OptiStore: An On-Demand Data Processing Middleware for Very Large
Scale Interactive Visualization

BY

CHONG ZHANG
B.S., Wuhan University, Wuhan, China, 1997
M.S., Wuhan University, Wuhan, China, 2000

THESIS

Submitted as partial fulfillment of the requirements
of the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Chicago, 2007

Chicago, lllinois



ACKNOWLEDGEMENTS

| would like to acknowledge many people for helping me during my doctoral work.
Through the last seven years, I've grown so much personally and in my research. A lot of it
was the direct result of the great people | was fortunate enough to learn from and work

with.

First of all, | have to thank my advisor, Dr. Jason Leigh, for giving me both the
freedom to work on my research interest and the enlightening guidance to help me getting
more mature in my research. Throughout my doctoral work he encouraged me to develop
independent thinking and analytical skills. He taught me how to conduct and evaluate

research work systematically, from which | believe | will benefit greatly in my future career.

| am also very grateful for having an exceptional thesis committee and would like to
thank Prof. Thomas DeFanti, Prof. Andrew Johnson, Prof. Luc Renambot, and Ms. Pamela

Sydelko for their insightful feedback and continuous assistance during my thesis writing.

| owe a special note of gratitude to Ms. Pamela Sydelko, who hired me as an intern
at Argonne National Laboratory, supported my research financially and gave me so many
insightful ideas to apply visualization techniques to industrial projects. | should also thank

Dr. Boaz Super, my former advisor, who recommended my admission to UIC.



ACKNOWLEDGEMENTS (CONTINUED)

| own many thanks to EVL faculty and staff member, Xi Wang, Dana Plepys, Alan
Verlo, Lance Long, Laura Wolf, and Patrick Hallihan, who helped me with both my research
and my life in the past seven years; | also wish to thank other people with whom | have the
opportunity to work including Eric He, Nicholas Schwarz, Jinghua Ge, Venkat Vishwanath,
Rajvikram Singh and CAVERN group. It is such an enjoyable and fun experience | will never

forget.

Finally, my deepest thanks to my family and close friends, who have helped me, get
through some difficulties in the last few years. | thank my best friends, Fang Liu, Zhi Liu,
Chuan He, Yi Li and my soccer team. And to my parents, Lihou Zhang and Jufang Hu, my
sister, Hui Zhang, and my beloved, Anne Tong. Without their sacrifices, none of this would

have been possible.

Ccz



TABLE OF CONTENTS

CHARPTER PAGE
CHAPTER 1 INTRODUCTION ....ccoiiiiiiiiiiiiiiiniininininnsssssssssssssssssssssssssssssssssssssssssssssssssssssssss 1
1. 1 BACKEIOUNG ...ttt ectre e e e e e s esbab e e e e e e e s enansbbeeeeeeeeseanes 1

1.1.1 Large SCale Datasets ...uuiiciieiicrrreeiieeeiiieitrreeeeeeeesentreeeeeeeseennrrereeeeessennns 4

1.1.2 Distributed Data REPOSITONIES ......cccovvevrrieeieeieiiciireeeee e e 8

I I V=N o o o] 1= o SRS 11

1.2.1 Scalability With Data Size .....ccccuvveeiiiiieiiieeeee e 11

1.2.2 Interactivity in Visualization .......cccccooeecciiiieei e 13

1.2.3 Flexibility to Access Data Repositories ......ccccceeeeeccivieeeee e, 17

B T I o =101 o] o T o - [l o ISP 18

1. 4 Summary of Contributions to the Field ..o, 31

1.5 Document OrganizatioN ..........uuuevuviuiuieiiiiiiiiirierrrrrrrrrrrrrrerrerererererereeereeeeeeeeee 33
CHAPTER 2 RELATED WORKS .....ccoiiiiiiiiiiiiiiiiiiniiisiississssisssssssssssssssssssssssssssssssssssssssssssses 35
2. 1 Multi-Resolution Filtering in Scientific Visualization .........cccccovvvvieiiininnnee, 35

2. 2 View-dependent Data ProCeSSING .....ccccuveiiiriiieeiniiieeesieee e ssieeeessieeeessineee e 36

2. 3 Distributed and Parallel Data Filtering.......cccocveivviieeiiiiiie e 38

2. 4 Related Systems and OptiSTOre ......ccovvuveiiiiiiiee e 39

2.4.1 Previous Systems for Large Scale Visualization .........ccccoevveeevniieeennne. 39

2.4.2 Comparison of OptiStore and Other Systems ........cccccevvviveeiniiieeennnnee, 43

CHAPTER 3 OPTISTORE FRAMEWORK .......ccootttimmmmmnniiiiiniiinnnennsssiisiniimmesssssssssssmmmeenes 47
3. 1 FrameWOrk OVEIVIEW .....cccuuuiiieieee e ettt e e e e e eectreee e e e e e e e nraee e e e e e e s nnsreaeeaeens a7

3. 2 OptiStore COMPONENTS ...ccceeiiiiceie e e e e e e e e e e e e e e e aeenens 51

3.2.1 Metadata Query SUb-System........ccceeeeeiiiiiiirieeee e 51

3.2.2 Data Filtering SUb-System.......c.uiiiiiiiiee e e 53

3. 3 Software Library COMPONENTS .....uvveieeiiiieiiirieeeec et eerrree e e e e e e s e 59

I U T o Vo o - | V2P UPRPNt 60
CHAPTER 4 DATA PARTITION AND ORGANIZATION .....cccitrrreennnniisinnnnnnennssssssssssssnssenns 62
A, D OVEIVIEW .ceiiiiiiiiiiiiiieieieieieeeeeeeee et ettt et e eeeeeeeeeeeeeeseseeeaeeeesesesssessssssssessssssssssnsnsnanes 62

4. 2 Data Partition and Organization .........eeeeeeeeeeieeeeeiiiiieieieeeeeeeeeeeeeeeeeeee e 63

4.2.1 Data Partition Methods ..........cccueeiiiiiiiiiceie e 63

4.2.2 The Granularity of BIOCKS........eviiiiiiiiiiiiiiiiiiecireeeec et 66

4.2.3 Data Organization .......uuuceeei i e e e e e e e eaens 69



TABLE OF CONTENTS (CONTINUED)

CHARPTER PAGE
4, 3 Data Distribution for Load BalanCing........ccovvvveeieiiiiiiciiieeeeeceeceiireeeeeeeeeeennns 71

4. 4 Implementation and RESUILS.......cccuvveiiieiiiiiiieeiee e eeerreeee e e e e eans 75

.5 SUMMAIY oot e ettt ree e e e e e e e e ettt s e e eeeeeseeestsannaaeeeeesesessnnnnnaeeeaenenns 77
CHAPTER 5 MULTI-RESOLUTION FILTERING.......cccceitiiininniinniisssssssssssssssssssssssssssssssssssnes 78
5. 1 Multi-Resolution Filtering with Wavelet Transform.......ccccccccoveevineveeneeeinnnns 78

5. 2 Wavelet Multi-Resolution Filtering for Multi-Dimensional Datasets............ 85

5. 3 Implementation of Multi-Resolution Filtering in OptiStore ........cccccvveeeennnes 86

S SUMIMIAIY caiiiieei ettt e e e e e et eera b es s e e e e e eeeaaabaaeseeeeaseaesssnnassssseeaaans 89
CHAPTER 6 VIEW-DEPENDENT DATA PROCESSING.......cccottiiiiiiiiiiinnnsnssssnsssssssssssssssssns 90
6. 1 View-dependent Visualization and Data Processing .........cccceevvvveeeeeeeccnnnnnen. 90

6. 2 ViSiDility CUHING ...evveeeeeeee e e e e e ee e 92

6. 3 Implementation of View-dependent Data Processing .........cccccveeeeeeeecnnnneen. 94

6. 4 SUIMIMAIY cettttiiiiieeeeeeetitiiiiiee e e e e etttttaieaeeeeeeeeeatsraasseseeateearssanasssseeeeeseesssnsnnses 99
CHAPTER 7 REAL-TIME DATA PROCESSING AND CACHING ......cccceevtiiiiiniinininnnnnnnnnnnns 100
7.1 Furthest Object Replacement (FOR) Algorithm .......c.ccoovveeeiiieniieeniieeciees 100

7.2 Data Processing and Caching With Prediction.........cccceevviieeinniiieiiniiieeens 109

7. 3 Implementation of Parallel Data Processing with Remote Memory Access 120

7 A SUMIMAIY i bbb e seneree 126
CHAPTER 8 EXPERIMENTAL STUDY ...coiiiiiiiiiiiiiiiiiniisniissssssssssssssssssssssssssssssssssssssssssssns 127
8. 1 Hypotheses & Predictive MOdels........coocciiiiiriieiiiniiee e 127

8. 2 EXPEIIMENTS coiiiiiiieiiiii e 133

8.2.1 Experiment hardware, software and data........c..ccceeecvvvveereeiiennnnneen, 133

I o d o 1= T g 4 aT=T ) H PP 134

8. 3 ReSUItS and DiSCUSSION ....ueiiiiiieeeeiiiiee et e eseee e e sree et e e sere e e e saa e e e e 134

I U T oV o o - Y2 140
CHAPTER 9 CONCLUSION AND FUTURE WORK.......... ERROR! BOOKMARK NOT DEFINED.
9. 1 Contributions Of OPtiStOre.....cccvveeieeiiiicirieeee e e 141

9. 2 FULUIE WOKK ..veeeeiiiee ettt ettt e e et e e s e e e e e e e e ennees 143

Vi



TABLE OF CONTENTS (CONTINUED)

CHARPTER PAGE
CITED LITERATURE ...ciiiiitmnneiiiiiiinntiiinnnnsiiiiiiniieennssssssiiiiinseeesmsssssssssssssessssssssssssssssees 145
T L N 158

Vii



LIST OF TABLES

TABLE PAGE

Table 1-1: The approaches in OptiStore address the motivations in very large scale

interactive VisUalization ..........cooiiiiiiiiii e 31
Table 2-1: Comparison of OptiStore and other systems ........ccccvvveeeeeeiiiiciiieeeee e, 46
Table 4-1: The overall process utilizations with different data distribution scheme....... 76
Table 6-1: Finding frustum's bounding plane in modeling space........cccoeccvvveeeeeeeeccnnnnnen. 96

Table 7-1: Comparison of time complexity of the operations between FOR and LRU

E= 1 F=doT a1 Y0 0 PO UPURRROt 108
Table 8-1: Proposed approaches and their effects on the predictive model................. 132
Table 8-2: Average latency versus data Siz€ ......occvvveeeeeeiiiiiirieeeeeeeeeeireeeee e eeenrneeeees 136
Table 8-3: Number of filtering processors versus data Size .......ccccceeeeevvcvveeeeeeeeeiecnnnnnen. 137
Table 8-4: Average access time versus data server cache size.......cccccovvevvvveereeeeiccnnnnen. 139
Table 8-5: Average access time versus number of client processors.........ccccceeeeerennnnee. 140

viii



LIST OF FIGURES

FIGURE PAGE

Figure 1-1: Comparison of a modern CPU architecture with one possible configuration of

10 o[ O] o1 d 1V (- U PPPPRRRINE 4
Figure 1-2: Over terabyte USGS imagery teXtUIre .....ccovveeeeeieeiciireeeee e 7
Figure 1-3: Processes in Scientific Computing Pipeling ........ccoevvvveeeiiiieeiiiiieeeeee e, 16

Figure 1-4: The fundamental concept of multi-resolution. (a) A complex object is
simplified, (b) Creating levels of detail or LODs to reduce the rendering cost of small,
distant, or unimportant geometry. Courtesy of David Luebke [Luebke 2001] at University
(o) YA 14 =41 0 1= 1 SRS UPUPPRRRRt 20

Figure 1-5: Traditional distributed visualization pipeline. Model (A) is the standard data
flow in visualization pipeline; (B) shows the filtering server, residing on data
repositories; in model (C), the renderer and filter work together; and in (D), OptiStore
has a dedicated parallel filtering server in the distributed system. .....cccccccvvvevreiiiercnnnnee. 28

Figure 1-6: To meet the requirement of large scale visualization and exploit availability
of high-speed network, | propose a dedicated parallel filtering server in the middle

between data repositories and visualization applications .......cccccevveeeeeiciiveeeeeee i, 31
Figure 3-1: The diagram of OptiStore Architecture......cccccceveecciiiieei e, 49
Figure 3-3: OptiStore metadata subsystem: a multi-layer client-server model............... 52
Figure 3-4: An example scene graph bound with datasets from metadata query........... 52
Figure 3-5: OptiStore data filtering subsystem: a multi-layer three-tier model .............. 54
Figure 3-6: OptiStore client ModUIES.........ueeieei i 55
Figure 3-7: OptiStore data filtering server modules........ccccooeceiiiiieiiiicccceee e, 56
Figure 3-8: OptiStore client library and its dependencies........cccccceeeeieeccciiieeeee e, 61
Figure 3-9: OptiStore query server library and its dependencies.........ccccceeevcuveeeiniieeennns 61



LIST OF FIGURES (CONTINUED)

FIGURE PAGE
Figure 3-10: OptiStore data server library and its dependencies.........ccccceeevuveeeininneenns 61
Figure 4-1: Data partition in slabs........ccoiiiiiiiiiie e 65
Figure 4-2: Data partition in CelIS......uuiiiiiiie i 66
Figure 4-3: Data partition into cells with finer granularity ........cccoceeieiiieeiniie e, 67
Figure 4-4: Data partition and distribution of a multi-resolution dataset ...........ccccee.. 70
Figure 4-5: One-on-one mapping from a dataset block to a page in memory................. 71
Figure 4-6: Two level three-dimensional scan-line curves, not a space-filling curve....... 72
Figure 4-7: Two examples of space-filling CUrVES .......ccueeieviiieiirciiie e 73
Figure 4-9: Two level three-dimensional Hilbert curves. .....ccccovveeeiiiiiiiciiieeneece e, 74

Figure 5-1: Wavelet multi-resolution analysis on multi-dimensional datasets. (A) A two
dimensional dataset filtered into R level resolutions as a quadtree; (B) A three
dimensional dataset filtered into R level resolutions as an octree. ........cccceeevecvvveeeennen. 79

Figure 5-2: Filter bank implementation of discrete wavelet transform. (A) H and G are
the analysis low-pass/high-pass pair. c[n] and d[n] are the scaling and wavelet
coefficients, respectively. (B) It is the corresponding inverse wavelet transform. A and G
are the synthesis low-pass/high-pass Pair........ccccueeeviieciie e 82

Figure 5-3: The lifting scheme. (A) Typical lifting steps: Split, Predict, and Update; c[n]
and d[n] are the scaling and wavelet coefficients, respectively. (B) Typical inverse lifting

steps: undo Update, undo Predict, and Merge. ......oeeeeivicciiiieeee et eeeree e 82
Figure 5-4: The lifting scheme is chose in OptiStore .....cccccov v, 85
Figure 5-5: Three-dimensional wavelet analysis ........ccccceeireeiiiiiiee e, 87
Figure 5-6: Implementation of multi-resolution filtering........ccccccvveiiiieiciiiie e, 88



LIST OF FIGURES (CONTINUED)

FIGURE PAGE
Figure 6-1: Four types of visibility culling techniques .........ccccceeveiiiiiiniiiei e, 93
Figure 6-2: View frustum culling at different resolution levels.........ccccoeeevviiieiiniennnns 94
FIGURE PAGE
Figure 6-3: Bounding boxes of a sphere for view frustum culling..........ccccoovvveeiirnnnnnen. 98
Figure 6-4: Back face culling 0n @ SPhEre ... e 99
Figure 7-1: The least recently used (LRU) replacement algorithm.........ccccceevirveennennnne. 102
Figure 7-2: The weakness of LRU algorithm with spatial data .......cccccceeeeininieiiniiiennns 103
Figure 7-3: Data structure in the furthest object replacement (FOR) algorithm ........... 105
Figure 7-4: Examples of 2D Manhattan distance and Euclidean distance...................... 106
Figure 7-5: Pseudo-code of FOR algorithm.......cc.coeiviiiiiiiniiiiicc e 107
Figure 7-7: Dilation operation for prediction with the same resolution level ............... 112
Figure 7-8: Intra-level prediCtor. ... et 113
Figure 7-9: Prediction on different resolution [evels..........c.cccoeeivieeinicieiicciee e 114
Figure 7-10: An example of Markov chain transition matriX.........cccceeeveviiiiieeiniiiennnns 118
Figure 7-11: Markov chain for data access patterns via transition probabilities........... 118
Figure 7-12: Integration of predictor with data filtering and caching.........ccccccceevveeenn. 119

Figure 7-13: Multi-dimensional data sub-blocks mapped to one-dimensional array in

MEeMOry oN the tarGet NOUE ......uvveiiii e 122
Figure 7-14: Remote memory access on OptiStore data filtering server.......cccccccoeuuee. 123
Figure 8-1: Abstract data access model of OptiStOre . ......ccccevvvveveeieeiiiicineeereee e, 128

Xi



LIST OF FIGURES (CONTINUED)

FIGURE PAGE
Figure 8-2: Access latency Versus data SiZe .......cccceevuveeeiriiiee e 136
Figure 8-3: Number of filtering processors versus data Size ......ccccceeeeeveccvveeeeeeeeeccnnnnen, 137
Figure 8-4: Average access latency versus cache Size ........cooccvvvveeiieiieiccinneeeeee e, 138

Xii



LIST OF ABBREVIATIONS

2D Two Dimension(al)

3D Three Dimension(al)

AABB Axis Aligned Bounding Boxes

API Application Program Interface

CERN European Institute for Nuclear Research

DCT Discreet Cosine Transform

DWT Discrete Wavelet Transform

EOSDIS Earth Observing System Data and Information System
FOR Furthest Object Replacement

GPU Graphics Processing Unit

GPGPU General-Purpose computing on GPU

LAN Local Area Network

LOD Level-Of-Details

LRU Least Recently Used

MIMD Multiple Instruction stream, Multiple Data stream
MPI Message Passing Interface

NASA National Aeronautics and Space Administration
NCAR National Center for Atmospheric Research

OBB Oriented Bounding Boxes

00 Object-Oriented

PB PetaByte(s)

RAM Random Access Memory

RMA Remote Memory Access

RTT Round-Trip Time

SPMD Single Process Multiple Data stream

Xiii



LIST OF ABBREVIATIONS (CONTINUED)

TB TeraByte(s)

USGS United States Geological Survey
uuID Universally Unique Identifier
WAN Wide Area Network

Xiv



SUMMARY

OptiStore is an on-demand data processing middleware for extremely large scale
interactive visualization applications. It aims to develop a data processing service system
that bridges the gap between the size of the very large datasets and the performance of
interactive high-speed parallel visualization applications in the context of OptlPuter.
Compared with the predominant strategy by preprocessing data on data repository before
visualization, OptiStore processes the data on-demand and interactively so as to minimize
the need to manage extraneous pre-processed copies of the data that will become a major

problem as scientists continue to amass vast amounts of data.

In the architecture of OptlPuter, the distributed components, such as rendering
clusters, data storage clusters and computation clusters are inter-connected by wide area
optical networks. Hence the data that the visualization cluster demands at one site may be
stored at other sites on different remote data storage clusters. The goals of OptiStore are to
help the visualization users to access large amount of data (from terabytes to petabytes) on
remote locations, query them on the distributed servers, transfer them among OptlPuter
components, and filter and transform them from one data model to another in near real-
time. Furthermore, OptiStore is an extensible middleware framework, into which more new

data structures and filters can be integrated.
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SUMMARY (CONTINUED)

In order to address the issues of scalability of data size, interactivity in data
exploration and flexibility of data filter deployment, | proposed the following techniques in
this dissertation: load-balancing data partition and organization, multi-resolution analysis,
view-dependent data selection, runtime data preprocessing and dedicated parallel data

filtering.

To achieve high overall utilization and reduce latency cost, we developed a load-
balancing data partition and organization mechanism. To ensure the scalability with the size
of the datasets, the multi-resolution analysis and view-dependent culling were applied for
processing the necessary data in the view of the visualization application. To take advantage
of the increasing network bandwidth, we decoupled the data filter from visualization
applications and data repository servers by transferring the bulk of data through the high-
speed network infrastructure. By separating the data filter services from other processes in
the distributed visualization pipeline, the data providers can maintain and share the data
repository with less effort, and users can explore more large datasets available on the
LambdaGrid and deploy their own filters flexibly. We developed a novel caching algorithm
and a prediction model for prefetching and preprocessing to minimize the data access

latency to meet the requirement of interactive visualization.
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CHAPTER 1 INTRODUCTION

1. 1 Background

Defined in the milestone paper [McCormick 1987], visualization is a tool both for
interpreting image data fed into a computer, and for generating images from complex
multi-dimensional datasets. Nowadays, the data size on both ends of visualization tools is
increasing dramatically fast: the resolution of image data is increasing higher and higher due
to the emergence of the new technologies of very high resolution displays and cluster-
driven tiled displays [Ni 2006], and it is easy for the multi-dimensional datasets to reach the
size of terabytes and even petabytes because scientists gain access to ever increasing
computational resources [Hey 2003]. It is always an extreme challenge to interactively
explore and visualize very large multi-dimensional datasets on very high resolution display
devices. Furthermore, as the emergence of a global LambdaGrid for e-Science and other
mature high-speed networking technology, the collaboration between scientists is more
practical and popular [Freitag 2001; Leigh 2003; McCormick 2005; Saltz 2003]. Thus it is
becoming urgent and significant for scientists to have some visualization applications that
can help them to analyze and explore those extremely large datasets on remote data

repository sites.



In 2002, DeFanti and Leigh proposed an experimental OptlPuter architecture to cope
with this challenge [DeFanti 2002; Leigh 2003]. The OptlPuter [Smarr 2003] is a National
Science Foundation funded project between the University of lllinois at Chicago, and the
University of California, San Diego, to interconnect distributed storage, computing and
visualization resources using a backplane constructed from a grid of deterministic high
speed networks. In partnership with the Scripps Institute, US Geological Survey’s EROS
(Earth Resources Observation System) Data Center, and the Biomedical Informatics
Research Network, the specific application goal of the project is to develop advanced
computing systems to support collaborative data exploration in the Geosciences and the

Neurosciences.

In this architecture, the network becomes the backplane and the clusters of
computing systems become the computer peripherals. For example, a cluster of computers
with high end graphics cards is considered as a single giant graphics card; and a cluster with
terabytes of parallel file storage is considered as a single giant disk drive. Driven by the
parallel computer clusters, a large dataset can be streamed from the distributed parallel I/0

clusters to the high end visualization clusters.

Figure 1-1 (A) depicts a typical architecture for a modern day PC. Highlighted in
yellow are the caches that are a routine part of the components of the architecture. For
example, the graphics card has onboard fast graphics RAM, the CPU has L1/L2/L3 caches,

and so on. Data from the disk are transferred to the CPU via the PCl bus, whereas data from



the CPU is transferred to the graphics card via PCl-Express bus. Figure 1-1 (B) shows one
possible configuration of the OptIPuter mimicking the standard PC architecture except using
clusters of computers, optical switches, and multi-gigabit network connections. A similar
configuration to this was used for iGrid [Zhang 2003], although this particular layout is our
present configuration. A LambdaNode is a high-performance cluster connected with
another one using gigabit or 10 gigabit network interface adapters. lllustrated are three
classes of LambdaNodes. The LambdaDataNode is primarily a cluster with large RAID-ed
disks. The LambdaComputeNode is a cluster with large amounts of physical memory and
multiple CPUs. The LambdaVisualizationNode is a cluster with high-end commodity graphics
cards (such as the nVidia Geforce 4 Ti). All network links are linked with TransLight [DeFanti

2003].

OptlPuter architecture has already included some novel applications and
middleware such as the high-speed network protocol — LambdaStream [Xiong 2005], the
scalable graphics middleware — SAGE [Renambot 2004], the scalable visualization
applications — JuxtaView [Krishnaprasad 2004] and Vol-a-Tile [Schwarz 2004b]. These
applications not only make the distributed high-resolution rendering and display possible
and feasible but also require other middleware to aid the end users to visualize and explore
very large datasets on remote sites. When to implement the visualization applications
based on the model of OptlPuter, the developers or users may encounter some difficulties:

(1) how to access and transform extremely large datasets in remote repositories; (2) how to



reduce long latency in interaction when visualizing the large dataset; and (3) how to offload

the overhead work for the distributed dataset management.
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Figure 1-1: Comparison of a modern CPU architecture with one possible

configuration of the OptIPuter

1.1.1 Large Scale Datasets

This is the age of information explosion with the exponent increase of data size and

data complexity. In the field of science, the state-of-the-art simulations of physical systems



can generate terabytes to petabytes of time-varying data where a single time step can

contain more than a gigabyte of data per variable [Kniss 2001]. High-accurate sensors (i.e.

National Aeronautics and Space Administration’s (NASA) shuttle radars or Computed

tomography scanners and Magnetic Resonance Imaging scanners in biomedicine) can

acquire very high-resolution images.

There are some concrete examples that demonstrate the spectacular growth of

scientific data generation:

For instance, in geosciences, the NASA’s Blue Marble [Stockli 2005] dataset has
eight files for each month out of 12 months. Each file is a block of the whole
earth image and has the size of 21600 x 21600 x 3 (width x height x RGB) in the
full resolution. The total dataset size is around 125GB. United States
Geographical Survey’s (USGS) aerial images are even larger. For example, the 0.3
meter-resolution aerial imagery dataset of Chicago metropolis-area, consists of
67 x 60 = 5092 images, where each image is of 5000 by 5000 pixels and 3 bytes
apiece. The total size of the dataset is about 356GB [Barclay 1998; Krishnaprasad
2004]. Similarly, the aerial imagery dataset of San Diego is about 240GB. If a
visualization application attempts to render the Blue Marble image with the
USGS aerial images of some big cities (shown as Figure 1-2), the size of the data

to access and process will exceed several terabytes eventually.



Another example would involve the visual human project datasets. “The Visible
Human Project datasets are designed to serve as a common reference point for
the study of human anatomy, as a set of common public-domain data for testing
medical imaging algorithms, and as a test-bed and model for the construction of
image libraries that can be accessed through networks”, Ackerman declares
[Ackerman 1998]. The original visible woman dataset, just one of the Visible
Human Project datasets, consists of 5189 axial slices, each with 2048x1216
pixels, 3 bytes per pixel. The total size for the dataset is roughly 38.8GB, which
presents difficulties in visualizing the entire or an arbitrary portion of the dataset
even at this coarse resolution. Since the datasets are three dimensional, with the

increasing acquisition resolution, the size of the datasets will scale cubically.

Similarly, the simulation in seismology usually generates very large scale data. In
Schwarz’s paper [Schwarz 2004a], the researchers gather and interpolate
Bolivian earthquake simulation onto a 51273 regular grid at 16-bit resolution
takes about 12 minutes per frame of 33.8 hours. The total size of just one
simulation data approximates 43GB. If the researchers double the size of the grid
and frequency of the sampling time, then they can gather the size of the dataset

will increase to 678GB according to the order of two.
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Figure 1-2: Over terabyte USGS imagery texture

Furthermore, in various scientific fields, including astronomy, bioinformatics,
environment science, particle physics, medicine and health, social science etc. [Hey 2003],

the era of petabyte scale data has already arrived:

e The National Center for Atmospheric Research’s (NCAR) Mass Storage System
exceeded one petabyte of climate data in 2002 [Lester 2003], and had added a

second petabytes within just two years [Bevirt 2004].

e |n 2005, NASA’s Earth Observing System Data and Information System (EOSDIS)
had already held over three petabytes of data in earth science data in a

geographically distributed mass storage system [Behnke 2005].



e To be launched in May 2008, Large Hadron Collider (LHC), an accelerator
currently under construction at the European Organization for Nuclear Research
(CERN) will generate around 15 petabytes of useful data per year; these data
that will be analyzed by a worldwide scientific collaboration of physicists [Jones

2006].

The concrete examples and tendency in science demonstrate that the scientific
datasets are currently growing extremely large in many research fields. While the size of
various datasets is still increasing, how to access and filter the over-terabyte and even

petabyte datasets while visualizing them is an urgent research problem.

1.1.2 Distributed Data Repositories

LambdaGrids are large and diverse. Normally, it is necessary and unavoidable to
have the data repositories distributed over the wide-area-network. The reason lies under

the following five facts:

1. In the OptlPuter model, the data repositories are distributed. From the
description in previous section, OptlPuter architecture treats the distributed
clusters as basic functional components in computer architectures. And all of the
components are inter-connected with each other by optical network. The

dedicated optical network makes the high-speed data movement possible.



2. The datasets may be studied in different knowledge domains. Different scientists
in different fields may have different interpretation of the same dataset. For
example, as to the height field datasets from USGS, the geologist may be
interested in visualizing the physiognomy by generating the terrain, while the
seismologist just need to simple geometry of the terrain to demonstrate the
locations of earthquakes. It is waste of resource to keep one copy locally of the

data for different users.

3. The datasets may obtained by different data acquisition methods. Obviously,
datasets are acquired by different means and tools, even in the same research
field, i.e. CT, MRI and Ultrasound scanners. The dataset acquired by one method
is sometimes formatted in one specific format and stored into a dedicated data

repository associated with this scanning device.

4. The datasets may belong to different research institutes. Even though the
datasets are within the same domain and acquired by the same means,
sometimes they are copyrighted by different research institutes or companies.
To keep the data repositories intact is sometimes necessary under such

circumstances.

5. Other factors also determine the physical location of data repositories. There are
a lot of factors that influent the companies or institutes’ decision to choose the

data repository locations, such legacy, cost and etc. For example [Kirkpatrick
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2006], Microsoft® locates its next data center not far from the Grand Coulee
Dam, the third largest hydroelectric dam in the world, because the facilities of
the data center will be so energy-intensive that the primary cost of operating

them will probably be electricity.

However, interactive visualization applications and data intensive applications have
a wide variety of needs and data-access patterns. The distributed data storage systems vary
from one to another as well. It is, therefore, critical to allow applications the flexibility to
construct application-specific interfaces, data access patterns, data distribution layouts, and
so forth. Studies of data-intensive scientific applications demonstrate the performance
benefits of using application-level interfaces that enable advanced parallel-1/O techniques
like collective 1/0O, pre-fetching, and data sieving. A system based on a flexible and powerful
low-level interface encourages the development of application-specific libraries that
provide the interface and features that benefit applications. For example, tailoring the pre-
fetching and caching policies to match the application’s access patterns can reduce latency
and avoid unnecessary data requests, and matching data-distribution policies to the

application’s access patterns can optimize parallel access to distributed disks.

The importance of providing and managing distributed access to storage is that
laboratory instrumentation environments, hospitals, etc., are frequently not the best place

to maintain a large-scale digital storage system. Such systems can have considerable
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economy of scale in operational aspects, and an affordable, easily accessible; high-

bandwidth network can provide location independence for such systems.

1. 2 The Problem

From the introduction in the previous section, it can be noticed that the scalability of
the system with the dataset size, the interactivity in visual data exploration and flexibility to
access the distributed data storage become three of the main focuses and challenges in this
architecture of OptlPuter as well as in current scientific and information visualization

research. The goal of OptiStore is to address these concerns.

1.2.1 Scalability with Data Size

In the field of visualization research, the scalability is one of most highly significant
issues. In Christ Johnson’s survey about top scientific visualization research problems
[Johnson 2004], thanks to the grid technology and distributed computing, it has become a
frontier research topic to develop scalable algorithms that can take the advantage of
distributed resource; in Chaomei Chen’s paper about ten top information visualization
research problems [Chen 2005], to explore the scalability in this area is much more

immature and desirable compared to the scientific visualization.

The main reason to develop scalable systems in visualization research is that the
data size is growing too fast. Since the size of the datasets has passed over terabyte level
and is reaching petabyte level, only scalable systems can catch up the pace of the data

growth. Scalability is an important concept in parallelism research. It indicates that the
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system can increase the throughput under an increase of the load when resources are
added [Gray 2003]. In the context of OptlPuter, the scalability of OptiStore is manly about
the capability to process and serve increasingly large data load and request by adding new
computation nodes and network bandwidth. It is in a scale-out perspective [Agerwala

2006].

Due to maturity of the high-resolution and scalable display system technology [Leigh
2007; Ni 2006], the data management system should take care of not only the scalable size
of input raw data but also the scalable size of the output data (for example, the resolution
of rendered images). Traditionally, if the display resolution is low, many parallel sort-last
visualization algorithms can solve the scalability in large data processing — partitioning the
data in small chunks and then composing the final output rendered images [Moreland
2001]; on the contrary, if the data size is limited, many parallel sort-first visualization
algorithms can render the data on high-definition or tiled display devices — every computer
node behind each display loading the replicated whole dataset and rendering visible

geometries in the corresponding area [Bethel 2003; Corréa 2002].

Li presents an system RIVA that can fulfill the scalability on both ends [Li 2002a]. But
their datasets have to be processed and compressed in advance to achieve the data
scalability. Furthermore, the dataset is two-dimensional data, to render which is much less

complicated than to render higher dimensional data.
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Other researchers have exploited view-dependent continuous Level-Of-Details (LOD)
algorithms in geometry simplification for a while [Levenberg 2002; Luebke 2002]. Guthe et
al. presents an algorithm of wavelet multi-resolution analysis of volume data with
hierarchical view-dependent cell selection for volume rendering [Guthe 2002]. Even though,
most of their algorithms work under the low-bandwidth network environment and the data
need to be processed and compressed in advanced, the extension of their algorithms into
the parallel and distributed computation environment can benefit the data size scalability in
OptiStore. However, the main obstacle to exploit this strategy is that in these algorisms, the
datasets have to be processed or compress in advanced so that this strategy can result in a
problem of the following issues: interactivity in visualization and flexibility to access

distributed data repositories.

1.2.2 Interactivity in Visualization

Interaction is often referred to human-computer interaction which is one of the
most basic features of information visualization and scientific visualization. Interactivity is a
requirement that facilitates the interrogation of the data or the observed objects. Munzner

[Munzner 2000] summed up three aspects of the interaction:

Navigation: interactive navigation consists of changing either the viewpoint

or the position of an object in a scene.



14

Making choices: interactivity is also common in non-navigational settings, for
example through radio buttons on a control panel or menu choices that affect the

display.

Animated transitions: viewers have a much easier time retaining their mental
model of an object if changes to its structure or its position are shown as smooth

transitions instead of discrete jumps.

Interactivity is the great challenge and opportunity of computer-based visualization.
Straightforward navigation and manipulation of the data which is represented as graphical
objects on the screen can help the scientists to detect the intrinsic pattern of the data and

understand the context meaning of the whole datasets.

However, scientists are faced with a problem that as their simulations grow to sizes
where interesting features and structures can be resolved, the features themselves become
too small (relative to the size of the data) to find, and the structures too large to visualize.
Interactive navigation and exploration of these datasets is essential, and small features can
only be properly understood is shown in the context of larger structures, showing both large
scale structures and small scale features in the same visualization is essential. Nevertheless,
the data size prevents efficient rendering of even single frames, let alone multiple frames
per a second that is required for interactive exploration [LaMar 2003]. Furthermore, due to

the long distance remote data repositories over wide-area LambdaGrid, the high latency of
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the interaction between data query and data visualization is becoming obvious; the large

delay of the response is sometimes unbearable to the users.

More than being referred to the one in human-computer interface when exploring
the data, interactivity can also be considered as interaction with other processes in
scientific computing pipeline. Conventionally, visualization is most often seen as a post
processing step in the scientific computing pipeline (geometric modeling -> simulation -
> visualization), illustrated as Figure 1-3 [Johnson 2004]. However, scientists now require
more from visualization than a set of results and a tidy showcase in which to display them.
The 1987 National Science Foundation Visualization in Scientific Computing workshop

report poses the problem in these terms [McCormick 1987]:

Scientists not only want to analyze data that results from super-
computations; they also want to interpret what is happening to the data during
super-computations. Researchers want to steer calculations in close-to-real-time;
they want to be able to change parameters, resolution or representation, and see the
effects. They want to drive the scientific discovery process; they want to interact with

their data.

The most common mode of visualization today at national supercomputer
centers is batch. Batch processing defines a sequential process: compute, generate

images and plots, and then record on paper, videotape or film.
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Interactive visual computing is a process whereby scientists communicating
with data by manipulating its visual representation during processing. The more
sophisticated process of navigation allows scientists to steer, or dynamically modify
computations while they are occurring. These processes are invaluable tools for

scientific discovery.

Geometry Simulation Visualization
Modeling

B — A —

Figure 1-3: Processes in Scientific Computing Pipeline

Thus, from the latter interpretation of the interactivity, timeliness turns out to be a
very important issue for visualization applications when the applications try to access and
visualize very large datasets. The timeliness in visualization application is the requirement
that the users can visualize the datasets at the right time. In practical applications [Bryson
1996; Singh 2006], that means the programs can allow the users to view and explore the
latest experiment/simulation results as soon as possible. For examples, the applications
should let the users view the latest physical simulation results so as to adjust the
experiment models, to see the latest climate forecasting data rather than “aft-casting” data;

to detect the arbitrage before the financial exchanges are closed.

However, since the dataset volume is very huge, it is normal to visualize the raw

data after batch processing the data. Timeliness becomes a critical issue in this scenario as
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the scheduled data processing is not suitable for the interactive visual computing. To reduce
the latency in the interaction during visualization as well as in the overall visual computing
pipeline, especially in visualizing and processing very large distributed datasets is a critical

problem and one of the utmost goals of OptiStore.

1.2.3 Flexibility to Access Data Repositories

In the background introduction, it is explained that the distributed data repositories
causes a lot of difficulties in such data intensive applications. As the distributed data

repositories become more and more common, two trends should be noticed:

1. The data providers have huge datasets. After data acquisition, the data providers
intend to store their data in their favor format. Even though many research
institutes plan to unify the all the data formats into one universal data format
[Ellis 2004; Folk 1999; Rew 1990], it still is too difficult to unify the formats. Data-
providers are not usually willing to incorporate one-off data-filtering needs of

their users.

2. Cheap storage and networking is making it possible for the first time to
efficiently publish and move vast amounts of raw data. This explosive availability
of data is enabling users to come up with imaginative ways to interpret it.
Therefore users now have the means to preprocess/filter the data for
themselves rather than use the preprocessing capabilities given by the data

providers. Also users of the data don't really want to be in the business of
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maintaining those large data-sets. They only want to mine it for useful

information.

Currently, either the users require the data providers to transfer the datasets on the
server side or the user download a small subset of datasets to their local disk. In the former
case, the data-provider may not be able to anticipate all the data-processing/filtering needs
of all their users. In the latter, evidently, it does not satisfy the need of the large scale

visualization applications.

It is an essential issue to provide flexibility to manage the data repositories for the

data providers and flexibility to access/process distributed large datasets for the users.

1.3 The Approach

To address the problems driven by the requirement of scalability, interactivity, and
flexibility, | proposed and designed OptiStore - an on-demand distributed data management
system of various very large datasets for scientific visualization and information
visualization. These large datasets normally includes structured raster image textures,
height field or elevation terrain images, graphics models, time-varying extension of these
data models and higher dimension regular grid data. Usually, the data is stored on different
locations and maybe affiliated with different organizations and the data are organized by
the local server using various data management systems, such as relation databases, object-

oriented databases, or data repositories as simple as indexed file systems (in some cases,
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the raster image dataset and time-varying volume data exist as sets of files). OptiStore
should provide an application interface to query the distributed data repositories, access
the spatial data, and maintain the systems. The visualization tools don’t need to care about
where the data is, in what format the data is organized, how to access the data, which part
of the data it should crop from data files and etc. They simply request the data from
OptiStore by giving geometry coordinates, and then OptiStore should handle the rest of the
work and feed back the data. Moreover, OptiStore also should have the capability of data
filtering and data processing so that it can provide convenient and fast data access and

assist the user to discover inner relation within the original crude data.

The proposed OptiStore middleware system includes the functionalities as follows:

1. Multi-resolution analysis for multi-dimensional datasets

In 1996, Ben Shneiderman introduced the visual-information-seeking mantra into
the visualization theory: overview first, zoom and filter, then details-on-demand.
[Shneiderman 1996]. Most of the scientific visualization user interfaces are employed in this
way. The overview-zoom-filter-detail is the natural manner for the users to explore the

data. Essentially, it is the way to visualize the data at different resolutions.

Furthermore, as the previous chapter explains, the very large datasets are not able
to be load into neither the computer’s main memory nor the memory on the graphics card
at once. It is reasonable for researchers to resort to down-sampling / sub-sampling the

dataset. Figure 1-4 shows that under some circumstances, the full resolution of the dataset
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is not always necessary. In this example, when the data is far from the viewpoint of the

user, higher resolution of the geometry data does not contribute more that the coarser

69,451 2,502 251 76

triangles triangles triangles triangles

dataset onto the display.

(A)

(B)

Figure 1-4: The fundamental concept of multi-resolution. (a) A complex object
is simplified, (b) Creating levels of detail or LODs to reduce the rendering cost of small,
distant, or unimportant geometry. Courtesy of David Luebke [Luebke 2001] at

University of Virginia©.
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Last but not the least, in many large scale or distributed visualization applications,
latency hiding techniques have already become a major approach to reduce user perceived
latency. In a nutshell, these techniques aim to trade data fidelity for prompt response time,
for instance, by intelligently rendering lower-resolution of the requested data while the
data is still being transmitted if the user changes the view-point rapidly. In this case, user-
perceived latency can be greatly reduced with the same actual latency while the loss of data
fidelity is negligible due to high-frequency user-interaction. In order to fulfill these
techniques, multi-resolution filtering or level-of-detail processing on the datasets is

unavoidable.

In this research, OptiStore mainly utilized multi-resolution model for regular grid
data. OptiStore has two methods: 1) if the datasets are too large to load, it will sub-sample
the data while loading the data; 2) to keep as much fidelity of the data as possible, it will

utilize wavelet analysis to generate coarser level of resolutions.

2. View-dependent data processing to accelerating data access

The multi-resolution methods are useful for fast navigation through the dataset, but
maximum resolution is limited by the memory size and bandwidth of the network. It is not
scalable to render the highest resolution of the dataset at once. In contrast, visualization
applications often work with full-resolution datasets either as the computation proceeds or
as a post-processing step [Haimes 1994]. In the graphics cluster, the data is distributed

across the processors, and derived visualization entities such as pixels, voxels, isosurfaces or
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streamlines are computed in parallel and communicated to the graphics cluster for display.
The advantage of this technique is that no information is lost in a data reduction process;
however, for scientists who run their parallel visualization applications at remote sites,
there are two potential drawbacks to using this method for interactive visualization in the
OptIPuter model. First, the remote disks are accessed through network and then disk 1/0O,
which makes it difficult to predict when the “interactive” job will run. Second, these
techniques are useful for interactive exploration of the dataset only if there is sufficient
network bandwidth between the graphics cluster and the disk cluster. Both of them limit
the scalability in data access and processing, and lead to some high latency during the

interactive exploration.

This difficulty in higher resolution data access can be solved by the view-dependent
data selection. Researchers [Cohen-Or 2003; De Floriani 2000; EI-Sana 1999; Hoppe 1997,
Levenberg 2002] exploited this fields for geometry simplification, walkthrough in very large
scenes, visualization of large scale objects and etc. Durand [Durand 1999] gave a
comprehensive survey in the visibility study. And Hoppe [Hoppe 1997] summarized the
reasons why the view-independent rendering increases the throughput of data access.
Similarly, the cluster level visualization application will also have three difficulties if the data

access is view-independent:

1. Many geometry primitives of the corresponding represented dataset may lie

outside the view frustum, and thus do not contribute to the rendered image.
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2. Similarly, it is often unnecessary to render those primitives oriented away from
the viewer, and such primitives are usually culled using a “back-facing” test, but

again at a cost.

3. Within the view frustum, some regions of the model may lie much closer to the
viewer than others. View-independent multi-resolution data processing fails to

provide the appropriate level of detail over the entire dataset.

In OptiStore, the data space is partitioned into quad-tree or octree and their
extension in higher dimensional spaces. The view matrix is passed from the visualization
application to OptiStore client. The view-culling is applied to the bounding box of each node

in the tree.

3. Runtime data processing

If the data filter is designed to support the flexibility of data management without
preprocessing the datasets, the data filtering has to run on the fly during visualization.
However, if the datasets are too large for the computation cluster, it will be extremely
difficult to catch up the interactive frame-rate on the visualization side. Even though the
techniques of level-of-details and view culling help to accelerate data access and filtering,

when the computation of data filtering is too complicated, the response time from the user



24

request to receipt of filtered data will still be high. Thus before the arrival of the next
request, the data processing and filtering in advance may reduce the response time, like the

mechanism of cache prefetching.

In cache prefetching algorithms, the well-designed predictor can improve the hit
ratio much higher. Like these algorithms [Doshi 2003; Johnston 1997; Rhodes 2005], the
data filter of OptiStore attempts to predict the next user’s operation based on the prior

history and start a new filtering process before the next request arrives.

Unlike the cache prefetching, the preprocessing predictor considers not only the
data of the next request but also the operation of the next request. For example, a two-
dimensional caching algorithm can fetch larger region of data than the one in the current,
just like normal caching; but since it has no knowledge about the next operation on this
data, the original data will not be processed until the request comes so that the delay of the

response is still high.

In OptiStore, a simple and effective page replacement algorithm was proposed. And
together with the level of resolution, the view information and the movement, the filter
operation constitutes a state vector. A Markov chain model [Doshi 2003] has been applied

to predict new operation and dataset.
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4. Distributed high-performance multi-dimensional data filtering

McCormick and Ahrens [McCormick 2005] conclude that there are four fundamental
techniques that can be used to solve the large-data visualization problem. These techniques

can also be applied to very large scale distributed visualization applications:

1. Data streaming (data partition along time). It is one of most common solutions
when the incoming data is possible to partition and the output result can be
combined later with intermediate temporary results. It is feasible to partition the
data into small parts, process and render those parts one by one, store the
temporary result of each part, and combine all the temporary results into the
final result. Obviously, it scarifies execution time for data size that exceeds
computation resources (hardware and/or software). It should be employed as a

last resort for interactive visualization applications.

2. Data parallelism, data partition based on space. Data parallelism is like Single
Instruction Multiple Data (SIMD) model. With data parallelism, the data is
partitioned into small parts and the same procedure of an application executes
in parallel with those parts of data simultaneously. It is like data stream
technique to partition data into small parts. But unlike data stream technique, it
assigned the subsets of data to different processors or systems, instead to
different execution time slots. Data parallelism can be implemented as an

extension of the data-decomposition technique.
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3. Task parallelism, procedure partition based on processors. With task parallelism,
the incoming data can be same or different but the task processes are different
and run with the incoming data on a number of processors simultaneously. The
key advantage of this technique is that it enables multiple portions of a
visualization task to be executed in parallel. The main disadvantage of this
technique is that the number of independent tasks that can be identified, as well
as the number of CPUs available, limits the maximum amount of parallelism. In
parallel computing, one common application of this technique is that the master

processor and the slave processors are assigned different tasks.

4. Pipeline parallelism, procedure partition based on time. Since the output of a
procedure in a pipeline is the incoming data of the next procedure. Thus pipeline
parallelism occurs when a number of modules in an application execute in
parallel but on different data (thus distinguishing this process from task
parallelism). In distributed visualization environment, as the procedures of the
pipeline runs on separate systems, this technique can be applied to achieve high

performance and overcome the limitation of data size.

Because the datasets are huge and distributed on remote sites with different
procedures in visualization pipeline, the latency becomes crucial for the interactive
visualization tools when they access the datasets. To overcome the high latency, we tried to

combine the all of the last three techniques to speed up the data processing for distributed
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visualization. Data parallelism and task parallelism are employed to OptiStore as many other
parallel visualization application. But we applied a much more parallel pipelined paradigm

than other applications.

Usually, the data flow in visualization pipeline is illustrated as Figure 1-5 (A). The
visualization pipeline consists of data source, data filtering, rendering and display. In most
cases, it is impossible to visualize very large datasets interactively without filtering the data

before rendering [Pavlakos 2005]. There exist several reasons, listed below:

1. Conversion of the original data into a multi-resolution or hierarchical form can

allow interactive data exploration at different level of details efficiently.

2. Reorganization of the original data forms on data repositories into those suitable
for computation hardware and graphics hardware. For example, partition the
original large data files into power-of-two blocks as image texture for graphics

card.

3. Re-sampling the original data onto a different type of grid. For instance, it is

useful to sample unstructured or irregular data into structure regular grids.

4. Many other operations are also important, such sub-setting, down-sampling,

extraction, aggregation, and so on.



Data Data Rendering Display
Source Filtering

(A)

(B)

Pre-Processed Data

(D)

Parallel OptiStore Parallel Scalable
Disk 1/0 Rendering Display

Figure 1-5: Traditional distributed visualization pipeline. Model (A) is the
standard data flow in visualization pipeline; (B) shows the filtering server, residing on
data repositories; in model (C), the renderer and filter work together; and in (D),

OptiStore has a dedicated parallel filtering server in the distributed system.
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Current predominant parallel pipelined strategies for large scale data visualization

belong to either of the following:

1. Process/compress the data at the source in advance and send the

preprocessed/compressed data to the visualization clients, shown as Figure 1-5

(B). If the bandwidth is sufficient, larger portion of preprocessed dataset (up to
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the whole dataset) can be delivered over the network. This is the most common
solution applied to remote interactive visualization [Callahan 2005; Guthe 2002;

Liang 2005; Prohaska 2004].

2. Provide only small pieces of data at the time for visualization, shown as Figure
1-5 (C). If the data to visualize is small, it is possible to run rendering programs as

well as filtering procedures on the same system.

It can be summarized that the decision to use these strategies depends the size of
data and available bandwidth. We can partition the data-size-and-bandwidth space into
three categories shown in Figure 1-6. Due to the large size of the datasets, the server-side
filters mostly have to preprocess data into specific file formats or databases. The client-side
filters are the traditional filters that just process small datasets because of the limited
network bandwidth. Since the bandwidth of wide-area-network is increasing dramatically
[DeFanti 2002], OptlPuter becomes a mature model to exploit much more efficient pipeline
parallelism. In this dissertation, I'll present a new prototype of distributed data filter for
interactive visualization, which is decoupled from data repository servers and visualization

application clusters, called filter in-the-middle, shown as Figure 1-5 (D).

With this model, we do not have to preprocess the data on data repository if we can
employ the high pipeline parallelism paradigm in distributed visualization applications. Even

though the available network bandwidth increases dramatically, many distributed
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visualization systems still use preprocessing model in order to reduce latency. Compared to

preprocessing paradigm, this on-demand data processing has the following advantages:

1. Timeliness. The users can visualize the latest data as soon as possible, i.e. to view
the latest physical simulation results so as to adjust experiment; to see the latest
climate forecasting data rather than “aft-casting” data; to detect the arbitrage

before the financial exchanges are closed;

2. Efficiency. The users can view the data before deciding to process the whole

dataset and store additional data on the disk;

3. Interactivity. To process the data based on interactive visualization and demand

rather than texts and numbers;

4. Scalability. The users can view much more distributed datasets than they can

store on their specific sites with preprocessed dataset;

5. Flexibility. On the one hand, data-providers are not usually willing to incorporate
one-off data-filtering needs of their users. On the other hand, the users of the
data don't really want to be in the business of maintaining those large data-sets.

Thus, the real-time data filtering can satisfy the need of the users on both ends.

The only possible disadvantage is that this filter-in-the-middle paradigm may have

higher latency. Hence, it is the main challenge for OptiStore to minimize overall latency.
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Figure 1-6: To meet the requirement of large scale visualization and exploit

availability of high-speed network, | propose a dedicated parallel filtering server in the

middle between data repositories and visualization applications

In summary, the proposed approaches address the motivations in very large scale

interactive visualization, as listed in Table 1-1.

Approaches
A Distri
Motivation Multi-Resolution | View- Run-time istributed &
Analysis Dependence Preprocessin Parallel

¥ P P 8 Computing
Scalability Yes Yes Yes Yes
Interactivity Yes Yes Yes Yes
Flexibility Yes Yes

Table 1-1: The approaches in OptiStore address the motivations in very large

scale interactive visualization
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1. 4 Summary of Contributions to the Field

OptiStore is designed and implemented as an on-demanded data management

system for very large scale interactive visualization. It addresses several problems of data

service for visualization application in OptlPuter architecture: scalability, interactivity,

timeliness and flexibility. Compared to other data management systems, this dissertation

features the following contributions:

Design a flexible data filtering middleware model for visualization applications.
This dissertation presents a distributed high-performance data filtering model. In
this distributed computing model, high-performance data processing system
may be separate from both of data repository systems and visualization systems
so that it affords more flexibility and power to visualize very large datasets.
Especially, OptiStore is such a system that also supports interactive scientific

visualization applications.

Develop OptiStore as an on-demand data processing system. OptiStore aims to
provide data querying, filtering and processing services on the fly so that various
interactive visualization applications can benefit from this near real-time system.
In this dissertation, we implemented several techniques to minimize the latency:
load-balancing data partition and organization, multi-resolution filtering, view-
dependent data processing, fast remote memory access, Markov chain predictor

and etc.
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e Realize OptiStore as a scalable data filtering. The techniques, such as load-
balancing data partition, multi-resolution filtering, multi-dimensional caching

and etc., are designed to load and process very large high-dimensional datasets.

e Introduce a novel cache replacement algorithm for multi-dimensional datasets.
The new algorithm was designed for multi-dimensional data with the spatial
indexing information in the whole system. It shows superiority over the popular

Least Recently Used (LRU) algorithm.

e Implement OptiStore as a flexible extensible framework. The middleware system
was designed with design patterns and developed with object-oriented
programming language. Various data formats, data filters, caching algorithms
can fit into the framework. New data models, data filters, caching mechanisms

and networking transfer protocol can be easily added.

1. 5 Document Organization

The remainder of the dissertation is organized as follows.

Chapter 2 reviews and discusses previous work on multi-resolution analysis, visibility
culling and distributed and parallel data processing. A comparison of OptiStore and other

related system for very large scale visualization is drawn.
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Chapter 3 explains the conceptual framework of the proposed system as a scalable
parallel data filtering middleware, followed by a brief summarization of the functionalities

of each component subsystem.

Chapter 4 presents data management and distribution techniques in parallel data
filtering systems. It thoroughly discusses the motivation and the benefits of predefined data

distribution along a space-filling curve.

Chapter 5 describes a multi-solution analysis filter for creating a resolution pyramid

from original datasets. The basic idea and design details are described.

Chapter 6 elaborates on view-dependent techniques. A visibility culling method for

high-dimensional dataset is studied.

Chapter 7 mainly discusses the research work in real-time data processing. A new
page replacement algorithm — Furthest Object Replacement (FOR) is presented; remote

memory access methods are discussed; and the design of a prediction model is described.

In Chapter 8, experimental models are presented and discussed; experimental

results are reported.

Then the dissertation is concluded by O.



CHAPTER 2 RELATED WORKS

Previously, researchers have proposed various techniques in the areas of multi-
resolution filtering of graphical and scientific data, visibility culling and parallel data filtering.
In this chapter, we will review and discuss those previous work and literature closely related

to the research in this dissertation.

2.1 Multi-Resolution Filtering in Scientific Visualization

Many scientists have done research work on the multi-resolution analysis (as known
as level-of-detail in computer graphic modeling, LOD) for different types of datasets:
structured grid [Franke 1999; Guthe 2002; Li 2002b], vector fields [Hua 2003; Jobard 2001],
unstructured grid [Abgrall 1998; Rhodes 2002, 2003], graphical primitives [Garland 1999;
Guthe 2002; Heckbert 1994; Luebke 2002] and time-varying data [Gao 2004b; Ma 1998; Ma
2003]. To create a reduced dataset, researchers commonly build a hierarchical, multi-
resolution representation of the data or geometric model to be visualized (see [Garland
1999; Luebke 2002] for an overview of these methods). In these techniques, a series of
coarse representations of the data is constructed using, for example, Quad-trees or Octrees
[Herzen 1987; Lindstrom 1996], progressive meshes [Hoppe 1996], or wavelets [Wang

2005]. The level of detail in each region is controlled through a variety of mechanisms, such

35
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as error tolerance bounds that control fidelity to the original model, or user input, such as

field of view.

2.2 View-dependent Data Processing

The view-dependent data processing means that when to process the data, what
data to process and/or how to process the data depends on viewing direction, distance,
lighting, visibility and etc. Among these factors, visibility is usually the most crucial one
because processing the invisible data will result in a lot of duplication and unnecessary work

being done.

In order to avoid the unnecessary computation, many visibility culling methods have
been proposed for large scale polygon and volume rendering applications [Bittner 1998;
Briere 1996; Gao 2004a; Hoppe 1997; Hudson 1997; Klosowski 2000; Zhang 1997]. A survey
about visibility for walkthrough application was given in [Cohen-Or 2003] and a
comprehensive survey about three-dimensional visibility can be found in [Durand 1999].
Visibility computation algorithms are primarily classified into four categories: image space,

object space, viewpoint space and line space [Durand 1999].

Image space methods perform their operations in their 2D projection planes (or
other manifolds) and even some intermediate planes. They often deal with a discrete or
rasterized version of this plane, sometimes with depth information for each point.

Hardware based z-buffer [Fournier 1988] and extensions of this technique, like hierarchical
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z-buffer [Greene 1993; Zhang 1997], are frequently utilized in image space visibility
computation for occlusion culling. Normally, the visibility computation in this scheme is

deeply intervened in the rendering pipelines.

In contrast, object space is the three or higher dimensional space in which the scene
is defined. It exhibits the widest range of approaches. Among them, Binary Space
Partitioning (BSP) tree is one of most employed methods in this category. It first appears in
[Fuchs 1980] for occlusion culling. And other improved versions of BSP trees are also
proposed later on [Agarwal 1997; Paterson 1990]. Shen et al. present a Time-Space

Partitioning (TSP) tree algorithm for time-varying datasets [Shen 1999].

Viewpoint space is usually equivalent to object space since perspective projection is

used in most visualization and graphics applications.

Line space methods characterize visibility with respect to line-object intersections. In
this category, multidimensional image-based approaches can be applied for scientific
visualization. In multidimensional image-based approaches, a five-dimensional plenoptic
function is defined. The plenoptic function describes light transport in a scene, similar data-
structures have thus been applied for global illumination simulation [Adelson 1991; Chang
2002; Gao 2004a; Lalonde 1999; McMillan 1995]. Like image space scheme, these

approaches are usually highly coupled with rendering pipeline.
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2. 3 Distributed and Parallel Data Filtering

Parallel computing power can be utilized to accelerate the data processing efficiently
and distributed computing model can be deployed to exploit more data processing

resources.

A number of parallel data filtering techniques have proposed for parallel data
filtering and image processing. Different parallel image processing environment (PIPE)
systems are designed in a single process multiple data (SPMD) architecture for 2D image
processing [Hamdi 1997; Lee 1995; Nicolescu 2002; Seinstra 2002; Serot 2002]. Meerwald et
al. used multi-threads and shared-memory system to do wavelet transforms and image
compression for JPEG2000 [Meerwald 2002], even though it required shared memory
among the processors. DataCutter is another SPMD PIPE system, which was extended to
higher dimension data [Beynon 2000]. But it lacks a lot of complicated spatial operations,

like convolutions and etc.

As the fast growth of networking technology, distributed computing becomes more
and more popular. Grid computing is a distributed computing technology over the wide-
area-network [Foster 1998]. Larry Smarr et al. proposed another grid computing
architecture - OptlPuter LambdaGrid project, an optical backplane for planetary scale
distributed computing [Smarr 2003]. Distributed real-time processing in OptlPuter
architecture was also presented [Kim 2004]. And DataCutter system was also implemented

in a grid environment [Beynon 2002].
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2.4 Related Systems and OptiStore

2.4.1 Previous Systems for Large Scale Visualization

Since the last decade, many researchers have designed various model and found
various solutions to explore very large datasets visually and interactively in the distributed
environment. The following systems are those that have a few similar goals and features as
OptiStore. In the rest of this sub-section, those systems are introduced briefly one by one,

including pros and cons:

1. Globus GridFTP[Allcock 2003] with HDF5[Yang 2005]

Globus GridFTP is a similar project to OptiStore. It's a middle-ware tool kits for data
transfer on Grid infrastructure. The latest version GridFTP provides functionalities like
partial file transfer, stripped data transfer and etc. HDF5 can store two primary objects:
datasets and groups. A dataset is essentially a multidimensional array of data elements, and
a group is a structure for organizing objects in an HDF5 file. With the support of HDF5, the
visualization applications can access arbitrary part of the spatial data from remote site.

Some visualization applications [Prohaska 2004] use this solution.

Several disadvantages exist: 1) GridFTP works as file transfer tools. It doesn’t have
the spatial query mechanism. All the data are viewed as 1D file. Even with the help of HDF5,
it’s still not convention for flexible spatial queries or geometry operations. 2) With HDF5
and GridFTP API, the application can access partial spatial data. Even though HDF5 is a

widely used file format in scientist community, it’s not standard format for most images and
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volume data. The users have to preprocess the raster images, which leads to additional

space and incompatibility between different applications.

Other solutions, like [Allcock 2001; Baer 2004], take NetCDF as the file format in
their data repositories. They are still categorized as GridFTP with HDF5 because the
difference of data formats does not affect the three aspects of the system: scalability,
interactivity and flexibility. In rest of the proposal, when the Globus project is mentioned, it

will be referred to Globus GridFTP with special data format such as NetCDF and HDF5.

2. Paradise [DeWitt 1994]

The objective of the Paradise project was to design, implement, and evaluate a
scalable, parallel geographic information system that is capable of storing and manipulating
massive datasets. By applying object-oriented and parallel database technologies to the
problem of storing and manipulating geographic information, the users hope to significantly
advance the size and complexity of GIS datasets that can be successfully stored, browsed,

and queried.

Paradise has the similar disadvantage as the previous solution: data preprocessing. It
has to partition the data into its own format and store with their own storage system:

SHORE [Yu 1997]. It’s not compatible to other systems.
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3. Amanda[Oldfield 2002]

Amanda is a framework that schedules the data processing and distributed disk 1/0.
Amanda provides a set of toolkit to filter data and transfer data in a grid. Its SHIP objects are
the agents that gather and transform the raw data for the clients. It is file-system

independent and scalable with the data size.

But Amanda has to fetch the full resolution dataset when transforming the data. It
does not have any mechanism to generate coarser resolutions of the data and cull the

necessary data.

4. DSTP [Bailey 2000] with PDS

The Data Space Transfer Protocol (DSTP) is a protocol to retrieve distributed
database [Bailey 2000; Grossman 2003] from Laboratory of Advanced Computing at
University of lllinois at Chicago. Each database must have a Universal Correlation Key (UCK),
which represent a field in the database. DSTP installs an adapter on each database, which
can convert database tables into raw tabular datasets. DSTP includes commands for
retrieving meta-data, retrieving UCKs, retrieving data and subsets of data, and mechanisms
for sampling, working with missing data, and merging by UCKs. DSTP protocol itself cannot
handle very large dataset because it is a TCP-based command message protocol. Therefore,
another protocol - Photonic Data Services (PDS) was devised, which aimed to provide bulk

data transfer service over LambdaGrid.
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DSTP protocol has an obvious limitation that all the data has to be tabular. It cannot
handle any data that has higher dimensions more than three. And in the two-dimensional
case, because it uses UCK to identify fields/columns, it is hardly scalable in the second

dimension.

5. Granite Scientific Database System

Granite Scientific Database System (Granite SDB) was proposed by Rhodes [Rhodes
2002, 2003]. It is a java-based database for general spatial scientific data. Each dataset is
loaded into a hyper-volume, called lattice. Based on this regular structured grid, a multi-

resolution hierarchical model is generated for that dataset.

The Granite SDB can well support multi-resolution data model and different data

sources. But the data has to be converted into the database in advance.

6. DataCutter with SRB

DataCutter is another middleware that provides data filtering services [Beynon
2000; Kurc 2000]. San Diego Supercomputing Center’s Storage Resource Broker (SDSC’s
SRB) [Baru 1998] can support distributed across multiple organizations and heterogeneous
storage systems. Even though it was claimed that DataCutter filters can execute anywhere,
essentially they were still implanted on each storage system on the server side because they
are intended to run on a machine close (in terms of network connectivity) to the archival

storage server or within a proxy [Beynon 2000]. Both Allock et al [Allcock 2002] and Oldfield
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et al [Oldfield 2002] categorized it as server-side filtering. When the data service client
requests the data, the filter sub-sample or subset the data and applied specific filters on the

subset data.

DataCutter implemented with SRB can provide flexible distributed data access
interface. But as the data filters are essentially located on the storage repository servers, it
is still inflexible to deploy filtering system. Additionally, the filters are limited on spatial
operations, so that without the aids of advanced techniques like multi-resolution analysis,
visibility culling and predicted caching, it is difficult to provide data filtering service the

interactive visualization applications.

7. Gao’s Approach

Gao designed a distributed data management system for large scale volume
rendering system with her own visibility measurement [Gao 2004a; Gao 2005] in a multi-

resolution fashion.

However, in her system, the datasets have to be preprocessed with wavelet filters

and visibility culling functionality is restricted within direct volume rendering.

2.4.2 Comparison of OptiStore and Other Systems

All of these previous systems can be categorized into three strategies: renderer-side

data filtering, storage-side data filtering and an alternative one - render-side data filtering
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with preprocessed data on storage side, discussed in previous chapter and shown as Figure

1-5.

Traditional visualization applications can be easily extended into a distributed model
by adopting the strategy of renderer-side data filtering. If each node of the visualization
cluster fetches data files from remote sites, it can work as the traditional workstation. But
as limited bandwidth of long distant network constrains the data size and increases high
latency. On the other hand, the limited computation capability to process and access very
large data on visualization client leads to that the system cannot be scalable with the data

size. DSTP uses this strategy to visualize data.

To overcome the size limitation, some researchers, therefore, preprocess the
datasets as specific data file formats on the server side so the visualization application can
access the preprocessed data. With special file format, the visualization application can
access different level-of-detail of the dataset and any portion of the multi-dimensional data
directly. In this way, this alternative strategy can solve the problem caused by limitation of
network bandwidth and memory. But the data has to be converted in advance. If the users
need other filtering functionalities, they still have to filter the data on the renderer side.
And the data provider has to convert their data into those special data formats. This
strategy is one of the most popular solutions for many large scale visualization systems.
Most of the systems aforementioned fall into this category: Globus, Paradise, Granite,

Amanda and Gao.
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Then some researchers proposed another strategy. Since the bottleneck occurs on
the network connection from storage to renderer. They put the data filter on the storage
server side. The data is subset, aggregated and filtered on the storage side before it is
transferred to the visualization cluster. The representative system of this strategy is
DataCutter. They put the data filter on each storage server, and the storage resource broker
system maintenances the metadata information. The storage-side filtering solution doesn’t
need data preprocessing so that the data providers care neither the maintenance of the
data nor the conversion of the data file format. But as the storage servers normally have a
lot of high-speed 1/O operations and network throughput, the filtering process will increase
the additional computation burden on storage server. Furthermore, on one hand, the data
users may need to additional filtering functionalities; on the other hand, the data providers
do not want or be able to provide every customizable way to filter the data. That will

decrease the flexibility of the system. The representative system is DataCutter.

As discussed in the first chapter, currently in the area of data management for very
large scale visualization, the main challenge is to satisfy the requirement of scalability,
interactivity, timeliness and flexibility. Thus, we compared the systems analyzed in previous

section with OptiStore on these four goals.

In summarization, in comparison with other related research projects, OptiStore is
the only distributed parallel data filtering system that provides distributed data services

near real-time for very large scale interactive visualization.



Scalability Interactivity Timeliness Flexibility
OptiStore Yes Yes Yes Yes
Globus Yes Yes
DSTP Yes Yes
Paradise
Granite Yes Yes
Amanda Yes
DataCutter Yes Yes
Gao Yes Yes

Table 2-1: Comparison of OptiStore and other systems
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CHAPTER 30PTISTORE FRAMEWORK

In previous chapters, the reason why filter-in-the-middle model is adopted has
already been discussed and analyzed. In this chapter, we will present how to organize

computing power, data repositories, software and etc. for this model.

3.1 Framework Overview

In order to accomplish the goals of OptiStore system for distributed very large scale
visualization: scalability, interactivity and flexibility, the filter-in-the-middle architecture is
proposed. This architecture has several features: at the intra-LambdaNode level, the system
is designed as a multi-tier distributed system for flexibility; each LambdaNode works in a

parallel processing fashion for data scalability and processing speed.

In an overview, OptiStore is a multi-tier distributed system. The reasons to choose

this distributed computing architecture are listed as follows:

1. It is natural to adapt multi-tier architecture due to the concept of visualization
pipeline. Each pair of adjacent elements in the pipeline work as a pair of
client/server system. The output of each component is always the input of the
next. The data source -> data filter -> rendering pipeline can be compared to the

data-application-presentation architecture.
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2. Compared with peer-to-peer models, in the distributed visualization systems,
different nodes have different functionalities and different resources. For
instance, the data nodes may lack of powerful graphics hardware, while the
graphics nodes do not have enough computing power. This cannot meet the
requirement of the popular peer-to-peer models because all of the peers should

serve both as servers and clients.

3. This is a loose-coupling model. Most of the data transferring and message
passing among the components in distributed visualization systems are
asynchronous because of the pipeline architecture. Especially the user interface
is event-driven. This model can exploit the concurrent utilization of the

resources, by minimize task synchronization.

4. 1t is flexible to develop, implement, extend, and maintain the software on
different components in the system. For example, portability is priority-ranked
higher in the development of the software on the client while high performance
is on the server. So this preference can make the software development and
implementation easy and flexible when avoiding designing complicated software

to satisfy different requirement in one system.

Figure 3-1 illustrates the diagram of this distributed architecture and Figure 3-2

presents the concept of multi-tier model.
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Figure 3-1: The diagram of OptiStore Architecture

As illustrated in Figure 3-1, OptiStore clients are installed on the rendering nodes
and provide filtered data for visualization applications (e.g. JuxtaView [Krishnaprasad 2004],
Vol-a-Tile [Schwarz 2004b], offline rendering engine and etc.). OptiStore adaptors run on
data repositories; they extract meta-data information and original data from fast disk 1/O
and serve the data for OptiStore servers. Multiple OptiStore servers, typically powerful
computing clusters, are placed between the data repository nodes and rendering nodes,

which are interconnected via high-speed optical network. OptiStore servers fetch original
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meta-data and multi-dimensional datasets, organization the data, process the data and feed
query service or filtering service for OptiStore client. Prefetching and preprocessing
modules are implanted both in OptiStore clients and OptiStore filtering servers to
accelerate data access. The concept of this three-tier model (excluding visualization
application on the top and data repositories on the bottom) is demonstrated in Figure 3-2.
Each tier in the middle can make the tiers look transparent to the tier above. Consequently,

it ensures the heterogeneity and flexibility of the middleware system.

Visualization Applications

Optistore Client

MetaData Server

MetaData Adapter Data Access Adapter

Data Repositories

Figure 3-2: The sub-systems in OptiStore: three-tier models

Shown in the diagram of OptiStore architecture (see Figure 3-1) and its conceptual
model (Figure 3-2), OptiStore system primarily provides two functionalities: metadata query
service and data filtering service. Visualization applications can query the metadata and

request specific data filtering via OptiStore client.
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3. 2 OptiStore Components

OptiStore comprises two major functional sub-systems: one is metadata service sub-
system and the other is data filtering service sub-system. The metadata service sub-system
is mainly for dataset publishing, indexing and querying. Whereas the data filtering sub-
system is in charge of handling the on-demand data filtering requests from the visualization

users.

3.2.1 Metadata Query Sub-System

Metadata query subsystem runs as a basic client-server model. Metadata adapter
can extract the metadata information from data repositories - either object databases or
indexed file systems; and register the information on OptiStore metadata database. Figure
3-3 depicts the model of metadata query server and adapter, where the dash lines indicate
higher level communication over the lower layers, like network, etc. The metadata adapter
that runs on the data repository server is a script program that specifies the basic
information of spatial data, like dimension, dataset name, location, format, size, and even
geo-information. When the dataset is published (or allowed to share), the user just run
metadata adapter program to updates the information on the OptiStore metadata server
side through socket connections based on QUANTA [He 2003]. The adapter on server side

then parses the metadata information and creates a table in the spatial database.

When visualization application users plan to run visualization applications, they just

run the query through OptiStore client interface, find the interesting datasets and then bind
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the datasets with specified geometry primitives (e.g. planes, boxes and spheres) in a scene

graph of xml format.

Visualization Applications

Optistore Client

MetaData Server

- MetaData Adapter
Spatial Database M Data Repositories

Figure 3-3: OptiStore metadata subsystem: a multi-layer client-server model

The following example (see Figure 3-4) lists an xml file of a scene graph. The scene
graph, displaying the earth when being visualized, includes two hemisphere objects with
two corresponding datasets as bound textures: the west and east sub-dataset out of the

BlueMarble dataset.

<?xml wversicn="1.0" encocding="utf-8"7>
«Seene crigin="-1.0 -1.0 -1.0" =ize="1.0 1.0 1.0">
<Group>
<Shape type="1">
<HemiSphere origin="-1.0 -1.0" size="1.0 1.0" radius="1.0"/>
<Texture dataset="west" server="yorda" gid="201"/>
</Shape>
«Shape type="1">
<HemiSphere origin="0.0 0.0" =size="1.0 1.0" zradius="1.0"/>
<Texture dataset="east" server="yorda" gid="202"/>
</ Shape>
</ Group>

</ Scens>

Figure 3-4: An example scene graph bound with datasets from metadata query
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Before requesting the data filtering, the client notifies the master node of the data
filtering server to load the datasets by sending the loading request together with the data of
the scene graph. Then based on this scene graph, the data filtering servers partition each of
the datasets, generate hierarchical data structures for these datasets (such as Quadtree,
Octree, etc.), send the data partition information back to the client, and load the data from

remote data repositories via data access adaptors.

3.2.2 Data Filtering Sub-System

Data filter subsystem is built using three-tiers: OptiStore data access client, filtering
server and data access adapter (see Figure 3-5). And the data transfer mechanism between
the tiers is designed as multi-layer model, where the data is transferred at network layer
and provided to upper application layer. As the data has been partitioned after the master
node of the data filtering servers receives the loading request from the client, when new
filtering requests arrive, the nodes on the server will access and process a segment of
original data transferred via data access adapter according to the data partition and
distribution scheme. Then those server nodes send the filtered data back to OptiStore
clients. Based previous request, the filtering servers predict the next request and operation,

fetches more data and processes it in advanced before the next data request arrives.

On rendering nodes, OptiStore client serves as data access interface between
visualization applications and data filtering server. During runtime, visualization applications

call OptiStore API functions to fetched filtered data from remote data filtering server.
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OptiStore client API has several modules, illustrated in Figure 3-6, including main controller,

data cache, data fetcher, culling module, predictor, and total view module (if necessary).

Visualization Applications

£
F

I I
i

Data Repositories

Figure 3-5: OptiStore data filtering subsystem: a multi-layer three-tier model

The duty of OptiStore client can be categorized into two aspects:

1. Update view information (only require for multi-renderer system). If the
visualization application is a multi-processor or multi-thread program, a total
view module should be placed on the master node/thread to update the whole
view information for the data filtering server and synchronize it with all of the

rendering nodes.

2. Data caching with prefetching. The main controller receives the view information
and data requests from the visualization application. And then it checks whether
the data requested exists in cache. If it exists, the cache returns the data to
visualization applications; otherwise, it passes view information to the culling
module. The culling module culls the unnecessary data out and generates a
request queue for the main controller. It also passes the view information to the

predictor. Based on some prediction algorithms, the predictor creates another
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data request queue and pushes it to the main controller. Once data request
gueue arrives, the controller notifies remote data filter server and the data
fetcher module of data request information. The data fetcher waits for the
filtered data from remote data server and transfers the new incoming data to
the cache. At last, the cache module loads the newly filtered data and sends
them to visualization applications. It should be noted that the requests from
culling module has higher priority over those from predictor because those from
culling module are the newest requests. So if new request comes, the controller
will interrupt fetching data in prediction request queue and update the queue

after the latest data fetching finishes.
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Figure 3-6: OptiStore client modules

The modules on data filtering server is depicted in Figure 3-7. The data filtering

server consists of two types of modules: one on the master node and the other on the slave
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nodes. The master node includes modules of task dispatcher, data organizer, message
sender, and preprocessing and prefetching predictor while the slave node includes modules

of main controller, data fetcher, filter, and cache.

T Parlrtlonl | R\quuest,*' . | Request IData
Information View Information

A 1 L

Request Request Data
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£ Jr
Partition View S % Original i
Information Information 42 ¥ Data 0‘#’

Partition Information

\ Master Node slave Node /

Request Original Data

Figure 3-7: OptiStore data filtering server modules

The master node has the global information of the dataset, including view
information of the visualization application and data partition and distribution information.

It has three main functionalities:

1. Data partition and distribution. When data loading request is initialized by the
visualization application via OptiStore client, the request message together with
the scene graph is sent to the master node. The task dispatcher passes the
request information to the data organizer, which partitions the requested

datasets and generates hierarchical structures for them. And then the partition
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information is broadcasted to all of the slave nodes and forwarded to the master
message sender as well. Finally, the sender sends back the partition information

to OptiStore client.

2. Task management. After data loading, OptiStore client has received the data
partition and distribution information so that it knows which slave node of the
data filtering server to connect when remote data access occurs. On the slave
node, once the controller receives the request but the data does not exist on the
slave, it will send the request to the task dispatcher on the master node. Then
the task dispatcher creates a filtering task and broadcasts the task request to all

of the rest slaves.

3. Prediction. Once the visualization application changes its viewpoint or other
related parameters, it will update the view information on the master node via
OptiStore client. The master keeps this view information as a history track, and
predictor module decides what parts of the datasets to be prefetched and
processed in advance. This prefetching and preprocessing mechanism will reduce

the latency cost when next data filtering and access request arrives.

The modules on the slave node are the core working modules in the whole system.

They are integrated on the slave to fulfill two jobs - data filtering and data caching:



58

1. Data filtering. When data request message comes from OptiStore client to one of
the slave nodes, the main controller on that node analyze the request. If the data
has already been filtered and loaded in the cache, just send the data back
directly. Otherwise, it passes the request to the master node and the task
dispatcher on the master node dispatches filtering task to all of the slave nodes.
Once the controller receives this task request, it delivers the request to data
filter and data fetcher. If requested data is just the original data but not required
to process, the data fetcher only fetches data from remote data repositories via
data adapters and then pushes the original data into the cache. Otherwise, it
fetches the original data and pushes it into the filter. The filter processes the
incoming data and transfers the output to the cache on corresponding slave
nodes. In current version OptiStore, the filter module includes functionalities
such as crop, down-sample, multi-resolution filtering, color transform and

isosurfaces extraction.

2. Data caching. The cache on each slave node maintains a buffer to hold a portion
of the datasets assigned by data organizer on the master node. It updates the
cache according to our novel replacement algorithm if it is over the size limit.
Besides this buffer, it also keeps another shared buffer cluster wide. When new
filtered data is being produced on other slave nodes, this buffer allows them to
write remotely. Since the data partition is designed to avoid overlapping and

multiple-reader sharing does not stand, the buffer is not locked up for
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simultaneous writing. After the remote writing operation finishes, the buffer is

inserted into the cache.

3. 3 Software Library Components

When developing OptiStore middleware, the following factors have been

considered:

1. Modularity. As presented in previous section, all of the components in OptiStore
system are highly modular. The interfaces between the modules are simple and

standard.

2. Extensibility. The whole system is developed in an Object-Oriented (OO) fashion
with C++; and various design patterns are applied. For example, the factory
pattern is used for the filter module so that more filters can be easily added in

later version.

3. Simplicity. Aforementioned, the middleware design of different OptiStore
components emphasizes on different aspects. OptiStore client API library aims to
provide data service for various visualization applications while OptiStore data
filtering server should support high-performance and versatile filtering functions.
Therefore, we avoid developing a comprehensive system where every

component covers a lot of features. On the contrary, the client API library is
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implemented with as few dependencies as possible while we care less about the

platform heterogeneity for server programs.

OptiStore client API library, OptiStore query server library and OptiStore data
filtering server library are shown in Figure 3-8, Figure 3-9, and Figure 3-10 respectively.
QUANTA is for network message passing and data transfer; Pthread libraries (already ported
to other operating systems) are for multithreading; and Boost C++ libraries [Boost], are for
meta-programming and other features, like smart pointers; and TinyXML is for XML parsing.
These four libraries are the common and basic external libraries of the whole system. And
furthermore, they are widely applied and compatible with different operating systems.
OptiStore client library only relies on these four external libraries. Besides these libraries,
OptiStore query server uses Spatial-Index library [Hadjieleftheriou 2005] to index multi-
dimensional data. Since OptiStore data filtering server runs on computer clusters, it
employs massage passing interface (MPI), the de facto standard communication protocol
for distributed memory parallel computing systems, whose current implementation is
MPICH2 [Gropp 2002]. In addition, both OptiStore query server and data filtering server

implement GDAL/OGR for geo-projection mapping [GDAL].

3.4 Summary

In a summary, OptiStore middleware is designed and developed as a multi-tier and

multi-layer system. It is highly modular and extensible so that new filtering service and data
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structure can be added in future. Multithreaded architecture is commonly applied in the

whole system. The client API library is portable for different operating system platforms.

OptiStoreClient

QUANTA TinyXML

Figure 3-8: OptiStore client library and its dependencies

OptiStoreQueryServer

QUANTA Spatiallndex TinyXML

GDAL/OGR

Figure 3-9: OptiStore query server library and its dependencies

OptiStoreData

MPICH2 GDAL/OGR TinyXML

Figure 3-10: OptiStore data server library and its dependencies



CHAPTER 4 DATA PARTITION AND ORGANIZATION

4.1 Overview

Aforementioned, one of the main goals of parallel system is to achieve high

scalability. To reach this goal, it is important for the algorithm to ensure balanced workload.

As a basic LambdaNode in the OptlPuter model, OptiStore filtering server is a
distributed-memory multiprocessor system (i.e. a computer cluster). The overhead of the
intra-cluster memory access is costly. Furthermore, since the visualization clients, the data
filtering servers and the data repositories are distributed in the Wide-Area-Network (WAN),
it is a critical task to minimize the runtime communication and synchronization cost so as to
reduce the latency in remote data access. On the parallel filtering server in OptiStore
system, compared to the data size, the memory resource is extremely limited; and the extra
disk I/0 access and intra-cluster communication are decisive to the latency in the near real-
time data processing. For a high scalable data filtering system under this environment, the
workload balance depends heavily on effective and efficient data management and
distribution. Therefore, the data management and distribution schema should meet the

following criteria [Gao 2004a]:

62
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1. The scheme should avoid data replication to maximize the utilization of limited

system resources.

2. The scheme should be predefined to avoid expensive run-time data

redistribution.

3. The scheme should keep as high locality as possible so as to only fetch and

process necessary data from remote nodes.

4. The scheme should be general enough to ensure balanced workload for different

parallel filtering algorithms and different dimensional datasets.

4. 2 Data Partition and Organization

Because the datasets are too large for a single processor, during parallel processing,
those datasets have to be divided into small parts and distributed among those processors.
Thus, data partition scheme and data distribution scheme are fundamental and crucial. An
ill-designed scheme will hurt the overall performance of the whole system. This section will

discuss partition and distribution schemes of multi-resolution multi-dimensional datasets.

4.2.1 Data Partition Methods
In that the multi-dimensional data is stored on disk and memory as one dimensional
byte array, traditionally, in the multi-dimensional data processing and filtering research,

there are two data partition methods [Giess 1998]:
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One method is to follow the dimension iteration of the original data and divide the
dataset along the highest dimension evenly into chunks, which are called slabs. As Figure
4-1 illustrates, the volume dataset is partitioned into slabs evenly along axis Z, and then the
slabs are assigned to the three processors in an interlaced manner to achieve load
balancing. Although it is a natural way to partition datasets and for a huge single dataset,
there are little overhead to load data from files, the main drawback of this schema is that it
cannot preserve the spatial locality of the data within each chunk. Since the visualization
application always views the data from different directions, when the dataset is rendered
from the Z direction, obviously, all of the chunks have to be accessed and processed, even
though only a portion of the X-Y plane is the view frustum. This will lead in high longer
process time. In addition, when OptiStore client fetches the data from OptiStore data
filtering server, with the restriction of graphics facilities (i.e. each dimension of the texture
is limited by graphic cards), since the dataset is considerably large, compared to the
dimension limitation, crop or subset is unavoidable on the client side whereas the data
fetched is much larger. That results in that either a lot of runtime data redistribution among
the client nodes or computation and network utilization runs low on the filtering server.
Consequently, the data access time from the visualization application client to data filtering

server will increase dramatically.

The other method is to decompose the dataset, along every dimension
approximately evenly, into chunks, which are called cells. As Figure 4-2 shows, the volume

dataset is divided into eight pieces, two pieces on every dimension. With this partition



65

schema, each chunk keeps the spatial locality on every dimension. In many cases, the
dataset also consists of a set of files which are partitioned on every dimension. And in the
visualization applications, the geometry and texture on parallel renderer are also usually
partitioned in this way. Thus, this schema can minimize the intra-cluster communication

and increase the resource utilization on the parallel system.

Figure 4-1: Data partition in slabs

In summary, due to the importance of the spatial locality in visualization

applications, the data partition schema in which the dataset is decomposed into cells is



66

preferred in OptiStore system. In the rest of this dissertation, these cells will be called

“blocks”.
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Figure 4-2: Data partition in cells

4.2.2 The Granularity of Blocks

In Figure 4-2, although the locality is preserved, an obvious load unbalancing is

noticed. Processor 0 and 1 load 50 percent more data than processor 2, respectively. The

unevenness should be blamed on the large size of the blocks. Alternatively, if the block

decreases half on every dimension, illustrated as Figure 4-3, the data load ratio on the three

processors is 22:22:21. The data loads are very closely even though they are not totally even
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yet. In another scenario, if there are 16 nodes on the computing cluster, in the former
partition schema, half number of the nodes run without any data; in the latter schema, 4

blocks are loaded evenly on all of the nodes.

(
¢

Figure 4-3: Data partition into cells with finer granularity

This contrast demonstrates that the finer granularity of the block can benefit the
load balancing in parallel computing. In practice, it is not always the truth. The following
disadvantages will emerge if the size of the block is too small because the decrease of the
block size leads to the increase of the number of blocks, in the order of two, three, four, or

greater:
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1. The size of the data structure that indexes the blocks will increase too large. As a
result, the time of frequent operations on the data structure (like look-up, insert,

delete and etc) will get longer.

2. The cost on distributed data access will grow up. Either long distance data
transfer, where small messages needs to be aggregated for bulk data transfer
over high-speed optical network, or intra-cluster remote memory access, where
synchronization messages have to be posted, the increasing number of message

will lower the efficiency of the network transfer.

3. The overhead of data transfer in memory will rise. Since the data is stored in the
main memory and video memory linearly, a multi-dimensional data transfer
always brings out a lot of operations such as merge and crop. The smaller the
block size decreases, the more fragments exist during those operations. That will

raise the overhead inevitably.

4. If the block size is too small and multi-resolution filtering algorithm is block-wise
(that is multi-resolution transform is applied to each block), the level of the
resolution is really limited. Thus too much block size decrease will harm the

generality of data partition scheme.
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5. The increasing block number will generate more artifacts along the boundaries.
If the artifact removal algorithms are employed, the computation cost will rise

much highly.

In the implementation of OptiStore, it allows the user to specify the size of blocks
before loading the dataset. By default, OptiStore assigns the block size with the size that is
closest to the maximum size of graphics card limitation. For example, the two-dimensional
dataset of Blue-Marble’s west hemisphere, whose dimensions are 21,600 pixels by 21,600
pixels, is partitioned into 64 (8 by 8) blocks, each of which is 2,700 pixels by 2,700 pixels, if

the maximum size of two-dimensional texture graphics card is 4,096 pixels by 4,096 pixels.

4.2.3 Data Organization

In OptiStore, each dataset is assigned a Universally Unique Identifier (UUID) number
and each block in an N-dimensional hypercube at any resolution level has a coordinate: (Do,
D4, ..., Dn), which indicates the offset of the block along each dimension from the origin
within the hypercube. Then any block in OptiStore system has a unique identifier: (UUID,
Level, (Dg, D1, ..., Dn)). Here, this unique identifier is called universal block coordinate.
Suppose the dimension size of the block is W(Wg, W4, ..., Wy) and the origin coordinate of
the hypercube at that level is O(Oq, O4, ..., On). Thus, an arbitrary point with coordinate C(Co,
Cy, ..., Cy) in a dataset can be located via UUID number, level of the resolution, and block
coordinate D(Dy, Dj, ..., Dy) and the offset within the block X(Xo, X, ..., Xn), where D= C; /W,

and Oi= Ci%Wi.



70

For each dataset, all of blocks are traversed from the lowest resolution to the
highest resolution once. Based on the traverse order, the blocks are distributed among the
filtering processors in a round-robin manner. Figure 4-4 demonstrates a three-level
resolution volume dataset is partitioned into seventy-three blocks and the blocks are
distributed among four processors. In blocks distributed on the same processor are assigned

one color.
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Figure 4-4: Data partition and distribution of a multi-resolution dataset

Therefore, for a block, it has two unique identifiers: one is the universal block
coordinate; the other is the pair of processor id and order in the block array. Since that

block is unique, these two identifiers are one-on-one mapping between each other. In that
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an arbitrary point can be located through universal block coordinate, it also can be located

in a processor’'s memory space via this one-on-one mapping.

At runtime, due to the limited capacity of the memory and the large size of the data,
only a few of blocks can be loaded into the processor’s cache. The block number is like the
page number in operating system’s virtual memory. The block swapping in and out will take

place by following some replacement algorithms.

||-[ UUID, Level, <d0, d1, d2> H P#, B# ]

Figure 4-5: One-on-one mapping from a dataset block to a page in memory

4. 3 Data Distribution for Load Balancin

Even though the previous data partition schema — partition into blocks, is better at
preserving spatial locality and load balancing than the one - partition into slabs, problems
still remain to be solved. In Figure 4-4, a familiar situation could be observed: if the top-left
orange blocks at resolution level 1 are requested from the client but not exist, a parallel
filtering on the higher resolution of level 2 will occur. It can be noticed that only the partial
orange and green blocks will be processed. It means that only processor 1 and 3 are filtering
data and the other two are idle. This load unbalancing and poor parallel utilization is caused
by the scan-line traversal order (shown as Figure 4-6) through all the blocks, which does not

preserve much spatial locality enough.
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To solve this kind of problem, researchers propose many techniques. In 1998, Gaede
and Gunther summarized almost of all of multi-dimensional access methods, for regular
gridded and irregular unstructured data [Gaede 1998]. Campbell, et al. used space-filling
curves to load octrees in balance [Campbell 2003] and Gao did the similar to multi-
resolution octrees [Gao 2005]. Lawder extends the space-filling curve methods to much
higher dimensional data indexing [Lawder 2000]. Founded on their research and with the
hypothesis that the similar techniques can provide balanced work for parallel filtering
algorithms, OptiStore takes the advantage of space-filling curve methods for its data

distribution of several high dimensional multi-resolution datasets.

Figure 4-6: Two level three-dimensional scan-line curves, not a space-filling

curve: (A) 2 level and (B) 3 levels. The numbers indicate the traverse order.

Space-filling curves [Sagan 1994], also known as Peano curves, are curves whose

range contains the entire two-dimensional unit square (or the three-dimensional unit cube).
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In 1890, Peano discovered a densely self-intersecting curve which passed through every
point of the unit square, which was the first example of a space filling curve. There are
many other space filling curves available, such as Hilbert curve, Morton curve (Z-order

curve) etc. Two dimensional examples of these curves are illustrated in Figure 4-7.

B | o
1

(A) (B)

Figure 4-7: Two examples of space-filling curves - (A) a Morton curve; (B) a

Hilbert curve

The main reason to use space-filling curves for data distribution is that a space-filling
curve preserves spatial locality — a curve always visits adjacent blocks if possible before it
leaves the local neighborhood. In our view-dependent and multi-resolution data processing
techniques, the spatial locality implies that if one block is accessed and processed, the
blocks within its neighbor are likely to be accessed and processed too. While the data
distribution among the processors is along the curves in a round-robin manner, then those
blocks may be stored on different processors possibly evenly [Gao 2004a]. The previous
scan-line traversal path is converted into the ones shown in Figure 4-8 and Figure 4-9, which

demonstrate good spatial locality behavior.
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Figure 4-8: Two level three-dimensional Morton (Z-order) curves: (A) 2 levels

and (B) 3 levels. The numbers indicates the traverse order. (The dashed lines between

planes in (B) are omitted for clarity).

(A) (B)
Figure 4-9: Two level three-dimensional Hilbert curves: (A) 2 levels and (B) 3

levels. The numbers indicate the traverse order.
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The Hilbert curve has better spatial locality preserving behavior than the Morton
curve. But in Hilbert curves, the calculation of multi-dimension to one-dimension mapping is
more complicated. Considering that the data partition and block traversal is a onetime

process when loading the dataset, we prefer the Hilbert curve for our data distribution.

4. 4 Implementation and Results

We applied the techniques discussed previously to our data partition schemes in the

data organizer module of OptiStore data filtering server.

When the initial data loading request from OptiStore client, the metadata
information of the datasets, including dataset UUID, total resolution levels, maximum block
size, etc., arrives at OptiStore data filtering server, the data organizer will generate multi-
resolution pyramid according to the number of total resolution level of each dataset,
partition the datasets into blocks based on the maximum block size by each dimension, and
assign the unique block IDs to the processors along space-filling curves. When the data
multi-resolution processing request arrives from a slave node at the master node, the task
dispatcher analyzes the global existing block information on the cluster, and distributes the
processing job to the processors that should keep the corresponding blocks assigned at the

loading time.

To measure load balance of parallel processing applications, overall processor

utilization is a good and intuitive metrics. Let T, be the computation time on processori
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and |, the idle time during the run-time of a parallel task on nprocessors; then overall

process utilization is defined as:

u=—»==-—— (4-1)

According to this definition, it is evident that the upper limit of overall process
utilization is 1. That is to say if the workload is perfectly balanced (without any idling time
on any processor), U equals to 1. Assume the computing capability of each process equal,

the more evenly the workload is distributed, the larger U is.

By using the measurement metrics defined in Equation 4-1, we tested the over
process utilization with different schemes and different number of processors (excluding
the master node). In Table 4-1, the results are listed, which show that space-filling curve
method is much superior to the simple scan-line method and Hilbert curve method is

slightly better than Morton curve method.

Scheme Processor Number
4 8 16
Scan-line 78.2% 74.5% 69.8%
Morton 94.7% 92.2% 86.9%
Hilbert 94.7% 92.3% 87.2%

Table 4-1: The overall process utilizations with different data distribution

scheme
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4.5 Summary

This chapter has discussed several problems about data partition and distribution on
OptiStore data filtering server for parallel processing and explained what scheme is adopted

to organize the data.

Firstly, in order to achieve the scalability, data should be partitioned and distributed
among the server nodes. Secondly, due to the locality feature in visualization applications,
data are partitioned into blocks instead of slabs. Thirdly, the granularity of blocks has been
considered. It should be avoided to choose too large or too tiny blocks. And the size can be
user-defined. Fourthly, the data block of any dataset is uniquely identified. Last but not
least, to achieve even load balance, the data block is distributed according to the order of

some space-filling curves, such as Morton curves and Hilbert curves.



CHAPTER 5 MULTI-RESOLUTION FILTERING

5. 1 Multi-Resolution Filtering with Wavelet Transform

As afore-stated in previous chapters, multi-resolution filtering is very important to
very scale visualization applications. In computer graphics texture filtering, the technique of
texture mipmaps is widely applied for rendering acceleration and anti-aliasing. In very large
scientific visualization, the multi-resolution analysis with wavelet transform is often
employed. Essentially, the interpolation in mipmap filtering is a special case in wavelet
transform and the filtering result of the low-pass sub-band of each wavelet transform. For
example, the linear interpolation filtering is the low-passing filtering of Harr wavelet

transform [Sweldens 1995].

Compared to mipmap filtering and other down-sampling algorithms, the wavelet

transform has the advantages as follows:

1. Wavelet transform is fast. Discrete wavelet transform (DWT) takes O(N) time

compared to O(N/ogN) Fast Fourier Transform (FFT).

2. Wavelet transforms do not have blocking artifacts like other transforms, such as
Gibbs artifacts in Discreet Cosine Transform (DCT) at low-resolution [Malvar
1999].

78
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3. Wavelet transforms are naturally embedded and can reconstruct images
progressively in resolution. Its intrinsic embedded feature allows for the data
structures like quadtree and octree as shows, which are the primary data
structures in OptiStore. With the generated quadtree / octree, the high-passing
sub-bands can indicate the significance of the details on the sub-blocks. If the
visualization applications on the client work with error control methods, some
wavelet-based encoding algorithms can provide such mechanism so that when a
relatively uniformed block exists, it will save computation and network resource

to feed data at higher resolution.
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(A) (B)
Figure 5-1: Wavelet multi-resolution analysis on multi-dimensional datasets.
(A) A two dimensional dataset filtered into R level resolutions as a quadtree; (B) A

three dimensional dataset filtered into R level resolutions as an octree.
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4. Wavelet transform is widely employed in many image compress codecs due to

its better distortion/rate performance resulted from its energy compactness.

5. Tiling technique is maturely utilized in wavelet-base codecs like JPEG2000 for
encoding very large images [Christopoulos 2000]. This scheme is similar to the
blocking scheme in OptiStore and easily to be tailored in parallel computing
systems. Although some artifacts (for example, ring artifact and tile artifact)
appear as a result on post-processing of JPEG2000 compressed images, these
artifact don’t show in OptiStore system for two reasons: one is that some
algorithms can be employed to reduce the artifacts [Berkner 2002]; the other is
that in OptiStore, no entropy quantization is applied on the transformed data,
because the filtering is for using lower resolution intermediate image but not for

compression which is the main factor that leads to those artifacts.

6. Wavelet transform is broadly involved with various datasets. At the beginning of
wavelet development, the wavelet transform is used in regular grid images.
Later, it is also progressive mesh simplification algorithms based on its simple
lifting scheme [Khodakovsky 2000]. As the GPU-based displacement method
become popular in terrain rendering [Asirvatham 2005; Livny 2007], the
utilization of geometry images rather than semi-regular grid can achieve better

performance thanks to its simple and GPU-friendly data structure. Thus, the
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wavelet transform can also be applied on height-field data for terrain

visualization.

Therefore, based on the analysis above, the wavelet transform was chosen for the

multi-resolution filtering in OptiStore.

Traditionally, the discrete wavelet represents a signal in terms of shifts and dilations
of a low-pass scaling function (p(t)and a band-pass wavelets function l//(t) [Daubechies
1992]. The transform is multi-scale, in that it creates a set of coarse coefficients that
represent signal information at the lowest scale, and sets of detail coefficients with
increasingly finer resolution. The transform is typically implemented as a filter bank with

analysis low-pass filter H(z) and high-pass fiIterG(z), as shown in Figure 5-1 (A). The
inverse transform uses synthesis low-pass I:|(z) and high-pass é(z), as shown in Figure 5-2

(B). For special choices of H, G, H , and é , the underlying wavelets and scaling functions
form a biorthogonal basis and provide perfect reconstruction. The transform is typically
iterated on the output of the low-pass band (c[n]) to create the series of detail coefficients

at different scales.
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Figure 5-2: Filter bank implementation of discrete wavelet transform. (A) H
and G are the analysis low-pass/high-pass pair. c[n] and d[n] are the scaling and
wavelet coefficients, respectively. (B) It is the corresponding inverse wavelet

transform. A and G are the synthesis low-pass/high-pass pair.

Later on, the lifting scheme was introduced to construct the second generation
wavelet [Daubechies 1998; Sweldens 1995]. A typical lifting stage is comprised of three

steps: Split, Predict, and Update (shown as Figure 5-3 (A)).

x[n] x[n]

H— cln]  c[n] >—(-)

x[n] S] ﬂ ﬂ E-A:I—b x[n]
) W>——>dln] dn]—> >t

%o[n] x[n]

(A) (B)

Figure 5-3: The lifting scheme. (A) Typical lifting steps: Split, Predict, and
Update; c[n] and d[n] are the scaling and wavelet coefficients, respectively. (B) Typical

inverse lifting steps: undo Update, undo Predict, and Merge.

Split: Let X[n] be a signal. We first split X[n] into its even and odd polyphase

components X, [n] and x,[n], where x,[n]=x[2n] and x,[n]=x[2n+1].
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Predict: In the interpolating formulation of lifting, the odd polyphase coefficients

X, [n] are predicted from the neighboring even coefficients X, [n] The predictor for each

X, [n] is a linear combination of neighboring even coefficients:

P(x.In]=>" pix[n+1] (5-1)

Then a new representation of the X[n] replaces x,[n] with the prediction residual.

This leads to the first lifting step:
d[n]= x,[n]- P(x, )[n] (5-2)

If the underlying signal is locally smooth, the prediction residuals d[n] will be small.
Furthermore, the new representation contains the same information as the original signal

X[n]: given the even polyphase X, [n] and the prediction residuals d[n], the odd polyphase

coefficients X, [n] can be recovered as follows:

X, [n]=d]n]+ P(x, Jn] (5-3)

Update: The third lifting step transforms the even polyphase coefficients X, [n] into
a low-pass filtered and sub-sampled version of x[n]. This coarse approximation is obtained
by updating x.[n] with a linear combination of the prediction residualsd[n]. x.[n] is

replaced with:

c[n]=x.[n]- P(d)n] (5-4)
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where U(d) is a linear combination of neighboring d values:
u(d)n]=> udn+I] (5-5)
|

Each lifting step is always invertible; no information is lost. Assuming the same P and
U are chosen for the analysis and synthesis stages, the lifting construction guarantees

perfect reconstruction for any P and U. Given d[n]and C[n], we have
X.[n]= ¢[n]-U (d)n] (5-6)
and x,[n] from (5-3).

The inverse lifting scheme is shown in Figure 5-3 (B).

Compared to the traditional discrete wavelet transform, the lifting scheme has the

following immediately advantages [Uytterhoven 1999]:

1. It is faster (but still O(n), of course). In the case of CDF(2, 2), the original filters
H(Z) and G(Z) count 5+3=8 filter coefficients, while the lifting decomposition

gives us P and U counting only 2+2=4 filter coefficients.

2. The inverse transform is trivial to find. One does not need to explicitly find the

corresponding analysis filters.

3. The lifting scheme is easier to understand and implement.
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4. The lifting scheme is more generic and allows for the creation of second
generation wavelets. All wavelet filters can be implemented using the lifting
scheme. Thus with this lifting scheme, we can construct some especial wavelets,

like integer-to-integer wavelets for lossless data transform.

Based on the analysis above, we choose the lifting scheme for wavelet filtering. In
the rest of this dissertation, we use a DWT box to represent the lifting steps for illustration,

shown in Figure 5-4.
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Figure 5-4: The lifting scheme is chose in OptiStore

5. 2 Wavelet Multi-Resolution Filtering for Multi-Dimensional Datasets

In multi-resolution analysis for multi-dimensional data, the wavelet transform can be
extended to multiple dimensions by use of separable filters. Each dimension is filtered and
down-sampled separately [Bilgin 2000]. Although non-separable wavelets can also be used
to filter multidimensional data, such filters are much harder to design than are separable
filters. As a result, their use has been limited in multi-resolution applications. On the other

hand, due to the anisotropy in some datasets, for example, the temporal volumetric
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datasets, sometimes different filters should be applied to different dimensions. For
example, for some four-dimensional medical datasets, the variances along the axial and
temporal direction are determined by the thickness of slices and imaging speed. The
variances among four dimensions may be very different. In general, the similarity of pixel
values along the temporal direction is expected to be closer than along the other three
directions, and similarity along the X and Y directions is very close. This asymmetric
similarity has been shown in [Liu 2007] for four-dimensional medical image data sets.
Therefore, it is reasonable to apply transforms along some dimensional in different ways in
the separate multi-dimensional wavelet transform. Figure 5-5 illustrates the
implementation of two levels of a three-dimensional dyadic decomposition with separable
filters. Similar to the one dimensional case, three-dimensional wavelet transform
coefficients can also be stored in a data cube that has the same size as the input data. In
Figure 5-5, each sub-band is labeled, and the corresponding locations for storing these sub-

bands in the output data cube are identified.

5. 3 Implementation of Multi-Resolution Filtering in OptiStore

In practical implementation of the multi-resolution filtering in real-time applications,
if the overview of very large data is required at the beginning of data processing and
visualization, to reduce the latency cost, we use down-sampling methods to generate
coarser resolutions rather than discrete wavelet transform, even though it may introduce

more artifacts than discrete wavelet transforms. Then during the idle time of interactive
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visualization procedures, OptiStore data filtering server runs discrete wavelet transform to

generate coarser resolution data blocks based on previous requests.
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Figure 5-5: Three-dimensional wavelet analysis
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If a data block request arrives at the task dispatcher of OptiStore but that block does
not exist in the whole cache of the cluster, the task dispatcher will check the children of that
block in the hierarchy data structure. A 2D quadtree example is illustrated in Figure 5-6. In
the three-level quadtree, the red block on the top is the requested missing block in cache.
Three blocks out of its four children exist in cache, with blue color in the figure. If any child
is missing, like the block one in the figure, then go downwards to check its children
recursively until reaching the leaves that represent the original data blocks. In this example,
the descendent of the black block are the green ones that are also original data. Thus, to
achieve the red block, we should process seven blocks: four original blocks with green color,
each wavelet transformed twice; and three blue blocks, each wavelet transformed once. As
discussed in the previous chapter, these data blocks should be distributed evenly among
cluster nodes. The filtering is processed parallel. At last, all of the lowest resolution sub-
bands are merged into one block as request. More details about data transfer of the filtered

blocks between nodes will be described in Chapter 7.

. Original data block . Data block requested

. Datablock in cache . Datablock notin cache

Figure 5-6: Implementation of multi-resolution filtering
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In OptiStore, by default, Haar DWT is applied to float- or double-type data and
integer Haar DWT to integer- and byte-type data (normally color data in RGB format are

treated as three bytes).

5.4 Summary

In this chapter, we explained the reason to utilize discrete wavelet transform as
multi-resolution filter and present the method to apply this filter to multi-dimensional
datasets. We also described the practical implementation of this filter integrated with data

partition scheme and parallel filtering modules in OptiStore.



CHAPTER 6 VIEW-DEPENDENT DATA PROCESSING

In order to reduce the latency during near real-time processing, the data that does
not contribute to the visualization scene should be excluded from being computed. This
visualization or data processing based on this scheme is called view-dependent visualization

or view-dependent data processing.

6.1 View-dependent Visualization and Data Processing

Originally, view computation has been the major focus of early computer graphics
research. Visibility was a synonym for the determination of the parts/polygons/lines of the
scene visible from a viewpoint. Later on, since the data size becomes larger and larger, the
view computation is used in other aspects of computer graphics, such as out-of-core

graphics, geometry model simplifications and etc [Durand 1999].

Generally, view-dependency is referred to the dependency on the visual properties
during visualization, such as visibility, distance, direction, illumination and etc. Besides
visibility, the distance and direction properties are widely employed for level-of-detail
polygon simplification [Luebke 2002] and the calculation of the contribution to the final
projected image is often used in ray-tracing-like or splatting-like visualization applications.

However, these calculations are usually closely integrated with rendering pipeline. For

90
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example, when to measure the criteria like a screen-space error threshold, a silhouette test,
and a triangle budget in view-dependent LOD simplification [Luebke 2001] or Plenoptic
Opacity Function in direct volume rendering [Gao 2004a], multi-pass computation is
unavoidable. Most of the intermediate output and input data during the multi-pass
computation are the images from hardware’s frame buffer (i.e. by OpenGL’s glReadPixels
function). If the data processing process and the rendering process are distributed, large
frame buffer data reading and transferring between the processes will occur so that the
latency will eventually rise much higher, especially in wide-area-network systems. On the
other hand, the rendering methods in visualization applications vary from one to another.
Different criteria or control functions on those parameters may be applied. Too complicated
automatic view-dependent determination calculation will also result in unnecessary

computation so as to increase the latency as well as generate false view results.

Therefore, under OptlPuter’s distributed computing environment, this data
processing scheme, which is tightly coupled with data rendering pipeline, is not suitable and
contradicts one of our goals: flexibility. In opposition, the view-dependence computation
based on visibility culling just requests a few parameters from the rendering process and
then all of the view-dependence computation can be completed during the data processing
pipeline. Thus OptiStore takes visibility culling as its automatic view-dependent data
processing scheme on the data filtering server and leaves other complicated view-
dependence computation in the rendering pipeline to the visualization application

developers.
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6. 2 Visibility Culling

In computer graphics, hidden surface removal (HSR) or visible surface determination
(VSD) is a traditionally important topic. A related area to visible surface determination (VSD)
is culling, which usually happens before VSD in a rendering pipeline. Primitives or batches of
primitives can be rejected in their entirety, which usually reduces the load on a well-

designed system.

The advantage of culling early on the pipeline is that entire objects that are invisible
do not have to be fetched, transformed, rasterized, or shaded. Here are some types of

culling algorithms, shows as Figure 6-1:

1. Viewing frustum culling

The viewing frustum is a region of space within that the objects are visible to the
notational camera or view point. Of course, objects outside this volume will not be visible in

the final image on the screen, so they are discarded.

2. Backface culling

For those objects composed of faces or polygons, if the object is closed or back face
hiding is enabled, the faces or polygons on the other side other size of the object may never
face the camera. Those polygons’ normal vectors are pointed way from the view point or

the camera.



3. Contribution culling

Often, objects are so far away that they do not contribute significantly to the final
image. These objects are thrown away if their screen projection is too small. Whereas this
culling algorithm has to deal with the final projected image, it is similar to other view-
dependence computation. So it is not included as a culling technique in OptiStore’s view-

dependence determination computation.

4. Occlusion culling

Objects that are entirely behind other opaque objects may be culled. This is a very

popular mechanism to speed up the rendering of large scenes that have a moderate to high

depth complexity. There are several types of occlusion culling approaches.

Visible

= = = Occlusion culling

=+ = Contribution culling
----- Wiew-frustum culling
""""" Back-frustum culling

g

Figure 6-1: Four types of visibility culling techniques
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6. 3 Implementation of View-dependent Data Processing

In OptiStore system, for succinctness and generality, the techniques of view-frustum
culling and back-face culling were mainly employed. By using hierarchical data structures,
like scene-graph, Quadtree, Octree and etc., to organization the partitioned data, OptiStore
can cull the geometry data effectively. The culling program just culls the geometry
primitives from top to down. If at some level the whole primitive is culled out, then the
culling process halts at that level; otherwise continues to descendant level as the client
requires. Figure 6-2 shows an example of view-frustum culling on three different resolution

levels within a Quadtree in 2D applications.

A} Resolution level 1 (B} Resolution level 2 (C) Resolution level 3

Figure 6-2: View frustum culling at different resolution levels

To fulfill the culling functionality, OptiStore requires visualization applications to
pass frustum information through OptiStore client APIs. In most cases, frustum information
can be achieved by simply passing model-view matrix Mand projection matrix Pin

OpenGL. The model-view matrix and the projection matrix can be retrieved through two
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OpenGL functions from the top of model view matrix stack and projection matrix stack

respectively:

glGetDoublev ( GL_PROJECTION_MATRIX, &m );

glGetDoublev ( GL_MODELVIEW_MATRIX, &p );

nX
. . n, .
If a plane in 3D space is noted as a 4-element vectorn = so that for any point
I"IZ
d
X
p= y specified as homogeneous coordinates within the plane, the cross product equals
z
1
to zero:

n-p=nx+nx+nx+d=0 (6-1)

However, if the point is above the plane, the result of the cross product is positive:

n-p>0;if below the plane, it’s negative n-p < 0.

X

y

represents a plane in modeling space and n'is the

n

n
Suppose that n=
n

z

d

corresponding plane in the viewing space after linear transforms multiplied by the model-

view matrix M and the projection matrix P . As proved in Appendix F of [Woo 1999], normal
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vectors are transformed by the inverse transpose of the transformation that transforms
points. Then we can get the relation between the original plane and the correspondingly

transformed plane.
~*MPn =n'
P*™™'MPn=P'M™'n'
~n=(MP)'n' (6-2)

Therefore, given the planes bounding view frustum in clipping space, if the model-
view-projection matrix is rewritten as (MP)= [c,, ¢, C,, c;], the corresponding
original planes can be achieved from Equation (6-2) as the result in Table 6-1. Note: all of

planes are facing outside the frustum.

Bounding Plane Bounding Plane Vector Plane in Modeling Space
Near [0, 0, 1 1] (cs+c,)
Far [0, 0, -1 1] (cs—c,)
Left [L 0, 0, 1] (c; +¢,)
Right [-1 0, 0, 1 (cs—Cy)
Top [0, 1, 0, 1] (cs+c,)
Bottom [0, -1 0, 1] (c;—c.)

Table 6-1: Finding frustum's bounding plane in modeling space

Obvious, if a point is within the view frustum, it implies the point is above all of the
frustum’s six bounding planes. That means to determine if a point is within the frustum, just

check if the cross products of this point with all of the plane vectors are positive. If so, it is




97

inside the frustum; if all negative, it is outside of the frustum; otherwise, on the frustum
plane(s). Then, to determine the relation of an object and the frustum, just check the
relation between all of the points within the object and the view frustum. But evidently, this
brute-force method is inefficient. Normally, if the bounding primitive (such boxes, spheres,
cylinder and etc.) of an object is outside, so the object will be for sure; on the other hand, if
the bounding primitive is inside or intersected with the frustum, it will not always be the
same for the object. Fortunately, in OptiStore, most of the geometries are box-like; the
bounding primitive is the same as the object itself. If the geometry data is not rectangle, we
use axis-aligned bounding boxes (AABBs) or oriented bounding boxes (OBBs) to represent
those object. Since data structure of these objects is hierarchical, the accurate culling
against a view frustum can be gained by testing the descendant sub-boxes recursively like
what Assarsson and Moller have done in [Assarsson 2000]. An example of bounding box
techniques on a sphere is shown in Figure 6-3. This is implemented for visualizing the

geosciences data that is mapped onto the earth with longitude and latitude coordinates.

If back face culling is enabled, the culling process just checks the angle of the normal
vector of every geometric primitive within the frustum and the view directional vector.
Usually, those normal vectors are assigned when the scene-graph is generated, or
calculated based on the shape of the primitive, i.e. the normal vector of a point on the

sphere is from the center to that point. And the view directional vector is from the view
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point to that point, where the viewpoint v'= in viewing space. The transformed normal

= O O O

vector in viewing space can be achieved simply by being multiplied by the inverse the
inverse transpose of the transformation model-view-projection matrix of the original
normal vector. Therefore, we can the cross product of the transformed vectors in view

space.

c-n'= (pT MP — v')~ ((P‘lM‘l)T n):l c || n'| cos(ex) (6-3)

(A) Resolution level 1 (B} Resclution level 2

Figure 6-3: Bounding boxes of a sphere for view frustum culling

If all of the angle between all of the normal vectors of the primitive and the view
directional vector are greater than 90-degree, then the primitive is visible, which is

equivalent to that the cross products are negative; otherwise, not visible (see Figure 6-4).
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— normal vector view vector
visible

................ invisible by frustum culling

— s invisible by back face culling

Figure 6-4: Back face culling on a sphere

6.4 Summary

This chapter explained the reasons that the techniques of view frustum culling and
back-face culling are applied to the culling module on OptiStore client and the predictor
module for pre-processing and prefetching. These techniques are not only efficient but also
less tightly coupled with the rendering pipeline so that the communication overhead

between distributed systems can be largely reduced.



CHAPTER 7 REAL-TIME DATA PROCESSING AND CACHING

In distributed applications, reducing the latency is a challenging problem. This
chapter mainly describes the techniques in OptiStore that try to minimize the latency cost

during data processing and caching.

7.1 Furthest Object Replacement (FOR) Algorithm

In large scale remote visualization, data is very expensive to access because of
several reasons: 1) the capacity of main memory is limited, relative to the extremely large
data; 2) the memory size on the graphics card is much smaller and the on-chip bandwidth is
very low; and 3) the round-trip communication time is very long. Besides the latency hiding
techniques together with other techniques such as multi-resolution analysis and visibility
culling, caching techniques are another general strategy to reduce latency, which is similar

to the use in processor architecture and web caches.

Caching, as a general concept, has been widely applied throughout computer
science. It has proven to be extremely effective in many areas of computing because access
patterns in typical computer applications have locality of reference. With well-designed
replacing mechanism, caches can help to reduce the data access to the underlying storage

or remote buffers by reusing the data. Among the cache replacement algorithms, the least

100
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recently used (LRU) algorithm is still one of the most extensively implemented algorithms
for large scale visualization of multi-dimensional data [Bethel 2003; Gao 2005; Guthe 2002;
Krishnaprasad 2004; Leven 2002; Li 2002b; Pavlakos 2005; Schneider 2006; Sisneros 2007]

as well as the applications in other computer science areas.

Briefly described, LRU algorithm keeps a link-list of data pages in cache. At the back
of this list is the least recently used page, and at the front is the most recently used page. If
the requested page is found in the linked list, then put the page to the front of the page;
otherwise, if the cache has room, the requested page is fetched from the remote buffer or
the underlying storage and put to the end of the linked list as the most recently used page;
if the cache is full and a new page is requested, the least recently used page will be
removed from the linked list and the new block will be fetched and be put to the back of the
linked list Because multi-dimensional data is organized as a set of blocks, a hash-table is
employed to index those blocks to the pages in the cache. Each block is identified as Figure
4-5. The data structure in LRU algorithm is shown in Figure 7-1: on the left is the hash-table
to index blocks and on the right is the linked list of pages with LRU information. The main
operations, like insertion, deletion, finding and replacement decision, simply cost O(1) time
if the proper data structures are employed. However, it has to treat all of the pages as the
same. In real applications, sometimes, blocks or pages are assigned with different priorities,
for example, the lowest resolution level block always reside in the memory when it is used
for high frequent interaction. Thus, the operations may take much longer time up to O(n).

To accelerate these operations, a red-black tree is introduced in some systems [Gao 2005].
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With a red-tree tree, the time complexity of find and remove operations are reduced to

O(log(n)), but the insertion and update operations increased to O(log(n)) too.

Hash
Keys

Hashtable keyed on block Link-list of pages

Figure 7-1: The least recently used (LRU) replacement algorithm

Even though LRU algorithm is popular in many computer science areas as well as
large scale and distributed visualization, due to the lack of spatial information, it does not
work well for caching the multi-dimensional data. Figure 7-2 shows one of the worst
scenarios of LRU replacement algorithm for 2D data caching. Suppose that the cache has
the capacity of nine pages in memory; the blocks of the bottom three rows are in current
view; and the visiting order is from the top-left corner to the bottom-right. Then we can
achieve the page visiting order that is noted with numbers in blocks, where the number
indicates the rank in the LRU linked list: for example, number 0 indicates the top of the

linked list and number 8 the bottom. When the view center moves upwards (from block
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with number 4 to the one with number 7 in Figure 7-2), new pages will be requested, and
some old pages on the bottom of the linked list should be removed. From the figure, it can
be found that nine page faults occur although only three new pages need to be fetched
from remote buffer. Similarly, when the view center moves to other directions, except
downwards, the LRU algorithm will still cause more page faults than what is actually

requested. The high missing ratio will definitely degrade the performance of the cache.

-

next block Nth block in LRU cache’s link list swapped out block

Figure 7-2: The weakness of LRU algorithm with spatial data

Many researchers have already noticed this limitation of LRU replacement algorithm
for multi-dimensional data, and proposed different caching algorithms to overcome this
limitation. Rhodes et al. [Rhodes 2005] present an iteration aware prefetching algorithm,
but the pre-fetching algorithm is only for single dataset and their method requires global
iteration information of the dataset so is not suitable for our portioned multi-dataset data
organization in parallel computing environment. Other researchers extend semantic caching

mechanism to query-oriented spatial data caching [Andrade 2007; Lai 2004; Ren 2000].
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Although these algorithms demonstrate much better performance than the LRU algorithm,
they are too complicated compared to LRU algorithm because they are dedicated to
location or spatial-temporal queries and related operations that occur much less frequently
than the data access in visualization applications. Furthermore, these algorithms require a
lot of semantic information to determine replacement victims. As OptiStore is a middleware
that should be portable enough for different visualization applications, these caching
algorithms that are tightly coupled with the query program and depend on considerable

information from the client cannot meet the requirement of flexibility.

Thus, we designed a novel caching algorithm — furthest object replacement (FOR)
algorithm computation for multi-dimensional data in OptiStore, which has strong spatial

locality and fast replacement.

Unlike LRU algorithm, FOR algorithm does not keep a linked list or a red-black tree to
maintain the recent use information. On the contrary, it just hash-maps block IDs with

pages in memory, shown as Figure 7-3.

As a result, the operations of finding, insertion and deletion will cost only O(1) time.
The speed of these operations in FOR algorithm is much faster than those in LRU algorithm.
When a cache miss occurs and the cache is full, the algorithm has to determine which data
objects to be removed from the cache. Given a requested block ID with information
(dataset, resolution-level, do, dy, ..., dn.1 ), FOR algorithm can determine the replacement

victim by the following prioritized criteria: 1) not in the same dataset; otherwise 2) not in
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the same resolution level; otherwise 3) the furthest data object. And then the replacement
victim block will be evicted from the hash table and the corresponding page from the

memory. FOR algorithm provides two types of the geometry distance calculation:

Manhattan distance and Euclidean distance.

Hash
Keys

Hashtable keyed on block Page pool in memory

Figure 7-3: Data structure in the furthest object replacement (FOR) algorithm

Manhattan distance between two points in a Euclidean space with fixed Cartesian
coordinate system is the sum of the lengths of the projections of the line segment between
the points onto the coordinate axes. For example, in the 2D plane, the taxicab distance
between the point P; with coordinates (x3, y1) and the point P, at (x2, y2) is |x1 - x| + |y1 -
y2|. The Manhattan distance is also known as taxicab metric, rectilinear distance, or city
block distance. A general N dimensional Manhattan distance from block P = (p1, p2, ..., Pn)

to block Q = (g1, 92, ..., gn) is calculated as:
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N
Pl + [Pe=Gf + o+ e = 2 lpi-al (7-1)
i=1

Euclidean distance, also known as Pythagorean metric, between two blocks P = (p4,

P2, ..., pn) and Q=(qy, g, ..., gn) is defined as:

lpy =gl + 1oy = qal + =+ lpy —qul=ZT 1

\/(pl_ql)z + (pz_q2)2 o (pN_qN)2 = Z(pi_qi)z (7-2)

A 2D example of Manhattan distance is demonstrated as Figure 7-4 (A) and one of
Euclidean distance as Figure 7-4 (B). By default, in OptiStore, due its simplicity and fastness,
Manhattan distance is chosen to compute the distance between a pair of blocks within the

same dataset and the same resolution level.

//

r

P P

(A) Manhattan distance: PQ =7 (B) Euclidean distance: PQ =5

Figure 7-4: Examples of 2D Manhattan distance and Euclidean distance



107

The pseudo code of FOR algorithm is listed as Figure 7-5.

Algorithm FOR:

Input:
B - block ID/coordinate
H - hash-map of blocks and pages
C - cache

Output:

P - corresponding page in memory

1: if H.find(B) == true
2: return H.get(B);
3: else{
4. if C.full() == true {
5: min & oo;
6: foreach bin H{
7: if Band b are not in the same dataset or resolution level {
8: victim < b;
9: break; }
10: else {
11: if min > distance(B, b);
12: min&distance(B, b) ;
13: victim €& b; }}
14: evict both of victim and its corresponding P; }
15: C.new(P);
16: C.getData(P);
17: H.add(B, P);
18: return P ;}

Figure 7-5: Pseudo-code of FOR algorithm
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As listed in Figure 7-5, compared to LRU algorithms with different data structures,
the FOR algorithm shows superiority over it on the time complexity of finding, insertion and
deletion operations, but it takes more time on the victim determination. In overall
measurement, FOR outperforms the LRU algorithm mainly because of the following

reasons:

1. The visualization applications access the pages in local cache much more than
those out of the cache due to the visualization locality. FOR algorithm spends
O(1) time to locate the page, while besides locating page, LRU algorithms has to

spend more time to update visiting information.

2. When a block does not exist in the cache, it will take much longer time to access
the data on remote server or underlying storage. The eviction decision time is
relatively insignificant compared to that in secondary data access. Thus if the
missing ratio is lower, longer time eviction decision algorithm will not affect the

overall running time too much.

FOR LRU with linked list LRU with tree
Insertion 0(1) 0(1) O(log(n))
Deletion 0(1) 0(1) O(log(n))
Locating 0(1) 0(1) O(log(n))
Victim Determination O(n) O(n) O(log(n))

Table 7-1: Comparison of time complexity of the operations between FOR and

LRU algorithms
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The following chart shows the result of the experiment that compares FOR algorithm
with LRU algorithm (implemented with data structure of red-black tree). The cache size
changes from 167MB, to 334MB, to 667MB. The average access time is the latency to fetch
a 21MB block from the cache (if the block is missing, fetch it from disk). FOR demonstrates

around 20% -30% improvements.

FOR versus LRU

20
B0
70
50 -
50 -
a0
30 -
20 -
10 -

HLRU

HFOR

Average Access Time (ms)

167 334 667

Cache Size (MB)

Figure 7-6: Comparison of FOR algorithm with LRU algorithm

7.2 Data Processing and Caching With Prediction

In previous section, the cache fetches data using a demand-fetch model: when the
application calls a load function, the specified datum is fetched from remote server. If the
datum is not in the cache, a request is made to the remote system or local shared buffer to
fetch the datum. With a good replacement algorithm, the cached data would be likely re-

used in a few load function calls. Besides caching data, another general strategy to reduce
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latency cost during remote data access is to prefetch the data. By comparison, a data
prefetching mechanism attempts to provide data before the application requests that data.
As OptiStore processes data on the fly, similarly, a data preprocessing strategy is to filter
data before the client application requests to do so. Obviously, if addressed properly, both
techniques of data prefetching and data preprocessing can reduce the latency cost during

remote visualization largely and both of them can share one prediction mechanism.

Traditionally, the processor cache just prefetches data based on some linear access
patterns to overcome the latency within loop instruction blocks. Even though some
researchers proposed high accurate prediction methods based on Markov model [Joseph
1999; Nesbit 2005], these models do not perform well to predict multidimensional data
access pattern due to the large data size and deep loop instruction blocks. Rhode et al
present iteration aware prefetching technique for multidimensional data [Rhodes 2005].
But their cache system has to know iteration patterns and access the data within
rectangular blocks. On the contrary, most of applications to use OptiStore do not visualize
the data in that way. Different prefetching schemes have been employed in many
visualization applications [Aliaga 1999; Cohen-Or 2003; Corréa 2003; Funkhouser 1992; Gao
2005; Gobbetti 2005], but all of them require specific information, like explicit camera
position tracks, multi-pass visibility functions, preprocessed occlusion data structures and
etc. To provide a succinct and general specific middleware system for different visualization

applications, we proposed a new prediction model for data prefetching and preprocessing.
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Aforementioned in previous chapters, the visualization application just provides
view frustum information for data filtering server via OptiStore client’s application
interface. Although the camera or view point position can be calculated from the model
view matrix inversely, it is still hardly to predict the next camera point without additional
information because 1) the movement of the camera is too complicated: given a small
incremental movement or angle along each axis, there are twenty-six next possible
positions for the camera, another twenty-six for view centers and twenty-six possible view
angles of pitch, roll and yaw, let alone the combination of these possibilities; 2) it is too hard
to decide those increments: the view result is sensitive to the change of those parameters,
due to many factors, like distance, angle, object size and etc. Therefore, to leverage the
concept of neighborhood, OptiStore predicts next possibly requested blocks in two ways:
one is to predict blocks neighboring to current blocks in the cache within the same
resolution level, called intra-level prediction; the other is to predict blocks in adjacent

resolution levels, called inter-level prediction.

At the current resolution level, the closest adjacent blocks around the view frustum
or currently in the cache should be likely requested later. To find these blocks, we apply the
dilation operation on the blocks within the view frustum (or currently in the cache) as in
morphological image processing. The indexed block in a d-dimensional space can

represented as map f : Z®Z ®---®Z — R, in such a way that every block is assigned a
d

value representing its visibility as a binary multi-dimensional image, where the image set
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is {O, 1}. In the binary image, if the block is in the view frustum (or currently in the cache),
it's assigned with 1; otherwise, 0. Let A and B be sets in Zd, d>0. Let (B)x denote the

translation of B by x and let B denote the reflection of B with respect to its origin. The

dilation of Aby B, A® B, is defined as [Gonzalez 2007]:
A®B=x|(B),NA=d} (7-3)

Thus, the dilation of A by B is the set of all x displacements of the origin of B such

that B and Aoverlap by at least one nonzero element. Figure 7-7 illustrates the prediction

with 2D dilation of the blocks within the view frustum by a 4-connection operator.

=

(A) Current view and culled blocks (B) 4-connection dilation operator (C) Blocks in the view and to preprocess

. block within frustum block to preprocess

Figure 7-7: Dilation operation for prediction with the same resolution level
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To fulfill this operation, the algorithm needs to maintain one array and one hash set
(hash key on the block index) to hold the blocks within the view frustum (or currently in the
cache) and one array of the predicted blocks. Then for each block in the sorted set, check if
each of the corresponding dilation blocks exists in the hash-set; if not, push it to the back of
the predicted block array, and insert it into the hash set. Assume the average operation
time on the hash set is constant time - O(1) and the size of dilation operator B is constant
too with predefined size, the time complexity of this algorithm is linear (O(n)) with the

number of input blocks. The pseudo-code of this predictor is listed as in Figure 7-5.

Algorithm Intra-Level Predictor:

Input:
A —index array of blocks within the frustum
B —relative index array of the operator block
Output:
P — predicted block array
1: H <@ //initialize hash set
2: P <O //initialize predicted block array
3: foreachainA{
4. foreach b by operation B on a {
5: if b notin H{
6: P.push_back(b);
7: H.insert(b); } } }

Figure 7-8: Intra-level predictor

In visualization applications, the next data request may not only occur around

current view within the same resolution level, but also in the adjacent resolution levels. In
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adjacent levels, above or below (if exist), the possible blocks should also be within the same
view frustum. Similar to the intra-resolution-level prediction algorithm, the intra-resolution-
level prediction algorithm also examines each block with the view frustum (or currently in
the cache). But rather than the blocks around it, the algorithm will check whether its parent
blocks for the lower resolution level and child blocks for the higher resolution level are
within the same view frustum too by assuming the frustum information is provided. If so,
those blocks will be put into the prediction block set. If the frustum information is not
available, then all of the parent and child blocks will be added into the set. Figure 7-9 (B)
shows the same 2D area of the blocks within the view frustum. Besides the dilated
boundary blocks, the blocks in the lower and the higher resolution level within the same

frustum are also marked as predicted blocks (see Figure 7-9 (A) and (C)).

J/ \
’a’< (3(\ //>
p A TNA
l’ - - ,’ y -~
Pt J1.47
)‘, ~ ‘I’
4
(A) One level coarser (B) Current resolution level (C) One level finer

. block within frustum block to preprocess

Figure 7-9: Prediction on different resolution levels
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Even though both of the algorithms can predict the next blocks to process and fetch,

the system has still to decide the blocks of which level to process or prefetch first because

of the following reasons:

1.

2.

3.

The predictor buffer is limited when compared to the total size of the datasets. If
the data to process or fetch exceed the size of the buffer, only the blocks with

higher priority will be processed or fetched.

The next data request may arrive before the preprocessing or prefetching is
completed. So the block with higher probability to be request later will be

processed earlier.

The data access patterns vary from one application to another. For example,
current version Vol-a-Tile renders the volume dataset from the lowest resolution
data to the highest progressive, but the pan operation within the same
resolution level occurs more often than others in current version JuxtaView
when displaying the two dimensional images. The static priority order cannot
help to chose the most possible blocks to process or fetch for different datasets,
different visualization applications, or different user manners when visualizing

data.

In OptiStore, a pair of a dataset UUID and a resolution level within the dataset can

be treated as a state in a finite state machine. Consequently, one data request following
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another is a transition between two states (if both requests are on the same level of the
same dataset, it is defined self transition). Then the prefetching / preprocessing decision
problem is transformed to the problem how chooses the most possible next state. Like
many similar applications using predictor, such as processor cache [Joseph 1999], web
cache[Pons 2003], Google’s Page-Rank [Brin 1998] and etc., OptiStore employs Markov

model (as known as Markov chain) to predict state transitions.
A discrete time Markov chain is defined in [Bolch 2006]:

Given a finite state space S, a given stochastic process {XO, Xiv o X }
at the consecutive points of observation 0, 1, ..., n + 1 constitutes a discrete time Markov
chain if the following relation on the conditional probability mass function (PMF/pmf), that
is, the Markov property, holds for all ne Nyand all x; € S:

I:)r{xml = X | Xﬂ = Xn»
= Pr{Xn+l =Xy | X, = Xn}

X =X, e X, =X

n-1 n-1 1 1} (7_4)
For convenience, discrete time Markov chain is noted as Markov chain in the rest of

this document. In the homogeneous case, when the conditional pmf of the process's one-

step transition from state i to state j is independent of epoch n, for short notation it can be

written as:

Py =PrX,. =S, 1 X, =S [=PriX, =S, | X, =S, (7-5)

]
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Starting with state i, the Markov chain will go to some state j (including the

possibility of j = i), so that it follows thatz p; =1, where0 < p; <1. The one-step
i

transition probabilities p;are usually summarized in a non-negative, stochastic transition

matrixP :

Powo Por  Poz
P:[pij]: Poo Pu P

p20 p21 p22

Here, let letters represent datasets and numbers resolution levels, i.e. Al indicating
a data request of the blocks on the resolution level 1 of Dataset A. Each data request can be
considered as a state in the finite state space. Assume the data request sequence on

Dataset A and Dataset B is as the following:
AOQ, Al, Al, A2, A2, A2, Al, AO, BO, B1, B1, Al, B1, A1, A2, A1, AO

Then from this sequence, we can build a Markov chain transition matrix. In this
example, AO appears three times, but twice followed by other requests; thus the transition
probabilities from AO to Al and BO are half respectively, which are shown in the first row of

the matrix (see Figure 7-10).
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2/3 1/3

Figure 7-10: An example of Markov chain transition matrix

The corresponding Markov chain is also built as a directed graph in Figure 7-11,
where the nodes are the data requests and weighted links represent probabilities of

transitions.

0 -

2/3

Dataset A Resolution Level N

Dataset B Resclution Level N

Figure 7-11: Markov chain representing data access patterns via transition

probabilities
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Therefore, given the current state (data request) in a Markov chain, the predictor
can sort the next possible states, where the weights of the outgoing links from this current
state to these successors are descending. If there exists none of outbound links, for
instance, a first time data request, the predictor just simply checks the current resolution

level in the same dataset and then lower and higher resolution levels.

In OptiStore, because the transition matrix is likely to be a sparse matrix, a data
structure of adjacent list is used to build the directed graph of a Markov chain. To increase
processing speed and reduce latency cost, we employ process parallelism and thread
parallelism in the data filtering server when implementing predicted data processing and

caching. The integration of the predictor and the filter modules is illustrated in Figure 7-12.

Request/
View Information

Hlst ﬂu(

Information

\
4

Request Queue

1 Block in Queue

N ) o\ees

Master Node
apoN duliayji4

. Regular request block . Predicted request block

Figure 7-12: Integration of predictor with data filtering and caching



120

Once the request with view information arrives at the master node, the task
dispatcher will find the blocks to filter, push them into a queue and deliver the queue to the
filtering nodes. It will also pass the view information to the predictor. The predictor
calculates the next possible blocks to filter, updates Markov chain and pushed the predicted
request blocks to the filtering nodes. The main controller is in charge of receiving the
request queues and updating the local processing queues. The filter module processes the
blocks in this local processing queues, where regular request has higher priority that
predicted request. The controller and the filter work as a producer and a consumer in the

producer-consumer model. The request queue is like the shared buffer in that model.

7. 3 Implementation of Parallel Data Processing with Remote Memory Access

According to the data partition and distribution scheme in OptiStore, once the
dataset loading is initialized, the partitioned blocks of the hierarchical data structure are
distributed statically among the server nodes. For some in-place operations, which lead to
the result as the same block as the source block, such as element conversions (i.e. RGB data
to gray data), isosurfaces extraction, etc., the result blocks are just transferred within the
same server node. But for the operations like multi-resolution filtering, it is inevitable to
transfer the data between server nodes. During this kind of operations, this intra-node data
transfer takes place among the nodes so frequently that a remote memory access interface

should be applied for these operations.
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In OptiStore, the nodes that filter the data and write the result are called source
nodes; and the nodes that receive the intermediate result sub-blocks and merge them into
the final blocks are called target nodes. We use the same 2D example in Chapter 5,
illustrated as Figure 5-6. Four blocks are transformed twice and the result sub-blocks are
one sixteenth of the target block; and three blocks are transformed once and the result sub-
blocks are one quarter of the target block (see Figure 7-13(A)). It is noticed that each sub-
block cannot be written directly to the target block buffer at once due to the fact that multi-
dimensional data are stored in memory as one dimensional array. Therefore it will increase
much latency cost if writing sub-blocks directly to the remote target block pixel by pixel or

line by line because the overheads during remote memory access will increase dramatically.

To minimize the times of remote memory writing operation, we allocate a
temporary local buffer on the target node and expose it as a shared memory to the whole
cluster. This buffer is partitioned into continuous segments, each of which is to store one
sub-block. Figure 7-13(B) shows this buffer. At the end of each segment, a sub-block tag
(drawn as a tiny red box) is attached. Each tag includes the sub-block coordinate
information, writing complete byte, etc. Besides additional sub-block tags, the size of each
segment is the same as the corresponding sub-block. In this way, sub-blocks can be written

to the target node at once.
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(A) (B)

Figure 7-13: Multi-dimensional data sub-blocks mapped to one-dimensional

array in memory on the target node

Based on this data structure and remote memory access strategy, the work flow of
the remote memory access during data processing is illustrated in Figure 7-14. There are

three types of modules related to remote memory access:

1. The modules on the master node. Once the filtering request arrives at the task
dispatcher module, it searches the source blocks according to the global
hierarchical information (as the example in Figure 5-6) and broadcasts the source
and target block information to the corresponding nodes. After filtering finishes,

the task dispatcher notifies all of the nodes to free the shared buffer.

2. The modules on the source nodes. As the main controller receives the
broadcasted source block information from the task dispatcher, it passes this
request to the data fetcher and the filter, and allocates a shared memory, which
is just synchronization with the shared memory allocation on the target nodes.

After data filtered, the filter writes the sub-blocks together with an additional
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tag to the target node via the shared memory sender. The filter and the shared

memory sender work parallel in the producer-consumer paradigm.

KSnume MNode

Task Remote Memory Access
Dispatcher

kMaster Node
- \Target Node

Figure 7-14: Remote memory access on OptiStore data filtering server

Temporary Thread

Permanent Thread

3. The modules on the target nodes. When the main controller receives the request
from the task dispatcher on the master node, it allocates a buffer as the one in
Figure 7-13(B) and starts a new thread - the merger. The merger will check the

tags of each segment. If the writing completion byte changes, the merger then
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convert the one-dimensional array to multi-dimensional sub-block according to
the coordination information of that sub-block. After all sub-blocks have been
converted, the target block is inserted into the cache and the cache notifies the
master node of the information of the newly filtered blocks and replaced blocks.
Again, the merger and the shared memory receiver work parallel and

synchronized as the producer-consumer model.

Although current MPI implementation provides data transfer between cluster
nodes, we still develop our own remote memory access interface over the standard MPI

functions [Gropp 1998] due to the following facts:

1. One-sided communication mechanism should be applied because a source node
itself may also be a target node of other nodes; and a target node may also filter
data for another node. The other modules do not necessarily care about the
parameter, synchronization and timing the data transfer operations. Therefore,
the functions, such as MPI_Send / MPI_Recv / MPI_lsend / MPI_Irecv, do not fit

in remote memaory access.

2. In order to exploit high parallelism, asynchronous and passive data transfer
mode is preferred because the synchronous and active data transfer requires
synchronization overheads per transfer operation, and both data transfer
parties, sender and receiver, have to explicitly involved with the data transfer. So

we cannot choose the active paradigms of MPI one-sided communication.
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3. The current MPIl implementation of one-sided passive communication requires a
lot of synchronization, especially for the write operation. Although the functions
of MPI_Win_lock and MPI_Win_unlock work in shared and exclusive mode, the
lock granularity is too large — the lock is applied to the whole shared buffer on
the target node. Considering that the sub-blocks from all source nodes do not

overlap on the target buffer, we do not apply any lock on the shared buffer.

In the implementation of this remote memory access interface, when the singleton
RMA object is generated, a shared memory sender thread and a shared memory receiver
thread will start. All of the nodes are fully connected via these threads. Every time when a
new shared buffer is allocated, a unique id associated with the shared buffer will be
generated and registered on the RMA object among all of the nodes. RMA read and write
operations on the shared buffer then are equivalent to receiving and sending data on that

buffer on the remote node with the same buffer id.

We compared OptiStore RMA with MPICH2 [MPICH2] RMA by writing 21MB data
from 16 source nodes to 1 target node with 16, 64 and 256 sub-blocks respectively on a
cluster interconnected with 1Gpbs Ethernet network. The result in Figure 7-15 shows that
OptiStore remote memory access out-performs RMA application with one-sided
communication in MPICH2 implementation, especially when the number of sub-blocks

increases (that is when the number of write operation becomes large).
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Figure 7-15: OptiStore RMA performance versus MPI RMA

7.4 Summary
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In this chapter, we elaborate the core techniques in OptiStore: data caching and

data processing with prediction, parallel data processing, and remote memory access.

A novel caching replacement algorithm - Furthest Object Replacement algorithm is

presented and the experiment is tested to compare it with the popular algorithm — least

recently used replacement algorithm.

A Markov chain predictor can predict several next request data based on prior

operation history and data access pattern.

A new remote memory access implementation has been introduced. It outperforms

the counterpart of the standard MPI implementation — MPICH2.



CHAPTER 8 EXPERIMENTAL STUDY

In this chapter, we will present the hypotheses and performance models for
OptiStore architecture and describe the details of the experiments for these models. Some
experiment results will be presented and studied. There are mainly two objectives of the
experiments: one is to analyze how OptiStore architecture can meet the requirement of
scalability and interactivity for large scale visualization applications; the other is to find the

major factors that affect the on-demand data processing performance.

8. 1 Hypotheses & Predictive Models

The goal of OptiStore is to provide on-demand data processing service for very large
scale interactive visualization. Compared to the predominant data preprocessing paradigm,

before we build up an experiment model, we introduce the following hypotheses:

1. It is possible to conduct near real-time filtering fast enough to eliminate the

need of data preprocessing for very large scale interactive visualization.

2. This system will be scalable enough as the size of dataset and/or the number of

rendering node increases

3. This system can process distributed datasets.

127
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Therefore, to sum up these hypotheses, we can have one question: given specific
computation power and network bandwidth, how fast is the data processing? That can be
written as a formula to indicate the relationship of access time, dataset size, filtered data

size, computation power and network bandwidth:

T= F(S S P1 BWnetwork ) (8_1)

data ! fdata

As described in the previous chapters of this dissertation, the middleware system
consists of many components. For the sake of simplicity and generality, we create an

abstract model for the whole data processing and caching system, illustrated as Figure 8-1.
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Figure 8-1: Abstract data access model of OptiStore

This abstract model can be considered as a three-level caching system. The work

flow can be described as follows:

1. The visualization application requests data from OptiStore client cache via

OptiStore client interface. It takes T time. If data exists, called a hit, go to

ccache
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step 8; otherwise, it will be a miss and then go to step 2. The missing ratio is

noted as R_, which satisfies 0 <R, <1.

OptiStore client sends data request to OptiStore Server. Suppose it takes T

time.

Server requests data through server cache. The time costis T If data exists,

scache *
called a hit, go to step 8; otherwise, it will be a miss and then go to step 7. The

missing ratio is noted as R, , which satisfies 0 <R  <1.

OptiStore server cache sends data filtering request to OptiStore filtering server

nodes. Suppose it take T to pass the request from the server cache to the filter

on other nodes in the same cluster.

OptiStore filter gets the data. The data access time is T ., With missing ratio

R, , which satisfies 0 < R, <1;.

OptiStore filter processes the data and writes the requested data into server

cache. The total time cost include filtering time T and intra-cluster remote

filter
memory access time T,. Since the pipeline of filtering and remote memory

access is implemented parallel, it is hard to separate them. Thus, we use T, to

represent both of them.
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7. OptiStore server sends back the requested data to OptiStore client. The time

costis T, .

8. Local cache returns data pointer to visualization application. The time cost is

T

return *

Thus, to this three-level cache system, we can conclude a formula for average access

time, similar to the two-level cache in [Hennessy 2006]:

T =(T

average

return )+ RC X

+ Tsc )-|- Rs X (Tf + Tsf + Rr x Trepository ))

ccache + T

(. +T .

scache

In this model, because the operations with relatively small data structure occur
locally, the time consumed on step 1, 3, 6 and 8 is far less than others. That says that

T <<T T <<T Ty <<T and T, <<T

average return average *

They will be omitted

ccache average’ ° scache average /

in Formula 8-2 later. Additionally, T could be considered as a constant that nearly equals

to round-trip time (RTT).

As to T,and T they are basically the size of data (original or filtered data)

repository 7

and the bandwidth function:

fdata ( 8-3)

sC
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S
repository = B\t;?/ta (8'4)
rs

T

Suppose a single processor can filter the whole data S,,, with the data size P in
unit time, which represents the computation power P(Sdata), then a parallel computing

cluster with N same processes can speed up the processing capability to a(N)~ P. a(N)

satisfies Amdahl's law [Grama 2003] so that it would not be greater than a linear function.

Then from Equation 8-3 and 8-4, Formula 8-2 can be rewritten as follows:

S
Taverage = Re x| | C+ g Y R, Sd—ata+ R, X—Sdata (8-5)
BW a(N)-P BW,

sC

We noticed that in Formula 8-5, R, and R, are related to the aggregated cache size

of the whole cluster (in other words, the number of processors), the performance of

caching replacement algorithm and the accuracy of prefetching and processing prediction.
Furthermore, we have two assumptions for this model:

1. Since OptiStore client and visualization applications are implemented in a
pipelined parallel model. And the data size is restricted in visualization
application due to the limitation of the size of main memory and graphic
memory. With this latency hiding techniques, we can replace S,,,, in Formula 8-

5 with the size of the first several available blocks: B3-S, if the total requested

data size is controlled.
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2. The latency cost and bandwidth utilization in wide area network is considered to
be stable with the implementation with new OptlIPuter software components,
such as LambdaStream [Xiong 2005] and LambdaBridge [Wang 2006]. In most
cases, the constant C, approximated as RTT, is at several hundred millisecond

level.

Hence, Formula 8-5 is also suitable for wide-area-network applications, and
transformed to:

Taverage = Rc x ((C + %j + Rs X (Sd—ata_'_ Rr XSd_ataj\] (8-6)

Therefore, due to the immaturity of those network software components and
hardware facilities, we will build up experiments within local area network and project

results into the application in wide area network.

Table 8-1 indicates how our proposed approaches affect the variables in this

predictive latency model and ultimately improve overall performance of OptiStore.

Approaches Effects
Load balancing Rs¥, a(N)-PT, R {
Multi-resolution RY¥, BSpu ¥ Sem v=>Rs ¥, R
View-dependent Ry, B Spa ¥ Sea v =R ¥, R
Run-time Preprocessing Ry, Ri¥, R

Table 8-1: Proposed approaches and their effects on the predictive model
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8. 2 Experiments

8.2.1 Experiment hardware, software and data

To study the performance and scalability of OptiStore, we tried several experiments

upon OptiStore system on the cluster — YORDA.

YORDA consists of 30 nodes. Each node has one AMD® Opteron™ 2GHz Processor,
3GB memory and the nodes are interconnected with 1Gbps Ethernet network cards. The

operating system is SUSE" 10.3 and the kernel is Linux of version 2.6.16.27-0.9-smp.

The middleware of OptiStore has two parts: OptiStore Client and OptiStore Server.
Both API is compiled, built and running with POSIX Threads library and Boost C++ library.
OptiStore server also runs on MPI library. In our experiments, the MPI environment is

MPICH2.1.04 with multiple thread support.

Since our experiments were mainly to measure the latency of multi-resolution
filtering that takes O(n) time linearly to the size of different dimensional datasets, we just
tested the two dimensional datasets in our experiments. The original dataset is around
11GB Blue Marble images from USGS. The dataset consists of 32 by 16 cells, each with
dimension of 2700 by 2700 and 3 bytes (RGB) per pixel. The whole single image could be
86400 by 43200 by 3. The total size of the dataset is of 11,197,440 kilo-bytes. In order to
validate the scalability of the system, in our experiments, we did up-sampling over the

original data up to 89.6GB.
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8.2.2 Experiments

The OptiStore server program runs on the master node of YORDA and four and
sixteen slave nodes (for different experiments, the slave node number varies). For different
experiments, OptiStore data filtering server processes and caches different size datasets. In
our experiments, there are mainly three sizes of dataset: the original dataset of Blue Marble
dataset, one quarter subset of the images from the original dataset and one sixteenths out

of the original dataset.

On the client side, a parallel visualization program (a parallel version virtual-earth-
like program) runs on a client cluster (still on YORDA, a portion of the nodes) and accesses
the dataset on remote server during the rendering through OptiStore client API per blocks
(from aforementioned calculation, each block is around 21MB) in a real-time processed

multi-resolution pyramid.

Therefore, the experiment model becomes:

Taverage =R x||C +m + R x Sd—m+ R, X—Sdata (8-7)
BW a(N ) P BW g

sC

8. 3 Results and Discussion

1. Overall access latency versus data size

First we measured the overall access time versus original data size with 16

processing nodes, compared against the results in the worst case and the base case. This
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allows us to prove that even though the data size is increasing, the overall access time is still
acceptable. The worst case is that all of the local cache assesses miss; that is all the missing
ratios in Formula (8-7) equal 1.00. On the contrary, the best case means that it does not
take any time to filter data on the server side. Correspondingly, the missing ratios on server
side are all zeros. In the experiments, a 4-node visualization application ran on the client
side and fetched data through OptiStore client with 512MB client cache. The OptiStore data
filtering server consisted of 16 processing nodes and each node contributed 1GB cache to

the whole cluster shared buffer.

In Figure 8-2 and Table 8-2, we can see that when the dataset sizes are below 11GB,
the access time is almost constant and almost equals to the results in the best case; even if
the dataset size is above 11GB, the average access time is still close the best case. This is
because that when the whole original data can be held in the allocated buffer of filtering
server, it takes little time to fetch the original data. If the data size exceeds the total size of
the shared buffer on the filtering server, the overall latency will increase but still stay close

to the results in the best case and much better than those in the worst case.
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Latency versus Data Size
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Figure 8-2: Access latency versus data size

average access time (ms)
data size (GB)
. 2.8 5.6 11.2 22.4 44.8 89.6
scenarios
Best 50.0 50.0 50.0 50.0 50.0 50.0
Experiment 52.2 52.6 53.0 71.6 120.9 178.9
Worst 409.7 434.1 566.7 3339.9 | 10269.5 | 24000.3

Table 8-2: Average latency versus data size

2. The number of filtering processors versus data size

When we set the maximum access time to 1 second so that the user can get 1
frame-per-second response, we measured how many nodes at least should be employed to
run the data filtering services on the server. The experiments ran as the same as the
previous experiment. The similar result as previous experiment occurs for the in this
scenario — for example, when data size is small so that the server buffer can stored the

original data and processed data, the numbers of processing node at least require are as
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same as those in the best case; on the other hand, as data size grows, the number required
will remain close to the numbers the best case for OptiStore while the number in the worst

case increases promptly. This means that OptiStore scales well (see Figure 8-3 and Table

8-3).
Number of Server Nodes versus Data Size
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Figure 8-3: Number of filtering processors versus data size
Number of processing node required
data size (GB
. (GB) 2.8 5.6 11.2 22.4 44.8 89.6
scenarios
Best 4 4 4 4 4 4
Experiment 4 4 4 4 8 12
Worst 4 4 8 16 32 64

Table 8-3: Number of filtering processors versus data size
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3. Average access time versus cache size on filtering server

The previous two experiments demonstrate the jumps in access time when the
cache is small. To watch the relationship of data access time and cache size, we run a 16-
node OptiStore server program and a 4-node OptiStore client program. The server feeds
and filters 2.9GB dataset — the medium size dataset in the previous experiment. On the
server side, the total cache of the whole server changes from 50 percent of the dataset size
to 150 percent. Since the newly filtered data also resides in the cache, the cache sizes over
100 percent of the dataset is still included. In Figure 8-4 and Table 8-4, the average access
times are close. This result can be explained that the simultaneous heavy processing and

disk 10 access increases miss ratio and the intra-server access time dramatically.

Average Access Time vs. Cache Size
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Figure 8-4: Average access latency versus cache size
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cachesize 50% 75% 100% 125% 150%
(compared to data size)
average access time(ms) 56 53 48 46 38

Table 8-4: Average access time versus data server cache size

4. Average access time versus number of clients

In order to measure the access time when client number increasing, eight filtering

server nodes provide the 2.8GB dataset service. From four to sixteen node clients connect

to the server. Figure 8-5 plots the relation of the average access times with different client

node numbers (see the result in Table 8-5). Since the data filtering is processed in batch —

the cells that the whole client cluster requests are processed parallel at once; the main

increment of the access time relies on the network traffic. When the client number

overpasses the server too much, the network traffic may affect the access time obviously

because two nodes of the client may connect to one server node at the same time.
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Figure 8-5: Average access latency versus number of clients
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client processor number

12

16

average access time (ms)

65

76

114

130

Table 8-5: Average access time versus number of client processors

8.4 Summary

In this chapter, first we introduce three hypotheses that assume OptiStore meet the

requirements of current very large scale visualization and data processing. Then we deduce

a theoretical model for this system. At last but not least, a series of experiments have been

performed on this model.

effective.

These experiments have proved that our model is valid and
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CHAPTER 9 CONCLUSION AND FUTURE WORK

In order to satisfy the requirement of scalability, interactivity, timeliness and
flexibility in large scale visualization, OptiStore — a data management middleware is
designed, developed and implemented. Compared to current predominate data
preprocessing systems, OptiStore is an on-demand runtime processing framework for large
scale data intended to minimize the need to manage extraneous pre-processed copies of
the data that will become a major problem as we continue to amass vast amounts of data.
This dissertation describes the theories, models and techniques employed on this system,
and demonstrates the experiment results to prove that it is an effective and efficient

system.

9. 1 Contributions of OptiStore

OptiStore is designed and implemented as an on-demanded data management
system for very large scale interactive visualization. It addresses several problems of data
service for visualization application in OptlPuter architecture: scalability, interactivity,
timeliness and flexibility. Compared to other data management systems, this dissertation

features the following contributions:

e Design a flexible data filtering middleware model for visualization applications.

This dissertation presents a distributed high-performance data filtering model. In
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this distributed computing model, high-performance data processing system
may be separate from both data repository systems and visualization systems so
that it affords more flexibility and power to visualize very large datasets.
Especially, OptiStore is such a system that also supports interactive scientific

visualization applications.

Develop OptiStore as an on-demand data processing system. OptiStore aims to
provide data querying, filtering and processing services on the fly so that various
interactive visualization applications can benefit from this near real-time system.
In this dissertation, we have implemented several techniques to minimize the
latency: load-balancing data partition and organization, multi-resolution filtering,
view-dependent data processing, fast remote memory access, a Markov chain

predictor, etc.

Realize OptiStore as a scalable data filtering system. The techniques, such as
load-balancing data partition, multi-resolution filtering, multi-dimensional
caching, etc., were designed to load and process very large high-dimensional

datasets.

Introduce a novel cache replacement algorithm for multi-dimensional datasets.
The new algorithm was designed for multi-dimensional data with the spatial
indexing information in the whole system. It shows superiority over the popular

Least Recently Used (LRU) algorithm.
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A predictive model was built to measure the performance of OptiStore system. A
series of experiments have been conducted to prove the effectiveness and

efficiency of OptiStore.

Implement OptiStore as a flexible extensible framework. The middleware system
is designed with design patterns and developed with object-oriented
programming language. Various data formats, data filters and caching algorithms
can fit into the framework. New data models, data filters, caching mechanisms

and networking transfer protocol can be easily added.

9, 2 Future Work

As OptiStore is an extensible data processing framework, many new data models

and filters can be added to this system.

To extend the multi-resolution filtering to other datasets: geometries,

unstructured grids/points, vectors and so on.

Programmable Graphics Processing Unit (GPU) hardware and software is
becoming mature. The techniques of General-Purpose computing on GPU
(GPGPU) can be applied as data filters to scientific data. Due to its inherent
parallelism and computing power, it outperforms CPU on many scientific data

computation. The research on GPU cluster and streaming is a hot area in
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computer science. It will be an interesting topic to apply GPGPU to OptiStore

filtering server.

Future high-speed OptlPuter networking middleware components, such as
LambdaStream and LambdaBridge can be integrated into OptiStore for the

visualization applications over wide area network.
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