used to specify the timestamp for the packet  

Implementation details for the application are given here below: 

3.8.1 Extensions required for the TIC  

This section is based on the assumption that a user interface is provided that generates a 

button click event whenever the user clicks a wand button. This interface is encapsulated in a 
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concrete implementation of TIDEui_query class, namely myApplicationQuery class. The 

application programmer needs to do the following:  

1. Since only a single button click event exists, myApplicationQuery class does not override 

the notify function of the TIDEui_query (section 3.7.2.2.1). A button click would cause 

the notify() function to be called which would in turn call the queryUpdate() function of 

the abstract TIDEnet_mediator interface.  

2. The application programmer needs to provide a concrete myApplication_mediator class 

that inherits from the base mediator class and specializes the queryUpdate() function for 

the application as follows: 

void myApplication_mediator :: queryUpdate(char * data) 
{ 
 int size = sizeof(data); 
 tideServerClient->sendCmd(CMD_USER, data, &size);  
} 

3. tideServerClient is an instance of myApplication_TIS class which is written by the 

application programmer, and is a concrete TIDEmpi_TIS class. It overrides the 

checkForNewData() function of the base class and provides and application specific 

function that notifies the observer, the myApplication_mediator by calling its 

newDataArrived() function, which prints the reversed character string that is gets as 

follows: 

 
void myApplication_mediator::newDataArrived( char * data) 
{ 
 cout << “This is the reversed string returned by the Server :” << data << endl; 
} 
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3.8.2 Extensions required for  the TIS  

The tasks that an application programmer needs to perform are enumerated in this section. 

The programmer needs to implement concrete application specific classes that define the 

interface provided by the abstract classes. The following steps show how a simple TIS will 

cater to a user request 

1. Firstly, the TIS needs to interpret the client request. To do this the application 

programmer needs to write a concrete Tide_myApplicationServer class that inherits from 

the Tide_Server class. This class implements the handleCommand() function as follows: 

CMD_PACKET * Tide_myApplicationServer::handleCommand(CMD_PACKET * pkt) 
{ 
 Tide_BaseCommand * cmd; 
 switch(pkt->cmd) 
 { 
 case CMD_USER:  
  { 
  myApplicationHandler  * handler = new myApplicationHandler; 
  myApplicationCommand * appCmd = new myApplicationHandler(handler); 
  appCmd->setData(pkt->data); 
  cmd = appCmd; 
  return cmd->execute(); 
  } 
 default: 
  //handle default operation; 
  break; 
 } 
} 
 

 

handleCommand() is called from within the handleClient() function asscociated with 

each handler process 

2. Concrete myApplicationCommand and myApplicationHandler classes will replace the 

Tide_ConcereteCommand and Tide_ConcreteMediator classes shown in the UML 

class diagram for the TIS. myApplicationCommand class interprets the client request and 
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stores the client command CMD_USER as a member variable (myString) in its 

specialized implementation of the setData function as follows: 

void setData(char * data) 
{ 
 strcpy(myString, data);  
}; 
 

myApplicationCommand class also provides an accessor for this string value: getString(), 

implemented as follows: 

char * getString(){ return myString;}; 

The execute()member function implementation is inherited from the Tide_BaseCommand 

class and calls the executeCmd for the mediator, in this case the instance: handler, of 

myApplicationHandler 

3. executeCmd() is implemented by myApplicationHandler as follows: 
 
 CMD_PACKET * myApplicationHandler::executeCmd(Tide_BaseCommand * cmd) 
 { 
  CMD_PACKET * replyPacket; 
  char * newString = reverseString(cmd->getString()); 
  strcpy(replyPacket->data, newString); 
  replyPacket->cmd = CMD_USER; 
  replyPacket->size = strlen(newString); 
  return replyPacket; 
 } 

 

reverseString() is  simple function that reverses the contents of an input string and returns the 

reversed string. The reply packet returned by this function is finally returned by the 

handleCommand() function of myApplicationServer class to the handler process, which 

asks the main parent process to forward it to one or more clients. To intercept this in the 

main process, myApplicationServer class should implement the processHandleRequests() 

function. 
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4. For example if the reply needs to be sent to everyone then the processHandleRequest() 

function will be implemented as follows: 

void  Tide_myApplicationServer::processHandlerRequest(MSG* preqMsg) 
{ 
 // Do what the process has requested 
 switch(preqMsg->msgno)  
 { 
  case CMD_USER:  
  { 
   CAVERNnet_tcpClient_c * procsClient;  
   int size = strlen(preqMsg->data);  
   //send data back to tide Client 
   procsClient = clientDB->getClient(preqMsg->pid);  
   if(procsClient)  
   { 
   if(allClients)  
    sendToAll(preqMsg->msgno, preqMsg->data, &size);  
   else 
    sendToClient(procsClient,preqMsg->msgno, preqMsg->data, &size);  
   } 
   break; 
  }  
  .  
  .  
  . 
 }    
 .  
 .  
 .  
   
} 

 

sendToAll() and sendToClient() are inherited from the base Tide_Server class, these 

functions send the data to a single client or to multiple clients. The getClient() function 

provided by clientDB (instance of Tide_Client_Manager) retrieves client information based 

on the process id of the handler process allotted to the client. 

Shared memory is used for Inter Process Communication between the handler processes and 

the main parent process. The MSG structure defines the messages exchanged between the 
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main parent process and the handler processes.  The MSG structure is defined in the as 

follows: 

typedef struct msgstruct 
{ 
 int  pid;  
 int  msgno;  
 char data[MSGMAX - HEADERSIZE];  
} MSG; 
 
where: 
pid:  process id of the sending process 
msgno:  TIC command being serviced 
data: data being sent, the TIC knows the format of the data.  
 

MSGMAX defines the maximum message size, the user can set this and the HEADERSIZE 

is set to the size of the ‘pid’ and the ‘msgno’ fields. Semaphores are used for concurrency 

control. The application programmer does not have to implement any IPC related code, at 

most the application programmer needs to set the MSGMAX value etc.  

A very simple application of the TIDE framework was described here. The TIDE framework 

integrates collaboration with visualization and applications developed based on this 

framework will have collaboration inbuilt. The visualization algorithms may vary and need 

to be implemented by the application programmer. In the next chapter an application of 

TIDE to collectively visualize data retrieved using data-mining algorithms is described in 

detail.   
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CHAPTER 4 

 

APPLICATION OF TIDE 

 

This chapter describes an application of the TIDE architecture.  A brief introduction of the 

application is followed by a description of the application specific functionalities that had to 

be implemented.  

4.1 Application Domain  

Data servers store large multidimensional data sets such as results of scientific simulations 

and digital outputs of Geographical Information Systems. These data sets contain 

information, which is as yet undiscovered and could be potentially useful to the analyst. The 

TIDE framework can be applied to visualize these “hidden gems” of information. 

The Laboratory of Advanced Computing at the University of Illinois at Chicago focuses on 

providing an infrastructure for mining and exploring remote distributed data[16]. They use a 

protocol for retrieving data from remote nodes on the Internet namely the Data Space 

Transfer Protocol  (DSTP).  Servers on some of the nodes called DSTP Servers perform the 

task of data retrieval. The data on the nodes is organized in tables, with each row in the table 

corresponding to a data point and the columns specify an attribute of the data point. 

Attributes of two data points can be correlated if they have more then one attribute in 

common; this common attribute is the Universal Correlation Key (UCK). 
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In the implementation of TIDE that interacts with the DSTP servers, the TIC can specify the 

attributes of the DSTP data that its interested in visualizing.  The TIS then retrieves the data 

from the DSTP Servers. Once the TIS gets the data the client can specify how the attributes 

are to be correlated and visualized. One can correlate various attributes of the data set by 

plotting them against one another on a three dimensional graph or by generating a three 

dimensional histogram. 

Since virtual reality devices such as the CAVE provide one more dimension for visualization, 

the client can select an attribute for each of the three axes (X, Y and Z) as well as the visual 

representation of each attribute of the data set. When generating visualization from a 

multivariate data set, the multiple dimensions need to be mapped to different visually 

perceptible attributes, so that the user can rapidly and accurately identify trends/anomalies in 

the data sets. In the current TIDE architecture a user can map three attributes to the X, Y and 

Z-axes and can specify the color, transparency and the size of the points in the 3D graph to 

be controlled by three other attributes.  In this way six dimensions of the data can be 

visualized at a time. 

DSTP Servers have been populated by gridded weather data provided by the National 

Oceanic and Atmospheric Administration (NOAA). The data consists of monthly satellite 

measurements of global surface temperatures, precipitation, ozone levels and vegetation 

index. Complete data sets are available for every month of the years 1985 - 95. The UCKs 

for this application are latitude and longitude, gridded in one-degree intervals. Each data file 

consists of about 64000 rows (roughly 360 times 180) and the columns of the file are: 

latitude, longitude followed by a particular attribute. The combined size of all files is 

approximately 450 MB.  
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4.2 Application specific details for the DSTP TIC 

As implemented for the Data-Space Transfer Protocol (DSTP), the TIDE client contains two 

different aspects for its interface.  A two-dimensional query interface is used to communicate 

with the DSTP servers during the process of specifying data parameters for visualization.  

Within the virtual environment, users may navigate through the world and perform 

manipulations of the visualization geometry using a six-degree-of-freedom wand interface. 

The extensions made to the TIC framework for the TIDE-DSTP applications is as shown in 

Figure 9. Additional classes, which were added are orange in color. These are the 

TIDEnet_mediatorDSTP, TIDEui_queryDSTP, TIDEui_visDSTP and the 

TIDEmpi_TIS_DSTP classes. 
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Figure 9: Extensions made to the TIC framework for the TIDE-DSTP application 
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4.2.1 2D Query Interface 

Virtual environments still lack the tools for easily creating visual interaction common for 

actions similar to those taking place in standard widget-based user interfaces such as Motif, 

Microsoft Windows, or the MacOS.  Ongoing research in this area faces several challenges, 

in particular: low resolution of output displays, pointing and clicking trouble, extensive 

development time. 

To visualize DSTP data the client first needs to specify which datasets it is interested in. One 

DSTP server may have ozone information and another might have temperature information. 

If a client wishes to correlate the ozone and temperature then they need to have a common 

UCK. The user can select the servers from a list, and then a list of UCKs for the data on the 

servers is presented. Once the user selects a particular UCK, a list of data files containing the 

attributes to be visualized is shown. On selecting the data files the user can then select the 

attributes of interest. A two-dimensional Query Interface allows the user to make all the 

selections. The user can also select the percentage decimation to be applied. 

Once the TIS server retrieves the information, the user can map various attributes to visually 

perceptual cues. Another 2D Mapping Interface is popped up for this purpose. The user can 

plot each of the attributes to different dimensions as shown or a histogram can be generated 

to correlate the attributes. Once the user is done with the analysis and wishes to look at other 

information, a re-query can be initiated by pressing the Reset button, which pops up the 

Query interface. 

Due to a need for rapid development of the interface for querying the data servers, the 

decision was made to use a two-dimensional interface.  The XForms library is used to present 
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a Motif-based widget interface for performing data queries. The Xforms interface is managed 

by the TIDEui_queryDSTP class. The specialized handleInteraction() function checks if any 

user input has been made via the Xform interface, if it is then the observer, 

TIDEnet_mediatorDSTP’s queryUpdate function is called (section 3.7.2.3). The windowed 

interface of XForms is notably different from the immersive environment of running in a 

CAVE or on an ImmersaDesk.  The window appears separate from the environment of the 

shared world, something that can be an advantage over immersive widget libraries with 

which visual components can be clipped by geometry in the scene. 

4.2.2 Wand  Interface 

The Wand is used to directly interact with the visualization. The user can rotate the object by 

pressing the first wand button and changing the wand orientation, the visual model is rotated 

accordingly. Keeping the middle button pressed and moving the wand can scale the object. 

To scale up the model, the wand is moved towards the user and vice versa. The user can 

navigate using the joy pad.  The TIDEui_visDSTP concrete class manages this internally. 

The specialized handleInteraction() function checks the status of the Wand and notifies the 

TIDEnet_mediatorDSTP class of any user interactions, by calling its visUpdate() function. 

The query interface is brought up and hidden using one of the buttons on the CAVE Wand.  

This allows the user to perform queries while still viewing the visualization, yet hide the 2D 

interface when navigating through the virtual environment. 

4.2.3 Communication with the TIS 

As explained in section  3.7.2.3. the net mediator uses a message-passing interface provided 

by the TIDEmpi_TIS class to communicate with the TIS. However, the unmarshaling of  TIS 
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replies is done by concrete implementations of newDataArrived() and  

TIDEmpi_TIS_DSTP’s checkForNewData() function. 

4.3 Application Specific details for the TIS 

Application extensions made to the TIS framework are shown in Figure 10. 

Tide_DSTPServer is a concrete server that implements specialized handleCommand() and 

processHandleRequests() for the TIDE-DSTP application as explained in section 3.7.1.1. 

4.3.1 Data Representation  

The DSTP data is represented using a relational model. The data is retrieved in a tabular 

format. Each column in the data corresponds to a particular attribute, and a record defines a 

data point described by its attributes. To allow the attributes to be mapped to any dimension, 

Tide_Parameter and Tide_Dimension objects are created. A Tide_Parameter object stores all 
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Figure 10: Extensions to the TIS Framework for the TIDE-DSTP application 
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the information for a particular attribute and provides the interface to the data.  

Tide_Dimension objects reference a parameter object based on the users mapping. All the 

parameters are normalized, and are then mapped to the dimensions. A three-dimensional 

histogram to co-relate three parameters can also be generated from the data easily. 

4.3.2 Data Conversion 

On having mapped the attributes to the correct dimensions a geometrical model has to be 

generated to reflect the mappings. The TIDE framework provides an abstract converter class 

that defines the steps needed to convert the data into a geometrical model and the reply to be 

sent back to the client(s). Hooks are provided where the subclasses can do the actual 

conversion. Specialized converters are written that generate a 3D plot or a histogram from 

the data, namely Tide_3D_Graph_converter and Tide_Histogram_Converter. The converters 

use Writer objects to generate an output file. Currently the framework supports a writer for 

Open Inventor files (i.e. Tide_iv_Writer). Additional writers can be provided for different 

graphical formats.  

4.3.3 Application Specific Commands 

The TICs send requests to the TIS for different services. In this particular application of 

TIDE, the different types of requests made by the TIC are: to generate a 3D graph from the 

DSTP data, to correlate three attributes using a 3D Histogram, to query the DSTP servers for 

the data. The query interface on the client allows the user to specify the DSTP servers, 

UCKs, datafiles and attributes that interest the client. The TIS talks to the DSTP servers 

using the DSTP protocol and completes the client request. The Tide_CommandQuery and the 

Tide_QueryHandler objects do this. The Tide_SwitchingHandler manages the switching of 



66 

the view from a 3D graph to a 3D Histogram and Tide_MappingHandler maps different 

attributes to the different dimensions and generates a 3D graph accordingly. 

Tide_SwitchingHandler uses Tide_Histogram_Converter to generate a 3D histogram and 

Tide_MappingHandler uses Tide_3D_Graph_Converter to generate a 3D graph (Figure . x) 

4.4 Demonstration of TIDE at Supercomputing ‘99 

A demonstration of TIDE/DSTP was given at Supercomputing ’99, Portland, Oregon. TIDE 

users running on ImmersaDesks at various exhibit booths (notably the National Center for 

Data Mining, Argonne National Laboratory and Alliance exhibit booths) and a PowerWall at 

the Advanced Strategic Computing Initiative (ASCI) booth, collaboratively queried and 

correlated 500 MB of atmospheric data (provided by NOAA) distributed amongst several 

servers situated in Chicago. A snapshot of TIDE at SC99 is shown in Figure 11. Two TICs 

 
 Figure 11: TIDE at SC99: A user running the TIDE Client on a PowerWall, 
 at the ASCI booth. Inset:  Another user collaborating from an ImmersaDesk 
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(in Portland) are visualizing atmospheric data from DSTP servers situated in Chicago. One 

user is on the PowerWall, the other (see inset) is on an ImmersaDesk. 

The current DSTP client interface correlates the attributes and UCK’s by plotting  atwo 

dimensional graph. A UCK/attribute can be on each of the X and Y–axis and the color of the 

data-points can be mapped to a UCK. The benefits of using a three-dimensional data 

representation as opposed to a two-dimensional representation can be seen in  Figure 12(a) 

and (b), below. Figure 12(a) shows a 2D plot of Temeperature vs. Ozone generated by the 

DSTP client and Figure 12(b) shows a 3D graph generated by TIDE. Longitude is mapped to 

the X-axis, Latitude is mapped to the Y-axis and the Z-axis shows the Ozone concentration 

and the color is mapped to temperature. It is easy to discern the hot equatorial belt and the 

depletiopn of Ozone at the south pole. 

 

 

 
Figure 12(a): A 2D graph of Temperature 
(Y-axis) vs Ozone(X-axis), color is 
mapped to latitude generated by DSTP 
Client 

Figure 12(b): A 3D graph of Longitude(X-
axis), Latitude(Y-axis), Ozone(Z-axis) and 
Temperature (color) generaeted by TIDE 
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At SC99 the distributed nature of  TIDE allowed TIC to connect to the TIS for data,  it was 

not necessary for them to have data stored locally. This can be og great advantage specially if 

the TIC is to run on a low end work station. 

Although we experimented with an atmospheric data set, TIDE and DSTP can be used to 

visualize various other multidimensional data sets stored on DSTP servers. Ongoing research 

on TIDE is now focused on the visualization of ASCI data. 
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CHAPTER 5 

 

EVALUATING THE DESIGN AND THE PERFORMANCE 

 

The previous chapter described an application of the TIDE architecture for visualizing DSTP 

data. This chapter analyses the design in greater depth, to identify its advantages and 

disadvantages. 

5.1 Good features of TIDE 

TIDE lays the foundation for building teleimmersive data visualization applications. The 

application programmer does not have to bother about handling issues such as leveraging 

collaboration amongst the clients. Implementing a distributed multiprocessed Client/Server 

architecture for TIDE resulted in a number of advantages; some of them are listed below: 

5.1.1 Centralized control of collaboration 

The central server mediates all the information exchanged between the clients. All the 

updates from a client are first sent to the world server which forwards the data to all other 

participants, similarly the TIS generates the visualization based on a single clients request 

and forwards it to the rest, this was a central server has control over events. The central 

server can arbitrate any conflicts and maintain a uniformity to ensure consistency in the 

shared environment. 

5.1.2 Centralized Location for Data 

The TIS handles request for data from all the clients, it stores a local copy of the data for all 

the clients. The clients do not have to expend memory and CPU resources performing 
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operations like data retrieval, representation and conversion. The server alleviates the client 

of performing these tasks, at the expense of increased latency which is introduced due to the 

delays in the network in fetching the data from the server and talking to the server. This does 

not affect the rendering frame rate as the client is not blocked in waiting for the data, the user 

can still interact with the other collaborators, as the server that handles the avatar information 

is different from the one that is doing the computation. 

Since the client only has an interface to the data, it can focus more on improving the 

rendering task. There is no need to have a monolithic client that handles all the complexities 

as the tasks are distributed over several processes.   

5.1.3 Multiple Processes 

Having a separate process to handle a particular client, allows the TIS to pay individual 

attention to every client. Also since every process runs in its own address space, there is very 

little possibility that a faulty process will affect the other processes, this increases the 

robustness of the application.  

Since each process has a local copy of the data for the client, it may lead to replication of 

data and may affect the overall performance of the applications that have a large number of 

clients connecting to the server. To improve the performance of the processes themselves 

may be distributed over several processors or a global copy of the data can be maintained in 

shared memory if all the clients are to visualize the same data. 

5.1.4 Large Data Visualization 

The centralized Client/Server architecture also allows the client to specify what subset of the 

data it is interested in and the server then retrieves only that information for the client. In this 
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way all the data need not be loaded into memory. However for this design to be implemented 

efficiently the database that hold the data should have a hierarchical structure or should allow 

for selective retrieval of data based on some input parameters. There is ongoing research on 

using hierarchical formats for data storage[26]. 

5.1.5 Extensibility of the TIDE Framework  

The TIDE framework has been designed keeping in mind the requirements of collaborative 

applications for data visualization. It provides a message-passing interface between the TIC 

and the TIS. The Command-Handler abstraction allows future applications to support 

different types of client requests. Hooks have been provided to add application specific code. 

For example: if an application programmer were to develop an application that allows 

multiple users to visualize a volumetric data set, the TICs query interface needs to be 

implemented according to the applications requirements, command-handler pairs will have to 

be implemented for each request from the TIC to the TIS, a suitable data model that captures 

all the properties of the volumetric data needs to be implemented. Depending on the kind of 

visualizations to be generated from the data i.e. isosurfaces, streamlines, isocontours etc. 

specialized converters need to be implemented. No code needs to be written for maintaining 

the shared VR environment or for network communications between the TIS and the TIC. 

However, the communication protocol between the TIS and the TIC needs to be defined as 

well as that between the TIS and the RDCS. Implementation of the networking protocol 

between the TIS and RDCS is required, CAVERNsoft G2 can be used for this purpose if 

TCP/IP is the networking protocol.  
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For the TIDE-DSTP application it was very easy to extend the client queries by just 

implementing the appropriate command and handler classes.  Also it was very easy to plug in 

the 3D Graph converter, which generated a 3D graph, based on the users selections of 

mappings for the various dimensions and the Histogram converter, which generated a 3D 

histogram to correlate three attributes. Only the interface for the TIC needed programming, 

as most of the VR framework for collaboration was in place and the client did not have to do 

any computations pertaining to the data. Since the TIC is a thin client and does not need to 

have the data to be stored locally, we did not have to use very high-end machines to run the 

client at SC99, and it worked well on an SGI O2. The data was stored on DSTP servers in 

Chicago, the client could query for this data from Portland seamlessly.  On the show floor 

there were two clients collaborating with each other and simultaneously querying for data. 

One problem does exist, as currently the server does not arbitrate which client controls the 

visualization, both the clients can change each other’s visualization. This led to situations 

where a client would be analyzing the data and suddenly saw a new image. A method to 

rectify is suggested in the future works section and can be easily implemented. 
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CHAPTER 6 

 

FUTURE WORK 

 

This chapter discusses the various issues in extending the TIDE architecture to handle time 

varying datasets and to provide a persistent environment for synchronous/asynchronous 

collaboration. The current architecture only supports synchronous collaboration where each 

collaborator has local control over his/her data.  

The extensions described in this section decide the future course of TIDE, some of these 

ideas may be rudimentary and are subject to further research. 

6.1 Handling Time Dependent Data 

A time dependent data set consists of different data files, each file corresponding to a 

particular time value, all the other data values in the file are instantaneous values 

sampled/calculated at the point in time for which the file was generated. Studying the 

visualization as a function of time shows the gradual evolution of the other attributes with 

time. Loading the time steps in the order of increasing time can provide this information. 

This is an important feature desirable in applications, which wish to see/determine the 

correctness the progress of an experiment or simulation. An application may provide 

functionalities to the user to start, stop or pause the animation of the time steps or to progress 

n-steps forwards or backwards.  

Visualization of time-varying data sets poses a new challenge to collaborative visualization. 
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In a CV application when one participant is sequencing through the different timesteps it may 

be necessary that all the participants look at the same time step at any instant of time. 

Different approaches can be taken to solve these issues. 

One approach would be to let the TIS arbitrate which frame is being visualized. Only one 

participant, as discussed in the previous section, will control the state of the animation.  

When the leading participant goes into an animation mode, the TIS is made aware of all the 

selections made by the user, this same information is broadcasted to all the participants 

immediately. So if the leading participant is visualizing time-step 1 then all the other 

participants will load time-step 1.   This approach is feasible with our approach of having one 

participant decide on what everyone is seeing.  

Several issues arise when each time step is very large, it is not possible to load all the time 

steps into memory, one way of solving this problem is that when a client is visualizing time 

step x, it already has time step x+1 (and maybe x-1) already cached, and the server is 

working on generating time-step x+2 (or x-2). To further reduce the size of the files the client 

can specify which attributes it is interested in, and only those are reflected in the time steps. 

This is an interested topic for further research. Adding the above mentioned functionality to 

the framework would involve defining the protocol between the server and the clients i.e. 

define additional messages to be passed and how they will be handled on either side, the 

messaging mechanism remains the same only the commands which are passed and their 

handlers will have to be defined. 
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6.2 Synchronous and Asynchronous Communication 

Currently TIDE allows for synchronous collaborative sessions, where all the participants 

have control over their data locally but the client who made the last query defines the 

visualization. The TIS can mediate on which client controls the visualization. The TIS can 

generate a “Visualization Token”. The client that wants to play the lead role, can ask for the 

token, and gets it if it is available. Only the client who has the token decides what every one 

sees. This gives rise to several issues like, what happens if the client crashes or does not 

relinquish the token. In such cases the TIS should arbitrate and reclaim/reset the token. 

Collaboration is controlled both by the world server as well as the TIS, to handle 

synchronous sessions both should have a shared client database, that also includes 

information regarding which session (if at all) the client belongs to. So that avatar and model 

state information is local to a particular session. 

The architecture can be easily extended to allow global control over the data i.e. instead of 

each client having a local copy of the data they all share a single copy. In such a case the data 

would be in shared memory accessible to all the handler processes. The TIS can control the 

modifications to the data by allowing only one client to modify the data at a time (by 

implementing read/write locks for concurrency control). 

Different approaches can be taken to manage asynchronous collaboration. One approach to 

allow multiple collaborative sessions is to modify the collaboration servers namely the TIS 

and the world server to handle groups of clients, instead of a simple client database. A new 

TIC will be notified of existing sessions and  can then join the session that it is interested in. 

Replies to query and data will then be multicast to clients belonging to a specific group. 
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Another alternative is to allow for a single session, to join another session the TIC will have 

to connect to the TIS handling that session. 

6.3 Persistent Environment 

One desirable characteristic in Collaborative virtual Environments is to have a persistent 

environment. A user, who is in the middle of a data analysis session and has to leave the 

virtual environment, but wishes to resume later from the same point where he/she left the 

session, should be able to do so. In such a case the TIS should save the information 

pertaining to that particular client, so that the TIC can resume his analysis from where he/she 

left it.  If a client crashes in the middle of a session, he/she should be able to resume from a 

consistent point. 

This can be achieved by saving the state of the client process at regular intervals. Since there 

is a separate handler process for every client, only the context of the process needs to be 

saved. Object serialization techniques can be used to save the clients environment. 

6.4 3D Interfaces for Virtual  Environments 

A two-dimensional X form interface is used for certain user inputs. A mouse is required to 

make any selections. In some cases if there is no workstation close to the VR system a user 

has to keep going to the workstation to make any selections. This is very unwieldy; the user 

should be able to work from within the virtual environment. In order to provide an integrated 

visualization environment, three-dimensional interfaces such as 3D menus and widgets 

should be used, however these are still a topic of research and no standard exists for easily 

defining three-dimensional environments for virtual environments. 
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6.5 Data model for data representation  

Future applications of TIDE may need to support a wide variety of data types, and different 

methods for filtering and visualizing the data. One possibility of providing this is to use an 

existing library such as the Visualization Toolkit (vtk)[27], that provides a rich set of 

algorithms for iso-surface extraction, decimation etc and has an object oriented open source 

structure that can be further extended. In the future it may be possible to integrate into the 

tide client a visual programming tool that allows users to use visual programming techniques 

to build a visualization network (in the virtual environment) and the TIS can than interpret 

the script generated from the visualization network to build a corresponding visualization 

network of extended vtk modules. The input module may read from the data source the 

segment of data that the client is interested in.  
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CHAPTER 7 

 

CONCLUSION 

 

A suitable Tele-Immersive application for scientific visualization should seamlessly integrate 

collaboration with data visualization, giving the user a more in-depth insight into the data. 

This requires integrating the fields of virtual reality, visualization and networking. The focus 

of this thesis was to study the issues involved in the development of such applications and lay 

the foundation for the rapid development of tele-immersive applications for data 

visualization.  

TIDE has a distributed multiprocessed architecture that allows remote clients to collectively 

participate in a collaborative session. An application of this framework was used to 

collectively visualize over 500 megabytes of data stored on remote data servers. The 

application supported the visualization of regular scalar data managed by a distributed 

RDBMS.  The TIDE framework can be extended to support other types of data and 

visualization techniques. 

A standard paradigm for the development of 3D widgets for user interaction in immersive 

environments is still a topic of research. Availability of such a standard will greatly reduce 

the application development time considerably.  This thesis serves as a starting point for 

further research in the field of Tele-immersive Scientific Visualization.   
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1. Command  

The command pattern is a behavioral pattern that allows a request to be encapsulated as an 

object. The client is abstracted from how the request is executed, the execution of the request 

is done by a handler object. 

 

 

The Command class provides an interface for executing an operation. A 

ConcreteCommand class implements this interface. The Client class creates a 

ConcreteCommand object, sets its state and specifies the Handler object for it.  

The ConcreteCommand object implements execute() to call the action() function of the 

Handler object and may pass a reference to itself as a parameter. The Handler object uses this 

reference to query for the state of the command object. In this way the Invoker only needs to 

call the execute() function on the command object, the invoker is thus totally abstracted from 

“how” the command is executed.  

 

Client 

Handler 

action() 
ConcreteCommand 

Command 

execute() 

handler->action() 

Invoker 

handler

state 

execute()    

Figure 13. Command Pattern 
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In the context of TIDE (see Figure 7) the Tide_ConcreteServer class corresponds to the 

Client as well as the Invoker. The Tide_BaseCommandMediator class corresponds to the 

Handler and Tide_BaseCommand corresponds to the Command class. The executeCmd() 

function is the action function of the Tide_BaseCommandMediator class called from the 

execute() function of the Tide_BaseCommand class. The ConcreteServer can thus handle 

multiple requests from a client by instantiating corresponding command-handler pairs and 

calling execute() on the command object. The ConcreteServer can maintain a list of 

commands from a client and defer execution of certain commands if needed. 
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2. Observer  

The Observer pattern is generally used to define a dependency relationship between classes. 

It allows a class to notify a set of dependent classes of any change in its state. The dependant 

classes are generally termed as observers. The class, which is being observed, is the subject 

class. 

The Subject provides an interafce to allow observers to register and unresiter themselves. 

Whenever an event of occurs which causes the subject to change its state the notify() 

function is called which in turn calls the update function on all the registered observers. The 

Observer class defines the update interface. ConcreteOberver instances can then do the 

needful in their implementation of the update function. ConcreteSubect’s can also provide an 

interafce to allow the observer to query its application specific state. 

The observer pattern is used extensively in TIDE (see Figure 8), the query interface and the 

visualization interface are all subjects being observed by TIDEnet_Mediator.  

 Subject 

register(Observer) 
unregister(Observer) 
notify()   

Observer 

update() 

ConcreteObserver 

update() 

ConcreteSubject 

subjectState observerState 

notify() 

observers 

subject 

For each observer  
observer->update 

Figure 14. Observer Pattern 
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3. Template Method 

The template method pattern is used to define a skeleton of an algorithm in a operation. The 

basic invariant steps in an algorithm are defined and those that vary are deferred to 

application specific subclasses. 

AbstractClass defines  a templateMethod() function to implement the steps of an algorithm. 

Operation1() and operation2() are hook operations which are called in the template method, 

application specific implementations are provided by the ConcreteClasses. Thus the 

Abstarctclass defines and implements invariant steps in an algorithm and the Concrete 

classes need to implement the variant steps.   

The Tide_Server class is such an AbstractClass that defines the handleClient() template 

method, which calls the hook operation handleCommand() whenever a request arrives from a 

 

AbstractClass 

templateMethod() 
operation1() 
operation2()   

ConcreteClass 

operation1() 
operation2()   

… 
operation1() 
operation2() 
… 

Figure 15. Template Method Pattern 
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particular client. The handleCommand() function needs to be implemented appropriately by 

application soecific subclasses. 
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