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ABSTRACT 

In the domain of large-scale visualization instruments, hybrid 

reality environments (HREs) are a recent innovation that combines 

the best-in-class capabilities of immersive environments, with the 

best-in-class capabilities of ultra-high-resolution display walls. 

HREs create a seamless 2D/3D environment that supports both 

information-rich analysis as well as virtual reality simulation 

exploration at a resolution matching human visual acuity. Co-

located research groups in HREs tend to work on a variety of tasks 

during a research session (sometimes in parallel), and these tasks 

require 2D data views, 3D views, linking between them and the 

ability to bring in (or hide) data quickly as needed. 

In this paper we present Omegalib, a software framework that 

facilitates application development on HREs. Omegalib is designed 

to support dynamic reconfigurability of the display environment, so 

that areas of the display can be interactively allocated to 2D or 3D 

workspaces as needed. Compared to existing frameworks and 

toolkits, Omegalib makes it possible to have multiple immersive 

applications running on a cluster-controlled display system, have 

different input sources dynamically routed to applications, and 

have rendering results optionally redirected to a distributed 

compositing manager. Omegalib supports pluggable front-ends, to 

simplify the integration of third-party libraries like OpenGL, 

OpenSceneGraph, and the Visualization Toolkit (VTK). 

We present examples of applications developed with Omegalib 

for the 74-megapixel, 72-tile CAVE2™ system, and show how a 

Hybrid Reality Environment proved effective in supporting work 

for a co-located research group in the environmental sciences. 

Keywords: Multi-view, Tiled Displays, Cluster, Immersive 

Environments, Middleware 
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Graphics and Realism – Virtual Reality; I.3.2 [Computer 
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1 INTRODUCTION 

Today, most research involves the analysis of scientific 

phenomena of ever-increasing scale and complexity, and requires 

the concentrated effort of interdisciplinary teams: scientists from 

different backgrounds whose work involves large, heterogeneous 

data sources. As the scale and complexity of data continue to grow, 

large scale visualization instruments like display walls and 

immersive environments become increasingly essential to 

researchers, letting them transform raw data into discovery. In 

particular, immersive systems are an attractive option for exploring 

3D spatial data such as molecules, astrophysical phenomena, and 

geoscience datasets [1]. On the other hand, display walls with their 

high resolution help interpret large datasets, offering both overview 

and resolution, or can be used to lay out a variety of correlated 

visual data and documents for collaborative analysis [2]. 

Current technology trends lead to the production of larger, 

affordable thin-bezel LCD monitors with built-in support for 

stereoscopic 3D [3]. Such recent advancements made it 

conceivable to merge the best-in-class capabilities of immersive 

Virtual Reality systems, such as CAVEs, with the best-in-class 

capabilities of Ultra-high-resolution Display Environments, such as 

OptIPortals [4] thus creating conceptually new immersive 

environments which we refer to as Hybrid Reality Environments 

(HREs), such as the CAVE2 system [5], [6] (Fig. 2) 

Naturally, hardware is only half of the equation. To fully take 

advantage of these novel technological affordances we need a 

matching software infrastructure that facilitates scientific work 

within HREs. This infrastructure should be tailored to the real-

world needs of research teams, taking into account the way users 

interact with the instrument, with their applications and with co-

located or remote members of their team. So far, software 

development for display walls and immersive systems has followed 

independent paths. On display walls, the focus has been on 

supporting scalable ultra-high resolution visualization, managing 

multiple views of heterogeneous datasets and co-located 

collaboration. On immersive environments, the effort is to provide 

low latency user-centered stereo, naturalistic interaction and remote 

collaboration. 

What is now needed is a convergence in software design for 

display walls and immersive environments: we envision the 

integration of display wall software, an immersive environment 

framework and additional components into an “operating system” 

for Hybrid Reality Environments (Figure 1). This operating system 

aims to solve two major challenges with alternative approaches: 

 

1) Static spatial allocation of 3D and 2D views: although an HRE 

is capable of displaying 2D and 3D content at the same time, 

software relies on static configurations describing how the 

physical display space should be split into 2D and 3D views. 

Multiple predefined configurations give the end users some 

flexibility, but require restarting and resetting all running 

applications 

2) Lack of unified interaction: the 2D and 3D portions on an HRE 

often rely on inconsistent interaction schemes: for instance 

pointing semantics may use absolute movement on the 3D half 

and relative movement on the 2D half. Physically separate 

interaction devices may be required. Or, when a single device 

is used, interaction may lead to conflicting results (i.e. 

navigating a 3D view moves 2D views). 

The HRE operating system also needs to satisfy the requirements 

of two distinct, but often overlapping, categories of users: scientific 

application users (i.e. research teams) and scientific application 

developers. 

 



1.1. End-User Requirements 

Users need a system that lets them easily manage display space 

and content. We can for instance consider a structural engineering 

task: engineers wanting to compare different designs of a building 

load a digital model and explore it in full-scale in the Hybrid 

Reality Environment. They decide to compare two variants of the 

design side-by-side, splitting the available screen space in two. The 

group then chooses to look at pictures of the target site: they hide 

one of the 3D visualizations, and use the now available screen space 

to share photographs. The team splits: one group discusses the site 

while another user navigates the building model. The user notices 

a flaw in the design and interrupts the rest of the team. He generates 

a section of the building that gets displayed on a separate 2D view. 

The team now brings up the alternate design again, observes the 3D 

visualizations and 2D sections, until they agree on one of the design 

variants. Before closing the meeting, they display this variant on 

the full display again, and mark a few points for future revision. 

This kind of work pattern can be observed in research groups in a 

variety of disciplines: co-located collaboration often entails 

multiple phases that alternate full group work with individuals or 

sub-groups working in parallel: moreover the work may focus on a 

single issue, on different views into that single issue, or on 

independent issues [7]–[9]:  the ability to easily re-configure the 

display space is fundamental to support such heterogeneous tasks 

[10]. 

1.2. Developer Requirements 

Considering the needs of HRE users is not enough: an HRE 

operating systems needs to provide an easy, yet powerful 

application programming interface (API) that developers can 

leverage to implement custom software. Immersive applications are 

often created to serve interdisciplinary research teams whose 

members may have limited programming experience. Applications 

also have a great variance in their complexity: some only need basic 

visualization and interaction with 3D models. Others require the 

implementation of complex and custom visualization techniques, 

need low-level access to the graphics API or need to use specialized 

visualization libraries. A way to satisfy these requirements is to 

provide a layered API, with multiple levels of access that offer a 

tradeoff between complexity and control. 

2 RELATED WORK 

The benefits of co-located collaborative work have been 

investigated in a variety of contexts like design [10], software 

development [7], and engineering [8]. Advantages of co-location 

include reduced communication friction and distributed cognition: 

teammates exploit features of the social and physical world as 

resources for accomplishing a task [11]. 

The requirements for effective visualization in large scale 

environments have also been investigated in the past. In terms of 

data size and format, some scientists need to display data so 

massive that it exceeds the screen resolution of even a large display 

[12]. Others find a large display ideal for comparing different data 

sets of the same phenomenon. Lastly, large display surfaces can 

help aggregate heterogeneous data about a specific phenomenon 

[13]. This third scenario (heterogeneous multiple views) is the most 

common [9], [14], [15]. In [14], the authors note how large display 

surfaces let researchers organize large sets of information and 

provide a physical space to organize group work. Part of the work 

is spent with each user individually working on a separate part of 

the display. Another part is dedicated to collaborative data 

consolidation and analysis, so everybody in the group can 

aggregate and discuss partial findings. During this kind of work, 

researchers often need to bring in new data and documents from 

their laptops or from the web: thus, a single pre-packaged 

application running on a large display rarely covers the full needs 

of a research group. 

Important factors for an efficient co-located collaborative space 

are, among others, the physical design of the space (space should 

support both the work of the entire team, and separate sub-teams), 

and its reconfigurability (both physical and at the software level). 

Bowman et al. have conducted extensive research on the 

advantages, challenges and best practices on hybrid 2D/3D 

visualization, proposing a taxonomy for Information-Rich Virtual 

Environments (IRVEs). In [16] the authors categorize 

visualizations depending on the physical and logical positioning of 

2D and 3D displays, and in [17] they present a hybrid molecular 

visualization application for the CAVE system [18] that statically 

assigns 2D and 3D content to CAVE walls. 

  
Fig. 1. The high level model for a multi-view operating system for 

Hybrid Reality Environments. The core components of the operating 

system are: the distributed application runtime; a controller and inter-

process communication manager that handles application lifetime 

and communication between application instances; a distributed 

input manager capable of handling heterogeneous devices. 

Fig. 2. An overview of the CAVE2 Hybrid Reality Environment. 

CAVE2 is based on a cylindrical setup composed by 18 columns of 4 

displays each. This arrangement provides a panoramic view of 320 

degrees. Each display pair is driven by a separate computer, for a 

total of a 36 computer cluster, plus a head node. CAVE2 uses an 

optical motion tracking system arranged in a circular configuration 

above the displays. 



2.1. Current Software Approaches 

Most research on co-located use of immersive environments 

concentrated on supporting multi-user stereo vision in a single 

immersive view. Little work has been done on supporting multiple 

independent views, or multiple simultaneous applications, within 

an immersive environment. VR software toolkits like FreeVR [19], 

VRJuggler [20], CAVELib [21] and CalVR [22] support a single 

running application at a time. On the other hand, wall display 

software like CGLX [23], DisplayCluster [13] and the Scalable 

Adaptive Graphics Environment (SAGE) [24] are designed to 

allow sharing the available display space between multiple 

applications. CGLX works by distributing application execution, 

while DisplayCluster and SAGE work on distributing pixels. An 

advantage of pixel distribution is flexibility. Since rendering and 

display resources are decoupled, applications can run on a single 

node, on a local cluster or on a remote location. The wall display 

software acts as a distributed compositing manager that routes 

pixels between applications and displays. Moreover, SAGE offers 

multi-user interaction support and allows input redirection from the 

wall to applications. Display wall software solutions are not full-

fledged application development frameworks: the application 

developer is still in charge of managing rendering, distribution, 

interaction, etc. 

The Equalizer framework [25] is an application development 

framework that focuses on scalable parallel rendering. It offers 

fine-grained, transparent control over rendering resource 

allocation, although this control is mostly static, specified through 

a rather complex configuration file. 

An observation emerging from the review of current software is 

that display wall software and scalable rendering software both 

have features that are desirable in a multi-view HRE software 

framework. We therefore choose to play on these strengths, and 

envision a framework based on the integration of successful 

designs in both fields. The remainder of this paper will present this 

framework, called Omegalib, detailing our integration approach, 

and the addition of several novel features (like dynamic 

reconfigurability and input filtering) that make this framework 

effective in supporting applications in Hybrid Reality 

Environments. Moreover, we will present examples of practical use 

of these features in a co-located collaborative setting. 

3 FRAMEWORK DESIGN 

Omegalib acts as an abstraction layer between the HRE hardware 

and applications. At the back end, Omegalib uses Equalizer to drive 

the display system. In section 2.1, we observed how Equalizer uses 

an advanced and verbose syntax to support its flexibility, making it 

complex and error prone to write or maintain configuration files. 

Omegalib addresses this issue by describing display system 

geometry, cluster configuration and input capabilities through a 

compact system description file. When applications launch, the 

runtime generates and forwards the extended configuration to 

Equalizer, which then proceeds to initialize and setup the display 

system. At the front end, Omegalib integrates several APIs and 

visualization tools through an abstract scene graph and pluggable 

render passes. The abstract scene graph makes it possible to 

decouple object interaction techniques from concrete object 

representations. A concrete object can be an OpenSceneGraph 

node, a Visualization Toolkit (VTK) Actor, or some other entity 

provided by one of the Omegalib front-ends. Objects can be 

attached to nodes of the scene graph: object transformations, 

visibility, hierarchy, etc. can therefore be controlled through a 

unified API that is independent from the library used to draw the 

objects.  

3.1. Application Model 

The default execution and rendering mode for Omegalib is 

replicated execution: each node in a display cluster runs an instance 

of the target application, while a master instance synchronizes the 

updates and buffer swaps across the nodes. It is also possible to 

control execution on a node-by-node basis (the API offers functions 

to check on what node the application is executing), and 

synchronize custom data objects between master and slave 

instances. Omegalib extensions and applications are implemented 

as three component types that communicate with the Omegalib 

runtime and with each other, as represented in Fig. 3: Event 

Services, Application Modules and Render Passes.  

Event Services implement input processing. A service may 

implement support for a physical input device (like a keyboard or 

mouse controller), or it can aggregate and reprocess events 

generated by other services. Event services can also receive input 

data from a remote server, making it possible to have a separate 

machine as the hub for all input devices in an HRE installation. 

Event services run only on the master instance of a distributed 

application. The Omegalib runtime takes care of serializing and 

distributing events to slave instances. 

Application Modules contain the core of an Omegalib 

application logic. Modules can receive input events, update the 

abstract scene graph (or other custom scene representations), and 

communicate with other modules. Modules run on both master and 

slave instances of Omegalib regardless of whether they display 

content or not. 

Render Passes implement all the functionality needed to render 

scenes to cluster tiles or to secondary image streams. Render passes 

are typically implemented by integration front-ends: application 

developers don’t need to access them, unless they need to perform 

custom low-level drawing operations. Render Passes expose a 

GLUT-like callback interface that can be used to execute OpenGL 

operations. Render passes can be prioritized and can perform 2D or 

3D drawing. For instance, a high priority 2D rendering pass can be 

used to overlay 2D content on top of an interleaved-stereo 3D 

scene. Render Passes run only on nodes in charge of drawing: a 

headless master configuration will not run render passes on the 

master application instance. The rendering system can also be 

configured to render to additional outputs: applications can 

generate secondary views whose pixels can be streamed to 

compositing managers such as SAGE, displaying an Omegalib 

secondary view as a 2D window on a portion of the tiled display. 

 
Fig. 3. An overview of the communication flow of a distributed 

Omegalib application. In this example, the Master node runs in 

headless mode, and only takes care of application and input event 

processing. 



3.2. Dynamic Configuration 

As mentioned in the introduction, one of the objectives of 

Omegalib is the creation of user-defined and reconfigurable 

workspaces: areas of the display that are dedicated to a 2D or 3D 

application, that can be re-defined while the application is running 

and can be independently controlled. To support this feature, we let 

users specify an optional 2D display region as a startup argument. 

The runtime uses this information to find the subset of rendering 

nodes that drive displays in the selected region: it then adjusts the 

system configuration to launch the application only on the 

identified nodes. Multiple applications can be launched on the 

system in this fashion. The runtime also manages networking setup, 

guaranteeing that each application instance uses an independent set 

of ports for master/slave communication. 

To increase the flexibility of workspaces, we also let users 

expand or shrink the visible area of each workspace within the 

runtime bounds. When a user shrinks a workspace, the runtime 

disables rendering on the nodes whose tiles are not covered by the 

workspace active area (Fig. 4). While GPU resources are de-

allocated, the application remains available on the machine: if the 

user later decides to expand the workspace again, rendering on the 

inactive tiles can be reset almost instantaneously. 

It is therefore possible to run applications on overlapping regions 

of the display system: the display space shared by multiple regions 

can be associated to any of the overlapping applications at runtime. 

This double level of dynamic configuration (launch-time and 

runtime) provides a good level of control over cluster resource 

usage versus workspace flexibility. On one end, applications can be 

launched on non-overlapping regions, optimizing cluster resource 

allocation (each node is dedicated to a single application) but giving 

up dynamic display allocation. On the other end, applications can 

be launched on fully overlapping regions covering the entire 

display space: in this case the workspaces have the full runtime 

flexibility, at the cost of sub-optimal cluster resource allocation 

(each node needs to keep one active instance of each application). 

3.3. Input Filtering 

When the HRE is running multiple applications, it is necessary 

to let users interact with any of them without requiring switching to 

a different physical device or other complex interactions. It is also 

desirable to let different users control different workspaces and let 

them easily switch between them. In Omegalib, this feature is 

implemented through ray-based event filtering. We assume that the 

main interaction device in the environment offers 6DOF tracking 

(as is the case for most large scale immersive environments). We 

use the tracking data to generate a 3D ray starting at the device, and 

compute whether the ray intersects one of the display tiles. Only 

the application that is controlling the tile (based on its runtime 

configuration) will process the event stream generated by the 

devices. This scales to multiple devices controlling independent 

applications. It is also possible to choose another 6DOF tracking 

source as the input to the event filter: for instance, a pair of tracked 

glasses can be used to filter input events based on gaze direction. 

Each application has control over its own event filtering policy. An 

application can also decide to disable filtering if it needs to let users 

interact with it regardless of its display state. 

3.4. Panoptic Stereo 

Since Omegalib is aimed at supporting co-located collaborative 

groups, it is fundamental to provide stereo-viewing capabilities to 

multiple users in the system. One issue with standard user-centered 

stereo is eye reversal when the tracked user looks 180 degrees away 

from a given screen. This is acceptable for a single user, since he 

or she is no longer looking at the screen, but it makes the stereo 

view unusable for other team members. To solve this issue, 

Omegalib supports panoptic stereo. Techniques similar to Panoptic 

stereo have been implemented in the past to support multi-user 

stereo without generating multiple views [26]. When Panoptic 

stereo is enabled, the system tracks the main viewer’s position, but 

generates head orientation information based on each display plane 

normal. The stereo frustum is projected outward to each display 

panel, preserving stereo separation for each user in the system. 

Another benefit of Panoptic stereo is its independence from frame 

latency: When users move their head around, stereo will look 

correct regardless of the application frame rate, leading to a more 

comfortable viewing experience. This comes at the price of a 

slightly incorrect overall projection, particularly when users rotate 

their head sideways. Panoptic stereo can be turned on and off at 

runtime. 

3.5. Scripting 

The Omegalib API is exposed through a C++ and python 

interface: the Omegalib runtime embeds a script interpreter that can 

be used to launch standalone script applications, or can be used to 

control running applications through a runtime console. Scripting 

support facilitates development access to non-technical users, and 

has the added advantage of simplifying application portability. A 

script application can run on a personal computer or on a HRE 

without requiring recompilation or reconfiguration. Researchers 

can work on a visualization script on their own computer, save it to 

a flash drive, plug the drive into the HRE system and re-launch the 

visualization during a collaborative research session. 

3.6. Application Control and Message Passing 

We have so far discussed two of the software components of the 

HRE operating system model presented in Fig. 1: the application 

runtime and input manager. The third and final component is the 

controller and Inter-Process Communication (IPC) manager. The 

purpose of the controller is to manage the execution of applications, 

providing users with an interface to start and stop application 

instances and manage their workspace areas. The IPC (whose 

Omegalib implementation is called MissionControl) runs as a 

server to which applications connect once started. Connected 

applications can exchange messages with each other (typically 

 
Fig. 4. An example of dynamic workspace configuration for 

two running applications. Each machine controls one display 

column. Applications are launched with overlapping workspaces 

on the central column. In this example, the runtime configuration 

allocates the central column to Application 2. 



script commands), or receive messages from third party software 

through an external interface. MissionControl allows multiple 

views in the HRE to communicate with each other, for instance to 

coordinate the information they display. Since views run as 

separate processes, their frame rates are independent: this is a 

desirable feature when one of the views is computationally or 

graphically intensive, while others require real-time interactivity. 

4 APPLICATIONS 

To evaluate the effectiveness of Omegalib in supporting co-

located collaborative work, we used it as the development platform 

for a geo-science application for the visualization and analysis of 

sonar data. This application was first used during a two-day 

meeting of the multidisciplinary team working on the NASA 

ENDURANCE project. 

The Environmentally Non-Disturbing Under-ice Robotic 

Antarctic Explorer (ENDURANCE) is an autonomous underwater 

vehicle (AUV) designed to explore the extreme environment of the 

perennially ice-covered lakes of the McMurdo dry Valleys, 

Antarctica. ENDURANCE operated during two Antarctic summer 

seasons (2008 and 2009). The AUV operated depending on 3 

distinct science objectives: Water chemistry profiling, Bathymetry 

scanning, and glacier exploration [27]. 

Over the course of the full two-day ENDURANCE meeting, the 

research group had to complete multiple tasks: discuss new vehicle 

designs for a future mission, analyse mission logs and cross-

reference them to water chemistry readings, and generate a new 3D 

map of the lake based on the collected sonar data. As shown in Fig. 

5, the team used the display in different configurations during the 

meeting. During the initial evaluation of sonar data, the entire 

display was dedicated to a 1-to-1 scale, immersive visualization of 

the sonar point cloud. This visualization allowed the team to 

identify issues in the data, compare depth measurements from 

different data sources and iterate through data collected for each 

mission. Later in the meeting, the 3D workspace was shrunk to 

make space for additional 2D views representing satellite imagery 

from Lake Bonney and different versions of the lake bathymetry 

represented as a contour map. One of the 2D views was controlled 

by an Omegalib script running a VTK pipeline and was linked to 

the 3D view. As researchers picked points in the immersive 

environment (effectively making ‘virtual measurements’ of the 

lake depth at points they deemed relevant), the 2D view would 

update, regenerating the contour information to take the new points 

into account. A researcher could use the hand-held interaction 

device (a tracked game controller) to navigate the 3D view, pick 

depth points or rearrange and resize the 2D views by pointing in the 

desired direction on the screen. Other users could control the view 

arrangement and content from their laptops.  

4.1. Other Applications 

Another advantage for multiple workspace support is specifically 

targeted at application developers. As many other large scale 

display environments, HREs like CAVE2 are expensive and offer 

limited availability: they are often a highly contended resource, 

with multiple application developers scheduling access to the 

system to make sure their work does not conflict with others’. 

Emulators and smaller system replicas help, but are not a perfect 

substitute. For instance, estimating the performance of an 

application in an emulated environment is complex, due to the 

difference in hardware and display geometry between the two 

environments. Thanks to runtime workspace configuration, 

multiple developers can use an HRE system concurrently. We 

observed this usage pattern multiple times in the CAVE2 system. 

Developers join a work session and negotiate display allocation 

with others, so that each developer has a section of the display 

exclusively available to him/her. Developers then use a command 

line switch to start their application on their workspace. Developers 

occasionally ask others to control the full display for a brief time, 

usually to test a specific feature. Omegalib has also been used to 

create ‘classic’ immersive applications, and has been used as a 

development platform for smaller hybrid environments like the 

OmegaDesk [28], a hybrid 2D/3D work desk with a multitouch 

surface. The Omegalib source code is available online1 and the 

framework runs on Windows, Linux and OSX. Extensive 

documentation is available on a wiki site, and there is a small but 

growing community of Omegalib users, evaluating the framework 

on new Hybrid Reality Environments, display walls, and classic 

CAVE systems. Omegalib is also being used for a graduate-level 

Visual Analytics course, as the development platform for class 

projects. 

5 DIRECTIONS FOR FUTURE WORK 

One of the research directions for Omegalib involves improving 

the integration with SAGE. In its current version, Omegalib is able 

to output 2D views to a SAGE workspace, while 3D views need to 

run on a dedicated workspace. The latest version of SAGE can 

receive and visualize stereo pixel streams. A challenge to stereo 

SAGE views is that the physical properties of the output viewport 

  

Fig. 5. Two photographs taken during a co-located collaborative meeting in CAVE2. On the left, an Omegalib immersive visualization is 

running on the full display. On the right, CAVE2 is split into two workspaces to display additional 2D views. Switching between the two modes 

can be done at runtime, without resetting running applications. 

 

1https://github.com/uic-evl/omegalib 



determine the shape of the off-axis frustum for stereo projection. 

Since users in SAGE can freely move and re-size windows, the 

Omegalib runtime needs to be notified of such changes and re-

compute the projection transformations accordingly. Another 

challenge is related to rendering resource management for SAGE 

views: on a cluster-based HRE, multiple applications are running 

on (possibly overlapping) node subsets, and each application may 

want to send one or more secondary views to the SAGE workspace. 

We want to identify what nodes are responsible for rendering each 

secondary view for each application. An optimal allocation policy 

needs to take into account view size, node loads and possibly 

priority based on user interaction. We plan to extend the Omegalib 

application controller to support research in these directions. 
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