
PACE: A Framework for Personalized Visualization and Scalable Human Computer

Interaction

BY

XUN LUO

B.S. UNIVERSITY OF ELECTRONIC SCIENCE

AND TECHNOLOGY, CHINA, 1999

M.S. UNIVERSITY OF ELECTRONIC SCIENCE

AND TECHNOLOGY, CHINA, 2002

THESIS

Submitted as partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Sciences

in the Graduate College of the

University of Illinois at Chicago, 2008

Chicago, Illinois

ii

© Copyright by

Xun Luo

2008

iii

To my parents and Ran

iv

AKNOWLEDGEMENT

Above all, I would like to express sincere thanks to my advisor Professor Robert V.

Kenyon for his insightful guidance, enlightening advice, and endless encouragement

throughout my Ph.D. study, which has given me a great opportunity to explore various

difficult but interesting problems. I was lucky and am proud of being a student of him, a

great man with extraordinary vision and wisdom. Especially, I would like to thank my

mentors in Northwestern Sensory and Motor Performance Program (SMPP), Qualcomm

R&D and Motorola Labs, Dr. Derek Kamper, Dr. Sumit Sur and Dr. Weimin Xiao for their

selfless discussions and suggestions, without which I could have not made this work possible.

I would also like to thank my Ph.D. advisory committee members Professor Peter Nelson,

Professor Ashfaq Khokhar, and Professor Jason Leigh, for their inspiring and constructive

discussions during my study.

I also would like to thank all my colleagues in the Electronic Visualization

Laboratory and many friends in SMPP, Qualcomm R&D and Motorola Labs. In particular, I

would like to thank Dr. Dan Sandin, Dr. Javier Girado, Dr. Qunli Sun, Wei Xie, Dr. Julia Yu

and Dr. Xiaohua Wu.

I wish to thank my family for all their endless love, support and encouragement

though all the time of my study abroad. Finally, but not least, I would like to express my

deep thanks to my dear wife, Ran, for all her love, sacrifice, understanding and help, which

could be felt in every word in this work.

v

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION .. 1

1.1. Trend of Virtual Environments ... 2

1.2. Contemporary Personal Mobile Devices .. 3

1.3. Emerging Infrastructures... 6

1.4. Motivation... 10

1.4.1. Limitation in Understanding of Size Perception Performance............................ 10

1.4.2. The Need for Natural Interaction for VR Tracking... 12

1.4.3. Lack of Scalable Computing Techniques for Mobile Devices 12

1.5. Thesis Goals .. 14

1.5.1. Study of Size Constancy ... 14

1.5.2. Personalized Hand Tracker and Posture Recognizer .. 15

1.5.3. Scalable Computing for Hand Tracking.. 16

1.6. Chapter Organization .. 17

2. RELATED WORK ... 18

3. VR HAND TRAINER: A PILOT STUDY .. 26

3.1. Introduction ... 26

3.2. Methodology ... 29

3.2.1. Overview of The Training Environment ... 29

3.2.2. The AR Element.. 29

3.2.3. The Assistive Device Element .. 32

3.2.4. The Therapist Monitor/Control Element... 37

vi

3.2.5. Therapist Side and User Side Communication ... 39

3.3. Preliminary Experiment .. 39

3.4. Results ... 39

3.5. Discussion And Conclusions .. 41

4. SIZE CONSTANCY EXPERIMENTS IN THE CAVE .. 44

4.1. Introduction ... 44

4.2. Related Work .. 45

4.3. Methods... 46

4.3.1. Subjects ... 46

4.3.2. Apparatus .. 46

4.3.3. Experimental Protocol... 49

4.3.4. Data Analysis .. 51

4.4. Results ... 54

4.4.1. Effect of Scene Complexity .. 54

4.4.2. Effect of Stereovision.. 57

4.4.3. Effect of Motion Parallax .. 59

4.5. Conclusions and Discussion.. 62

5. DESIGN AND IMPLEMENTATION OF A HAND TRACKER 66

5.1. Hand Tracker Design Overview.. 68

5.2. Off-line Preprocessing Components ... 73

5.2.1. Training Sample Collection Component... 73

5.2.2. Positive Image Selection Component ... 82

5.2.3. Statistical Model Training Component ... 83

vii

5.3. Interactive Computing Components ... 87

5.3.1. Detection Component.. 88

5.3.2. Tracking Component... 92

5.3.3. Recognition Component.. 93

5.4. Evaluation Results... 96

5.4.1. Effectiveness of Sample Collection Method... 96

5.4.2. Computation Performance of Detection Component .. 99

5.4.3. Performance of Tracking Component ... 101

5.4.4. Computation Performance of Recognition Component 102

5.4.5. Overall Frame-to-Frame Latency of the Hand Tracker 103

5.5. Conclusions and Discussions .. 104

6. SCALABLE COMPUTING TECHNIQUES FOR HAND TRACKING........................ 108

6.1. Problem Statement .. 109

6.2. Scalability Analysis for Hand Tracker.. 111

6.3. Cluster Computing for Hand Tracker Components .. 115

6.3.1. Tree-based Node Organization.. 116

6.3.2. Load Balancing Algorithm.. 121

6.3.2.1. Scan Area Overlapping.. 122

6.3.2.2. Unbalanced Workload at Scale Levels.. 124

6.3.2.3. Communication Cost Between Cluster Nodes .. 126

6.3.2.4. Scanning Node Tree Calculation... 127

6.3.3. Hand Detection Process .. 135

6.3.3.1. Head Node Side... 135

viii

6.3.3.2. Worker Node Side ... 136

6.3.4. Posture Recognition Process ... 137

6.3.4.1. Head Node Side... 137

6.3.4.2. Worker Node Side ... 138

6.4. Evaluation Results... 138

6.4.1. Improvement of Detection Component Throughput ... 139

6.4.2. Speedup of Recognition Component... 140

6.4.3. Efficiency of Load Balancing Algorithm.. 142

6.4.4. Communication Cost Results .. 144

6.5. Conclusions and Discussions .. 145

7. HAND WAND: AN EVALUATION APPLICATION ... 148

7.1. Problem Statement .. 148

7.2. Design and Implementation .. 149

7.2.1. Networking Interface... 151

7.2.2. HandWand Device Plug-in.. 152

7.3. Running the Integrated System ... 153

7.4. Conclusions and Discussions .. 155

8. CONCLUSIONS AND FUTURE WORK ... 157

9. CITED LITERATURE ... 161

10. VITA... 170

11. APPENDIX... 172

ix

LIST OF TABLES

TABLES PAGE

Table 1 A Comparison Chart of Proposed Solution and Related Projects 25

Table 2 Pre- and Post-training Functional Test Results for Three Stroke Survivors.............. 40

Table 3 Pre- and Post-training Biomechanical Metrics for Voluntary Extension 40

Table 4 Mapping between Trial IDs and Visual Factor Configurations................................. 51

Table 5 Individual Subjects’ Performance across Scene Richness Groups, With Regard to

Motion Parallax Settings... 62

Table 6 Physical Implementation of the Scanning Node Tree ... 119

Table 7 IP-to-ID Map Maintained by the Scanning Node Tree.. 120

Table 8 the Scanning Tree Defined in Tracker Configuration File 121

Table 9 Workload Partition Based on Scale Levels.. 129

Table 10 Workload Partition after Scan Scale Grouping at Large Scale Levels 129

Table 11 Workload Partition after Scan Area Partition at Small Scale Levels 130

x

LIST OF FIGURES

FIGURE PAGE

Figure 1 the Second Life Virtual World ... 3

Figure 2 Finger Mouse by University of Illinois at Chicago .. 19

Figure 3 Real Object – VE integration by University of North Carolina 20

Figure 4 Gesture Pendant by Georgia Tech.. 21

Figure 5 Hand Mouse by JAIST ... 22

Figure 6 HandVu by University of California at Santa Babara .. 23

Figure 7 VR Face Tracker by University of Illinois at Chicago... 25

Figure 8 On-site Setup of the Training Environment Using BPO. The Therapist Is Holding

Both the Joystick and Control Switch in His Hands. (1): HMD, (2): Fish Tank, (3): BPO .. 31

Figure 9 Overview of Virtual Object and Surroundings Displayed in HMD: Training Room,

Coke Can Virtual Object and Markers to Provide 3D Cues ... 32

Figure 10 The BPO. A Zipper Sewn into the Palmar Side of the Glove Facilitates Donning.33

Figure 11 Picture of the Glove that Contains the Bladder on the Palm of the Hand 36

Figure 12 Image of Finger Representing Location of (x, y) Origin.. 37

Figure 13 Assistive Forces Recorded During Each Training Session for AR-with-BPO, with

Fitted Trend Line .. 41

Figure 14 the Virtual Coke Bottle with Rich Scene Environment.. 49

Equation 4 the Visual Angle Constant in Size Constancy Experiment 52

Figure 15 Percent VA Slope Means and Standard Deviations for Different Conditions,

Motion Parallax (MP) for ENV Conditions Only... 55

Figure 16 Population Performance with Stereovision (a) Off or (b) On, w/o Motion Parallax

... 56

Figure 17 Absolute Error using No-ENV and ENV Conditions... 57

xi

Figure 18 Population’s average SizeRatio settings for trials T1 and T4, using sparse (a) or

rich (b) scene, w/o motion parallax... 58

Figure 19 Absolute error value distributions under MONO and STEREO conditions 59

Figure 20 Individual SizeRatio Settings for Trials using a Rich Scene, without (a) and with (b)

Stereo. ... 61

Figure 21 Averaged Fitted Slopes across Four Combinations of Scene Complexity and

Stereovision Conditions with their associated percent VA slopes for each condition. 64

Figure 22 Block Diagram of the Off-line Preprocessing Components Group........................ 69

Figure 23 Block Diagram of the Interactive Computing Component Group 71

Figure 24 an Example Hand Images Database: Hand Gesture DB .. 73

Figure 25 Hand Image Samples from Two Subjects Who Have Different Skin Colors (Top)

Southwest Asian (Bottom) Southeast Asian ... 75

Figure 26 the A1200 Smart Phone.. 77

Figure 27 Screenshot of the Configuration Form of the Sample Collection Application 78

Figure 28 Screenshot of the Viewfinder of the Sample Collection Application 79

Figure 29 Raw Hand Image (Left), Binary Mask (Center) and Segmented Color Hand Image

(Right) ... 81

Figure 30 the SparkFun WiTilt Wireless Accelerometer/Tilt Controller 81

Figure 31 RGB Color Space and the Color Cube ... 84

Figure 32 the 14 Haar-like Features used in Hand Tracker .. 86

Figure 33 Instances of Haar-like Features in Hand Detection.. 87

Figure 34 the “V-Shape” Posture Used for Hand Detection... 89

Figure 35 Template Matching at Different Scales on a Sample Video Frame, the Posture is

Matched at Scale Level 4. ... 91

Figure 36 the Three Hand Postures Used for Posture Recognition .. 93

Figure 37 ROC Curves Showing the Comparison among Illumination-and-Motion-Controlled,

Illumination-Controlled with Deblurring and Uncontrolled Sample Collection Methods 98

xii

Figure 38 Processing Time of the Detection Component, with Difference Sizes of the

Detection Hotspot ... 100

Figure 39 Processing Time Distribution of Detecting Hand in a 320 by 240 Hotspot from

Frame to Frame ... 101

Figure 40 Processing Time Distribution when Tracking 30 KLT Features from Frame to

Frame .. 102

Figure 41 Processing Time Distribution of Hand Recognition from Frame to Frame 103

Figure 42 Illustration of the Hand Detection Component Parallelization 113

Figure 43 Illustration of the Posture Recognition Component Parallelization 115

Figure 44 Logical Presentation of the Scanning Node Tree ... 118

Figure 45 Scan Areas Overlapping to Avoid Scanning Loss and Overhead Introduced...... 123

Figure 46 Overlapping Overhead in Parallel Scanning for 320*240 Defined Scan Area and

25*25 Template .. 124

Figure 47 the Number of Needed Scans versus the Scale Level .. 126

Figure 48 Two Sample Outputs of the Tree Calculation Algorithm 134

Figure 49 Throughput Improvements with Four Nodes in Hand Detection......................... 140

Figure 50 Predicted and Actual Speedup Values vs. Number of Tree Nodes 141

Figure 51 CPU Load Distributions over 8 (top) and 12 (bottom) cluster nodes................... 143

Figure 52 Network Bandwidth Consumption at the Head Node .. 145

Figure 53 Mechanism used by SAGE to Map Device Data to Screen Events 150

Figure 54 Running HandWand as a Human-Computer Interaction Device for the

LambdaVision... 154

Figure 55 SAGE Display Bandwidth (left) and Frame Rate (right) with and without

HandWand Running.. 155

xiii

SUMMARY

Virtual reality (VR) is a technology which allows a user to interact with a

computer-simulated virtual environment (VE). Since its inception it has created an impact in

many fields, but has not yet gained wide acceptance to be used in a personal context. At the

same time, personal mobile devices (MDs) have evolved tremendously during recent years.

The deployment of MDs is becoming pervasive; the hardware configurations are enhanced to

be comparable to low-end desktop systems; and there are drastic improvements in the

infrastructures supporting wireless inter-device connectivity and collaboration. These trends

make novel applications and business models of VEs by the individual users promising and

desirable. However, to make the key elements of a VE, i.e. visualization and interaction,

work as smoothly for MD-based systems as for desktop-based systems, three research

challenges need to be addressed, for which the technical solution portfolio is far from

complete: 1) which visual factors of a VE make the user’s performance similar to that in the

real world? 2) How to effectively allow a user to collect his/her own biometrical data to build

personalized profiles? 3) How to efficiently make use of the processing resources in the

infrastructure for the compute-heavy tasks for a individual user, such as intelligent human

computer interaction?

This work, referred to as Personal Augmented Computing Environment (PACE),

sets its goal for personalized visualization and scalable human-computer interaction. It

attacks the three challenging research problems with corresponding solutions. First, to

understand the visual factors that make VE more like the real world, a set of controlled

experiments are designed and conducted in a CAVE system. In the experiments three visual

xiv

SUMMARY (CONTINUED)

factors, namely scene complexity, stereovision and motion parallax are examined. The results

suggest that scene complexity and stereovision significantly affect users’ size perception,

while motion parallax does not exhibit a significant effect. Being conducted by no other

researchers before, this study helps us to better understand the role of size constancy in VE

performance.

Next, an effective process to collect a user’s hand reference images for posture

profile building is proposed and implemented. The novelty of the proposed process is that it

takes advantage of the synergies between mobile device and computing infrastructure, and

uses proactive measure instead of post-processing techniques to improve sample image

quality. While most hand posture recognizers’ performance are very sensitive to hand sample

image quality and require them to be taken under strictly controlled laboratory setting, by

employing the process proposed and implemented by this work, the mobile device user can

collect hand sample images by themselves with relative ease, and still be able to obtain

satisfying posture profiles.

The third contribution of this work is a set of scalable computing techniques to

speed up the tasks of a vision-based hand detection and recognition using computer clusters.

These techniques include a novel data structure, called a scanning node tree which is used to

manage cluster nodes; a unique load balancing algorithm to evenly distribute workload

across nodes; and a node-to-node messaging protocol for parallel processing. The set of

scalable computing techniques has been proved to be efficient by various evaluation metrics.

Enabled by these techniques, a sample application, a hand tracker/controller named Hand

xv

SUMMARY (CONTINUED)

Wand is implemented and integrated with a large scale tiled display instrument as a human

computer interaction device.

This work also introduces one preliminary and early work for personal VE: a reach-

and-grasp training environment for in-home rehabilitation of stroke survivors. This pilot

study achieved certain results and were successful to some extent.

1

1. INTRODUCTION

Virtual reality (VR) is a technology which allows a user to interact with a

computer-simulated environment, be it a real or imagined one. Since the inception of VR, it

has been used for applications in various fields. Just to name a few: military bases use VR to

simulate battle field or air combat [7]; manufacturing factories use VR for mocking up of

assembly process [6]; medical and health care facilities use VR to plan life-critical surgeries

before they are carried out on real patients [1]; and scientists use VR to display complex or

large scale data sets [5].

Although VR has achieved many successes, people’s prediction that VR will be

integrated into daily life and activity has not been obtained yet. To make the wide acceptance

of VR for individuals possible, the VR system should be able to provide personalized and

close-to-real-life visualization and interactivity for its user. On the visualization aspect, not

only photo-realistic virtual scenes need to be rendered, presence of these virtual scenes also

needs to have a high-fidelity for virtual-real world registration. On the interaction side, the

VE should be able to be interacted with using the modalities a user interacts in the real world,

to blend itself into the user’s daily life seamlessly. This means that a VE system should

maximize itself in sensing the presence and status of the user; the user’s freedom of

movement should be as unconstrained as possible; and the display, interaction and

computation components of the VR system should satisfy the size, price and power

consumption requirements for portable use. As described in the following sections,

technology advances in the past decades have created the consumer needs and laid the

foundation for personal VEs. In the following text of this chapter I firstly review the

2

background of recent technology advances in VEs, mobile devices and infrastructures. Then

the motivations of this work are explained and research goals to be achieved are stated.

1.1. Trend of Virtual Environments

Networked VEs for personal entertainment purpose emerge and quickly become

popular in the past decades. In a networked VE, users are shown as 3D avatars and the virtual

universe is composed of such avatars, as well as the virtual objects and scenes the avatars

reside in. Two representative virtual universes are Second Life [25] and There [26]. Figure 1

illustrates a typical scene in Second Life, where multiple avatars of the users are socializing

in a patio. Because of the potential business opportunities, integration of networked

environments and location-based applications has now drawn the attention of wearable

system vendors. Location-based VE provides computer generated visual and audio content

based on the location context of the user, thus calling for more seamless registration between

the virtual world and the real world. The popularity of applications fosters the volume of

current and future VE systems. For example, Second Life has a reported user population of 2

million as of 2006.

Besides virtual universe applications, many traditional information sources are now

explored by the users through modalities similar to what used to be categorized as virtual

reality. For example, new geographical information systems that allow people to see a

location using street map, satellite view, “hybrid” view that integrates the former two, and

even 3D view of the panoramic camera images of the streets have been offered by major web

service companies and is now used by millions of users, over a broad spectrum of computing

platforms, including desktops and mobile devices.

3

The practical needs for networked VE applications also make the needs for

wearable displays to increase. Compare to the immersive HMDs in traditional VEs,

augmented displays suit this purpose better because the real world and VE can be optically

blended to facilitate a user’s experience.

Figure 1 the Second Life Virtual World

1.2. Contemporary Personal Mobile Devices

The definition for a mobile device was and till now, is still quite fluid. A broad

consensus now is that mobile devices are pocket-sized computing devices, typically

comprising a small visual display screen for user output and an interactive gadget for user

input. Today, the category of mobile devices encompass mobile phones, personal digital

assistants (PDAs), portable media players, information appliances, personal communicator,

handheld game consoles, and ultra-mobile PCs (UMPCs), just name a few. The use of mobile

devices nowadays is virtually pervasive. Take mobile phones alone, as of end of 2007, about

4

half of the world population owns one1. Due to frequent feature and configuration overlaps, it

is not always easy to differentiate one type of mobile device from another (e.g., a mobile

phone and a portable media player). Also, nearly all these devices exhibit the common trends

towards more powerful processing units, standardized and interoperable application

platforms, and natural human computer interfaces.

Processing Power

Because of the high requirements for power saving features, a majority of mobile

devices use ARM (Advanced RISC Machine) architecture processors. The ARM architecture

is a 32-bit RISC processor architecture developed by ARM Ltd. that is widely used in a

number of embedded designs. Power-saving as they are, computing power of the ARM

processors are rich and also follow Moore’s Law (i.e. doubled every two years) as the

counterparts in desktop, workstation and sever fields do.

Typical ARM processors on mobile devices today are running at 300 – 800 million

instructions per second (MIPS) range. Such processing speeds are still not comparable to

main stream desktop computer processors, but close to the one two years ago. In other words,

it could be assumed that mobile device’s computing power is one level lower on the ladder of

Moore’s Law with desktops, and is closely tracking desktop systems at this pace. This fact

makes migration of desktop application to mobile devices a natural choice and in practice, is

already underway.

Application Platforms

1 Source from industry analyst Informa Telecoms & Media: http://www.informatm.com/

5

One challenge in making mobile devices interoperable is that applications

developed for one brand and/or model of mobile device were generally not able to run on

other brands and/or models. Also, applications on mobile devices were largely in the

embedded fashion, where the application itself is taking the responsibility of scheduling,

resource management and communication with other processes. Embedded applications are

difficult to develop, maintain and interoperate. As a consequence, most applications only run

on proprietary systems and universal deployment among various mobile devices is not

common. These situations were true until early 2000’s. After that, application platforms that

facilitate interoperability became widely deployed. Nowadays there are three major platforms:

Sun’s Java Micro Edition (J2ME), Qualcomm’s Binary Runtime Environment for Wireless

(BREW) and Microsoft’s compact .NET framework. The driving forces for these platforms

are strong and these platforms are evolving rapidly. For example, J2ME provides a reduced

version of Java libraries to mobile device application developers. Java application written in

J2ME could run on any mobile devices that are J2ME compatible, be it a mobile phone, a

portable media player or a PDA. J2ME libraries are standardized through the form of Java

Specification Requests (JSRs). As of 2007, 927 JSRs have been proposed and standardized2,

making a large variety of application features available through J2ME-compatible mobile

devices.

Standardize and interoperable application platforms make possible the flourishing

of mobile device applications. Among these prospective applications are personal VE

systems.

2 http://www.jcp.org

6

Human Computer Interfaces

The main human-computer interfaces on mobile device phones today are

QWERTY style keyboards and touch screens. There are also devices that make use of inertial

sensing (Nintendo Wii) and touch-based gestures (Apple iPhone).

In 1997, the first complete integrated cellular phone and camera solution was

demonstrated in public. Since then, the advent of the CMOS sensor manufacturing process

enabled the camera phone technology for mass production. As of 2007, all major mobile

phone manufacturers offer camera phone in their product lines. Besides merely taking a

picture, storing locally or sending out, multiple mobile devices manufacturers also provide

computer vision software libraries that facilitate image and video processing, such as [24].

There are still plenty of spaces for novel human-computer interaction methods for mobile

devices.

1.3. Emerging Infrastructures

Personal visualization and interaction tasks are performed in the ecosystem of

infrastructures (communication and computing services that are not with a specific user),

which in the past decades have undergone enormous transitions. These transitions could be

summarized from communication and computation perspectives. From a communications

perspective, short range wireless protocols enable data to be transferred at higher throughput

and lower latency; while last mile wireless gap is largely filled by third generation mobile

phone technology, making mobile applications more convenient to be networked smoothly to

internet backbones. From a computation perspective, processing power and storage become

standardized resources that can be consumed by personal users, introducing the concept of

7

Utility Computing or more contemporary, Software as a Service and Infrastructure as a

Service.

Short Range Wireless Communications Infrastructures

Till late 1990’s, mobile devices were connected to base stations either through star

link or bee-hive networks. Local wireless interconnectivities were mostly low-bandwidth,

such as Infrared Data Association (IrDA). With the increasing need for high-bandwidth and

low-latency local wireless link, several technologies have now gained popularity by hardware

manufactures. The most widely deployed one is Bluetooth [1]. Bluetooth is an industrial

specification for wireless personal area networks and provides a way to connect and

exchange information between devices such as mobile phones, laptops, PCs, printers, digital

cameras, and video game consoles over a secure, globally unlicensed short-range radio

frequency. At the time of this work, the mainstream Bluetooth specification version is 1.2,

which supports 2.1M bit/s of transmission speed.

The new Bluetooth specification, version 3.0, plans to incorporate ultra-wideband

(UWB). UWB is radio communications technology that can be used for short-range high-

bandwidth communications by using a large portion of the radio spectrum in a way that does

not interfere with other more traditional “narrow band” uses. UWB could achieve data

transmission rate at 480M bit/s. UWB integration will create a new version of Bluetooth

wireless technology with a high-speed/high-data-rate option. This new version of the

Bluetooth technology will meet the high-speed demands of synchronizing and transferring

large amounts of data, as well as enabling high-quality video and audio applications for a

variety of mobile devices.

8

Besides radio technologies, high-speed, high-bandwidth short range optical

communication is also promising to be practically deployed for mobile devices. Optical

signal transmitted through dedicated fiber link have already proved to be able to carry

digitized information at gigabit or even terabit per second speed, depending on the number of

fibers in optical cable housing. Optical transmission in free space is technically more

challenging than in fiber media, but has gained substantial improvements in component

miniaturization, optical path stability and optical-electronic conversion on mobile devices.

There are quite a few industrial-quality mobile device components that are able to transmit

data at gigabit per second rate. Although the price and power consumption are still

prohibitive, reduction of both are confidently expected in the near future.

The improvements in short-range wireless communication infrastructures greatly

facilitate device interoperability.

Last-Mile Wireless Communications Infrastructures

One trend of last-mile wireless communications is the increasing adoption of the

third generation (3G) mobile phone standards and technology [2]. 3G technologies enable

network operators to offer users a wider range of more advanced services while achieving

network capacity through improved spectral efficiency. The most significant feature of 3G is

that it supports greater numbers of voice and data customers – especially in urban areas – and

higher data rates at lower incremental costs than 2G mobile systems. A typical 3G

deployment allows the transmission of 384k bits per second for mobile systems and 2M bits

per second for stationary systems. Novel services include wide-area wireless voice telephony

9

and broadband wireless data can be carried out in harmony in a mobile environment. As of

2007, 200 million 3G subscriber have been connected3.

Another emerging last-mile wireless technology is the Worldwide Interoperability

for Microwave Access (WiMAX) [3]. WiMAX aimed at providing wireless data over long

distances in a variety of ways, from point-to-point links to full mobile cellular type access.

WiMAX is based on the IEEE 802.16 standard, which is also called WirelessMAN. A typical

WiMAX deployment allows the transmission of 70M bits per second over a 2 kilometers

distance. At the transmission rate as low as 2M bits per second, WiMAX systems are able to

operate over a 50 kilometers distance.

The improvements in last-mile wireless communication fill the gap between mobile

end users and the main internet trunk, which used to be limited by carrier offerings. The

difference between mobile communication units and internet terminals are largely morphed,

if not diminished completely yet.

Computation Infrastructures

In the past, corporate or academic mainframes were jealously guarded as strategic

resources. With the reduction in price of commodity PC-based clusters, as well as

proliferation of open source software, the new concept Utility Computing starts to be

accepted by the computer users. Utility computing is the packaging of computing resources,

such as computation and storage, as a metered service similar to a physical public utility

(such as water or natural gas). This kind of system has the advantage of a low or no initial

3 Source: http://en.wikipedia.org/wiki/3G

10

cost to acquire hardware; instead, computational resources are essentially rented. Customers

with very large computations or a sudden peak in demand can also avoid the delays that

would result from physically acquiring and assembling a large number of computers. Utility

computing was initiated by IBM and now both Sun and Amazon have commercial offerings.

Two more modern terms similar to utility computing are Software as a Service

(SaaS) and Infrastructure as a Service (IaaS). Both are targeting at flexibly allocated

hardware and software resources to be used by individual users. In a ubiquitous computing

environment, the existence of such kind of resources is very important for the user to be able

to fulfill visualization and interaction tasks.

1.4. Motivation

The previous sections of this chapter briefly summarize the trend of VEs, features

of contemporary mobile devices and the emerging infrastructures. These facts justify the

practical need of introducing VEs for personal use, as well as the feasibility provided by the

fast improving device and infrastructure capabilities. However, research portfolio to archive

the smooth migration of today’s VEs for personal use is far from complete. Specifically, the

following challenges need to be concretely addressed:

1.4.1. Limitation in Understanding of Size Perception Performance

Being different from traditional personal computers’ two-dimensional visual

interfaces, three-dimensional (3D) user interface is one of the most important hallmarks of

VEs and should be well implemented for personal use. Correct perception of the virtual

object size is one of the key metrics of efficient 3D user interface implementation, and worth

being carefully studied. This is especially true in the personal use context, where high-

11

fidelity registration between the virtual environment and the physical world is desired. Here I

present two fictitious scenarios where the correct size perception is the key to the

application’s user experience:

Scenario 1:

A stock broking agency provides its customers with wearable 3D HMDs and

wireless broadband receivers to get the real-time stock price information. Stock prices are

plotted in interactive 3D graphics as bars, spheres, and cubes, etc. In a HMD, 200 stocks are

displayed in the same screen and each are tagged with relative review articles to be read

from. A busy user browses the 3D visualization every morning and skim only these stocks

that he feels at a higher price than others, based on the size of the bar, sphere or cube he

perceived.

Scenario 2:

A driver uses a portable GPS mounted on the car to navigate routes while driving.

Using a VE, the GPS displays all the buildings along the road as 3D models. The GPS also

communicate with other GPS devices in the nearby vehicles and display these vehicles in 3D

models on the screen. The driver counts on his perception of the building and car sizes to

adjust driving speed.

Both applications illustrated are common for personal VE systems (similar services

are available now but have not yet been used extensively), and sensitive to the size

perception performance of their users. In Chapter 3 I describe in detail a deployed personal

VE that trains post-stroke patients of reach-and-grasp tasks, which is dependent on its user’s

size perception performance.

12

Important as it is, to my best knowledge, there is no literature or systematic human

study that addresses all major VE factor which affect user’s size perception yet. Three of

these factors are scene complexity, stereovision and motion parallax. Thus, studying to

identify the significant factors that affect people’s size perception in VE is a desirable

research task.

1.4.2. The Need for Natural Interaction for VR Tracking

Being able to track the user is an important feature of VEs, because of the high

requirement for interactivity. To make a VE ready for personal and mobile use, tracking

module should ideally be tetherless, and able to track in 3D space. At the same time, current

user interfaces are not fully suited for human-centered VEs. Traditional devices as keyboards

and mice offer only the capability of working on a planar surface. Novel devices could be

categorized in three classes: 1) Joystick-like devices, such as FlyBox (BG Systems) and

Cubic Mouse (FakeSpace Systems). These devices are either mounted on the desk or

manipulated with both hands. 2) Wearable devices, such as the PINCH gloves (FakeSpace

System). These devices track the wearer’s body movement and trigger respective commands.

3) Single hand-held wands, such as the Wand (Intersense). Through integration of 3D

position tracking, these devices allow single hand operation, as well as certain degrees of

body movement. Although these devices provide great convenience in traditional VEs, they

are not suitable for personal VEs. First, they put high requirements for the user’s operation

skills, which is hard for VE novices. Second, users are burdened with device carrying, either

explicitly or implicitly. In fact, the limitations of current human-computer interfaces hinder

expansion of the VEs to serve individual uses.

1.4.3. Lack of Scalable Computing Techniques for Mobile Devices

13

The pervasiveness of mobile devices and the abundance of infrastructure

processing power do not automatically make the effective synergy between these two of

entities. In fact, most exchanges between today’s mobile devices and the infrastructure are

application data: streaming of multimedia contents, for example, video and audio; download

or upload personal files to web servers, such as social networking or self-publishing sites;

and, synchronizing personal information (email, office documents) with desktop systems.

The ideal exchange between mobile devices and computer systems in the infrastructure

should be both application data as well as user profiles. Mobile devices should be able to

transfer its user profile to the infrastructure in a nearly transparent and online way that

minimizes the user’s awareness. At the same time, accesses to the infrastructure processing

power, including discovery of the computation resource in the infrastructures, initialization

of collaboration sessions, as well as quality-of-service control should all be automated and

effectively managed.

Here is yet another scenario that shows the usefulness of scalable computing

techniques for mobile devices4:

An English-speaking traveler is having a business trip in Tokyo and walked into a

Japanese sushi bar. Unfortunately, all the menus and store signs in the sushi bar are in

Japanese and the traveler cannot read them at all. Luckily, powerful computer system has

been deployed in the sushi bar, and available for customer access through wireless link. So

the traveler use his mobile device to take continuous video stream of Japanese menus and

store signs and offloads the computer-vision based processing to the computer system in the

4 Personal communication with Professor Jason Leigh, one of my thesis committee members.

14

sushi bar. The traveler’s mobile device already stored his native language (English) and

dietary preferences as personal profiles. Such information personalizes the image processing

process. When the processed result is rendered to the user, menus and store signs are

translated into English and with a “recommendation” ranking displayed next to each of them.

Although this scenario is fictitious, it clearly shows why scalable computing for

mobile devices is still a unsolved research problem today and how big the impact will be if

this research problem is gracefully solved.

1.5. Thesis Goals

Motivated by the research problems described in the above section, this work sets

three goals to accomplish. 1) to study the visual factors that affect people’s size perception

performance in a VE. 2) to develop an effective solution to construct user profile for hand

posture recognition. 3) to investigate scalable computing techniques to facilitate the synergy

between mobile devices and infrastructure computer systems to implement a high-

performance hand posture based tracker and controller. Grouping these three goals together,

this work is aiming at implement a prototypical framework for personalized visualization and

scalable human computer interaction, which is named personal augmented computing

environment (PACE). The balance between advanced research and practical implementation

is carefully planned when PACE is envisioned. And this balance is reflected in the planning

of all the three goals described as below.

1.5.1. Study of Size Constancy

Size constancy refers to the capability of a person to correctly perceive object sizes

in the environment, independent of the objects’ relative location from the viewer. As size

15

constancy in the physical world is natural, users’ size constancy performance is an important

metric of the quality of a VR system. This research sets its goal to study three visual factors

that might have an effect on the users’ size constancy performance in the VE: scene

complexity, stereoscopy and motion parallax. To achieve this goal, controlled experiments

that configure a VE with difference combination of these three visual factors are to be

conducted, data from VR-experienced and VR-naive subjects are to be collected, and

statistical analysis methods are to be applied to get quantified conclusion of the significance

of difference visual factors in affecting size constancy performance.

The VR system that is chosen to conduct the control experiments is the CAVE

Automatic Virtual Environment (CAVE® 5), a projection based virtual reality system

developed at the Electronic Visualization Lab at the University of Illinois of Chicago (EVL-

UIC). The reason to choose a projection-based VR system and not more contemporary LCD-

based VR systems or mobile device based VR systems is that CAVE is a mature, widely

deployed, and representative VR system. In the mean time, CAVE system is less prone to the

interference of other “noisy” environment factors, such as motion artifacts in mobile VR

systems caused by human body movement and perspective skew in LCD based VR systems

caused by imprecise calibration of LCD screen mountings.

1.5.2. Personalized Hand Tracker and Posture Recognizer

Using the most dexterous part of human body – the hand – for human computer

interaction in the VE conforms to users’ daily life habit, and has other important advantages

such as tetherless interaction and expanded degrees of freedom. Making the users’ hand

5 The CAVE is trademark of the Board of Trustees of the University of Illinois at Chicago

16

capable of tracking and controlling objects in the VE will greatly facilitate the wide

deployment of such systems, and push them closer towards portability and mobility. This

work proposes to realize a hand tracker using computer vision techniques. Hand images are

to be captured, processed, and mapped to 2D coordinates as well as control commands at the

rate of VR frame update. A set of hand postures are defined as symbol for control commands

and when they are performed by the VE user, corresponding commands are issued to the VE.

To personalize the proposed tracker, user profile needs to be effectively constructed.

This work aims at implementation of a process that mobile device user are able to take the

hand sample images by themselves and achieve comparable profile accuracies as what used

to be done in a strictly controlled environment. The profiles to be constructed include the

user’s hand shape and skin color models.

1.5.3. Scalable Computing for Hand Tracking

To investigate solutions that effectively create the synergy between the mobile

device and computer systems in the infrastructure, this work aims at designing and

implementing a prototypical paradigm that use the computation clusters in the infrastructure

to boost the computation tasks performed by the hand tracker as described in section 1.5.2.

Discovery, initiation and process offloading to the cluster system in the infrastructure are to

be automated for the mobile device user, thus to achieve minimal user involvement and

awareness of the scalable computing process. Two components of the hand tracker, namely

hand detection and posture recognition are to be accelerated through collaboration among

nodes of the cluster.

17

The computation cluster to be used in this experimental work is a 32 node cluster

which serves as a large-scale display node on the global Grid. The cluster system drives a 55-

tile LCD display wall and is an exemplary supercomputing virtual organization (VO) on the

Grid which has underused computation capabilities. Without loss of generality, this system

could be regarded as representative of the computer systems ubiquitously existing in a

mobile device user’s surroundings.

1.6. Chapter Organization

This thesis is organized as follows. Following the background introduced in

Chapter 1, Chapter 2 gives a review of relevant research in addressing similar problems. In

Chapter 3, a pilot study conducted by the author to deploy personal VE for stroke survivors,

named VR Hand Trainer is presented. Being an import preliminary work preceding the final

approaches chosen by the thesis research, VR Hand Trainer provides valuable lessons to for

the final approaches of this work. Chapter 4, 5, 6 compose the main body of this thesis. A

human factors study to identify visual factors that significantly determine VE users’ size

constancy performance is described in Chapter 4. In Chapter 5, extension work from tracking

a rigid human part, i.e. the head to an articulated human body part, i.e. the hand, are proposed

and the implementation details are given. Chapter 6 presents the scalable computing

techniques employed to solve this computation-intensive problem. These techniques are then

evaluated by a real-world application for interaction with a large scale tiled display system in

Chapter 7. At last, Chapter 8 draws the conclusions for this research work, and gives

discussion on lessons learned and possible future works.

18

2. RELATED WORK

Making use of mobility and hand based interaction techniques has been a long-

standing problem in mobile computing, ubiquitous computing, location-aware computing and

virtual reality communities. Along with the various researches on this topic, a large number

of approaches have been proposed and a variety of prototypes have been constructed based

on the approaches. Some of them emphasize the use of external cameras, while the others

prefer wearable cameras and other portable devices. In this chapter, several representative

approaches and systems are briefly reviewed to set the reference baseline of this work.

The Finger Mouse

In [28], Quek and colleagues presented Finger Mouse, which is a freehand pointing

alternative to the ubiquitous mouse. In this system, the user merely performs a pointing

gesture above the keyboard. A down-looking camera is trained on the keyboard. A user

typing at the keyboard may switch into the “pointing mode” by simply assuming a hand

pointing configuration above the keyboard. A vision system constantly monitors the hand

and tracks the fingertip of the pointing hand. As the user gestures in a horizontal plane just

above the keyboard, the screen cursor moves accordingly. The user depresses the SHIFT key

on the keyboard with the non-pointing hand to register a ’mouse button press’.

Although Finger Mouse has real-time performance, it only tracks fingertip rather

than the hand posture. It is also not personalized. The limitations of Finger Mouse from the

viewpoint of nowadays can not only be attributed to the technology restrictions in the 1990s’,

but also the design goal of the system. The design goal for Finger Mouse is clearly for 2D

desktop use, rather than immersive and mobile systems: camera is passive and mounted in

19

the desktop workspace; usage of mouse is in conjunction with the keyboard; strict constraints

are imposed for background noise. However, Finger Mouse’s concept of using the hands as a

mixture of tracking and interaction devices, of which one hand performs the state switch task

and the other serves the tracking task, could shed light on this research. The further research

by Xiong and Quek [29] about unconstrained hand gesture extraction by analyzing oscillation

cues is related to endeavors towards minimized user involvement and awareness.

Figure 2 Finger Mouse by University of Illinois at Chicago

Incorporating Dynamic Real Objects with VE

In [27] Lok presented algorithms to generate virtual representations, avatars, of

dynamic real objects at interactive rates. Further, he presented algorithms to allow virtual

objects to interact with and respond to the real-object avatars. That allowed dynamic real

objects, such as the user, tools, and parts, to be visually and physically incorporated into the

VE. The system uses image-based object reconstruction and a volume-querying mechanism

to detect collisions and to determine plausible collision responses between virtual objects and

the real-time avatars. Those techniques allowed their system to provide the user natural

interactions with the VE and visually faithful avatars.

20

Lok’s research, in line with a few others, emphasizes the reconstruction of real

objects in immersive VE. The purpose is not to create human computer interfaces that are

suitable for mobile users, but rather enhance the users’ experience in fixed setting VEs like

the CAVE. This design principle is reflected by the using of both mounted and wearable

cameras and the high requirement on the calibration of mounted cameras.

Figure 3 Real Object – VE integration by University of North Carolina

Gesture Pendant

At the Georgia Institute of Technology, Starner and fellow researchers did

extensive work [30, 31] on real-time gesture recognition. One of their earlier applications

was for American Sign Language (ASL) recognition [31]. The technology was later been

extended to recognize user-defined gestures. With the aid of a 5-word vocabulary, the

Gesture Pendant allows ordinary household devices to be controlled, literally, with the wave

of a hand. The user wears a small pendant that contains a wireless camera. The user makes

gestures in front of the pendant that control anything from a home theater system, to lighting,

to the kitchen sink. Therefore, hard to use, hard to understand remotes can be replaced with

simple hand gestures. The research is still active and evolving. In [30] they used both

21

acoustic sensor and accelerometers for ASL recognition. The restriction of the gesture

pendant is that it requires active illumination and hand distance to be optimally set. At the

same time, gesture recognition is based on Hidden Markov Model trained from grey-level

images. These features put barriers on the application of more advanced computer vision

techniques. In the mean time, the Gesture Pendant is designed to be a control device only and

not a tracking device, neither 2D nor 3D.

Figure 4 Gesture Pendant by Georgia Tech

Hand Mouse

In the Hand Mouse project by Kurata and colleagues [32], the user carries a

wearable computer, wear HMD and use hand as the sole input for HCI. The system uses

color-based segmentation to classify hand from the background, and a Gaussian Mixed

Model (GMM) to dynamically adjust color histogram models. Video captured from wearable

camera are streamed to a desktop system (Dual-Processor Pentium III) via wireless LAN for

all processing and the results are sent back to the user. At the same time a video combiner

feeds the captured video back to the HMD to create augmented reality.

22

The color-based segmentation technique used by Hand Mouse system is sensitive

to background noise, especially static objects that are of similar color and shape of the human

hand. Although the authors claim cluster computing techniques are used for parallel

processing, the processing computer they used is merely a high-availability desktop system

rather than a real computer cluster. The wearable computer is used as a video terminal only.

This solution puts a large amount of load on the wireless link and makes the system prone to

quality-of-service problems.

Figure 5 Hand Mouse by JAIST

HandVu

HandVu [33] is a software/hardware combination developed by Kolsch at the

University of California at Santa Barbara. It achieved robust hand tracking, in a real-time

manner (10 – 45ms for per frame processing). Hand tracking is the main concentration of

HandVu, and it assigned gesture recognition to application. Based on texture and color

features of the video image, HandVu is able to detect “Flock of Features” and is more robust

to background noise interference.

23

HandVu does not give its users the freedom to train hand shape and skin colors of

their own. It uses a pre-computed general hand shape model for posture recognition. It also

uses a predefined skin color model for hand detection, and relearns the color profile after the

hand is detected. Thus, hand detection is not personalized either. At the same time, HandVu

solely counts on a wearable laptop system rather than scalable computing resources to fulfill

all the computation tasks, include hand detection, tracking and recognition.

Figure 6 HandVu by University of California at Santa Babara

VR Face Tracker

Girado at the University of Illinois at Chicago designed and implemented a VR

face tracker [34] using neural network based techniques. By using dual mounted cameras and

active IR illumination, the tracker is capable to detect and track human faces in 3D space at

interactive rate and acceptable latency. Girado’s tracker firstly trains the face model as a

grey-scale blob using neural network, and then detect this trained blob in the captured image

to detect the head. Disparity in two camera images is used to calculate depth of the face, and

in turn determine its 3D space location.

24

The use of neural network for face tracking is both an advantage and a limitation.

For the pros, neural networks are intuitive to train because they are pixel based and rather

than feature based; the classification process is embedded in the neurons and thus very

generic instances can be classified. The cons are that because this embedded classification

process, tracking of articulated objects such as the human hands is virtually impossible to be

fulfilled by neural network. Girado’s system is basically tracking a “face-like” grayscale blob

in the captured image, as human hands are highly deformable, using a similar approach for

hands will be very sensitive to background noise.

Scalability is also a key issue that restricts the performance of Girado’s system.

Because the whole image processing needs to be performed at satisfying frame rate and

latency, several important components of the image processing are forced to be simplified.

For example, scaling of the captured image to match the pre-trained template is limited to be

at only 3 levels. This restricts the freedom of movement of the user’s head and hinders the

system’s mobility if it is ported for mobile device use. Because the processing time is a

critical factor for the tracker, recognition is an expensive task to perform. This is acceptable

for face tracking but not for hand tracking because gesture recognition is a highly preferred

feature when a hand tracker is deployed.

25

Figure 7 VR Face Tracker by University of Illinois at Chicago

Based on reviewing of the related projects, Table 1 presents a summarized feature

chart between them and the proposed research.

Table 1 A Comparison Chart of Proposed Solution and Related Projects

 Mobility Body Part Tracking

Dimension

and Device

Personalization Interaction Human-factor

study

Use of Infrastructure

Computation

Resource

Quek No Hand 2D: Mounted

Camera

No Fingertip None No

Lok No Hand 3D: Mounted and

Wearable Cameras

No Hand

Convex

Hull

None No

Starner Yes Hand No Tracking,

Interaction Only

No Gesture None No

Kurata Yes Hand 2D: Wearable

Camera

No Gesture None Yes

Desktop System

Kolsch Yes Hand 2D: Wearable

Camera

No Gesture Posture

Comfort

No

Girado No Face 3D: Mounted

Camera

Yes, face look

recognition

No

Interaction,

Tracking

Only

None No

Proposed Yes Hand 2D: Mobile and

Mounted Cameras

Yes, skin color

and hand shape

profile

construction

Gesture Size

Constancy

Yes

Computer Cluster

26

3. VR HAND TRAINER: A PILOT STUDY

This chapter presents a preliminary work in which a hand-based interaction

between users and the personal VE is used for rehabilitation. This work is conducted in

collaboration with field experts in rehabilitation engineering and produces a working system

that is currently deployed in one of the nation’s top rank rehabilitation hospitals ([35], [36]).

The personal aspect of this work is that it features a wearable system equipped with HMD

and EMG triggered control device to be activated only by the wearer’s muscle contraction

attempts. Also, the user hand is tracked and acts as the mouse cursor in the VE, with a

magnetic 3D sensor. The VE, which is used for reach-and-grasp training for stroke survivors,

has the advantage over current hand rehabilitation devices, in its relative low cost and small

size and potential to be used at home. The networked feature of the VE also allows

application in tele-rehabilitation.

This work also provides a real-life motivation for the development of the final

approaches of this work. It reveals the gap between the needed features for personal profile

construction, tetherless interaction and scalable computing, and the limitations in present

day’s mainstream VE systems.

3.1. Introduction

Stroke is among the leading causes of adult disability in the United States [8] [9]

[12]. Chronic impairment of the upper extremity occurs in roughly one-third of all stroke

survivors [12]. While finger flexion often appears spontaneously within weeks after a

cerebrovascular accident, finger extension is less likely to exhibit recovery [16] and creates

difficulty for voluntary hand opening. The resulting distal limb impairment is especially

problematic, since proper hand function is crucial to carrying out activities of daily living. A

27

study from the UK reported that over half of the subjects studied depended on others for

assistance in ADLs six months post-stroke [14].

Thus, a great need for hand rehabilitation therapies exists. None of the current

therapies, however, has been wholly successful. For example, the effectiveness of electrical

stimulation may be reduced by hypertonia. Usage of Botulinum toxin [13] further weakens

already paretic muscles. Participation in constraint-induced training [19] requires some initial

voluntary extension, thereby limiting eligible stroke survivors.

A combination of two different technologies, however, may be beneficial. The first

is virtual reality (VR), which is able to present pre-set or online computed rehabilitation tasks

with minimized setup and breakdown time. VR also provides many important possibilities

that are not possible in real-world applications. For example, with precise hand position

tracking and kinetic calculations, a stroke survivor user (“user” for short in the text hereafter)

can manipulate virtual objects that are free of mass but can still provide force feedback. The

second technology entails assistive devices. Research has already shown that devices which

permit the active production of repetitive movements are helpful for arm rehabilitation after

stroke. Therapeutic straight-line reaching assisted by the ARM Guide [15] resulted in

improved active range of motion and peak velocity. In another experiment, assisted unilateral

training with a PUMA robot led to increased Fugl-Meyer Motor Assessment scores [17].

Similar results may be achievable with the hand. As far as I know two systems

which can readily provide assistance to finger extension in coordination with VR: the

Rutgers-II ND Hand Master haptic device [21] and the CyberGrasp glove (Immersion Inc.)

[22]. There are some drawbacks with each. The Rutgers-II ND is a point-based system, with

it, the visual feedback is provided to the user through VR displayed on a non-stereo desktop

28

monitor (“Fish Tank”). Thus, the user is unable to see his real hand together with the virtual

scene. Additionally, the size of the virtual display is quite limited. Due to the use of

pneumatic pistons residing within the palmar space, the maximal PIP flexion angle the glove

allows is 45º, thereby limiting grasp simulation. CyberGrasp is designed more for haptic

application purposes; its price and weight (over 500g) are relatively prohibitive for clinical

use.

Thus, I have developed a training environment that integrates augmented reality

(AR) and assistive devices. This environment addresses the limitations of Rutgers-II ND and

CyberGrasp. AR allows the user to move objects with no mass while seeing his own hand

overlaid with the virtual scene simultaneously. This experience suggests that see-through AR

is much less disorienting to stroke survivors than fully immersive VR. Also, by incorporating

head-tracking and stereoscopy, the virtual scene is made panoramic rather than flat, as that of

Fish Tank VR. Assistance for finger extension is provided through either a body-powered

orthosis (BPO), with cables acting on the dorsal side of the hand to pull the fingers, or a

pneumatic-powered device (PPD) with an air bladder on the palmar side of the hand to push

the fingers into extension. The two assistive devices share some common favorable

characteristics: the pieces attached to the hand are lightweight (less than 100g) gloves; they

work with AR in a coordinated manner; assistance is provided in accordance with a user’s

voluntary attempt and under the ultimate monitoring and control of the therapist. This design

diminishes the potential for excessive assistance. Lastly, the monitoring/control interface

presented to the therapist incorporates visual, audio and force feedback using commercial

hardware.

29

In pilot experiments, two stoke survivors participated in training under AR-with-

BPO and AR-with-PPD conditions, respectively. Another stroke survivor, acting as a control

subject, was trained with AR but no device assistance was provided. While the control

subject showed little post-training improvement, both subjects under the integrated

environment showed some signs of quantitative and qualitative improvements in hand

function.

3.2. Methodology

3.2.1. Overview of The Training Environment

In the environment, the user is seated, wearing both head mounted display (HMD)

goggles and either the BPO or PPD. The HMD shows 3D stereo virtual objects and

contextual environment. The user is then trained to perform reach-and-grasp tasks of virtual

objects. Dynamic assistance of finger extension is provided through the assistive device. For

BPO, the assistance is controlled by the voluntary movement of the user’s unaffected arm;

for PPD, assistance is controlled by a combination of electromyography (EMG) signal along

with the difference between present hand opening angle and desired hand opening angle. A

therapist, who can be either on-site with the user or watching off-site through a video camera

feed, supervises the user’s movement. The therapist can modify the virtual scene dynamically

to best meet the needs of the user. An example on-site setup with BPO is shown in Figure 8.

The experiment environment is made up of four main components: AR element, the

BPO/PPD element, therapist monitor/control element and a networking element interfacing

the therapist side and the user side.

3.2.2. The AR Element

30

Individual VR applications utilize one of four display strategies: HMD, augmented

display, Fish Tank and projection-based display. The user environment uses an HMD display,

namely, a SONY PLM-S700 Glasstron. The Glasstron provides a horizontal view angle of

28º, simulates a virtual 30” screen at 1.2 meters away from the viewer, and has adjustable

see-through using an LCD shutter system. It is lightweight (120g for head device) and can be

worn comfortably by the user. By adjusting the see-through level, the amount of the actual

environment visible through the goggles is altered. This allows the user to see his hand along

with the virtual object.

 The scene, as shown in Figure 9, shows the surroundings as well as the object to

grasp. Proper perception of depth and object size is achieved by both rich visual cues (e.g.,

table, floor, stationary objects) and field stereo. Objects are specially designed to have certain

sizes and shapes. These instruct the user as to the proper hand posture and opening width

needed for grasping. Also, objects can only be grasped when the user’s hand contacts the

virtual object’s surface at “hotspots”. Hotspots are points predefined on the object’s surface,

at the location of normal grasping. They are invisible, so the constraint they introduce is

implicit to the user.

31

Figure 8 On-site Setup of the Training Environment Using BPO. The Therapist Is

Holding Both the Joystick and Control Switch in His Hands. (1): HMD, (2): Fish Tank,

(3): BPO

Several software packages are used for building the AR element. The Coin3D

[Systems In Motion] library implements scene graphs, and it provides a comprehensive range

of graphics and interactive objects. The CAVE Library [VRCO, Inc.] manages display

parameters to establish the sense of depth and scale. The Trackd tool [VRCO, Inc.] reads the

magnetic head and hand trackers’ [Flock of Birds, Ascension Tech] positions and

orientations, and provides these data to the rendering thread transparently.

VR objects persist on hard disk in VRML format and map one-to-one to files. I

implement two levels of object management to achieve scalability and flexibility. The first

level is “object library”. Each folder that contains object files is scanned and an XML-format

index file is generated for the folder. The index file contains entries of each object’s size,

location, hotspot numbers, and other information like suggested hand opening width. In this

step, a “sanity check” for the files is also done to ensure the index contains only valid objects.

The second level is “library view”, which integrates all the libraries so that all objects

appears to be in one large repository, thus the details of individual libraries are hidden and

(2)

(1)

(3)

32

dynamic remapping is possible. Another functionality the second level provides, as its name

suggests, is that the therapist can use his own definition file to create a local “view” of the

whole repository. These definition files are plain text format and need only contain object

names.

Figure 9 Overview of Virtual Object and Surroundings Displayed in HMD: Training

Room, Coke Can Virtual Object and Markers to Provide 3D Cues

3.2.3. The Assistive Device Element

The BPO

The BPO, as shown in Figure 10, is based on prosthetics technology. A glove

covers the paretic hand, and cables from the glove travel up to a standard figure-of-8

shoulder harness through metal cable housing. The cables actuate the finger joints. Namely,

biscapular abduction and glenohumeral flexion pull on the cables, thereby forcing the fingers

to extend. This single control moves all fingers simultaneously in a manner akin to that of

control of the prehensor in arm prostheses. Alternatively, the cable can be run to a handle

held by the unimpaired hand; extension of the unimpaired arm extends the fingers on the

33

impaired side. In either manner, the user controls the amount of assistance provided to finger

extension. The cable housing over the MCP and PIP joints also serves to prevent

hyperextension of these joints.

Figure 10 The BPO. A Zipper Sewn into the Palmar Side of the Glove Facilitates

Donning.

The orthosis is light (450g) and easy to wear. The part of the device that directly

acts on the impaired hand resides entirely on the dorsal surface so there is no interference

with palmar grasp. Finger movement space is also maximized (90º PIP flexion angle). The

amount of assistance utilized to extend the fingers is quantified by an in-line force sensor

[Sensotec Inc.]. The sensor, spliced into the cable between the cuff and harness, detects the

amount of force in the cable; this force serves as an estimate of the degree of assistance

provided. Force is also encoded into sound pitch to provide audio feedback for the subject,

as well as being sampled and stored for subsequent analysis.

One practical issue for body-powered therapy is that when the user becomes

familiar with the device, they tend to overly rely on the device rather than using their own

34

hand. This design addresses this issue by two means: one, as mentioned, is through the cable

housings, proper adjustment of their lengths can regulate cables’ maximum free movement

distance, thus limit maximum assistances that could be provided; the other is through force

feedback to the therapist (see section D), when excessive assistance is noticed by the

therapist, he/she will give proper instructions to prevent user from doing so.

The PPD

The PPD as shown in Figure 11 is a polyester glove placed on the subject’s hand.

The glove contains an air bladder situated on the inner surface of the glove such that it

contacts the palmar surface of the hand. Inflation of the air bladder forces straightening of

the palmar surface, and consequently extends the fingers. The bladder is connected through a

servo valve [Pressure Control Valve, QB02005, Proportion-Air] to a pressure reservoir

[1104360, Jun-Air]. The servo valve allows pressures between 0-5 PSI to inflate the glove.

Another port on the bladder is connected to a pressure relief valve [check valve w/ 6.1 PSI

spring, 246301000, Halkey-Roberts] that opens at 6.1 PSI to avoid over-inflation. The

electro-goniometers are attached with Velcro to the velar surface of the glove over the PIP

and MCP joints.

Angle measurements from the proximal interphalangeal (PIP) joint of the index

finger and metacarpophalangeal (MCP) joint of the middle finger are recorded using electro-

goniometers [F35, Biometrics]. Muscle activity is recorded using active surface EMG

electrodes [Delsys Inc.]. Electrodes are placed on the flexor digitorum superficialis (FDS)

and extensor digitorum communis (EDC) muscles of the gloved arm to sample muscle

activity. Each EMG signal is passed through the DelSys amplifier, full-wave rectified, and

low-pass filtered before sampling.

35

Feedback control of the PPD uses an EMG signal and PIP/MCP angles as input and

air pressure as output. Actual joint angles are compared with the desired trajectories

necessary for opening the hand sufficiently to grasp the object. These desired finger

trajectories are derived from the stereotypical spiral trajectories (Equation 1) observed in a

study by Kamper et al. [23] examining fingertip trajectories during grasp in neurologically

healthy subjects. The spiral trajectory may be expressed in Cartesian coordinates (Equation

2). With the addition of a constraint relating DIP angle to PIP angle, inverse kinematics may

be used to translate fingertip location into MCP, PIP and DIP joint angles.

633.1

255.23)(*3394.1

)))sin(/)cos(*(exp(*

=

−++=

=

b

lplmldA

bbAr θ

r and θ represent the position in polar coordinates where r represents the distance

from the origin and θ represents the angle or rotation. ld, lm, and lp represent lengths of the

distal, middle and proximal phalange respectively measured on the index finger of each

subject. Units are in millimeters.

Equation 1 Stereotypical Spiral Trajectories

The equations used to represent the finger end-point in terms of joint angles are:

23

121321

121321

7.0

)cos(*)cos(*)cos(*

)sin(*)sin(*)sin(*

θθ

θθθθθθ

θθθθθθ

=

+++++=

+++++=

lplmldy

lplmldx

θ1, θ2, and θ3 are MCP, PIP, and DIP joints respectively. The locations of x and y

are shown in Figure 12. The origin is at the center of the MCP joint.

Equation 2 2D Finger Endpoint Calculation with Joint Angles and Finger Segment

Lengths

36

A computer controlled proportional-derivative controller regulates the pressure

necessary to maintain the required angle for both the PIP and MCP joints during reaching.

The control regulates pressure to the glove based on the greatest angular flexion error. When

the fingers are extended further then the set-point, pressure to the glove is reduced to

maintain the necessary joint angles.

Figure 11 Picture of the Glove that Contains the Bladder on the Palm of the Hand

EMG feedback is incorporated to ensure active participation of the user. The

system senses muscle activity through the electrodes; air pressure is only provided to assist

extension when EDC activity exceeds a predetermined threshold.

Two different control strategies are employed for the grasp portion of the grasp-

and-release training dependent on whether virtual or actual objects are used. When virtual

objects are displayed to the user, the system monitors the point at which the hand is

sufficiently extended to hold the object. When this is true, a signal is sent to the AR element

to allow grasp of the object. The object is then attached to the user’s hand when the hand is

37

properly positioned in space over the displayed object. When the virtual object is held, the

glove control system continues to regulate pressure to maintain the desired joint angles in

order to simulate holding a real object. When real objects are displayed to the user, the

therapist is responsible for determining when the hand is in position to grasp the object. This

is detailed in section D.

The release portion of the therapy session is accomplished by monitoring EDC

activity. A threshold based on the subject’s maximum recorded EDC activity is set. When

the object is held, and activity greater then this threshold is recorded from the EDC muscle, a

pressure of 5 PSI is used to inflate the glove in order to assist the subject in object release.

Figure 12 Image of Finger Representing Location of (x, y) Origin

3.2.4. The Therapist Monitor/Control Element

The therapist-side element serves two functions: monitoring and control. During

training sessions, the user’s hand movement is supervised by the therapist. This can be done

by either the therapist staying on-site with the user, or watching through a camera link. Under

38

both circumstances, the therapist is also shown the exact scene that the user views, but in

Fish Tank display. This display for the therapist is especially useful when the user has

problems with distance and depth perception, as the therapist can guide the user. When the

therapist determines that the user’s hand is sufficiently opened (dependent on impairment

level of the hand and the current task), she/he flips a switch to set the hand state to be “ready”,

which means that the user’s hand is in the correct posture to grasp the object once the hand

reaches the proper location in space, as determined by the hand tracker. Once the hand

contacts a hot spot on the object, the object now moves with the user’s hand. After

manipulation of the object, the therapist instructs the user to let go of the object. When the

therapist determines that the hand has been sufficiently opened, she triggers “release” of the

virtual object with the toggle switch.

A Logitech RumblePad2 force feedback joystick is used by the therapist to

dynamically control the virtual scene. Online modifiable parameters of the virtual scene are

the position and orientation of the object in 3D space, as well as its size. This makes

configuration of the environment convenient as no thorough pre-calculations are needed for

these parameters.

The therapist is provided with dynamic feedback of subject performance. For BPO,

the assistive force recorded by the in-line sensor is displayed as a running waveform on a

computer screen, in addition to the audio feedback. For PPD, the waveforms are for EMG,

MCP/PCP angles and air pressure, companied by audio prompt for air pressure as well.

Under both BPO and PPD, it is possible to encode for the assistance provided to extend the

impaired hand by providing force feedback to the therapist through the joystick. The force

magnitude is represented by the intensity of joystick vibration.

39

3.2.5. Therapist Side and User Side Communication

Successful coordination of the user-side element and therapist-side element

requires inter-communication between them. Three kinds of data comprise the traffic stream:

1) force sensor data (for BPO) or EMG/angle difference/servo pump control combination

data (for PPD) from user side to therapist side, with bandwidth consumption of about 10kbps;

2) head and hand tracker positions and orientations, from user side to therapist side;

bandwidth consumption is also about 10kbps; 3) control commands issued by the therapist,

from therapist side to user side; this traffic is random (every one or more seconds) and has

negligible bandwidth consumption. To meet the need for tele-rehabilitation, the bandwidth

and response time requirements must be able to be satisfied by the network. The

environment’s overall bandwidth requirement is about 20-30kbps, and response requirement

is about 8-10ms each way (to meet the 100Hz sampling/control rate). These are all within the

capability of today’s broadband network services: LAN, DSL and T1.

3.3. Preliminary Experiment

Three male stroke survivors, rated between stages 2-3 of the Stage of Hand portion

of the Chedoke-McMaster Stroke Assessment scale [20] respectively, participated in training

sessions using the environment for 6 weeks. One of them was using AR with BPO, one was

using AR with PPD and one was using only AR with no assistive device provided. The 30-

minute training sessions were held three times per week. In each session, the subject tried to

grasp 15 virtual objects followed by 15 real objects. The therapy was performed on-site.

3.4. Results

40

Subjects underwent standard functional tests, i.e. box & blocks [18] and Rancho

[11], before and after the six-week training sessions. Both tests map better performance to

higher scores. Table 2 indicates that the subject undergoing AR-with-BPO slightly improved

scores on both box & blocks and Rancho; the subject undergoing AR-with-PPD slightly

improved the Rancho score, but actually performed worse on the box & blocks; the subject

undergoing AR-only showed no change in these scores.

Table 2 Pre- and Post-training Functional Test Results for Three Stroke Survivors

Box&Blocks Rancho Treatment

Used

Chedoke

Level Pre Post Pre Post

AR w/BPO 2 1 4 5 6

AR w/PPD 3 3 1 3 4

AR only 2 0 0 4 4

Besides the functional tests, I used a custom-developed apparatus to further assess

the change of voluntary MCP extension. Speed and maximum displacement were measured

for voluntary extension against no load. A servomotor system, described in [13], maintained

zero-load through servo-control of the motor about zero torque.

The test results are shown in Table 3. The subject undergoing AR-with-PPD

showed some improvement in both peak angular speed and angular displacement toward

extension. The subject undergoing AR-only exhibited increase in peak velocity, but the

amount of extension was so small as to render it of little functional consequence. The subject

undergoing AR-with-BPO showed no change in either measure.

Table 3 Pre- and Post-training Biomechanical Metrics for Voluntary Extension

Peak Angular Velocity

(degree/second)

MCP Maximum Displacement

(degrees)

Treatment

Used

Pre Post Pre Post

AR w/BPO 11.055 11.21 9.3388 10.5125

AR w/PPD 115.94 124.19 39.066 45.996

AR only 12.924 31.327 2.3323 4.7353

41

An analysis was also performed on the assistive force data collected from BPO

over time. Figure 13 shows the normalized force during each training session. Assistive force

first increased largely from session 4 to session 6. This increase may have arisen from greater

patient familiarity with the orthosis which allowed the patient to make greater use of it.

Starting from session 6, the needed assistive force started to decrease, revealing a significant

descending slope (p = 0.03). The overall decrease is 14.5% from pre- to post-training.

Figure 13 Assistive Forces Recorded During Each Training Session for AR-with-BPO,

with Fitted Trend Line

3.5. Discussion And Conclusions

In this chapter, a training environment for rehabilitation of hand opening in stroke

survivors is presented. This environment integrates augmented reality, assistive devices and

the process of repetitive training of grasp-and-release tasks. Compared with current hand

42

rehabilitation robotic devices, it is relatively low-cost and small in size, thus has the potential

for use in clinics and even at home. The networked feature also allows application in tele-

rehabilitation.

The preliminary experimental results, functional tests scores, peak angular MCP

extension speed, MCP maximal displacement, and BPO assistive force, show that after 6

weeks of training, there was an encouraging trend of modest improvement of finger

extension capability in the impaired hand. Both the user and therapist reported that the

environment was user friendly due to the lightness of the assistive devices and the simple

steps needed for set up of the environment. I believe that therapies using this environment are

promising. Being part of an interdisciplinary research, the training system has been deployed

in one of the nation’s top ranked rehabilitation hospitals, and is now in daily use to train

stroke survivors.

The lessons learned from this work, for a computer scientist, are three-folds: the

first lesson is that this work shows that advanced visualization application, such as the VE

used in VR hand trainer, can be massively deployed for personal users. The stroke survivor

population is a good example of the potential beneficiaries. According to the data from

American Stoke Association (ASA) in 2005, there were 4.8 millions of stroke survivors and

the population was increasing at a 700,000/year rate. Even if VR trainers are used by 10% of

the stroke survivors, the number of deployed systems will outnumber all the VEs deployed so

far in universities and industries.

The second lesson is that understanding of human factors is an indispensable part

of in-depth research in the computer science field of virtual reality. Users of the VR Hand

Trainer take advantage of the VEs to simulate real life. The ultimate purpose of the usage is

43

not to gain familiarity of the computer itself, but to gain from the transfer of VE to physical

world. This is quite different from many other fields of computer science research, where the

computer users explicitly perceive the presence of the computer entity, and the purpose is to

better use a “computing machine” rather than body parts of the user himself. Insufficient

knowledge of the physical, physiological and cognitive human factors when the virtual

reality technology is used will either impede wide adoption of the technology itself, or make

the introduction of this technology less meaningful or even negative.

The third lesson is that efficient computation must be conducted in a mixed

composition of the wearable system and the infrastructures to achieve satisfactorily

transparent human computer interaction. In this work, a key element of the training

environment is the tracking system, which continuously monitors the position of the user’s

head and hand. Compared with the other human-monitoring components used in the system,

such as the electrodes that monitors muscle contraction EMG or the bend sensors that

measures hand openness, tetherness of the electromagnetic tracking system is obvious. A

“smart” environment needs to be introduced and its intelligence heavily relies on the

environmental computation power. In another words, more natural interaction needs to be

implemented through scalable computing techniques, for example, utility computing power

provided in the rehabilitation setting.

 VR Hand Trainer is a preliminary work, and reflects the spiral learning path when

conducting research in visualization and interaction problems for the individuals. By working

with and listening to domain experts, the three strong motivations of this research work

emerged and in the following chapters, are addressed in detail.

44

4. SIZE CONSTANCY EXPERIMENTS IN THE CAVE

This chapter presents the work conducted to address one of the research questions

identified by this thesis: what are the visual factors of a VE that affect users’ performance in

correct size perception in a VE? To answer this, a set of controlled experiments are designed

and conducted over a 18-subject test population. Three VE visual factors are examined: scene

complexity, stereovision and motion parallax. Results suggest that the first two exhibit

statistical significance, while the last one does not in both of its forms, i.e. active motion

parallax and passive motion parallax.

4.1. Introduction

VEs are used for a variety of research and commercial purposes, such as medical

diagnosis, scientific data mining and industry manufacturing ([44], [35]). The effectiveness

of VE in its applications relies heavily on its ability to create perceptions within the

environment that faithfully replicate those in the physical world. However, due to limitations

the VE can have a number of flaws that adversely affect its use and the credibility of the

environments that it offers. One of the more significant aspects of this problem is whether the

perceived size of an object in the VE is equivalent to that perceived in the physical world

when object distance from the observer changes.

The recent work of Kenyon et al. [51] demonstrated size-constancy behavior in

subjects using a CAVE. For a majority of their population monocular cues were needed to

accompany the persistent stereovision of the object to fortify its true size. Without these

monocular cues, a majority of their subjects failed to exhibit size-constancy and adopted a

visual angle performance. Although subjects in their study could move their head or body

during the experiments, which would have produced motion parallax, they did not do so. In

45

this study I exposed subjects to both active and passive motion parallax conditions in

addition to changes in scene complexity and stereovision. Results were similar to those

performed in the physical world where size-constancy was more prevalent when a rich scene

environment was used with stereovision. When the richness of environment was turned off

and stereovision was removed most of the subjects adopted a visual angle performance.

Results of these experiments also suggested that motion parallax, either created by the VE or

the observers, had a mix effect on the perception of size constancy. Some subjects benefited

from motion parallax while others showed no effects at all.

4.2. Related Work

Huber et al. [37] did experiments under the applied contexts of minimal access

surgery (MAS) tasks, and studied the effects of stereoscopy and observer-produced motion

parallax for distant judgment. Results indicated that stereoscopy confers a considerable

performance advantage, while providing motion parallax information was not beneficial.

Experiments by Beall et al. [38] where subjects judged the size of objects’ whose visual

dimension varied four-fold, concluded that absolute motion parallax only weakly determined

the visual scale of nearby objects. Rondot et al. [39] studied distance perception during a

tele-operation task. Their results suggested that stereoscopy and motion parallax were of

equal significance in distance judgment, and users’ performance varied largely between

HMD and projected screen settings.

Additional studies showed inconsistent effect of motion parallax. Ikehara et al., [40]

compared the results of different experimental methodologies for size-distance perception

tests. Their results argued that for size and distance perception studies that used point light

sources and rods could produce different results from each other, but these differences were

46

not significant enough to change their conclusions. Watt et al. [41] raised the question of

whether enhanced motion parallax, i.e. visually magnified motion parallax would alter the

result found when using standard motion parallax stimuli. They found no significant effect of

augmentation on motion parallax effect. Rosen et al. [42] showed that subjects made

symmetry judgments in VE under different view conditions, and argued that motion parallax

was not a significant factor in determining such capabilities. Effects of multi-modal

interaction factors in determining size and distance perception were analyzed in Hirose et al.

[43], and the authors emphasized the effectiveness of haptic interface in improving distance

perception accuracy.

4.3. Methods

4.3.1. Subjects

Eighteen subjects were tested (EC1-EC18). Nine were experienced in VE and had a

minimum of 6 months of using immersive VEs. For the other inexperienced subjects, this

was their first exposure to an immersive VE. All subjects were tested for visual acuity and

stereo acuity. All subjects had corrected vision of 20/20 and normal stereovision.

4.3.2. Apparatus

All tests were performed using a single wall CAVE – the C-Wall (Configurable

Wall) [52]. The C-Wall is a high-quality, head-tracked, active stereo wall, that displays an

image before the viewer by means of a 10x10ft rear-projection screen. The back projector

pointed to a mirror, which reflected the images onto the screen. To create stereoscopic

objects, two off–axis perspective images are consecutively displayed; one visible to the right

eye, the next to the left eye. The visibility of images by each eye is controlled by the stereo

47

glasses (Stereographics, Inc. Beverly Hills, CA) which rapidly turn each lens on and off in

synchrony with the corresponding images on the screen. A Pentium IV PC created the

images for the C-Wall. The image resolution was 1024x768 pixels with a refresh rate of 120

Hz and an update rate of 60 stereo images per second. Each subject’s interpupillary distance

(IPD) was measured (R.H. Burton Digital P.D. Meter, R.H. Burton LLC, Drive Grove City,

OH) and incorporated into the CAVE program to generate the stereo images for each subject.

A six-degrees-of-freedom camera tracking system (Eagle Digital System, Motion Analysis

Corp., Santa Rosa, CA) provided real-time head position which was used to calculate the

correct stereoscopic perspective projections for the C-Wall as the viewer moved his/her head.

The head tracking system had a latency of 65 ms and was calibrated to an accuracy of ±0.1

inches for the tracking distances used in these experiments. A cordless joystick (RamPad,

Logitech Inc., Fremont, CA) held by the viewer provided interaction with the VE.

A virtual Coke bottle textured with the image of a physical 2-liter Coke bottle was

drawn to test size perception [51]. Characteristics of VE scene were manipulated in order to

test the effects of scene complexity, motion parallax, and stereovision on perception of

virtual object size.

Scene Complexity

Two scene environments were provided, either a rich environment (ENV), with

monocular and stereo cues to depth in addition to those confined to the bottle in the scene or

a sparse environment (No-ENV) with cues to depth confined to the bottle in the scene [51].

The ENV consisted of a gray-green checkered floor with a wooden textured table in the

scene; the Coke bottle sat on top of the table. The table’s height above the floor was

randomly set at one of the three possible heights (30, 33 and 36 inches). For the No-ENV

48

case, the environment consisted solely of a gray background. The virtual Coke bottle was

presented as being suspended in mid air at different heights from the floor (corresponding to

the table heights) and at a number of different distances from the user as described above.

The head was tracked identically to that described above.

Stereovision

Two viewing conditions were examined: monocular vision (MONO) and

stereovision (STEREO). For the STEREO condition, disparate images were presented to the

two eyes. Interpupillary distance (IPD) was measured for each subject, and the images for the

two eyes were created to reflect the different vantage points in order to evoke a stereo image.

For the MONO condition, the IPD was set to zero in the CAVE program therefore the same

image was presented to each eye. Consequently, the subjects continued to view the scene

through the Stereographics headset producing the same visual conditions as when

stereovision was present.

Motion Parallax

Three different motion parallax conditions were tested: no motion parallax (No-

MP), motion parallax generated by the VE (Passive-MP), and motion parallax generated by

the lateral movement of the viewer (Active-MP).

For the No-MP condition the subject was instructed to hold his/her head still and

look straight ahead with no lateral head movement. To ensure the subject was not moving,

the experimenter monitored the lateral head movements from the tracker, and prompted the

subject whenever there were head movements greater than 1 inch, the minimum value needed

to incur motion parallax.

49

For the Passive-MP condition, the whole scene displayed on the C-Wall moved in a

sinusoidal fashion at 0.25 Hz. Peak scene displacement was 1 ft and peak velocity was 4

ft/sec. These parameter values were chosen to conform to natural human lateral movement in

order to facilitate comparisons with active motion parallax ([38], [39]).

For the Active-MP condition the subject was instructed to move his/her head

laterally from side to side at 0.25 Hz with a minimum displacement of 1 ft. The subject was

provided with audio cues for proper movement frequency from an electronic metronome.

The experimenter monitored lateral head movement through the tracker and prompted the

subject whenever lateral movement amplitude fell below the desired level.

Figure 14 the Virtual Coke Bottle with Rich Scene Environment

4.3.3. Experimental Protocol

Subjects were instructed to adjust the size of the virtual object (2-liter Coke bottle)

so that they perceived the virtual object’s size as being identical to that of a physical Coke

bottle if placed the same distance from the subject. To aid in this task, a physical 2-liter Coke

bottle was visible to the subjects for comparison to the virtual object. The 2-liter Coke bottle

was placed on a wooden stand covered with black cloth at a height of 3 ft. The stand was

50

positioned at the front left side of the C-Wall at a distance of 3.5 ft. from the subject. Both

the physical and virtual Coke bottles were 12 inches tall and 5.5 inches (maximum) wide.

The physical Coke bottle, lit by a standing spotlight, was visible to the subjects by simply

turning their head 40° to the left.

The virtual Coke bottle was displayed randomly at one of the five distances from

the subject: 3.5, 5.0, 6.5, 8 and 9.5 ft. The subject sat 5 ft. from the C-Wall screen; thus, the

virtual object could be located in front of, on, or behind the C-Wall screen. The computer

randomly set the initial size of the virtual Coke bottle from 0.2 to 3.0 times the normal size

(12 inches) of the bottle. Subjects used the cordless joystick to increase and decrease the size

of the virtual Coke bottle to what they perceived to be the appropriate size for each trial. The

head was tracked so the scene was updated appropriately to the position of the subject’s head.

The independent variables of scene complexity, motion parallax, and stereovision

had 2, 3, and 2 possible states, respectively. Each condition was repeated 6 times for each

bottle location for a total of 360 repetitions. To avoid ambiguity hereafter, I call each

repetition of size judgments that was performed under the same configuration of the

independent variables a run, and the consecutive block of runs a trial. Additionally, subjects

performed an initial trial to familiarize themselves with the process. It could be seen that

except for the initial trial, trials and visual factor configurations mapped one-to-one to each

other. Table 4 shows this mapping relationship between trial IDs and visual factor

configurations.

51

Table 4 Mapping between Trial IDs and Visual Factor Configurations

Trial ID
Scene

Complexity
Stereovision

Motion

Parallax

T0 Initial trial for familiarization

T1 No-ENV MONO No-MP

T2 No-ENV MONO Passive-MP

T3 No-ENV MONO Active-MP

T4 No-ENV STEREO No-MP

T5 No-ENV STEREO Passive-MP

T6 No-ENV STEREO Active-MP

T7 ENV MONO No-MP

T8 ENV MONO Passive-MP

T9 ENV MONO Active-MP

T10 ENV STEREO No-MP

T11 ENV STEREO Passive-MP

T12 ENV STEREO Active-MP

Subjects were encouraged to take 5 minute breaks between runs or as often as they

needed to avoid fatigue. The total experiment time varied among subjects, from 45 to 60

minutes.

4.3.4. Data Analysis

Subject performance was evaluated quantitatively using several measures based on

the selected size of the virtual bottle as described in [51]. In brief, SizeRatio represented the

relative size of the virtual bottle compared to the proper size of the physical bottle:

tleSizeCorrectBot

ctSetBySubjeBottleSize
SizeRatio =

Equation 3 Definition of Size Ratio

The numerator in Equation 3 corresponds to the size of the virtual bottle set by the

subject in each run and the denominator was fixed at 12 inches (height of the physical 2-liter

Coke bottle).

52

Linear regression of resulting SizeRatio values versus the distances of the virtual

bottle from subject was then calculated. Since with projection-based VE everything is drawn

on the CAVE wall, I calculated the visual angle (VA) setting that would result if subjects

perceived their distance to the bottle as being the distance they were from the CAVE wall

regardless of the bottle’s virtual distance from the subject. If the subjects’ performance is

purely determined by visual angle, the SizeRatios will theoretically form a fixed slope, α,

using the following formula:

WallDistToCAVE

AVEWalltleSizeOnCCorrectBot
=α

Equation 4 the Visual Angle Constant in Size Constancy Experiment

In the experiment, α was fixed at 0.2 given a bottle size of 12 inches, and a distance

between the subject and the CAVE wall of 5 ft. While SizeRatio measured subject’s

performance in a given run, the relationship between the regression slopes and α indicated

the consistency of how well the subject performed across all the runs in a given trial. This

percentage relationship between the subjects’ SizeRatio data regression slopes to that of the

predicted VA performance was calculated using the equation:

%100*

=

α

eFittedSlop
lopePercentVAS

Equation 5 Definition of PercentVASlope

For example, if the regression slopes of the subject’s data were identical to α, then

the “Percent VA slope” would be 100%, implying that the subject was showing no size-

53

constancy. On the contrary, if the subject regression data showed perfect size-constancy, the

regression slope would be zero and the “Percent VA slope” would consequently also be zero.

Absolute error for each run and mean absolute error across a trial were calculated

as another indicator to examine the differences between ideal performance and the SizeRatio

data collected from population. Absolute error indicates the deviation of a judgment in a run

to actual virtual bottle size. Mean absolute error averaged absolute errors within a given trial.

They were computed using the following equations:

1−= SizeRatiororAbsoluteEr

Equation 6 Definition of Absolute Error

∑=

n

irorAbsoluteEr
n

teErrorMeanAbsolu

1

)(
1

Equation 7 Definition of Mean Absolute Error

Percent VA slope and AbsoluteError were both derived from SizeRatio values and

as aforementioned, described these values from two separate perspectives.

For the VA slope percentage, I did repeated measures analysis of variance

(ANOVA) using SPSS (SPSS, Inc), with the independent variables to be the three visual

factors: scene complexity, stereovision and motion parallax. The purpose of using ANOVA

was to discover the significance of each visual factor in affecting size-constancy performance.

While for AbsoluteError, I investigated its mean and distribution in each trial. Comparison of

these indicators was to reveal that in which trials, i.e. under which visual factor

configurations did subjects had better size-constancy performance.

54

4.4. Results

For the population, size-constancy performance, as measured by percent VA, was

better when viewing the ENV conditions than the NO-ENV conditions (similar to [51]) and

better under STEREO conditions than MONO conditions (both single-factor ANOVA).

Furthermore, there were no significant interactions among these three visual factors. All

other models that used interactions did not explain the data well and all had p > 0.188 or

more.

4.4.1. Effect of Scene Complexity

Comparing the percent visual angle slopes (Equation 5) from the population, for the

ENV vs. No-ENV trials that had the same motion parallax and stereovision conditions, (i.e.

T1 vs. T7, T2 vs.T8, T3 vs.T9, T4 vs.T10, T5 vs.T11 and T6 vs.T12), showed that subject

size-constancy performance was significantly better under the ENV conditions rather than

the No-ENV conditions (p < 0.0001). The percent VA slopes obtained in the ENV conditions

(20%±15) more closely matched the slopes expected with size-constancy whereas the slopes

in the No-ENV viewing conditions (140%±20) more closely matched those associated with

visual angle performance, as shown in Figure 15.

55

Figure 15 Percent VA Slope Means and Standard Deviations for Different Conditions,

Motion Parallax (MP) for ENV Conditions Only

In addition, the ENV condition produced more consistent subject performance and

the task was easier to perform according to subject reports. As seen in Figure 16, SizeRatio

settings were consistently closer to 1 in ENV conditions than in No-ENV conditions for

different bottle positions, especially for the bottles farther from the subject. In contrast, the

mean SizeRatio for the No-ENV condition increased as the bottle positions receded from the

subject and with a wider range of SizeRatio settings.

Improved performance of ENV over No-ENV can be seen with or without

stereovision. With no stereovision (Figure 16 top), SizeRatio settings for the ENV condition

ranged between 0.9-1.8 for the bottle distance of 3.5ft- 9.5ft from the subject, for the same

visual conditions, No-ENV scene produced SizeRatio settings covered twice the range of the

ENV data i.e., 0.62 – 2.46. With stereovision (Figure 16 lower) the SizeRatio settings under

ENV condition spanned a smaller range from 0.96 – 1.53 compared to no-stereo. In No-ENV

condition, the SizeRatio range was smaller i.e., 0.91 – 1.96, than its counterpart in the no-

stereo case.

56

The absolute errors for size judgments made in all the six ENV and six No-ENV

conditions for the population in Figure 17 shows a clear overall difference between ENV and

No-ENV performances. The frequency distribution of absolute error for all judgments shows

that 66.48% of the errors were 0.2 (or 2.4 inches if bottle height used) and below with the

ENV condition while only 27.6% of the errors fell within this range with the No-ENV

condition. The mean absolute error values calculated using Equation 7 were 0.53 for all six

No-ENV conditions and 0.26 for all six ENV conditions.

Figure 16 Population Performance with Stereovision (a) Off or (b) On, w/o Motion

Parallax

57

Figure 17 Absolute Error using No-ENV and ENV Conditions

4.4.2. Effect of Stereovision

Comparing the percent visual angle slopes from the population, for the STEREO vs.

MONO trials that had the same scene complexity and motion parallax, (i.e., T1 vs.T4, T2

vs.T5, T3 vs.T6, T7 vs.T10, T8 vs.T11 and T9 vs.T12), showed that subject performance was

significantly better in performing sizing task under the STEREO conditions rather than the

MONO conditions. The VA slopes obtained in the STEREO conditions (40%±20) more

closely matched the slopes expected with size-constancy and conversely the slopes in the

MONO viewing conditions (95%±40) more closely matched those associated with visual

angle performance, as shown in Figure 15.

This improved performance can be seen in Figure 18 where the mean SizeRatio for

the MONO condition increased as the bottle’s position receded from the subject. In contrast,

for the STEREO condition although the mean SizeRatio also increased with bottle distance

from viewer, it increased at a much lower rate. These observations were independent of the

setting of scene complexity, a visual factor which has a significant effect as described above.

58

Under MONO conditions, subjects had a wider range of SizeRatio settings as well.

The SizeRatio settings for the STEREO condition when scene was sparse in VE ranged

between 0.91-1.96 for the bottle distance of 3.5ft- 9.5ft from the subject, for the MONO

condition under same scene complexity configuration the SizeRatio settings ranged from

0.62 – 2.46. When scene was rich, the SizeRatio settings under STEREO condition ranged

from 0.96 – 1.53. Under MONO condition, the SizeRatio ranged from 0.91 – 1.96.

Figure 18 Population’s average SizeRatio settings for trials T1 and T4, using sparse (a)

or rich (b) scene, w/o motion parallax

The absolute errors for size judgments, Figure 19, used the six MONO and six

STEREO conditions from the population. Examination of the absolute error for all judgments

shows that 54.32% of the errors were 0.2 (or 2.4 inches if measured in the error of size

59

judgment) and below with the STEREO condition while only 34.75% of the errors fell within

this range with the MONO condition. The mean absolute error values calculated using

Equation 7 were 0.46 for all six MONO conditions and 0.32 for all six STEREO conditions.

Figure 19 Absolute error value distributions under MONO and STEREO conditions

4.4.3. Effect of Motion Parallax

Comparing the different motion parallax conditions for trials that had the same

scene complexity and stereovision, (i.e., T1, T2 and T3; T4, T5 and T6; T7, T8 and T9; T10,

T11 and T12), showed no statistical difference under any of these conditions. The percent

VA slope values for all three motion parallax settings overlapped in mean value, and

standard deviations. These behaviors were found to be independent of the scene complexity

and stereovision. When scene was sparse and stereovision was turned off, subjects showed a

visual-angle performance. While when scene was rich and stereovision was turned on, they

showed a uniform performance towards size-constancy, Figure 15. When scene was rich and

stereovision was turned off, subjects’ performance lay between the above two conditions.

60

There was no significant difference in the range of SizeRatio settings. When scene

was sparse and stereovision was turned off in VE, range of SizeRatio settings under NO-MP

was 0.62-2.46, under Passive-MP was 0.62-2.42 and under Active-MP was 0.63-2.53. When

scene was rich and stereovision was turned off in VE, range of SizeRatio settings under NO-

MP was 0.91-2.0, under Passive-MP was 0.9-1.8 and under Active-MP was 1.04-1.71. When

scene was rich and stereovision was turned on in VE, range of SizeRatio settings under NO-

MP was 0.96-1.53, under Passive-MP was 0.96-1.37 and under Active-MP was 1.01-1.35.

This illustrates that the population’s performance under the motion parallax conditions were

not different from each other.

Although these result showed no significance analyzed as a population, I examined

the performance of individual subjects under different MP conditions to better understand

any effects on individual subjects. As stated above, the twelve triples could be grouped into

four triples of trials, based on different settings of scene complexity and stereovision. I rank

ordered them, based on a decreasing order of scene richness, as: ENV-STEREO, ENV-

MONO, NOENV-STEREO and NOENV-MONO. Previous statistics told us that within each

group, how the subject group performed. Here I am interested in that across groups, how

each subject performed consistently among the three settings of motion parallax. Three

notations are used to quantify the closeness of the same subject’s performance shown in

Table 5. For example, under two motion parallax settings M1 and M2, let S1 and S2 be the

subject’s percent visual angle slopes under M1 and M2 respectively: if S1 is greater than S2

by at least 10%, I denote M1 performs worst than (<) M2; if S1 is less than S2 by at least 10%

I denote M1 performs better than (>) M2; under all other cases, I denote M1 is the same as (=)

61

M2. I further use the abbreviations A, P and N to represent Active-MP, Passive-MP and No-

MP respectively.

Figure 20 Individual SizeRatio Settings for Trials using a Rich Scene, without (a) and

with (b) Stereo.

These results revealed that the eighteen subjects could be categorized into four

groups, based on their consistency in size-constancy performance across the scene-richness

groups. Eight subjects (EC1, 2, 5, 10, 13, 15, 16, and 18) exhibit no significant difference in

size-constancy across all three motion parallax conditions, regardless of the variation in

scene-richness. Four subjects (EC3, 4, 7 and 12) performed relatively better under Active-

62

MP settings than Passive-MP in certain triples. Three subjects (EC9, 11 and 14) performed

relatively better under Passive-MP settings than Active-MP settings in certain triples. Two

subjects (EC6 and 8) performed better both under Active-MP settings and Passive-MP

settings. An instance of improved slope with MP is shown in Figure 20a where there is a

significant change in the slope with MP conditions.

There were some subjects where the slope did not give the entire picture of their

performance. As shown in Figure 20b, this subject shows the same slope for all conditions

but the motion parallax condition shows an improvement in accuracy of the size setting

behavior since this data is below the other 2 curves and hovers about a size ratio of 1.

Table 5 Individual Subjects’ Performance across Scene Richness Groups, With Regard

to Motion Parallax Settings

ENV-

STEREO

ENV-

MONO

NOENV-

STEREO

NOENV-

MONO

EC1 same same same same

EC2 same same same same

EC3 A>N>P A=N>P same same

EC4 A>N>P N>A=P same same

EC5 same same same same

EC6 P>N=A P=N>A same same

EC7 A>N=P same same same

EC8 P>A>N A=P>N same same

EC9 P>N=A same same same

EC10 same same same same

EC11 P>N=A same same same

EC12 A>N=P same same same

EC13 same same same same

EC14 same same N>A=P P=N>A

EC15 same same same same

EC16 same same same same

EC17 A=P>N same same same

EC18 same same same same

4.5. Conclusions and Discussion

These experiments illuminate several important issues regarding size-constancy in

projection based VE systems (the C-Wall is a CAVE variation). This work first verifies the

63

findings of [51] that users can obtain useful size constancy performance in an immersive

projection-based VE, at view distances and screen resolutions that represent mainstream VE

systems (1-9 ft., 1024x768 pixels screen). This confirmation supports the need for complex

scenes and monocular cues in addition to stereovision if wider deployment of VE system in

size and distance perception sensitive applications, such as visual scientific data analysis and

virtual metropolitan building planning are to be successful.

Unexpectedly, I found that motion parallax, produced by the VE or by the observer

alone, might not be a significant factor in determining size-constancy performance for a

given population. However, when I reexamined the data for individual subjects, I found that

the effect of motion parallax in the experiment seems to vary from one subject to the next. As

might be expected MP was dependent on the richness of the scene. The small amount of

movement that occurs using a sparse scene was generally not sufficient to improve

performance. The largest effect can be seen in the ENV:Stereo condition followed by the

ENV:Mono condition. As seen in Figure 20, I found that some subjects either improved their

performance by changing the slope of their response (shallower) or produced more veridical

bottle sizes (SizeRatio ≈ 1). Thus I can see that in some subjects the increase in the number

or type of visual cue can produce an improvement in performance. Furthermore, there has

been much published about the errors in distance judgments in VE. If I assume that size

constancy has a measure of distance judgment included in its process then I might infer that

in some cases that I might expect improved distance judgments with MP.

The results are similar to those in the physical world [50] that have shown that a

subject’s performance lies on continuum between size-constancy and visual-angle and that

this performance is a function of the cues that are present in the scene. In Figure 21 I show

64

where the subjects’ performance lie given the cues presented6. This is reminiscent of the

Figure 22 in [49] where they plot their subjects’ performance as the field of view was

narrowed and subjects moved from size-constancy to VA performance. One might expect a

population of subjects’ performance to follow the graph as the cues to depth are manipulated.

This graph shows that the dominant condition for size constancy is a rich scene with

stereovision (ENV:Stereo). That is followed by a rich scene and monocular condition

(ENV:Mono). Notice that under sparse visual conditions that stereo (No-ENV:Stereo)

modestly improves performance compared to monocular viewing (No-ENV:Mono).

Figure 21 Averaged Fitted Slopes across Four Combinations of Scene Complexity and

Stereovision Conditions with their associated percent VA slopes for each condition.

These conclusions could be helpful in decision making, for VR system designers

who build the systems and for users who utilize the systems for specific applications.

6 As motion parallax was not a significant factor in statistical test, I grouped all subjects’ fitted visual angle into the

categories No-ENV:MONO, No-ENV:STEREO, ENV:MONO and ENV:STEREO and averaged fitted slope values

within each category.

65

It is worth mentioning that in the physical world 2D cues to depth are natural and

straightforward. In fact, it takes effort to arrange a situation that would diminish these cues to

the subject. In VE, displaying less complex scenes is easier than showing more complex ones.

A VE that has numerous cues to depth (2D and stereovision) takes time to program and

computer-time to generate. Thus, it is more expensive to generate a complex world compared

to a sparse world in terms of cost, programming time, and display time. By understanding the

relationships that exist between the physical and VEs will help us better utilize this

extraordinary technology by supplying the most important information to the user.

In these experiments I only analyzed three major visual factors due to the

hypothesis that they might be of most importance in determining size constancy performance.

However with the enrichment of VE, multi-modal interaction between the user and VE is

getting more popular and it could be interesting to examine the effect of other factors, e.g.

display resolution, haptics, 3D audio etc.

66

5. DESIGN AND IMPLEMENTATION OF A HAND TRACKER

This chapter gives the technical details about the design and implementation of a

computer program which does computer vision based hand tracking and posture recognition7.

This work is a natural extension of and has the same principle as the personalized control

system in Chapter 5. Extensions are reflected in two aspects: first, computer vision

techniques are used to replace tethered measuring devices for hand movement; second, users

are free to construct the personal hand profiles by themselves using mobile devices. As

described in Chapter 1 of the thesis, the design requirements for the hand tracker are:

efficient construction and incorporation of user’s personal hand profile; robust detection of

hand occurrence; real-time conversion of hand movements to 2-D coordinates; and lastly,

high-accuracy mapping of posture to control commands.

Comparing with head tracking and face detection, hand tracking and posture

recognition are more difficult problems. Unlike the human head, which could be abstracted

as a elliptical blob and processed accordingly ([34, 57]), the human hand is highly

deformable and difficult to be described by low dimensional parametric models. The hand

tracker implemented in this work takes the approach of statistical learning for hand

characterization. In other words, it learns from a database of “hand” and “non-hand” images

what a hand should look like. In this work, the knowledge obtained by the hand tracker

during the learning process are two statistical models: a histogram for hand color distribution

and a decision-tree based classifier for hand shape identification. With the two learned

7 If not specially explained, I use the short name “hand tracker” to state the hand tracker and posture recognizer

implemented in the rest of this thesis.

67

statistical models, the hand tracker is able to make judgments about hand presence whenever

a new frame comes in from video streams captured by a camera.

Based on the hand tracker design, its components are divided into two groups: an

off-line preprocessing components group which collects training samples and builds

statistical models of the human hand; and an interactive computing components group which

processes the captured video stream from a camera frame by frame, detects/tracks the

presence of a human hand, and recognizes the gestures performed if there are any. The main

advantage of this hand tracker over related work is that the off-line preprocessing

components group is mainly implemented on a mobile device, and makes use of motion

sensors to control training sample quality. While in most related works, samples are to be

collected from a public library or in strictly controlled laboratory environment. This

improvement makes sample collection by the user themselves possible, and has the benefit of

being able to incorporate individual biometric characteristics. In section 5.4, I present the

evaluation results that reflect the advantages of the sample collection component.

To incorporate the personal profile of a specific user into the hand tracking

algorithms, the first task is to identify what are the human factor invariants of a hand. High-

level features of a hand include its relaxed shape, texture, posture configuration and skin

color. Among these four high-level features, relaxed shape and posture are not invariants

because they differ with different degrees of muscle contraction. Texture and skin color are

invariants within an individual. Between these two, texture information is automatically

reflected by low-level haar-like image features in shape-based statistical models [53, 54, and

55]. Thus, besides the shape profile, I chose skin color as the other main feature to construct

68

a personal profile of the hand. In this sense, the hand tracker implemented is multi-modal

because it makes use of both shape and color features.

This chapter is organized as follows. Section 5.1 gives overview of the tracker

design. Components in the off-line preprocessing group are described in section 5.2, while

components in the interactive computing group are illustrated in section 5.3. Conclusions and

discussions complete this chapter.

5.1. Hand Tracker Design Overview

Figure 22 illustrates the composition of the off-line preprocessing components

group. In off-line preprocessing, the user captures two image sets with the camera on a

mobile device: hand images and non-hand images. The set of non-hand images is used

directly as negative samples, i.e. it contributes to the “what is not a hand” knowledge in the

trained statistical models. The hand image set is further processed by an image selector. The

purpose of the image selector is to improve the quality of the positive samples by filtering,

because sample quality will greatly affect the accuracy of the trained hand shape statistical

model. Criteria for the selection process are introduced in detail in section 5.2.2.

69

Figure 22 Block Diagram of the Off-line Preprocessing Components Group

After image selection, a positive sample database is obtained. This database,

together with the negative sample database derived from non-hand samples, is supplied to a

feature extraction component to extract haar-like shape features. The shape classifier training

component subsequently trains classifiers based on these feature-identified samples. In the

Shape Feature Extraction

Shape Classifier Training

Hand Shape Classifiers

Skin Color Feature

Extraction

Color Histogram

Construction

Skin Color Histogram

Profile

Negative Sample

Database

Camera on Mobile Device

Hand Images Non-Hand Images

Image Selector

Hand Images

(Selected by

Criteria)

Positive Sample

Database

70

interactive computing components group, the classifiers are going to be used to identify

hands from captured video frames.

The shape-based features are color-independent. That is, they are extracted from

gray-scale only images and one important property of the positive images: skin color of the

hand is not used during classifier building. To capture the skin color characteristics, the color

features from the positive samples need to be extracted and converted into corresponding

statistical models. This task is fulfilled by the color histogram map construction component.

This component maps all the color points of the hand in positive samples into a color

histogram. The histogram is then leveraged for hand detection.

The key thoughts of the off-line preprocessing component groups design are three

folds: Firstly, a hand classifier of high quality, i.e. low false positive rate and high detection

rate, should be trained from high quality training samples. This fact is determined by the

nature of the statistical learning methods. Thus the image selector is introduced; Secondly,

use of multi-modal features for hand tracking will bring not only the profit of lower the false

positive rate but also the loss of lower detection rate. However, for the interaction purpose

application uses, the penalty of lower detection rate is much less than the penalty of false

positives, which harms the user experience of such a system. Finally, the sample collection

process should be semi-automated to provide satisfying usability.

71

Figure 23 Block Diagram of the Interactive Computing Component Group

Hand Shape Detected?

Capture One Frame from Camera in

Interactive Environment

Color Verification OK?

Find Good Features to Track the Hand

Tracking OK?

Output 2D Coordinates

Posture Detected?

Output Posture Control Commands

Prepare to Capture Next Frame

N

N

N

N

Y

Y

Y

72

Figure 23 illustrates the block diagram of the interactive computing component

group of the hand tracker. The interactive computing component group makes use of the

statistical models built by the off-line preprocessing component group. In addition, this

component group is in charge of processing live video in the interactive environment and

mapping hand motion to 2D coordinates and postures to control commands.

Whenever a video frame is captured by the camera in the interactive environment,

it is scanned to detect if a hand exists in the scene. The criteria to justify if a hand exists are

based on the statistical models built on shape features and color features. If both features are

verified, a tracking feature extraction module is engaged to identify the “good features to

track”, i.e. KLT features as described in ([58]). The weighed centroid of the tracked features

is used as the location of the hand and this is used as the 2D coordinates in the interaction

with the VE.

In a “tracked” frame, the area where the hand is located is further scanned to test if

the configuration of the hand satisfies a predefined posture. This is done by comparing the

hand image in the area to predefined posture templates, and choosing the template that has

the highest resemblance to captured hand image. The identified posture is then mapped to a

control command as part of the tracker output.

After all the processing of one video frame, the tracker prepares itself for the next

captured video frame. As video frames are captured at an interactive rate, the computation

conducted by all the components in the interactive computing component group needs to be

within a strict time limit (no larger than 100milliseconds). This is a major difference from the

off-line preprocessing component group, where computation has no interactive rate

73

requirement constraint. In section 5.3, I illustrate several techniques used to achieve the

interactive rate goal.

5.2. Off-line Preprocessing Components

The off-line preprocessing components collect positive and negative training

samples and generate color and shape models. Components in this group include the image

capture component, which collects hand (positive) and non-hand (negative) image samples;

camera motion capture component, which uses acceleration sensing to proactively capture

camera motion during sample collection process; color histogram computation component,

which constructs the skin color profile of a specific user’s hand based on the samples

collected; and shape classifier training component, which builds the hand shape profile of a

specific user based on the samples collected. The first three components fit in a mobile

device while the fourth component is preferably undertaken by the infrastructure.

5.2.1. Training Sample Collection Component

Figure 24 an Example of Hand Images Database: Hand Gesture DB

One common approach to collect training samples for a learning-based computer

vision system is to get these samples from a public database. Figure 24 shows the Massey

Hand Gesture Database maintained at the Massey University of New Zealand. The database

74

contains 6 image sets collected from 5 individuals. The total number of images in this dataset

is about 1600. The advantage of using a public hand images database is that user does not

need to be involved in the sample collection process, and the trained classifiers will be user-

independent, i.e. generalized enough to fit a wide range of hands.

Despite the above arguments, the advantages of using a public hand images

database are not necessarily true when applied in a personalized computing context. Firstly,

the skin color of humans varies in a great range. Asians, Africans and Americans, for

example, could have drastically different skin color pigmentations. Even within the same

demographic group, skin colors could still differ to a large extent. For example, African

Americans and Caucasians in the United States, in general, have different skin color tones.

Figure 25 shows the hand image samples I collected from two subjects, one is a southwest

Asian and the other is a southeast Asian, luminance coverage and light exposure are carefully

calibrated so that lighting conditions are ensured to be same for the collection of both sample

sets. It could be clearly observed that the two subjects’ hand differs with regard to skin color

to a large extent. Secondly, the semantically identical postures, when performed by different

individual, could be quite different in shape. Reasons for these differences could be

finger/palm shape difference and habit of presenting a certain posture. Thus, collecting

personalized hand image database for an individual user is desirable.

75

Figure 25 Hand Image Samples from Two Subjects Who Have Different Skin Colors

(Top) Southwest Asian (Bottom) Southeast Asian

76

Before collecting a personalized hand image database, it is important to realize the

technical challenges of this task. Unlike the pubic databases, which are collected by

technology-savvy personnel and under controlled conditions, personalized database are to be

collected by the users themselves. It is not uncommon that the collector themselves are not

computer vision or photographing experts at all, and the collecting environment are far less

controlled than a laboratory setting. To make this task even more difficult, number of images

needed in a hand image database is not a small amount: it should be at least couple of

hundreds if not any more.

Because of these reasons, the training sample collection component is implemented

as a mixture of mobile device- and infrastructure- based applications. This component has the

important features that make themselves capable of fulfilling the tasks they are assigned: 1)

the collection process is semi-automated, the user needs only to specify number of hand

images to be collected, and the application on a mobile device will initiate the camera at

collection intervals, and performs the capturing task until the specified number of hand

images has been collected. and 2) Lighting condition and hand depth condition of training

sample images are automatically measured, used to judge acceptance/rejection of a hand

sample and feedback to the user.

A Linux-based camera capture application was developed on a Motorola A1200

smart phone (Figure 26). The A1200 handset is a high-end mobile device equipped with

MontaVista® Mobile Linux operating system, 2 mega-pixel Micron color imager, Intel

XScale 312MHz processor and 1Gigabyte micro SD card.

77

Figure 26 the A1200 Smart Phone

The samples capture application starts with a configuration form as shown in

Figure 27. In this form, the user specifies whether hand images or background images should

be collected. The form also allows the user to adjust six parameters that controls the

application behavior: number of samples to collect, interval between two consecutive sample

collections, the segmentation intensity threshold, percentage of hand area coverage in the

whole image, allowed variance in hand area coverage percentage, and whether or not audio

prompts should be used. The application collects image samples at the specified interval,

until the specified number of samples has been collected. By default, the hand area coverage

is set to be 40% with a 5% variance allowed, and audio prompt is set to be true. More details

of the hand area coverage and hand area variance values can be found in the sections below.

78

Figure 27 Screenshot of the Configuration Form of the Sample Collection Application

There is no special preprocessing for background images since every pixel within

such images belongs to the same category, i.e. the “non-hand” category. However this is not

the case for hand image samples. This is because the hand is a highly articulated object and is

very flexible and deformable. Thus, there are inevitably many non-hand pixels which belong

to the background captured into a rectangular image that contains the hand. The approach to

clean these background pixels is to perform preprocessing on the collected hand images. I

use the steps described below to retrieve background-free hand images.

79

Figure 28 Screenshot of the Viewfinder of the Sample Collection Application

First, the user put his/her hand before a single dark colored background, e.g. a blue

wall. The hand is captured by the sample collecting application into a raw hand image Iraw,

with mixed hand and background pixels.

Then, the application saves a grayscale image Igray from Iraw. It applies intensity

threshold S on the Igray in the following fashion: If Intensity(Igray, X, Y) < S, then Igray(X, Y) =

0; otherwise, set Igray(X, Y) = 1. After this, a binary mask is obtained over the raw hand

image, where pixels of low intensity are set to logical false while pixels of high intensity are

set to logical true. Because the user is asked to take the hand image before a dark colored

background. The application can assume that hand pixels are set to logical true while

background pixels are set to logical false.

The application verifies if the threshold segmentation is correct by calculating the

percentage P of logically true pixels in the mask:

80

P = %100*
rOfPixelsTotalNumbe

ixelsgicalTruePNumberOfLo

Equation 8 Logical True Pixel Percentage

It only uses Iraw if P is greater than the segmentation intensity threshold. Lower than

segmentation intensity threshold could indicate that the segmentation is not successful. In the

case that Iraw is not to be used, the application does not increase the “collected” samples

counter in this run and gives the user a corresponding audio prompt through text-to-speech

engine, if the audio prompt option is set.

If Iraw is to be used, then the application uses the mask generated from Igray to mask

out the background pixels. After this step, a color image of the hand should be obtained

which is background-free. The application saves this image as a positive sample and prepares

for the next capture.

Figure 29 shows examples of the raw image, binary mask and the preprocessed

positive sample, respectively. In the sample collection phase, 500 images of each category of

positive samples are collected, at 2 fps rate. That is, it normally takes 5 minutes to collect

positive samples for one hand posture.

81

Figure 29 Raw Hand Image (Left), Binary Mask (Center) and Segmented Color Hand

Image (Right)

As mentioned before, pixels are not the only data collected by the sample collection

application. Each training image sample (hand or non-hand) is collected together with the

mobile device’s motion data with wireless accelerometer/tilt controller affixed to the mobile

device (Sparkfun WiTilt, Figure 30). How the acceleration data is used for image selection is

described in detail in section 5.2.2.

Figure 30 the SparkFun WiTilt Wireless Accelerometer/Tilt Controller

82

5.2.2. Positive Image Selection Component

Following sample collection, I am able to obtain a set of positive and negative

sample images. Among them, all the positive samples satisfy the exposure and depth

thresholds requirements and have the hand image segmented. These images are ready for

color model training, but not ready for shape model training yet. The main reason is image

blur caused by camera movements during sample collection.

Although improper focus can also cause image blur, it is the secondary issue to

address when dealing with hand image capture. The reason is that the training hand images

are collected in a semi-controlled environment: the hand has to be within a certain distance

from the mobile device camera due to field of view limitations; and the requirement for dark

color background also helps the imager to easily focus on the hand. In contrast, the slim form

factor of a mobile device makes its imager very sensitive to users’ hand movements. The

small field of view of the mobile device camera exacerbates this problem.

There have been off-the-shelf deblurring algorithms, such as the Lucy-Richardson

algorithm [64] and Wiener filter [65] but they are post-processing techniques. These

techniques reconstruct the camera motion from the captured image and have no knowledge

of the actual motion data. In this thesis, I use an approach that integrates acceleration data to

understand the camera motion. Unlike post-processing techniques, this approach captures the

camera motion proactively and stores it together with the captured images. To reduce false

alarms and make use of the user’s knowledge for the cause of the blur, an arbitrary

acceleration threshold is to be selected by the user over the collected image samples. The

user adjusts the level of acceptable levels of motion, and images that satisfy the motion

threshold are chosen to be incorporated into the model training process. Once the motion

83

threshold is finalized, unqualified images are deleted and thus training with bad data is

eliminated to the best of the user’s knowledge.

The accelerometer on WiTilt outputs accelerations along X, Y and Z axis. Total

acceleration of the board is measured as:

222

zyxtotal AAAA ++=

Equation 9 Total Acceleration Calculation

As the WiTilt board has on-board Bluetooth transceiver, data is collected at 50 Hz

rate and the total acceleration through the duration of one capture interval is recorded as the

metric of mobile device motion during one sample capture.

5.2.3. Statistical Model Training Component

Following image collection and sample selection processes, the positive and

negative sample databases are ready to be used to build statistical models. Two kinds of

statistical models of the human hand are to be built, namely the color histogram model and

the shape classifier model.

The argument for developing a color histogram model for the hand is that human

skin usually differs from environment in color. The differences can be described by a

distribution of skin color in color spaces, usually in the form of a histogram. I train the color

histogram in normalized RGB color space, with 256 bins on each color dimension. In the

color space I choose, all colors that can be displayed are specified by the red, green, and blue

components. One color is presented as one point in a three-dimensional space whose axes are

the red, green, and blue colors. As a result, a cube can contain all possible colors ([59]). This

84

space and its corresponding color cube in this space can be seen in Figure 31 ([60]). The

origin represents black and the opposite vertex of the cube represents white.

Figure 31 RGB Color Space and the Color Cube

There are two implementation details which should be noted. Due to the memory

and bus bandwidth limitation of mobile device imagers, they normally do not save raw image

directly in RGB color space. Instead, another color space YUV is used, where Y indicates the

luminance of a pixel while U and V indicate the chrominance. The mapping between YUV

format pixel and RGB format pixel can be described by Equation 10 ([61] [62] [63]). To be

more specific, the A1200 device saves raw pixels in a compressed variant of YUV format

called YUV422. The YUV422 format uses 4 bytes (U, Y1, V, Y2) to denote a pixel pair (Y1,

U, V) and (Y2, U, V). The reason that compression of two neighboring pixels with same U

and V value is feasible is because of human visual perception, which is sensitive to

luminance variance but relatively insensitive to chrominance variances. These format

85

conversions are implemented by the sample collection component so that the model training

component can safely regard image collected are in RGB format.

−−=

V

U

Y

B

G

R

003211.21

58060.039465.01

13983.101

Equation 10 YUV to RGB conversion

Also, due to change of illumination, objects that appear to have the same color in

human eyes might have quite different RGB values under different lighting conditions. To

address this I use normalized RGB instead of RGB values. Normalized RGB values

normalize each color component by an illumination factor, as shown in Equation 11:

BGR

B
B

BGR

G
G

BGR

R
R nnn

++
=

++
=

++
= ;;

Equation 11 Calculation of Normalized RGB

The training of skin color model is performed on the average image of all collected

hand image samples and takes less than a second to process 100 images. The hand shape

model training process follows the skin color model training process.

Shape-based statistical training methods map an image into one or more feature

vectors, and store the knowledge retrieved from these vectors as the representative model for

the presence or absence of a certain object. There are several choices for feature selection.

The haar-like features, as shown in Figure 32, computes the intensity difference of

neighboring rectangular areas as feature values. The advantages of haar-like features are that

they are easy to compute if the image is pre-processed into an integral image ([53]), and

86

captures texture characteristics of an object, rather than the contour lines. Figure 33

illustrates three instances of harr-like features when used for hand recognition from

background, from left to right they are of type 1, 2 and 1 respectively. Another feature type

that under consideration is SIFT (Scale Invariant Feature Transforms) proposed by Lowe et

al ([66] [67] [68]). As the name implied, this type of features is robust to scale and rotation

changes of a certain object in the image. It is also robust to partial occlusions. Both haar-like

and SIFT features require only grayscale images.

Figure 32 the 14 Haar-like Features used in Hand Tracker

In this work, I choose to use haar-like features to build hand shape models. This

choice is mainly based on the availability of software package support. Haar-like features

have been widely used in vision-based object recognition systems and well supported by

publicly available software packages. Haar-like features computation, together with the pre-

processing step of image integration proposed by Viola and Jones ([53]), are the de-facto

object recognition methods in Intel’s Open Computer Vision library. Alternatively, software

packages that support SIFT features computation are relatively fewer in quantity.

1 2 3 4 5 6 7 8

9 10 11 12 13 14

87

Figure 33 Instances of Haar-like Features in Hand Detection

5.3. Interactive Computing Components

The interactive computing components group works in the environment where live

video is captured and processed in real-time. In the hand tracker context, I define ideal real-

timeness as in synchronization with the VE display frame rate. A typical VE displays

interactive image at 15 – 30 Hz. Converting to latency, the summed processing time of the

hand tracker on a single camera frame has to be within 33-66ms. This range also fits the

conclusion of the study results of Sheridan and Ferrell ([71]), which concludes that a

maximum latency between event occurrence and system response of 45ms to be experienced

as “no delay". In the same work Sheridan and Ferrell also state that the threshold of 300ms

for when interfaces start to feel sluggish, might provoke oscillations, and cause the “move

and wait" symptom.

Components in the interactive computing group include the detection component,

which detects the hand presence in a video frame; the tracking component, which updates the

hand location in the video frame once it is detected; and the recognition component, which

identifies the posture of the hand. In the following sections, each component is described in

detail.

88

5.3.1. Detection Component

From a high level perspective, hand detection is a pattern matching process (so is

hand recognition), where the presence of hand is compared with the statistical models built

earlier by the off-line pre-processing components group. As I have two kinds of statistical

models pre-built - the skin color model and the hand shape model - there are two sequences

to make use of them:

Sequence 1 is to use the skin color model to identify the hand from its background

then obtain one or more hand-colored foreground blobs. Shape models are subsequently

applied on these discovered blobs to verify if it is truly a hand posture in the pre-defined

posture vocabulary.

Sequence 2 is to use the hand shape model to identify a specific hand posture from

the captured image, and then use the skin color model to verify that the object retrieved is

indeed a hand and not a hand-like object that does not have the skin color. In the personalized

hand detection process, color verification is also helpful in filtering out the hands that do not

belong to a specific user.

By comparing the two sequences, I choose to use the shape-first-color-second

sequence for several reasons. Firstly, using a shape-based model to do the first level

identification eliminates more false positives than using color-based model to do the same

job. Foreground color blobs that are identical or close to the skin color are not rare

occurrences, although most of such blobs can be rejected by shape-based models with

relative ease, bringing these false positives into the second level identification stage is not

necessary. Secondly, to identify the skin color foreground blobs calls for a scan of the whole

89

image area, whereas identifying a specific posture could be conducted in one or more smaller

predefined range-of-interests (ROIs) in VE space. Given that the computational load is

linearly correlated with the size of the scan area, color-first-shape-second sequence pays a

higher computation penalty than shape-first-color-second sequence. Lastly, using the color-

based model to do the first level identification has the problem of scalability with respect to

the number of predefined hand postures, i.e. the hand posture “vocabulary”. All identified

skin color foreground blobs need to be examined against all possible postures in the

predefined vocabulary. Conversely, in shape-first-color-second sequence, there is only one

comparison with the skin color model needed once the hand posture is identified from the

ROI.

Figure 34 the “V-Shape” Posture Used for Hand Detection

Based on the above reasons, I choose to use the shape-first-color-second sequence.

The other design consideration is whether to give the user complete freedom of exhibiting

his/her hand at any posture and at any area of the camera’s field-of-view to be detection, or to

set up a certain protocol as an agreement between the user and the hand tracker, only when

this protocol is followed then the hand will be detected? I believe that when used for

interactive purpose, the detect component’s reliability is more important than its detection

rate. Missing one or two frames that contains the hand shape form is acceptable – after all, it

90

takes much longer for the human hand to enter/exit a scene than the time of a video frame

update. Conversely, reporting a hand presence while there is actually no hand there will

trigger false responses of the system, and in turn frustrate the user who is using the

interactive environment. Thus, I use the “V-shape” posture as shown in Figure 34 for hand

shape detection. The protocol is as follows:

• The detector regulates one or more configurable sub-areas of the camera

field-of-view that it constantly monitors for hand presence. These sub-areas

are called “hotspots”.

• When the user would like to start an interactive session, he/she places the

hand in front of the camera, making the hand image fall into one of the

“hotspots”.

• Not only does the hand need to be within a “hotspot”, it also needs to be of

a specific posture configuration. Figure 34 shows the “V-shape” hand

posture I used for the interactive system.

• Once the detector identifies that the hand image in the “hotspot” is related

to the predefined posture, it then uses the user’s skin color model to judge if

the hand-shaped object is indeed of the user’s skin color. If the verification

is positive, then the detector deems that hand presence has been detected.

The method that the detector uses to detect a posture match is to scan the image

area with the template scaled at various sizes. As illustrated by Figure 35. If the hand image

is completely within the hotspot boundary and it could be covered by a scaled template

91

image, then a shape match is returned. The accuracy of detection is independent of the

hotspot area size. However, scanning time is tightly correlated with the hotspot size. I present

these results in the evaluation section.

Figure 35 Template Matching at Different Scales on a Sample Video Frame, the Posture

is Matched at Scale Level 4.

92

5.3.2. Tracking Component

The hand tracking process is different from the hand detection process as described

above. In the hand detection process, whether the hand is in camera’s field-of-view or not is

not known a priori by the detection component. The detection component needs to constantly

monitor all the ROIs to respond to the predefined hand posture presence. However, during

the tracking process, the presence of the hand in camera’s field-of-view is known a priori,

what is to be determined is where the hand is located in the next video frame. Tracking starts

right after the hand is detected and stops when no satisfying cues could be found to identify

the hand existence in the next image frame.

The human hand is a very adept part of the body as it is highly deformable, thus

could exhibit a large quantity of arbitrary shapes. At the same time, the multiple joints in

upper limb give a high degree-of-freedom to the hand, making the combinations of in-plane

rotation and 3D rotations a big set. Because of the forbidding numbers of possible hand

configurations, tracking the hand by testing a classifier set against each video frame is not

practical. To address this challenge, Kanade, Lucas and Tomasi proposed a method to find

the steep brightness gradient along multiple directions. These gradients are called KLT

features after the creators’ initials ([58]). In this work I use multiple KLT features to track the

hand once it is identified by the detection component and the heuristic rules described in [33]

to manage these KLT features. The implementation scans two consecutive video frames to

track 30 KLT features and makes use of off-the-shelf KLT feature tracking function from the

OpenCV library [73].

93

5.3.3. Recognition Component

Figure 36 the Three Hand Postures Used for Posture Recognition

The recognition component fulfills a task that is different from the ones fulfilled by

the detection and tracking components. Similar to the detection component, the recognition

component also works on ROI. But the ROI here is not the “hotspots” handled by the

detection component, but rather the image area identified by the tracking component of hand

presence. The recognition component constantly monitors the tracked ROI and identifies

possible presence of the predefined hand postures. In the implementation, the recognition

ROI size is 320 by 240.

Figure 36 shows the three hand postures predefined in the posture vocabulary: “V-

shape”, “flat” and “arrow”. Once the hand is tracked, the image area contains the tracked

hand is processed by the recognition component and compared with all three postures. If the

shape-based statistical model and the skin color-based histogram both report positive for a

predefined posture, then the recognition component assert that the posture is performed by

the user and transmits this decision forward. As I can see, except that the ROIs worked on are

different, the tasks performed by the recognition component are almost identical with the

tasks performed by the detection component.

94

Determining how to predict the recognition scan area and scan scales from the

tracked hand position is the key in determining the recognition rate and performance.

Because the recognition component only scans the predicted recognition area, inevitably

some postures will be missed when they are out of the predicted recognition area. However,

if I set the recognition area to be too large, then the recognition performance will plummet. In

[33], the author proposes the prediction area as described below:

Given the center position reported by the tracking component to be [Cx, Cy] and the

last match scale to be S. Predict the scan area to be a boundary box centered at [Cx, Cy] and

of width 2 * S * TemplateWidth and of height 2 *S * TemplateHeight, and predict the scan

scales to be [S/1.75, S*1.75].

The advantage of the prediction algorithm proposed in [30] is that it takes a

constant time to compute, regardless of the scale level used for prediction. However, this

advantage is built on two other drawbacks: firstly, the normalized scan scale range of this

algorithm is (S’, S’*3.06). However, to effectively capture a 25 by 25 pixel template in a

VGA size video frame, the theoretical scales range needs to be within (1.0, 18). In practice,

the range of (1.0, 8.0) is the minimum to achieve satisfying capture results. This is still much

larger than the (S’, S’*3.06) range. If the hand has large depth movement since last match,

this algorithm is prone to not being able to recognize the corresponding hand posture in video

frame. Secondly, when the scale level of last matched image is small, to predict X-Y

movement by setting the scan area to be 2 * [scaled level times template size] is not valid

under many occasions, because the hand motion could easily exceed the boundary of the

predicted area. Say, for example, the hand image maintains 25 by 25 pixels in the video

frame but moves at 60pixel/frame speed, then the predicted area will never be able to capture

95

the hand image in the video frame. Because in the system presented by [30], all hand tracker

task computations are performed by a single laptop and workload optimization is critical, it is

understandable why the specific prediction algorithm is devised. In the hand tracker

implementation, because I have the scalable computing techniques to speed up processing

(more details to be given in Chapter 6), a reasonable amount of computation should be put on

the recognition process to increase recognition rate. Based on these observations, I design the

prediction algorithm as following:

Use two predicted recognition areas R1 and R2 for each recognition scan. Both R1

and R2 are centered at [Cx, Cy], which is the tracked hand position. R1 is of size 320 by 240,

and R2 is the smaller of the two areas: the whole video frame and a scan area four times of

R1. When scanning R1, use the scan range of [1.0, 8.0]; When scanning R2, use the scan

range [9.0, 12.0].

Similar to the algorithm in [30], the algorithm also computes in constant-time,

because the two scan areas of it are invariant across frames. The reason of only applying

large scale levels on the latter scan area is based on the observation that hand movement

simultaneously on all three directions are rare occurrences. Although it takes more time than

the method in [33], there do exist scalable computing techniques than can significantly

improve processing performance (scalable computing techniques are presented in Chapter 6

in details). Also, the method has no preference over a certain scale range and gives the hand

posture presence in between scales [1.0, 12.0] evenly and thus is able to recognize some hand

posture presence that the method in [33] would have missed. Over a video sequence which

consists of 5597 frames, this prediction algorithm is able to recognize 2962 hand postures

while the algorithm proposed by [30] captures 2560.

96

5.4. Evaluation Results

In this section four important metrics of the hand tracker implemented are

evaluated. The first is the effectiveness of the sample collection method in improving the

shape model quality. The remaining three which are latency related are performances of 1)

the detection component, 2) the tracking component and 3) the recognition component.

The evaluation experiments are undertaken on the head node of a computer cluster.

The node is 64bit architecture with 2 AMD Opteron processors (2 GHz, Model 246) and

4GB of DDR 400 MHz RAM. The operating system is SuSE Linux 10.

Time is measured with the Linux clock() system function call. Experiments show

that the clock() call is capable of reporting time at a precision of 10 milliseconds. The low

resolution is due to the fact that the clock() call is subject to context switch latencies.

Although I have implemented a time measuring tool elsewhere [74] which is able to measure

at microsecond precision but it is not incorporated in the hand tracker due to current software

library compatibility issues.

The camera used here is Flea® (PointGrey, Vancouver, BC, Canana). The Flea® is

a compact IEEE1394 camera with a 1/3” Sony CCD and 12 bit analog to digital converter.

The resolution used is 640 by 480 and due to OpenCV driver limitation, live video is

processed in grayscale mode.

5.4.1. Effectiveness of Sample Collection Method

500 hand images are collected for each hand posture and a mixture of 4000 non-

hand images are collected as well to train the shape model. Within the 500 hand images, 50

are collected from the sample collection application on the A1200 device, the other 450 are

97

derived from the first 50 images by applied a random rotation angle from -5 degrees to 5

degrees. Out of the 4000 non-hand images, 3000 are from an online negative sample database,

1000 are collected at EVL-UIC. Again, the first 100 EVL-UIC images are collected using the

sample collection application on A1200 device, and the remaining 900 are derived by

applying -5 degrees to 5 degrees rotation angles.

To evaluate the effectiveness of the exposure and depth threshold control methods,

classifier performances are tested under three conditions. The first condition, illumination

and motion controlled, enables the segmentation intensity threshold in the sample collection

application for hand images, and restricts the total non-gravity acceleration to be 0.1g during

the shutter time for both hand and background images; the second condition keeps the

illumination constraint on hand images, but not the motion restriction on either hand or

background images. Instead, it does post-processing of deblurring on the collected images

using Lucy-Richardson algorithm [64]; the third condition just uses timed capture to get the

hand images and background images, and does not apply any constraints during the image

collecting process. I then use 1500 hand posture images and 1500 background images to train

the haar-feature shape model under these three conditions, and use the remaining 1500

background images as testing sample to obtain detection rate and false alarm rate data to be

plotted into a receiver operating characteristics (ROC) graph. Each ROC curve consists of 16

data points with varying parameter configuration of the hand shape model to output different

detection-rate and false positive rate value pairs.

98

Figure 37 ROC Curves Showing the Comparison among Illumination-and-Motion-

Controlled, Illumination-Controlled with Deblurring and Uncontrolled Sample

Collection Methods

Figure 37 shows the ROC curves for the hand shape models trained under the three

conditions. It can be observed that without any constraints enforced, the noisy samples make

the shape model’s performance low: the best detection rate is 0.43, while the best false

positive rate is only 6.44 * 10
-3

. Considering when the template size is 25 by 25 and the

frame image size is 640 by 480, each frame contains about 4.7*10
4
 template size sub-areas.

The false positive rate is equivalent to 8-9 false alarms in each video frame. This accuracy

performance is not acceptable for the needs.

99

By applying illumination constraints significantly improves the performance of the

hand shape model trained, the best false positive rate I can get increases to 7.02 * 10
-8

, this is

about one false positive every 300 frame images when performing 25 by 25 template scan

over 640 by 480 frame image. However, when the best false positive rate is achieved the

detection rate is only 0.06. Actually, the best detection rate of the trained hand shape model

is only 0.65. Obviously, this sample collection method does not suit for the need, albeit it

already far outperforms the uncontrolled method.

When both illumination and motion constraints are enforced, I am able to obtain

both satisfying detection and false positive rates. When the detection rate is 0.82, the false

positive rate is 5.6 * 10
-8

, which is about one false positive every 380 frames. Given the

frame capture rate at 50 frames per second, this is equivalent to one false positive every 8

seconds. In the implemented system with the second stage skin tone verification, I observe

about 3 false positives in a 5597-frame video sequence.

5.4.2. Computation Performance of Detection Component

The processing time of the detection component is almost linearly correlated to the

hotspot size. Figure 38 illustrates the processing time of the detection component from frame

to frame, when the hotspot area varies from 10% to 100% of 640 by 480 frame image. The

detection time is about 15 milliseconds when the hotspot accounts for 10% of the frame size,

i.e. 200 by 150 pixels. When the whole frame image is monitored, the processing time is

about 205 milliseconds.

100

Figure 38 Processing Time of the Detection Component, with Difference Sizes of the

Detection Hotspot

In the implementation of the hand tracker, the detection hotspot is set to be 320 by

240, i.e. the hotspot accounts for 25% of the frame image size. Figure 39 illustrates the

processing time I recorded in 682 consecutive frames. In 99% percent of the frames,

detection component takes 50 milliseconds, while in the rest 1% it takes 60 milliseconds. The

average detection processing time is 50.1 milliseconds and the standard deviation is 1

millisecond.

101

Figure 39 Processing Time Distribution of Detecting Hand in a 320 by 240 Hotspot from

Frame to Frame

5.4.3. Performance of Tracking Component

I empirically choose 30 to be the number of KLT features to be tracked between

two consecutive frames. A value less than this makes the tracker prone to tracking loss, while

a value larger than this makes the number of falsely tracked features to increase. When 30

KLT features are tracked from frame to frame in 682 consecutive frames, the processing time

varies from 10 milliseconds to 30 milliseconds and no more than 30 milliseconds. The

average tracking processing time is 18.48 milliseconds and the standard deviation is 4.24

milliseconds. 80% of the frames are processed between the 10 milliseconds- 20 milliseconds

range and 98% of the frames are processed within 20 milliseconds.

102

Figure 40 Processing Time Distribution when Tracking 30 KLT Features from Frame

to Frame

5.4.4. Computation Performance of Recognition Component

According to the recognition area prediction algorithm, the recognition component

scans two areas R1 and R2. Size of scan area and scale ranges when scanning R1 is the same

as scanning of the hotspot area by the detection component. Besides R1, the recognition

component also needs to scan R2, which is the lesser of the whole frame image and an area at

four times the size of R1, at the large scan scale range. The workload of scanning R1 is the

same as the workload for scanning the hotspot by the detection component. While scanning

R2 introduces extra processing workload. Figure 41 illustrates the recognition processing

time recorded over 682 frames. 94% of the frames are processed at 60 milliseconds, 5% of

the frames are processed at 70 milliseconds and 1% of the frames are processed at 80

milliseconds. In the experiments, the average recognition processing time is 60.67

milliseconds and the standard deviation is 2.79 milliseconds.

103

Figure 41 Processing Time Distribution of Hand Recognition from Frame to Frame

5.4.5. Overall Frame-to-Frame Latency of the Hand Tracker

The frame-to-frame latency of the hand tracker is defined as the time for detection

in each frame (when the hand tracker is in the detection state), or the sum of tracking and

recognition in each frame (when the hand tracker is in the tracking state). From the results

above it can be seen that the frame-to-frame latency is about 50 milliseconds when the

tracker is in detection state and about 80 milliseconds when the tracker is in the tracking state.

If I do not perform posture recognition task under the tracking state, then the frame-to-frame

latency is about 20 milliseconds. So, under the three conditions: detection, tracking with

posture recognition and tracking without recognition, the frame rate should be 20, 12 and 50

respectively. In the actual system, due to two other latencies: hardware capturing latency of

the camera imager and display latency of the rendering, the frame rates measured are

averaged at 17, 9 and 38 frames per second under these three circumstances.

104

5.5. Conclusions and Discussions

In this chapter the design and implementation of a hand tracker are described in

detail. The implemented hand tracker is able to perform at interactive rate (about 10 fps when

both tracking and posture recognition are undertaken) and satisfy recognition accuracy for

VE applications. Compare with other state-of-the-art hand tracking systems, this work stands

out with the following unique features:

Efficient use of both the cameras on mobile device and in interactive

environment

As best as I know, this work is the first that fully uses the camera on a mobile

device to collect hand and non-hand image samples for statistical model training, and uses

the camera in an interactive environment for hand tracking and gesture recognition once the

statistical models are trained. This task separation makes efficient use of both computing

platforms: the mobile device and the VE, with no sacrifice for posture recognition

performance and accuracy. Due to the fact that in present days imagers are almost a

commodity component on mobile devices, this work finds new potentials to make better use

of them.

Combines both tracking and controlling functionality

The hand tracker acts not only as a 2-D coordinates tracking device, but also a

three-button control device. This fits the requirements of the majority of VE applications,

which call for inputs from both trackers and/or controllers. 2-D tracking is using optical flow

methods, which guarantees an interactive rate for the computation, while controlling is

handled by template matching, thus recognition accuracy is achieved.

105

Constructs and makes use of the personalized profile effectively

Besides the shape model training in the form of classification trees, this work also

constructs and makes use of the skin tone profile of the user. Skin tone, as an important

biometric feature, is captured and modeled completely on the mobile device. The use of

personalized skin tone information incorporated in color models improves the recognition

accuracy when classifying hand and non-hand objects, as well as hands from different users.

Distributive acquisition and storage of the skin tone profile with personal mobile devices

solves the problem of maintaining a monolithic database for all users, and makes sure that the

skin color profile is always available when the user needs to perform human-computer

interaction in a new VE. This solution is thus highly scalable.

Proactive use of motion data to facilitate high-quality sample collection

Acceleration data, when captured synchronously with pixel data, is shown to be

effective in addressing an important challenge for user-conducted image sample collection

process: image blur caused by camera motion. This work is the first that studies

quantitatively the comparison between effectiveness of proactive motion-sensing and post-

processing deblurring methods, and shows that the proactive motion-sensing method help to

build higher quality hand shape models. Because of the introduction of the motion-sensing

element, the sample collection application gains both friendliness and robustness to a degree

so that it can be used on a mobile device.

With all the above statement said, there are also opportunities to improve this work.

First, SIFT features could be used instead of haar-like features because of the advantage of

scale and rotation invariance. Due to the exactness match of SIFT key points, the method has

106

an overtraining problem but this could be compensated by boosting methods ([56] [70]). As

aforementioned, the main barrier to implement the SIFT-based hand detector is availability

of supporting software packages. To use a publicly available SIFT implementation named

libsift ([69]) is a follow-up of this research work.

The second opportunity is to further investigate the use of multi-sensor data for the

components of the hand tracker. Besides the use of an accelerometer, other sensors can also

improve the performance from multiple aspects for the hand tracking tasks. For example, a

magnetometer can indicate the geographical direction the user is facing when collecting hand

samples, and thus get better natural lighting calibrations. Similarly, if a gyroscope is attached

to the user wrist while he is using the hand tracking component in interactive computing

mode, the rotational accelerations from the gyroscope can help the tracker to adjust the

rotation angles of the gesture templates as well. The idea of proactive use of sensor data on

mobile device in this chapter is just the beginning effort to explore the usefulness of such

techniques, and could certainly be extended to cover a broader scope of application fields.

The third opportunity is computation scalability. Grouping of computational

components of the hand tracker into off-line preprocessing and real-time computing defines

the corresponding roles in a synergy of the mobile device and the VE. The multimedia

peripherals of the mobile device are maximally utilized. In the mean time, the mobile

device’s processing capacities are also made proper use of by the image preprocessing task.

On the VE side, its more powerful computation capacity makes it a good candidate for model

training. However, as have been seen in the evaluation results, a single desktop system still

cannot fulfill the combined hand tracker tasks at very satisfying frame rate. To make use the

processing capacity in the infrastructure with higher efficacy, high performance computing

107

techniques should be considered and corresponding solutions need to be developed. In

chapter 6 I present the scalable computing techniques devised to address the high

performance hand tracking problem.

108

6. SCALABLE COMPUTING TECHNIQUES FOR HAND TRACKING

In Chapter 5 the design and implementation of a hand tracker are presented. By

using shape-based model matching with skin color verification, the tracker achieved

satisfying detection and false positive rates. However as described in the discussion above,

lack of scalability is the hand tracker’s characteristic that can be further improved. For

example, due to the requirement for real-time response time for hand detection, the tracker

only monitors a sub-region of the camera field of view. This is counter-intuitive as to how a

vision-based system is expected to behave. In fact, one of the main desired features of a

vision-based tracking system is that camera existence is nearly unnoticeable. Asking the user

to follow an explicit protocol for hand detection undermines this goal. If I look further into

the hand tracking process, I can also find that hand detection and posture recognition belong

to a special category of pattern recognition problems, where the test data itself is dynamic

and time-sensitive. Latency in processing of one test sample might cause the system to miss

one or more subsequent test samples, and thus give an adverse result not as expected by the

user. Based on these observations, this chapter investigates the opportunities to apply

scalable computing techniques for the computation-intensive tasks of the hand tracker. The

goal is to achieve throughput improvement and processing time speedup, at a reasonable cost

of the infrastructure resources. I introduce a novel data structure, called the scanning node

tree, which is able to organize multiple processing nodes into effective synergy for hand

tracker tasks. Scanning node tree not only fits pre-connected computer clusters, also is

suitable for ad-hoc systems because of its multi-hop nature. Then I present a load balancing

algorithm which is to automate the scanning node tree construction process, as well as task

109

partitioning optimization. At last, detailed evaluation results are given with respect to the

several key metrics of the scalable computing performance.

6.1. Problem Statement

Scalable computing is broadly defined as being able to handle a growing amount of

computing workload in a graceful manner. In the hand tracker case, the problem is how to

orchestrate a computer cluster to speed up the processing of hand detection and posture

recognition. More specifically, I aim to achieve the following goals:

• Increase the throughput of the processed video data.

Because the hand tracker process a portion of the whole frame image for each video

frame, under the same frame rate, the higher amount of video data the hand tracker is able to

process, the larger percentage of the frame image is able to be covered. In practice, at present

day a video frame’s resolution ranges from VGA (640 by 480) to 4K (4096 by 2160), using

more processors in a computer pool should be able to handle video frame increases

gracefully.

• Decrease the frame processing latency and increase frame-per-second metrics

Frame latency introduced by processing of the hand tracking tasks is a major factor

that determines the user’s experience. The time gap between the performance of a certain

posture by the user to the application’s response to the user with a perceptual modality

(visual, audio or haptic) is the key to the experiences of using a VE. With regard to the

frame-per-second metric, it is worth noting that the overall latency of a vision-based tracking

system is not solely determined by the frame image processing task but also by other factors,

such as video capture and tracking data output methods.

110

• Get polynomial, preferably linear curve of speed-up values against number of

computation nodes.

In a perfect world the processor pool that can be used has unlimited number of

nodes to be chosen for any cluster computing algorithm. In the real life the number of nodes

in a computer cluster is usually limited. This is especially true in Beowolf8 clusters because

they normally use messaging passing software for parallel processing. I would like to use

only reasonable number of cluster nodes to fulfill certain size of hand tracking computing

task. The bottom line is that the number of computation nodes should increase polynomially

and not exponentially with the task size increase. Preferably, number of computation nodes

needed should increase linearly with the task size increase.

• Balance the computation load as evenly as possible among participated cluster

nodes.

I would like the computational load assigned to each participating node in the

computer cluster to be as even as possible. One advantage of load balancing is that it could

help to reduce frame processing time, because frame processing time is determined by the

longest time a node takes to process a sub-task of the hand tracker. Another reason of the

load balancing is that the computer cluster usually handles multiple jobs at the same time

period and the hand tracker is just one of them. To be as friendly as possible to other

processing jobs maybe the best way is to develop an even load of CPU usage on each cluster

node.

8 A Beowulf cluster is a group of usually identical PC computers running a Free and Open Source Software (FOSS) Unix-

like operating system, such as BSD, Linux or Solaris. They are networked into a small TCP/IP LAN, and have libraries

and programs installed which allow processing to be shared among them.

111

• Get low overall computation and communication overheads

With the advantage of parallel processing, a parallel processing solution has the

cost of processing and communication overheads. The processing overhead is introduced by

the overlaps among sub-tasks when the original task is divided, while the communication

overhead is usually defined by the passing of data and control messages when a message

passing implementation is used. I would like to get low computation and communication

overheads when the parallelization solution is used.

The goals are to be achieved with a reasonable assumption of the characteristics of

the computation resources in the infrastructure. First, I assume that these computation

resources consist of multiple computer nodes which are interconnected through network links,

the interconnect topology can be either central-switched or ad hoc. Next, I assume that the

computation resources can be described by LogP model ([78]). The LogP model

characterizes a parallel machine by the number of processors (P), the communication

bandwidth (g), the communication delay (L), and the communication overhead (o). Besides

its basic form, LogP also has an extension model called LogGP [79] (G captures the

bandwidth obtained for long messages) to make it more realistic under the circumstances that

long messages are passed among computer nodes. Because the longest message to be sent in

the hand tracker case is a VGA sized grayscale frame, the size is about 640x480 bytes and

counts for only about 3% bandwidth of a gigabit network link. Use LogP to characterize the

computation resource in the infrastructure is enough and appropriate.

6.2. Scalability Analysis for Hand Tracker

112

In this section, I give an in-depth anatomy of the computation tasks performed by

the hand tracker. Recall that the interactive computing components group consists of the

following three components: hand detection component, hand tracking component and

posture recognition component.

The hand detection component monitors the pre-defined detection hotspot and

report hand presence when there is a pattern matching. The monitoring process is by

scanning the hotspot area of each frame with different size-scaled posture templates, each

template matching is added to a matching list, when the whole hotspot has been scanned the

best one in the matching list is reported as the hand detected. The hand detection component

takes about 50-60 milliseconds processing time on a 320 by 240 hotspot area.

If in the interactive environment a VGA resolution (640 by 480) camera is to be

used, then a hand detection component that is able to run at 50-60 milliseconds per frame is

able to monitor only a quarter of the frame image size. The processing time bottleneck at a

single node prohibits the monitoring hotspot from being enlarged. This as described, is the

throughput problem I am trying to address. Then again, if I define multiple hotspots to be

monitored, each of them is of the same hotspot size that a single cluster node could handle

within 50-60 milliseconds time, but the hotspots are assigned to multiple cluster nodes to

process. Then it is possible that the whole tracker’s detection throughput can be improved.

From the overhead perspective, the preferred data partition will be making the hotspots

disjoint with each other. i.e. they do not have overlapped areas. This is acceptable by the

interactive environment user. Figure 42 shows the proposed parallelization solution.

113

Figure 42 Illustration of the Hand Detection Component Parallelization

The hand tracking component keeps a set of the KLT features identified after the

first detection, and then tracks them from one frame to the next using iterative pyramid

matching methods. When some KLT features are lost between two consecutive frames,

which is common in hand tracking, the hand tracking component is also responsible to

identify substitute feature points to maintain the size of the KLT feature pool. The hand

tracking component takes 10-20 milliseconds to calculate 30-50 KLT features across two

VGA (640 by 480) resolution frame images.

Unlike the haar-feature calculation process performed by the hand detection and

recognition components, KLT feature tracking does not calculate as many feature candidates.

The pyramid iterative method usually has a limited number of levels (the default levels value

used by OpenCV is 3), and just track the features without feature loss is very fast. At the

…

Image Scale 1

Image Scale 2

Image Scale M

Node 1 Node 2 … Node N

114

same time, either KLT feature tracking or replenishing need to be performed over the whole

frame image, rather than a sub-region because each level of the pyramids needs to be

obtained from the whole frame image. Considering these factors, cost introduced by

communication overhead of parallel KLT feature tracking will be at least comparable to the

speedup gained, if the cost is not outrunning the gains. These considerations make cluster

computing for KLT feature tracking less attractive and I decide not to incorporate this in the

scalable computing solution.

The posture recognition component scans a hotspot surrounding the tracked hand

position. If the hand hand performs a predefined posture, the posture recognition component

reports a match. The template matching method in the posture recognition component is the

same as the one used by the hand detection component. The main difference between the

recognition scanning and the detection scanning is that the hotspot used by the recognition

component is static in size but dynamic in location, i.e. in recognition task the hand tracker

always scans a fixed-size area around the tracked hand position. While the hotspots used by

the detection component are static in both size and location.

The data partitioning method used by the hand detection component, which divide

the whole frame image into multiple hotspots, does not apply to the recognition component

because the only hotspot needed is the one surrounding the tracked hand position. In this case,

I have to look at other parameters that could be used to divide the computation task. Look

deeper into the scanning algorithm, the scanning scales could be identified as such a

parameter. Figure 43 shows the proposed parallelization solution for posture recognition.

115

Figure 43 Illustration of the Posture Recognition Component Parallelization

One important point to be addressed is that simple divide-by-scales task partition

will not be able to achieve good load balancing results, nor even close to this goal. In Section

6.3.2 I give the details of a load balancing algorithm that solves this problem efficiently.

6.3. Cluster Computing for Hand Tracker Components

I use a computer cluster to run the hand tracker detection and recognition

components in parallel. These two components solve same type of scanning problems, and

the partitioning parameters are scanning area and scales. Instead of using standard cluster

computing middleware, such as Message Passing Interface (MPI), this work develops its own

message-based parallelization solution, build on the QUANTA transport library [72].

Image Scale 1

Image Scale 2

Image Scale M

Node 1 Node 2 … Node N

…

116

Two unique technical aspects of this parallelization solution are proposed and

implemented: first, a novel data structure, called scanning node tree. The scanning node tree

is devised specifically for scanning problems. Second, a dedicated load balancing algorithm,

based on the incorporation of both scanning area and scales.

6.3.1. Tree-based Node Organization

I organized the computation nodes in the infrastructure into a fanning-out tree. I

named this tree the scanning node tree and defined it as a data structure that has the following

characteristics:

• Can have one or more levels.

• Each tree node represents a node in the computation cluster and keyed by the

physical node’s IP address.

• Each tree node can have one or more children, or do not have children at all.

• Each tree node belongs to one and only one of node types: head node type and

worker node type. There can be only one head node in the tree, which is the

root. There can be multiple worker nodes.

• The head node has children which are worker nodes. Each worker node can also

have children that are other worker nodes.

• The link between two nodes is defined as a two-way network link that allows

transmission of data and command messages.

117

• Each node has two attributes: scanning area and scanning scales. A child’s

scanning area and scanning scales have to be a subset of it parent node.

Figure 44 illustrates the logical presentation of the scanning tree. In such as tree,

when a node is assigned a scanning task, it partitions the task and then assigns the sub-tasks

to all its children, if there are any. The node does not need to know whether its children will

propagate the sub-task again or not, nor does it need to know or instruct the children about

task partition strategy at the children nodes. At the same time, each child only fulfills the sub-

task assigned to itself and do not need to know the way its siblings work. The benefit of the

scanning node tree is that hand tracker tasks can be pre-partitioned at the global level, while

at each local node it is sufficient to have just a local list of the children, and maintains

communication link only with its parent and children. If the configuration of a certain node is

later changed, it does not affect any other nodes except its direct parent and children.

In implementation, the scanning node tree is stored in the format of a vector, where

each vector element is a quadruple {IP, AREA, SCALES, CHILDREN}. IP is the IP address

of the node if it is a worker. When the node itself is the head node, I define the IP field to be

DETECTION_HEAD for the root of the detection scanning node tree, and the IP field to be

RECOGNITION_HEAD for the root of the recognition scanning node tree. The area is a

quadruple {left, top, right, bottom} in percentage presentation of the whole frame image, for

example, area {0, 0, 0.5, 0.5}, when applied on a VGA (640 by 480) resolution frame image,

designates the area {0, 0, 320, 240). The scan scales specifies the start scan and stop scan

scales over the image area designated by AREA. For example, {1.0, 8.0} means that the

matching starts at the template size, and ends at 8.0 times of the template size. CHILDREN is

a vector that stores the children’s IP address of the node.

118

Figure 44 Logical Presentation of the Scanning Node Tree

Table 6 shows the example of the implementation of a scanning node tree. This is a

detection tree, where the head node is DETECTION_HEAD. The tree has two levels. The

head node has two children, one has the IP address 10.0.8.121 and the other has the IP

address 10.0.8.122. Node 10.0.8.122 furthermore has two children, which are node

10.0.8.123 and node 10.0.8.124. It can be observed that the head node partitions its workload

based on the scan area. For node 10.0.8.122, it applies a different partitioning strategy and

partitions the workload based on scales. Node 10.0.8.122 and its two children all scan the

same image area, but at scales {1.0, 2.0}, {2.0, 4.0} and {4.0, 8.0} respectively.

Head Node Worker Node H

W

H

W …

W … W

W

W … W

W

W

119

Table 6 Physical Implementation of the Scanning Node Tree

Node IP Scan Area Scan Scales Children Nodes

DETECTION_HEAD (0, 0, 0.5, 0.5) (1.0, 8.0) {10.0.8.121,

10.0.8.122}

10.0.8.121 (0, 0.5, 0.5, 1.0) (1.0, 8.0) NULL

10.0.8.122 (0.5, 0, 1.0, 0.5) (1.0, 2.0) {10.0.8.123,

10.0.8.124}

10.0.8.123 (0.5, 0, 1.0, 0.5) (2.0, 4.0) NULL

10.0.8.124 (0.5, 0, 1.0, 0.5) (4.0, 8.0) NULL

By using the vector-based implementation, the tree can be traversed from vector

item 0. For each vector item Vi, it knows its children by looking at CHILDREN (Vi).

However, items in CHILDREN (Vi) are IP addresses instead of vector index. For this

purpose, I construct a IP-to-ID map together with the tree. When each node is created, I push

it back into the vector, record its IP address and vector index, and put a tuple {IP, ID} into

the IP-to-ID map. Table 7 shows the IP-to-ID map constructed from the tree shown in Table

6. With this table I can iterate the sub-tree of the tree shown in Table 6 from any node. For

example, from the DETECTION_HEAD:

Start Tree Iteration:

CHILDREN (0) = {10.0.8.121, 10.0.8.122}

IP_to_ID (10.0.8.121) = 1 IP_to_ID (10.0.8.122) = 2

CHILDREN (1) = {NULL} CHILDREN (2) = {10.0.8.123, 10.0.8.124}

IP_to_ID (10.0.8.123) = 3 IP_to_ID (10.0.8.124) = 4

CHILDREN (3) = NULL, CHILDREN (4) = NULL.

End Tree Iteration.

120

Table 7 IP-to-ID Map Maintained by the Scanning Node Tree

IP ID

DETECTION_HEAD 0

10.0.8.121 1

10.0.8.122 2

10.0.8.123 3

10.0.8.124 4

In this hand tracker, the scanning node tree is defined in the configuration file of

the tracker. Two trees are defined, i.e. the detection tree and the recognition tree, in two

different vectors. The HW_DETECTION_CLASSIFIERS <number of detection nodes>

defines the size of the detection vector, while the HW_RECOGNITION_CLASSIFIERS

<number of recognition nodes> defines the size of the recognition vector. For each node, it

has one HW_CLASSIFIER_TYPE definition, specifies whether it is a head node or a worker

node, and how many children it has. The node also has a HW_CLASSIFIER_NAME

definition specifies the classifier file that node uses. Then follows is the

HW_CLASSIFIER_HOTSPOT definition describing the scan area in percentage of the

whole frame image. Next is the HW_CLASSIFIER_SCALES definition of the start and stop

scales. At the end of the node definition clauses are zero or more HW_CLASSIFIER_CHILD

definitions that specify the IP address of each node. Table 8 gives the full text of such a

configuration file.

121

Table 8 the Scanning Tree Defined in Tracker Configuration File

HandWand Configuration 1.0

#Number of detection classifiers

HW_DETECTION_CLASSIFIERS 4

HW_CLASSIFIER_TYPE HEAD 3 children

HW_CLASSIFIER_NAME buttons.classifier

HW_CLASSIFIER_HOTSPOT x=0.0->0.5, y=0.0->0.5

HW_CLASSIFIER_SCALES 1.0->8.0

HW_CLASSIFIER_CHILD 10.0.8.121

HW_CLASSIFIER_CHILD 10.0.8.122

HW_CLASSIFIER_CHILD 10.0.8.123

yorda1-10

HW_CLASSIFIER_TYPE WORKER 0 children

HW_CLASSIFIER_NAME buttons.classifier 10.0.8.121

HW_CLASSIFIER_HOTSPOT x=0.5->1.0, y=0.0->0.5

HW_CLASSIFIER_SCALES 1.0->8.0

yorda2-10

HW_CLASSIFIER_TYPE WORKER 0 children

HW_CLASSIFIER_NAME buttons.classifier 10.0.8.122

HW_CLASSIFIER_HOTSPOT x=0.0->0.5, y=0.5->1.0

HW_CLASSIFIER_SCALES 1.0->8.0

yorda3-10

HW_CLASSIFIER_TYPE WORKER 0 children

HW_CLASSIFIER_NAME buttons.classifier 10.0.8.123

HW_CLASSIFIER_HOTSPOT x=0.5->1.0, y=0.5->1.0

HW_CLASSIFIER_SCALES 1.0->8.0

HW_RECOGNITION_CLASSIFIERS 2

HW_CLASSIFIER_TYPE HEAD 1 children

HW_CLASSIFIER_NAME buttons.classifier LOCAL

HW_CLASSIFIER_HOTSPOT x=0.0->0.5, y=0.0->0.5

HW_CLASSIFIER_SCALES 1.0->1.0

HW_CLASSIFIER_CHILD 10.0.8.124

yorda4-10

HW_CLASSIFIER_TYPE WORKER 0 children

HW_CLASSIFIER_NAME buttons.classifier 10.0.8.124

HW_CLASSIFIER_HOTSPOT x=0.0->0.5, y=0.0->0.5

HW_CLASSIFIER_SCALES 1.2->8.0

HW_NUM_BUTTONS 3

6.3.2. Load Balancing Algorithm

In the previous sections I describe that the work load partitioning over tree nodes

are based on scan areas and scales. In this section I look at the partitioning problem in more

detail. Three aspects of the load partitioning and balancing are discussed: computational

overhead introduced by scan area overlapping; unbalanced workload at each scale level, and

communication cost introduced by image propagation.

122

6.3.2.1. Scan Area Overlapping

In Section 6.2 the scan area partitioning is briefly introduced. To scan a frame

image that used to be scanned by a single node with multiple nodes, the scan areas of these

nodes cannot be disjoint but have to be overlapped. Otherwise, image patches on the

boundary of the defined scan areas will be missed and the tracker will have scanning loss if

the predefined pattern exists in these image patches. To further illustrate this problem, Figure

45 shows two predefined scan areas who shares a common boundary. In this figure, Wd1 and

Wd2 are the defined width of scan area 1 and scan area 2. However, if I just scan areas

covered by defined scan area 1 and defined area 2, any template occurrences within the

middle pinked area will not be matched because none of scan node 1 or scan node 2 will be

seeing the whole template instance but just part of it. To make sure template occurrences in

the middle pink area is also processed, both scan node 1 and scan node 2 need to expand their

scan area into the neighbor’s defined scan area, thus overlaps are introduced.

In Figure 45 it can be observed that scan node 1 actually needs to scan an area that

has the width of Wa1 instead of Wd1. For same reason, scan node 2 actually needs to scan an

area that has the width of Wa2 instead of Wd2. The overlap width (Wdi – Wai) is related to the

template width and the scanning scales. At its minimum, the overlap width has to be equal to

the product of the template width and the current scanning scale.

Because each individual node in the scanning tree has overlapped scan area larger

than its defined scan area, its workload cannot be simply calculated by the percentage of its

defined scan area size over the whole frame image size, but has to be calculated by the

percentage of its actual scanned area size over the whole frame image size. As the template

size itself is an invariant, the larger scan scale is, the larger is this overhead. Quantitatively,

123

the actual scanning workload/defined workload ratio Rad at a specific node can be calculated

using the following equation:

dd

tdtd

ad
HW

SHHSWW
R

*

)*)(*(++
=

Where: Wd is the defined scan area width, Wt is the template width, S is the

scanning scale, Hd is the defined scan area height and Ht is the template height.

Equation 12 Calculation of the Actual/Defined Workload Ratio

Figure 45 Scan Areas Overlapping to Avoid Scanning Loss and Overhead Introduced

To get more intuitive understanding of the overhead, Figure 46 plots the overhead

ratio introduced by overlapping. Here Wd is 320, Hd is 320, Wt is 25 and Ht is 25. S varies

from 1.0 to 8.0. It is very clear that the overhead ratio increases with the scale level. When

scale level is 6 and beyond, the overhead ratio exceeds 2.0, which means the processing

workload of the overlapped area has exceeded the processing workload of the defined area.

Defined

Scan Area 1

Defined

Scan Area 2

Overlap 2

Wd1 Wd2

Wa1

Wa2

Overlap 1

124

According to the goals I set for the scalable computing solution, this is an unfavorable

outcome and will be address by the scanning node tree calculation algorithm in Section

6.3.2.3.

Figure 46 Overlapping Overhead in Parallel Scanning for 320*240 Defined Scan Area

and 25*25 Template

6.3.2.2. Unbalanced Workload at Scale Levels

The previous section discussed the challenge from scan area partitioning for load

balancing. In this section challenges from scale levels partitioning are studied. Because in a

scanning process multiple scale levels are used, a simple parallelization algorithm will assign

each (or a set of) scale level to a different cluster node. For example, scale 1.0 scanning task

can be assigned to node 1. Scale 2.0 scanning task can be assigned to node 2, etc. However,

this partition method will not be able to get satisfying speedup results. Since the workloads at

different scale levels are unbalanced.

125

As I know that the atomic operation in a scanning process is to match a template

(no matter which scale it is at) to an image patch of the frame image of the same size. The

complexity of this operation across different scale levels is a quasi constant, because each

matching evaluation compares nearly the same amount of haar features. What really

determines the scanning complexity at a specific scale level is the number of scans needs to

be completed. The number of scans can be calculated using the equation below:

)]*/()*[(*)]*/()*[(SStepYSHHSStepXSWWansNumberOfSc titi −−=

Where: Wi is the scan area width, Hi is the scan area height, Wt is the template

width, Ht is the template height, S is the scanning scale, StepX is the X translation between

two consecutive scans, StepY is the Y translation between two consecutive scans.

Equation 13 Number of Scans Needed Calculation

To further illustrate the relationship between number of scans needed and the scale

level. Let’s set the scan area size to be 320 by 240, the template size to be 25 by 25, X

translation is 2 and Y translation is 3. In the mean time I vary scale level from 1.0 to 8.0.

Figure 47 plots the number of scans needed at these scale levels. Please note that the Y axis

is plotted in logarithm scales. It can be clearly seen that the number of scans needed

decreases drastically when the scan scale increases. If I simply assign each one (or a set of)

scale value to a node, the work load will be very unbalanced.

126

Figure 47 the Number of Needed Scans versus the Scale Level

6.3.2.3. Communication Cost Between Cluster Nodes

Two reasons make communication cost another important factor to consider in load

balancing. The first is message latency introduced by network transport. Because in the hand

tracker application, each frame image is transmitted to all processing nodes for parallel

processing and the total frame latency is a scarce resource, it is important to control

communication costs within a certain boundary. In the tree structure node organization,

message passing is parallel among different levels of the tree, so the total latency can be

measured by the largest one among the tree levels.

Another reason is that hand tracker is usually not the main application running on

the computer cluster but as an auxiliary application to facilitate users’ interaction with other

applications. Under many occasions these other application themselves are scalable

applications as well and consumes a large portion of the processing and communication

127

resources of the computer cluster. If the hand tracker takes too much communication cost, the

other applications’ performance will be hindered.

The number of frame transmissions can be mapped to the number of edges in the

tree. That is, the total number of communication cost across the network is the total number

of edges in the tree multiply the frame size; the total number of communication cost from a

certain node is the total number of its children multiply the frame size; and the total number

of communication cost at a certain tree level is the total number of nodes in the next level

multiply the frame size.

6.3.2.4. Scanning Node Tree Calculation

To sum up all the discussions in the previous three chapters, the following

observations can be made:

1. Given defined scan area size and template size, the larger the scan scale is,

the larger the overlapping overhead is.

2. Given defined scan area size and template size, the larger the scan scale is,

the less the needed number of scan is.

3. The communication cost at a specific node is proportional to the number of

children of the node. If the head is the node that has most children in the

tree, the total latency introduced by communication cost is proportional to

the number of the workers that are direct children of the head.

These observations form the basis of the design consideration of the load balancing

algorithm:

128

• Based on observation 2, I group multiple large scan scale levels into a group

to aggregate the workload. And partition the workload at small scan scale

levels into sub-tasks further processed at next tree level.

• The partition strategy for the workload at a certain small scan scale level is

to partition the scan area into multiple sub-scan areas that have overlaps

with each other. Because the overlapping overheads are small at small scan

scale levels, this partition makes sure that only reasonable overlapping

overhead is introduced.

• When partitioning the workload of a certain node into multiple sub-tasks to

be processed by its children, I set the arbitrary limit of the number of

children to be three, the purpose is to control the communication cost from

this specific node.

• Because computation workload is only determined by the task itself but

communication workload is determined by both the task itself and the

computer cluster configuration, I do not incorporate the communication cost

into quantified load balancing calculation but calculate it separately.

To further illustrate this strategy, assume I am going to scan a 320 by 240

resolution image area with a recognition tree. The template size is 25 by 25, X translation is 2,

Y translation is 3, and scale levels are from 1.0 to 8.0 and increase at a step of 1.2.

First, I calculate the number of scans at different scale levels and put them into

Table 9.

129

Table 9 Workload Partition Based on Scale Levels9

Node ID Scan Area Scan Scales Number of Scans Needed

1 (0, 0, 320, 240) (1.0, 1.0) 12800

2 (0, 0, 320, 240) (1.2, 1.2) 8889

3 (0, 0, 320, 240) (1.44, 1.44) 6173

4 (0, 0, 320, 240) (1.73, 1.73) 4287

5 (0, 0, 320, 240) (2.07, 2.07) 2977

6 (0, 0, 320, 240) (2.49, 2.49) 2067

7 (0, 0, 320, 240) (2.99, 2.99) 1436

8 (0, 0, 320, 240) (3.58, 3.58) 997

9 (0, 0, 320, 240) (4.30, 4.30) 692

10 (0, 0, 320, 240) (5.16, 5.16) 481

11 (0, 0, 320, 240) (6.19, 6.19) 334

12 (0, 0, 320, 240) (7.43, 7.43) 232

Then, I group the scanning tasks at large scale levels. In this example, scan scales

from 2.49 to 7.43 are grouped and processed by node id 6. The number of scans needed at

node id 6 is now 6239, as shown by Table 10.

Table 10 Workload Partition after Scan Scale Grouping at Large Scale Levels

Node ID Scan Area Scan Scales Number of Scans Needed

1 (0, 0, 320, 240) (1.0, 1.0) 12800

2 (0, 0, 320, 240) (1.2, 1.2) 8889

3 (0, 0, 320, 240) (1.44, 1.44) 6173

4 (0, 0, 320, 240) (1.73, 1.73) 4287

5 (0, 0, 320, 240) (2.07, 2.07) 2977

6 (0, 0, 320, 240) (2.49, 7.43) 6239

It can be seen that node id 1 and node id 2 are still taking too much workload

compare to node id 6. Because node id 1 and node id 2 fulfills scan tasks at small scan scales

(1.0 and 1.2 respectively), the overlapping overhead introduced by scan area partitioning will

be moderate. Based on this observation, I further divide the workload at node id 1 and node

id 2 by scan area, each into four sub-tasks. Node id 1 offsets its workload to node id 7, node

id 8 and node id 9. In the mean time, node id 2 offsets its workload to node id 10, node id 11

and node id 12. Table 11 shows the new workload partitioning results.

9 For simplifying purpose, number of scan times are directly calculated with (Wi * Hi) / (Wt*Ht). Without special instruction,

the number of scan times will be calculated with this in the text now and after.

130

Table 11 Workload Partition after Scan Area Partition at Small Scale Levels

Node ID Scan Area Scan Scales Number of Scans Needed

1 (0, 0, 160, 120) (1.0, 1.0) 4416

2 (0, 0, 160, 120) (1.2, 1.2) 3252

3 (0, 0, 320, 240) (1.44, 1.44) 6173

4 (0, 0, 320, 240) (1.73, 1.73) 4287

5 (0, 0, 320, 240) (2.07, 2.07) 2977

6 (0, 0, 320, 240) (2.49, 7.43) 6239

7 (160, 0, 320, 120) (1.0, 1.0) 4416

8 (0, 120, 160, 240) (1.0, 1.0) 4416

9 (160, 120, 320, 240) (1.0, 1.0) 4416

10 (160, 0, 320, 120) (1.2, 1.2) 3252

11 (0, 120, 160, 240) (1.2, 1.2) 3252

12 (160, 120, 320, 240) (1.2, 1.2) 3252

After the discussion of a specific example, I now describe the load balancing

method in a formal algorithm. As the scanning node tree is created with the progress of

workload partition, the final outputs of this algorithm include the scanning node tree in

vector format. Also because the overlapping overhead and communication cost can be

calculated during load balancing calculation, they are also included in the algorithm’s outputs.

Algorithm Calculate_Tree

Input:

1. Size of the whole scan area (frame image for detection tree, and predicted

hotspot for recognition tree): Wi and Hi.

2. Size of the template: Wt and Ht.

3. X translation and Y translation at each scanning step: StepX and StepY.

4. Start, stop and the stepping value of the scanning scales: Sstart, Sstop and Sstep.

5. The desired speedup: P.

Output:

131

1. The scanning node tree with scan area and scales partitioned, in vector format:

Tscan.

2. The efficiency estimation of overall overlapping overhead, communication cost

of the head and communication cost across all the tree nodes: O, Chead and Call.

Pseudo Code:

Tscan = NULL;

 O = Chead = Call = 0;

For (scale = Sstart:Sstop)

 Calculate the number of scan times needed at scale and put in an array

scale_level[];

End;

Calculate the sum of all elements in scale_level[], and then create two other arrays

scale_level_percentage and scale_level_integrated_percentage;

For (i = 1: sizeof(scale_level)

 Scale_level_percentage[i] = scale_level[i]/sum;

 Scale_level_integrated_percentage = sum(scale_level_percentage[i:Sstop]);

End;

Iterate the arrary scale_level_integrated_percentage from the END, until find the

first element k that has the value less or equal to 1/P;

132

Iterate the array scale_level_percentage_from the START, until find the first

element j that has the value less or equal to 1/P.

Node.scanArea = {Wi, Hi};

Node.scales = {Scales[k-1].startScale, Scales[k-1].startScale};

Add Node to Tscan as head node;

For i = j:k-2;

 Node.scanArea = {Wi, Hi};

 Node.scales = {Scales[i].startScale, Scales[i].startScale};

 Add Node to Tscan as children of the head node;

End;

Group all scales after Scale[k] into a set, assign it to a node and add this node to

Tscan;

Split all scales before Scale[j] based on scan area, and append the partitioned nodes

to Tscan;

Sum up workload value calculated at all nodes and put this as O.

Sum up communication cost at the head and put this as Chead;

Sum up communication cost at all the nodes and put this as Call;

Output Tscan, Chead, and Call;

133

I create a utility application tree_calculator as the implementation of the algorithm

described above. Below are two sample trees calculated using this utility application. In the

8-node parallelization, the mean percentage workload across all nodes is 14.03% and the

standard deviation is 5.06%. In the 12-node parallelization, the mean percentage workload

across all nodes is 10.22 and the standard deviation is 2.64%. It can be seen that the tree

calculation algorithm is effective in fulfilling the load balancing task.

Head ScanArea(0->0.5, 0->0.5), ScanScales(1.73-1.73) Load (10.36%)

Node 1 ScanArea(0->0.5, 0->0.5), ScanScales(1.44-1.44) Load (14.92%)

Node 2 ScanArea(0->0.5, 0->0.5), ScanScales(1.2-1.2) Load (21.49%)

Node 3 ScanArea(0->0.5, 0->0.5), ScanScales(2.07-8.0) Load (22.27%)

Node 4 ScanArea(0->0.29, 0->0.3), ScanScales(1.0-1.0) Load (10.81%)

Node 5 ScanArea(0->0.29, 0.2->0.5), ScanScales(1.0-1.0) Load (10.81%)

Node 6 ScanArea(0.21->0.5, 0->0.3), ScanScales(1.0-1.0) Load (10.81%)

P = 4.0

Total nodes used = 8, O = 112.28%, Chead = 4, Call = 7

Node 7 ScanArea(0.21->0.5, 0.2->0.5), ScanScales(1.0-1.0) Load (10.81%)

134

Figure 48 Two Sample Outputs of the Tree Calculation Algorithm

Head ScanArea(0->0.5, 0->0.5), ScanScales(2.07-2.07) Load (7.2%)

Node 1 ScanArea(0->0.5, 0->0.5), ScanScales(1.73-1.73) Load (10.36%)

Node 2 ScanArea(0->0.5, 0->0.5), ScanScales(1.44-1.44) Load (14.92%)

Node 3 ScanArea(0->0.5, 0->0.5), ScanScales(2.49-8.0) Load (15.07%)

Node 4 ScanArea(0->0.29, 0->0.3), ScanScales(1.0-1.0) Load (10.81%)

Node 6 ScanArea(0->0.29, 0.2->0.5), ScanScales(1.0-1.0) Load (10.81%)

Node 7 ScanArea(0.21->0.5, 0->0.3), ScanScales(1.0-1.0) Load (10.81%)

P = 6.0

Total nodes used = 12, O = 122.69%, Chead = 5, Call = 11

Node 8 ScanArea(0.21->0.5, 0.2->0.5), ScanScales(1.0-1.0) Load (10.81%)

Node 5 ScanArea(0->0.3, 0->0.31), ScanScales(1.2-1.2) Load (7.97%)

Node 9 ScanArea(0->0.3, 0.19->0.5), ScanScales(1.2-1.2) Load (7.97%)

Node 10 ScanArea(0.2->0.5, 0->0.31), ScanScales(1.2-1.2) Load (7.97%)

Node 11 ScanArea(0.2->0.5, 0.19->0.5), ScanScales(1.2-1.2) Load (7.97%)

135

6.3.3. Hand Detection Process

In Section 6.3.1 and Section 6.3.2 I present the static part of the cluster computing

solution for hand tracker tasks, i.e. the node organization of the computation cluster and the

load balancing algorithm. In this and the following sections I introduce in detail the dynamic

part of the cluster computing solution, both for the hand detection and for the posture

recognition processes. Two different hand tracker applications are launched on the

processing node depends on whether the node is of type “head” or “worker”.

6.3.3.1. Head Node Side

On a head node, the application reads in the detection tree configuration at launch

time, and then set the scan area and scales of itself based on the configuration settings. The

head node does not keep the scan area and scales information of any other nodes, including

its children. After the initialization with configuration settings, the head sends out an

“INIT_REQUEST” message to all its children, and blocks to wait for the children to respond

“INIT_RESULT” messages. Once all “INIT_RESULT” messages have been received from

the children, the head node is ready to start the detection task.

During the detection process, frame images are pumped in from the camera one

after another. Each time when the head node acquires a frame image, it forms a

“DETECTION_REQUEST” message and sends it to all the children. The body of the

message has the image data of the frame image. Then the head node process the frame image

with its own scan settings, and put any match result into a vector. The head node then

receives all the scanning result from its children in “DETECTION_RESULT” messages, and

put these results into the match vector. If the match vector contains one or more match results,

a “best match” candidate is used as the sole result of this scan.

136

When the hand tracker application on the head node is going to exit, it sends out a

“CLOSE_REQUEST” to all of its children. For this message, the head node does not expect

to receive result messages back.

6.3.3.2. Worker Node Side

On the worker node side, when the application launches, it reads in the

configuration file and sets its own scan area and scales according to definitions in the

configuration. The worker does maintain such information for its children, if there are any.

The worker node then goes into a block waiting state for any message from its

parent. It is worth noting here that a worker node’s parent could be either the head or another

worker note. However, a worker node’s child is always a worker node. When the worker

node receives a “INIT_REQUEST” message, it propagates this message to all its children, if

there are any, wait for “INIT_RESULT” response message from the children, and then send

“INIT_RESULT” back to its parent.

When the worker node receives a “DETECTION_REQUEST” message, it first

relays this message, as well as the image data come with it, to all its children. The worker

node then performs its own scanning task based on the configuration definition, and saves

any matching result into a match vector. After performing its own scanning, it receives all

match results from its children, puts them into the match vector, and chooses the best match

to send back to its parent through the “DETECTION_RESULT” message.

There are couple empirical rules that should be followed when a node is offsetting

workload to its children. First, sending the request message together with image data should

always be undertaken before the local scanning happens. Second, the node should always

137

pick the smallest sub-task to be processed locally and offset the larger sub-tasks out. Third,

when sending request messages out to children, always send the largest sub-task first. The

reasoning behind these empirical rules are: 1) the children nodes can start processing at the

earliest time; 2) the parent node’s communication cost is compensated by lighter processing

loads; and 3) the child who is assigned the largest subtask is the first to start processing.

6.3.4. Posture Recognition Process

Recognition process, just like the detection process, is also processed by a scanning

node tree. The two processes share a large part in common but also have differences from

each other. The main difference is that for the recognition process, the overall scan area itself

is a sub-area of the frame image and might change among frames. Thus each node has the

responsibility to notify its children about the updated scan areas.

6.3.4.1. Head Node Side

On the head node side, when it reads in the configuration file to construct the

recognition tree, both the scan area and scales information of itself and all its children are

maintained. This is different from the head node behavior in the detection process, where the

head node just maintains the scan area and scales information of its own.

During each recognition iteration, the head node acquires the frame image and

calculates the recognition scan area. It then compares this scan area with the pre-defined scan

area from the configuration, and calculates the offset (dx, dy) between the predefined scan

area and the current-frame recognition scan area. After the offset is calculated, the head node

applies it over all the pre-defined scan area of its children and then sends the

“RECOGNITION_REQUEST” messages to all its children. The difference between the

138

“DETECTION_REQUEST” message and the “RECOGNITION_MESSAGE” is that the

latter has scan area and scales information in its header. The head node then expects

“RECOGNITION_RESULT” message back from its children.

6.3.4.2. Worker Node Side

On the worker node side, when the application launches it reads in the

configuration settings of itself and any children from the configuration file and set them

accordingly. The worker node then expects the “RECOGNITION_REQUEST” message.

Once the worker node receives the “RECOGNITION_REQUEST” message, it

retrieves the scan area and scales information out of the message header and calculate offset

(dx, dy) from its pre-defined scan area. The worker node then sets all its children’s scan area

and scales according to (dx, dy) and their pre-defined settings, and sends corresponding

“RECOGNITION_REQUEST” messages out to the children. The worker then performs its

local scanning task and put any match results into a match vector. After the local scanning,

the worker receives all match results from its children, put them into the match vector and

then send back to the head.

6.4. Evaluation Results

I evaluated the scalable computing techniques on a 32-node computer cluster at

EVL-UIC. Each node is a 64bit architecture with 2 AMD Opteron processors (2 Ghz, Model

246), 4GB of DDR 400 Mhz RAM, 1.5TB of shared local storage over parallel filesystem

(PVFS) [8x250GB on a RAID5 configuration] and 250GB of local storage. Interconnections

at each node consist of 3 gigabit network interfaces: on-board gigabit, single-mode fiber

gigabit and multi-mode fiber gigabit.

139

The metrics I am interested in are in line with the design goals listed in Section 7.1.

These metrics are: throughput improvement for frame image processing; processing time

reduction and processing speed up at reasonable node costs; balanced workload across cluster

nodes; and lastly, low communication cost. In the following sections, I present the evaluation

results over each of these metrics.

6.4.1. Improvement of Detection Component Throughput

Because of processing time limitations, the detection component implemented in

Section 5.3.1 only monitors a hotspot of the size 320 by 240, the user has to put his/her hand

into a designated area to be detected. In this experiment, I use four nodes to monitor a 640 by

480 frame image area. There are no scan area overlaps between any two nodes. The scan area

partition is as follows:

Node 1: (0, 0, 320, 240); Node 2: (320, 0, 640, 240);

Node 3: (0, 240, 320, 480); Node 4: (320, 240, 640, 480);

According to the overhead calculation, the processing overhead is zero because the

four scan areas have no overlaps. However, the latency caused by communication cost will

create some impact on frame processing time, and in turn affect frame rate at detection state.

I define a unit throughput to be the processing of one 320 by 240 scan area, thus, one frame

processed equals to 4 throughput units. Two control conditions are defined, the first

condition uses a single node to process the 320 by 240 area; while the second condition uses

four nodes to process the whole frame image. Each condition is repeated 10 times, each time

for 200 frames, under different lighting condition and camera field-of-view. Then the mean

and stand deviations of throughput per second are recorded and shown in Figure 49.

140

Figure 49 Throughput Improvements with Four Nodes in Hand Detection

Data plotted in Figure 49 shows that the hand detection throughput of original hand

tracker is 19.74±2.02 units. When a four-node scanning node tree is used the throughput

improved to 69.54±2.97 units. The throughput improvement is about 3.52 when a four-node

scanning node tree is used. The gap between 3.52 and 4.0 is caused by image streaming

latency from the head to the other three nodes.

6.4.2. Speedup of Recognition Component

In this section I study the speedup performance of the scanning node tree, for the

hand recognition task. The reason to study the hand recognition task instead of the hand

detection task is because that the former is susceptible for overlap overheads and normally

more communication cost due to depth of the scanning node tree. Thus, the speedup value

141

predicted by the tree calculation utility will not be exactly the same as the speedup observed.

It is of interest to see the scanning node tree’s performance in the field.

This study can be done by predicting different speedup values, and then use the tree

calculated to measure actually speedup values, and then compare these two. The numerator

to compute speedup is the time used when hand recognition is performed with a single node

scanning node tree. I use frame 157 through 5524 of the pre-recorded 5597-frame video

sequence, where the recognition task starts and ends. Tracking component’s processing time

is subtracted from overall frame latency to get the recognition component’s processing time.

To remove the noise of image display latency, each frame image is only processed but not

displayed.

Figure 50 Predicted and Actual Speedup Values vs. Number of Tree Nodes

142

Figure 50 shows the actual speedup values recorded at predicted speedup values. It

can be seen that the actual and predicted values are close to each other when the scanning

node tree is composed of 12 or less nodes. For the 16-node scanning node tree, there is large

discrepancy between the actual and predicted values. Also, the actual speedup value

measured is smaller than the actual value when a 12-node scanning node tree is used. The

reason is due to network transmission latency for image data broadcast. If the cost of

communications can be ignored (e.g. for 3- and 4-node scanning node trees) or not

significant (e.g. for 8- and 12-node scanning node trees), the predicted speedup performances

of the tree are in line with the actual measured values.

6.4.3. Efficiency of Load Balancing Algorithm

In this section I evaluate the efficiency of load balancing algorithm in partition

workloads across cluster nodes. To study this, I measure the CPU loads at each node in the

scanning node tree, and compare them with the predicted workload allocations. The Linux

utility top is used to record CPU workloads during hand recognition task. The experiments

are undertaken over the pre-recorded 5597-frame video sequence.

Load balancing are tested under two scanning node tree configurations, one tree

consists of 8 nodes and the other tree consists of 12 nodes. Figure 51 illustrates the CPU load

data recorded under both configurations. It can be seen that the load recorded on the worker

nodes confirms to the tree prediction well, that is, the workload exhibits a ramp curve for the

head node’s direct children and shows even values for the worker nodes who are children of

other worker nodes. The head node demonstrates a much higher CPU load than predicted by

the tree model. There are two reasons for this observation: first, in the tree construction the

143

head node is usually the node that has the highest out degrees in the tree, thus it has more

communication cost than the other tree nodes. Second, besides the recognition task, the head

node also needs to fulfill tracking and frame image retrieval tasks. These tasks make the head

node takes significant more workload than the other nodes.

Figure 51 CPU Load Distributions over 8 (top) and 12 (bottom) cluster nodes

144

Recall that in the load balancing algorithm, when a node partitions the scan area

and assign it to all its children, the workload allocation is even. In Figure 51, this means that

node 4 should have same CPU load as node 5, 6 and 7 in the 8-node tree configuration.

Similarly, node 4 should have same CPU load as node 6, 7, 8 and node 5 should have same

CPU load as node 9, 10, 11 in the 12-node tree configuration. However, it could be seen that

the parent node always consumes more CPU processing than its children nodes. The reason

for this is because a worker node which has children needs to relay the frame image to its

children, and the communication cost causes more processing at the node. Except for the

unbalance discussed above, which are introduced by other processing tasks and

communication costs, the load balancing algorithm achieves satisfying results comparing to

its own predictions.

6.4.4. Communication Cost Results

In this section I evaluate the communication cost of the hand tracker at different

scanning node tree configurations, which consists of 3, 4, 8, 12 or 16 nodes. The data is

measured with two parameters: one is the data flow in and out from the head node during one

frame, and the second is the number of frames processed every second. The bandwidth

consumption at the head node is calculated from the product of these two parameters under

difference tree configurations.

Under the 3-, 4-, 8-, 12- and 16-node tree configurations, the head node needs to

send out 2, 3, 4, 5 and 6 frame images respectively during each frame processing. In the

mean time, the frame per second is recorded to be 18, 21, 26, 35 and 33 respectively. Use

these values to derive head node bandwidth, the results are shown in Figure 52.

145

Figure 52 Network Bandwidth Consumption at the Head Node

It can be seen that with the increase of the number tree nodes, the communication

cost of the head node also increases. Assuming the nodes are interconnected with Gbps

network interfaces, then streaming frame images could take as high as 49% of the total

bandwidth if not optimized. To further reduce the bandwidth consumption, either frame

image compression should be performed at the application layer or the interconnect hardware

and software need to be improved.

6.5. Conclusions and Discussions

In this chapter, the scalable computing techniques to improve the hand tracker’s

performance are presented. I first give the reasons why scalability is an important challenge

to be address for the hand tracker, as well as the technical difficulties in achieving desired

outcomes. Then an in-depth analysis of the opportunities for hand tracker performance

146

improvements is conducted. I identify two parameters of the scanning task after the analysis

as the keys in data- and computation-decomposition, that is, the scan area and the scan scales

range.

After identifying the two task parameters for scalable solution design, I propose

several novel techniques to implement the solution. First, a new data structure, called the

scanning node tree is proposed and implemented. The scanning node tree organizes multiple

cluster nodes effectively to fulfill parallel processing of the hand tracker tasks. Using the

scanning node tree instead of sequential data structures to hold node information reduces the

communication cost, incorporates task partitioning information in the tree topology itself,

and is inherently suitable for node addition, node deletion or processing capability changes in

the cluster. Second, a load balancing algorithm, based on optimized grouping and partition of

scan areas and scales, is proposed and implemented. The load balancing algorithm requires

minimal input parameters from the system administrator, and is capable of planning the work

load partition automatically. The introduction of this algorithm, as shown in the evaluation

results, reduces the system administrator’s burden to a large extent, and is able to achieve

optimized usage result of the computation and communication resources of the cluster. Third,

I design and implement the corresponding applications to be run on head and worker nodes

of the cluster. A in-house message-passing mechanism among the cluster nodes is also

designed, implemented and proved to be effective.

Instead of making the communication cost a quantified parameter into the task

partitioning and load balancing algorithms, its impact is empirically considered. The reason

for this is that the scalable solution does not optimize the communication, while there is a

large quantity of off-the-shelf methods for communication optimizations. For example, at the

147

application layer, image data can be usually compressed by a factor of 5-10. At the link layer

such as the network interface card drivers, data can also be compressed, or sent and received

collectively to improve transmission performance. Hardware improvement trends are also

under the consideration, such as the 10Gbps network cards which are already in market albeit

still expensive. All these factors can potentially improve the system to perform better than

the current proof-of-concept implementation.

Although the scalable computing solution presented in this chapter is directly

devised for hand tracker task parallelization, in a broader scope, this solution can be applied

to a set of “scan-and-match” problems, where the task is about identifying pattern

presence/type in continuous data streams and testing the incoming data is in the form of

intensive scans at different scales. Such kinds of problems are not rare in the mobile and

pervasive computing environment, such as pattern recognition in ad-hoc sensor networks.

148

7. HAND WAND: AN EVALUATION APPLICATION

In this chapter, I evaluate the hand tracker from the application-centric approach. I

enhance the hand tracker with networking capabilities to integrate it with a high-performance

graphics rendering middleware. The enhanced hand tracker, named HandWand, serves as a

human-computer interaction device. This chapter serves as a reference design to integrate the

hand tracker with a real-life graphical application.

7.1. Problem Statement

Developed at EVL-UIC, the LambdaVision [76] is an ultra-high-resolution

visualization and networking instrument designed to support collaboration among co-located

and remote experts requiring interactive ultra-high-resolution imagery. LambdaVision

investigates means to advance both science and public safety as validated by users in various

disciplines of earth science research, and training exercises in disaster response and crisis

management. In one application, LambdaVision serves up to 60 trillion bytes (TB) of U.S.

urban city map data to distributed 100-megapixel displays, enabling scientists and local, state

and Federal agencies to compare real-time imagery of disasters (fire, earthquakes, hurricanes,

etc.) with stored city, regional and national maps in high detail [77].

What’s driving the visualization rendering on the LambdaVision is a graphics

middleware called Scalable Adaptive Graphics Environment (SAGE) [75]. The network-

centered architecture of SAGE allows collaborators to simultaneously run various

applications (such as 3D rendering, remote desktop, video streams and 2D maps) on local or

remote clusters, and share them by streaming the pixels of each application over ultra-high-

speed networks to large tiled displays.

149

There are three reasons to make it attractive to make a vision-based hand posture

interface for the LambdaVision: the first reason is that SAGE requires one or more computer

cluster, interconnected by high speed networks as its infrastructure. This requirement

coincides with the computing facility requirement of the hand tracker. The second reason is

that LambdaVision has much larger screen size than traditional 2D displays. In turn,

interaction between the users and the LambdaVision could not be satisfyingly fulfilled by

traditional interaction techniques, such as a 2D mouse. Vision-based techniques stand

themselves out under this circumstance on tetherlessness and larger space of freedom

movement of the users. Last but not least, the performance of SAGE is subject to the

computation and communication resources availability of the computer cluster, running the

hand tracker together with SAGE, more hands-on data of the compact of the hand tracker on

the application it serves for can be measured.

Based on these three motivations, I enhanced the hand tracker by adding a

networking interface to it and integrating it with SAGE. The enhanced hand tracker is named

HandWand. The name comes from a hand held 3D tracker and controller in the original

CAVE system [44].

7.2. Design and Implementation

Based on personal communications 10 , the mechanism SAGE maps interaction

device data to screen events is as following:

10 with developers of SAGE UI at EVL-UIC.

150

The devices send data messages to the SAGE device manager through a socket

interface. The message starts with the device’s name, followed by its type, and then a private

data part which is specific to the device.

When a message from the device is received by the device manager, the manager

checks if SAGE has a plug-in defined for the specific device, based on its name and type. If

SAGE has the corresponding plug-in defined, then the device manager forward the private

data part of the message to that specific plug-in to process.

Figure 53 Mechanism used by SAGE to Map Device Data to Screen Events

FreeSpace Widow Manager

SAGE UI Port

Device Manager

Plugin

1

Plugin

2

… Plugin

N

Device

Message

Port

Event Manager

LambdaVision Tiled Display

Device

1

… Device

N

151

The device plug-in parses the private data into tracking and controlling information

and post UI events through the SAGE event manager.

SAGE event manager communicates with the freespace window manager through a

socket interface called SAGE UI port. Freespace window manager then manipulates screen

pixels.

From the process described above, I need to design two parts of the HandWand to

integrate it with SAGE, in other words, the networking interface to communicate with the

device manager and the SAGE plug-in to parse HandWand data.

7.2.1. Networking Interface

A TCP-based networking module is designed and implemented for the HandWand.

The networking module implements a connection manager which listens at port 5853 for

incoming connections. The connection manager managers a non-blocking TCP server and a

vector data structure for active clients. When HandWand initiates, it starts the TCP server.

While HandWand is running, it checks for incoming connections at the beginning of each

frame processing, in a non-blocking fashion. If there is an incoming connection request, then

the connection manager accepts this request, and put the client into the active clients vector.

At the end of each frame processing, the connection manager collects 2D coordinate data and

posture data and put them into a string in the following format:

“X, Y, Button”

In this message string X is a float value from 0 to 1, as the percentage of X position

with regard to frame image width, and Y is a float value from 0 to 1, as the percentage of Y

152

position with regard to frame image height. Button is a string that equals to the posture name

if it is detected, and empty if there is no posture detected. If the hand is not tracked in the

camera’s field of view, then both X and Y are set to be -1.0. When HandWand exits, the

connection manager disconnects all client connections.

7.2.2. HandWand Device Plug-in

The HandWand device plug-in is a post-processing call-back routine run by SAGE

when a message from HandWand is received. The most simple plug-in would be a routine

that just breaks the private data into three values: X, Y and Button. In practice, the plug-in

does more work than simple string token retrievals. There are three tasks that need to be

fulfilled by the plug-in: coordinate smoothing, OpenCV-SAGE coordinates conversion and

button press debouncing.

The hand is highly deformable and often has drastic shape changes during two

consecutive frames. Although the KLT feature tracker is very robust in tracking the blob

position of the hand, the exact center position of the hand is difficult to be accurately

reported (I assume the center of the hand is the center of mass). Because of this, the 2D

position output of the tracker has frequent local jitters. To remove these jitters, I use a

moving average window to smooth the coordinate data. The moving average window size is

5, if the hand lost track within the 5 most recent frames, then only valid position (i.e.,

position readings that are not -1.0) are counted and averaged.

The second task of the handwand device plug-in is to convert the tracker-reported

device coordinates into SAGE screen coordinates. In the device coordinates system, the top

left corner of the frame image is mapped to (0, 0) and the bottom right of the frame image is

153

mapped to (1.0, 1.0). While in the SAGE coordinate system, the bottom left corner of the

tiled display screen is mapped to (0, 0) and the top right corner of the tiled display screen is

mapped to (SAGE_WIDTH, SAGE_HEIGHT). The conversion calculation between SAGE

and HandWand coordinates can be described by Equation 14.

−

=

HandWandY

HandWandX

HEIGHTSAGE

WIDTHSAGE

SageY

SageX

1_0

0_

Equation 14 Conversion Calculation between SAGE and HandWand Coordinates

Lastly, due to hand movement and tracker detection rate, when the user keeps

performing specific posture during a span of frames, it is common that the recognition

component does not report a series of consecutive posture presences. Instead, the recognition

component usually reports several blocks of posture presences, with intermittent absence of

the posture. When the posture presence is translated to button states, there will be multiple

button press and releases during a semantic “button press”. This is similar to the bouncing

effect of an electromechanical push button.

To address the bouncing problem, a debouncing algorithm is used to provide steady

posture presence/absence state. I keep a posture state window of the most recent posture

presence/absence states and use a threshold to calculate the smoothed posture presence state.

This approach is proved to be very effective when the posture state window size is 20 and the

threshold is 0.8.

7.3. Running the Integrated System

Figure 54 shows a scene where the HandWand is used as a human-computer

interaction device of the Lambda vision. The user can easily move the hand to control a 2D

154

cursor on the screen, and perform postures to be mapped to button presses. In the

configuration illustrated by Figure 54, the PointGrey camera is mounted on a tripod. By

positioning the tripod at difference places and depths in front of the LambdaVision tiled

display, the size of interaction space can be optimized for various application needs.

Figure 54 Running HandWand as a Human-Computer Interaction Device for the

LambdaVision

Since SAGE also uses pixel streaming across nodes to achieve large scaled area

displaying, it is of interest to observe whether the deployment of HandWand will hinder

SAGE performance. Figure 55 shows the means and standard deviations of display

bandwidth as well as frame rate recorded by SAGE, when running the “Atlantis” benchmark

application. The “Atlantis” application uses the cluster head node as its sole rendering node,

and SAGE streams the pixels to a 4 by 5 tile, each at the resolution of 1600 by 1200 pixels.

155

The two conditions are running SAGE with and without running HandWand. When the

HandWand is running, it is using a 12-node scanning tree for the hand recognition task.

Figure 55 SAGE Display Bandwidth (left) and Frame Rate (right) with and without

HandWand Running

It can be seen from Figure 55 that when SAGE is running without HandWand

running, the Atlantis application has the display bandwidth of 455.59±59.74 Mbps and the

frame rate of 69.21±5.26 fps. When SAGE is running with HandWand running, the atlantis

application has the display bandwidth of 430.77±49.84 Mbps and the frame rate of

61.03±6.44 fps. Running HandWand does cause performance degradation of the SAGE

application but it is only about 11.3% for the display bandwidth and 11.8% for the frame rate

for this specific experiment. This result is within the acceptable range.

7.4. Conclusions and Discussions

In this chapter the design and implementation of a real life application of the hand

tracker – HandWand – is presented. The HandWand shares the same computing

156

infrastructure with a high-performance graphics middleware, and is proved to be effective as

a human-computer interaction device for large scale tiled displays.

I illustrate that to make the hand tracker core functionality usable for applications

as an interaction modality, only proper data sharing wrappers as well as device data post-

processing need to be added on. Although HandWand uses the socket interface for

communications, there are no obstacles to restrict it from using other common inter-process

mechanisms used in VEs, such as shared memory.

In the HandWand application, the computer vision based posture interface exhibits

two major advantages compared with traditional interaction techniques. The first is the

effective use of the high-performance computing facility, while many large scale

visualization middleware and applications require a computer cluster to run, they usually do

not use up all the computation and communication resources available. By introducing the

HandWand optimizes the usage such resources. The second advantage is more flexible

interaction space. Computer vision based interaction can be performed in a wide space near

the visualization instrument, as long as this space is in the camera’s field of view. With the

increasing needs for large scale scientific, public safety and educational visualization

instruments and techniques, I expect the use of applications like HandWand will gain more

popularity in the near future.

157

8. CONCLUSIONS AND FUTURE WORK

This thesis systematically presents the background, needs and technical challenges

to create a computing environment that fits the population of mobile devices users, is capable

of being personalized for its user, and utilizes the processing power of the infrastructure to a

maximized extent. The name of Personal Augmented Computing Environment, or PACE,

reflects my research endeavors towards such an environment framework that integrates the

human factors, the mobile/portable device, and the infrastructure computing resources more

tightly into an ecosystem.

As stated in the introduction and background chapters, the proliferation of personal

mobile devices and lack of an available framework to effectively create synergy between the

mobile devices and infrastructures are the main motivation of this work. The three goals: size

constancy study, personalized hand tracker and cluster computing for hand tracking reflect

the research efforts to make a proof-of-concept framework that might benefit next-generation

consumer products, as well as being useful for the present-day scientific and commercial

applications. The quantitative and application-centric evaluations conducted as part of this

work prove that the proposed techniques are feasible, user-friendly and effective.

Although this work sets the research problems to be specifically on visualization

and interaction aspects, the motivations, design philosophies and technology solutions

presented in this work can be surely applied to a wider context. The research problems can be

generalized into the following four questions:

Which personal profiles of an individual user should a computing environment

maintain?

158

In what ways can user-specific characteristics be used to facilitate user-centric

computing?

How to effectively partition computational tasks between personal mobile devices

and infrastructure systems?

How to maximize the benefits of the infrastructures’ processing power for personal

tasks using scalable techniques?

Each chapter of this thesis answers one or more of the above questions to a certain

extent and contributes a tile to the mosaics of research activities in the related fields. I believe

that in the next one or more decades, personal mobile devices will be equipped with much

richer multimedia features, be pervasive like never before, and start to play the central role of

personal computing, just like the personal computers nowadays taking dominance position

over their mainframe predecessors a couple of decades ago.

The contributions of this work can be summarized as follows:

Firstly, it studies the effects of three major visual factors in a VE on the size

constancy performance of the VE users. Among the three visual factors, namely scene

complexity, stereoscopy and motion parallax, the former two seem to have significance in

determine users’ size constancy performance, while the latter seems not. This work presents

the set of experiment designed and conducted for studying these three visual factors, as well

as discussed in detail both the group and the individual performance results.

Secondly, it proposes and implements an effective personal profile capture and

construction process that is able to be carried out fully on a mobile device. This process

allows easy-to-use and robust hand image samples collection by the mobile device users,

159

maintains the user specific characteristics – the hand shape and the skin color – to construct

personal hand profile. Based on the personal profiles, a hand tracker implemented by this

work is able to integrate both shape and color cues for hand detection, tracking and gesture

recognition and has obtained satisfying accuracy and frame rate performances.

The third contribution this work makes is identification of parallelizable

computation components in the hand tracker tasks and scalable computing techniques to

speed up the processing of these components. Scalable computing techniques are applied on

detection and recognition tasks and achieved satisfying results. I propose a novel data

structure – the scanning node tree – which can effectively organize computation nodes in

both centralized and ad-hoc systems. I also propose a load balancing algorithm that

automates the workload partitioning across the nodes in the scanning node tree. Evaluation

results show that the proposed techniques can improve system throughput and reduce overall

frame latency at a reasonable cost of infrastructure networking and processing resources.

Last but not least, a real-life application: the Hand Wand is designed and integrated

with a large-scale visualization instrumentation to prove that PACE not only can be a

reference framework design of future system, but can also contribute to present-day scientific

visualization systems as a useful interaction modality.

This work also showcases quite a few research opportunities for following up. Size

constancy performance, as discussed in chapter 4, can be further conducted in VEs different

from CAVE-like systems, such as mobile device screens. Hand tracker as discussed in

chapter 5, can use more advanced features for model training and hand

identification/recognition. It will also be interesting to integrate other user-specific

characteristics other than the skin color to construct personal hand profiles. The cluster

160

computing techniques discussed in chapter 6 can be strengthened at least in two ways. One

opportunity is using hybrid parallelization schemes, which make use of both the vector

processors and message passing libraries. The other opportunity is to apply scalable

computing techniques to the cascade training process, which is left in this work.

161

9. CITED LITERATURE

1. The Bluetooth Special Interest Group, http://www.bluetooth.com.

2. The 3rd Generation Partnership Project, http://www.3gpp.org.

3. The WiMAX Forum, http://www.wimaxforum.org.

4. Stytz, M.R., Frieder, G., and Frieder, O., “Three-dimensional Medical Imaging:

Algorithms and Computer Systems”. ACM Computing Surveys, 23(4), 421-496.

5. Defanti, T.A. and Brown, M.D., “Visualization in Scientific Computing”, Advances in

Computers, 33, 247-305.

6. Scott, W.B., “Computer Simulations Place Models of Humans in Realistic Scenarios”.

Aviation Week & Space Technology, 134(25), 64-65.

7. Dix, A, Finlay, J. Abowd, G., and Beale, R., “Human Computer Interaction”, New

York: Prentice Hall, 1993.

8. Kamper D.G., Harvey R.L., Suresh S. and Rymer W.Z., “Relative Contributions of

Neural Mechanisms versus Muscle Mechanics in Promoting Finger Extension Deficits

Following Stoke”, Muscle & Nerve, pp. 309-318, Sept. 2003.

9. Kamper D.G. and Rymer W.Z., “Impairment of Voluntary Control of Finger Motion

Following Stroke: Role of Inappropriate Muscle Coactivation”, Muscle & Nerve, 24 pp.

673-681.

10. Gowland C., Stratford P., Ward M., Moreland J., Torresin W., et al, “Measuring

physical impairment and disability with the Chedoke-McMaster Stroke Assessment,”

Stroke, vol. 24, pp. 58-63, 1993.

162

11. Jacobson-Sollerman C, Sperling L. “Grip function of the healthy hand in a

standardized hand function test. A study of the Rancho Los Amigos test”, Scand J

Rehabil Med. 1977;9(3):123-9..

12. Parker V.M., Wade D.T., and Hewer R.L., “Loss of arm function after stroke:

measurement, frequency, and recovery,” Int. Rehabil. Med., vol. 8, pp. 69-73, 1986

13. Bhakta B.B., Cozens J.A., Chamberlain M.A., Bamford J.M., “Impact of botulinum

toxin type A on disability and carer burden due to arm spasticity after stroke: a

randomized double blind placebo controlled trial”, J Neurol Neurosurg Psychiatry

2000:69, pp. 217-221.

14. Wade D.T., “The epidemiologically based needs assessment reviews. Volume 1,” in.

Health Care Needs Assessment, A. Stevens and J. Raftery, editors, pp. 111-255, 1994.

15. Kahn L.E., Averbuch M., Rymer W.Z., Reinkensmeyer D.J., “Comparison of Robot-

assisted Reaching to Free Reaching in Promoting Recovery from Chronic Stroke”, Int.

of Assisted Tech. in the Information Age, Amsterdam, IOS Press, pp. 39-44, 2001.

16. Trombly C.A., Occupational Therapy for Physical Dysfunction, Baltimore: Williams

and Wilkins, pp. 454-471, 1989.

17. Burgar C.G., Lum P.S., Shor P.C., and Van der Loos M., “Development of robots for

rehabilitation therapy: the Palo alto VA/Stanford experience,” J. Rehab. Res. Develop,

vol. 37: pp. 663-673, 2000.

18. Desrosiers J, Bravo G, Hebert R, Dutil E, Mercier L. “Validation of the Box and Block

Test as a measure of dexterity of elderly people: reliability, validity, and norms

studies”, Arch Phys Med Rehabil. 1994 Jul;75(7):751-5.

163

19. Taub E. and Crago J.E., “Constraint induced movement therapy: a new approach to

treatment in physical rehabilitation,” Rehab. Psychol., vol. 43, pp. 152-170, 1998.

20. Kamper D.G., Hornby T.G. and Rymer W.Z., “Extrinsic Flexor Muscles Generate

Concurrent Flexion of All Three Finger Joins”. J. Biomechanics, 35 (2002) 1581–1589.

21. Merians A.S., Jack D., Boian R., Tremaine M., Burdea G.C., Adamovich S., Recce M.,

and Poizner H., "Virtual Reality-Augmented Rehabilitation for Patients Following

Stroke", Physical Therapy, Vol. 82(9), pp. 898-915, September 2002

22. http://www.immersion.com/3d/products/cyber_grasp.php.

23. Kamper D.G., Cruz E.G. and Siegel, M.P. “Stereotypical Fingertip Trajectories during

Grasp". J Neurophysiol, Vol 90, pp. 3702-3710, 2003.

24. Nokia Computer Vision Library, http://research.nokia.com/research/projects/nokiacv.

25. The Second Life Virtual Universe, http://www.secondlife.com.

26. The There Virtual World, http://www.there.com.

27. Lok, B., Naik, S., et al.. “Incorporating Dynamic Real Objects into Immersive Virtual

Environments”, Proceedings of the 2003 Symposium on Interactive 3D Graphics,

Monterey, California, ACM Press: 31-40, 2003.

28. Quek, F., “Unencumbered Gestural Interaction.” Multimedia, IEEE 3(4): 36-47, 1996.

29. Xiong, Y., Quek, F., et al. “Hand Motion Gestural Oscillations and Multimodal

Discourse”, in Proceedings of the 5th International Conference on Multimodal

Interfaces, Vancouver, British Columbia. Canada, ACM Press: 132-139, 2003.

30. Starner, T., Auxier, J., et al. “The Gesture Pendant: a Self-illuminating, Wearable,

Infrared Computer Vision System for Home Automation Control and Medical

164

monitoring”. In Proceedings of the Fourth International Symposium on Wearable

Computers, 2000.

31. Starner, T., Weaver J., et al. “Real-time American Sign Language Recognition using

Desk and Wearable Computer Based Video”. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 20(12): 1371-1375.

32. Kurata, T., Okuma T., et al. “The Hand Mouse: GMM Hand-color Classification and

Mean Shift Tracking. Recognition, Analysis, and Tracking of Faces and Gestures in

Real-Time Systems”. In Proceedings of the 2001 IEEE ICCV Workshop.

33. Kolsch, M., Turk M., et al. “Vision-based Interfaces for Mobility”, in Proceedings of

the First Annual International Conference on Mobile and Ubiquitous Systems:

Networking and Services (MOBIQUITOUS), 2004.

34. Girado J., Sandin D., DeFanti T.A., and Wolf L., “Real-time Camera-based Face

Detection using a Modified LAMSTAR Neural Network System”. in Proceedings of

IS&T/SPIE's 15th Annual Symposium Electronic Imaging 2003, Applications of

Artificial Neural Networks in Image Processing VIII, Santa Clara, California, USA,

2003.

35. Luo X., Kenyon R.V., Kline T., Waldinger H. and Kamper D.G., “An Augmented

Reality Environment for Post-Stroke Finger Extension Rehabilitation”, In Proceedings

of IEEE 9th International Conference on Rehabilitation Robotics (ICORR'05), Chicago,

IL. June 2005.

36. Luo X., Kline T., Waldinger H., Kenyon RV. and Kamper DG., “Integration of

Augmented Reality and Assistive Devices for Post-Stroke Hand Opening

Rehabilitation”, In Proceedings of the 27th International Conference of the IEEE

165

Engineering in Medicine and Biology Society (EMBC'05), Shanghai, China,

September. 2005.

37. Huber J., Stringer N., Davies I., and Field D., “Only Stereo Information Improves

Performance in Surgical Tasks”, SPIE 5372: 463-470, 2004

38. Beall A., Loomis J., Philbeck J., and Fikes T., “Absolute Motion Parallax Weakly

Determines Visual Scale in Real and Virtual Environments”, SPIE 2411:288-297, 1995

39. Rondot P., Lessard J., and Robert J., “Study of Motion Parallax in Depth Perception

with a Helmet-Mounted Display System used in Teleoperation”, SPIE 2590:151-159,

1995

40. Ikehara C., Cole R., and Merritt J., “Effects of Test Structure on Depth Perception

Measurement Tasks”, SPIE 1669:135-141, 1992

41. Watt S., et al, “Can Observers Exploit Enhanced Motion Parallax to Control Reaching

Movements within Telepresence Environments?”, SPIE 4299:429-438, 2001

42. Rosen P., Pizlo Z., Hoffmann C., and Popescu V., “Perception of 3D Spatial Relations

for 3D Displays”, SPIE 5291:9-16, 2004

43. Hirose M., Hirota K., and Kijima R., “Human Behavior in Virtual Environments”,

SPIE 1666: 548-553, 1992.

44. Cruz C., Sandin D., Defanti T., Kenyon R., and Hart J., “The CAVE Audio-Visual

Environment”. ACM Trans. on Graphics, 35: 65-72, 1992.

45. Holaday B.,“Die Grössenkonstanz der Sehdinge bei Variation der innerenund äusseren

Wahrnehmungsbedingungen“. Arch. ges. Psychol., 88: 419-486, 1933.

166

46. Harvey L., Leibowitz H., “Effects of Exposure Duration, Cue Reduction, and

Temporary Monocularity on Size Matching at Short Distances”, J. Opt. Soc. Am., 57: 2,

pp. 249-253, 1967.

47. Leibowitz H., Dato R., “Visual Size-Constancy as a Function of Distance for

Temporarily and Permanently Monocular Observers”. Am. J. Psychol. 79: 279, 1966.

48. Eggleston R., Janson W. and Aldrich K., “Virtual Reality System Effects on Size-

Distance Judgments in a Virtual Environment”. Proc. VRAIS, pp 139-146, 1996

49. Baitch L., Smith R.C., “Physiological Correlates of Spatial Perceptual Discordance in a

Virtual Environment”, in Proc. Fourth International Projection Technology Workshop,

Ames, Iowa, 2000.

50. Holway A., Boring E., “Determinants of Apparent Visual Size with Distance Variant”.

American Journal of Psychology, 54, pp. 121-151, 1941.

51. Kenyon R.V., Sandin D., Smith R., Pawlicki R. and Defanti T., “Size-Constancy in the

CAVE”, Presence, 16(2), 2007.

52. Keshner E.A., Kenyon R.V., Langston J., “Postural Responses Exhibit Multisensory

Dependencies with Discordant Visual and Support Surface Motion”. J Vest Res.

14:307-319, 2004.

53. Viola P., Jones M., “Rapid Object Detection Using a Boosted Cascade of Simple

Features”, IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), ISSN: 1063-6919, Vol. 1, pp. 511-518, December 2001.

54. Lienhart R, Maydt J., “An Extended Set of Haar-like Features for Rapid Object

Detection”, IEEE ICIP 2002. vol. 1; 2002. p. 900-903.

167

55. Kuranov A., Lienhart R, and Pisarevsky V., “An Empirical Analysis of Boosting

Algorithms for Rapid Objects with an Extended Set of Haar-like Features,” Intel

Technical Report MRL-TR-July02-01, 2002.

56. Freund Y. and Schapire R.E., “Experiments with a New Boosting Algorithm,” in

Machine Learning: Proceedings of the Thirteenth International Conference, Morgan

Kauman, San Francisco, pp. 148-156, 1996.

57. Bradski G., “Computer Vision Face Tracking for Use in a Perceptual User Interface,”

Intel Technology Journal, http://developer.intel.com/technology/

itj/q21998/articles/art_2.htm, Q2 1998.

58. Shi J. and Tomasi C., “Good features to track”. In IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR'94), pages 593--600, IEEE

Computer Society, Seattle, Washington, June 1994.

59. Haralick R.M. and Shapiro L.G., “Computer and Robot Vision”, vol. I (1992) and vol.

II (1993), Addison-Wesley.

60. Ballard D.H. and Brown C.M., Computer Vision, Prentice-Hall Inc., 1982

George H.J. and Donald G., “Colour Spaces for Computer Graphics”, Computer

Graphics, vol. 12, no. 3, pp. 20-25, 1978.

61. Perez F. and Koch C., “Toward Color Image Segmentation in Analog VLSI: Algorithm

and Hardware”, International Journal of Computer Vision, vol. 12, no. 1, pp. 17-42,

1994.

62. Nevatia R., “A color Edge Detector and Its Use in Scene Segmentation”, IEEE Trans.

Syst. Man, Cyb. 7(11), pp. 820-826.

168

63. Adel M., Wolf D., Vogrig R. and Husson R., “Evaluation of Colour Space in Computer

Vision Application of Wood Defects Detection”, Proceedings, IEEE International

Conference on Systems, Man, and Cybernetics, pp. 499-504, 1993.

64. Lucy L.B. “an Iterative Technique for the Rectification of Observed Distributions”,

The Astronomical Journal 79.6 (1974): 745-753.

65. Reiter C. “With J Fast Fourier Transforms and Removing Motion Blur”, ACM

SIGAPL APL Quote Quad 31.1 (2000): 16-17.

66. Lowe D.G., “Distinctive Image Features from Scale-Invariant Keypoints,”

International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.

67. Lowe D.G., “Object recognition from local scale-invariant features”, International

Conference on Computer Vision, Corfu, Greece (September 1999), pp. 1150-1157.

68. Lowe D.G., “Local feature view clustering for 3D object recognition”, IEEE

Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii (December

2001), pp. 682-688.

69. Nowozin S., libsift, http://user.cs.tu-berlin.de/~nowozin/libsift/.

70. Wang C.C. and Wang C.C., “Hand Posture Recognition Using Adaboost with SIFT for

Human Robot Interaction”, International Conference on Advanced Robotics (ICAR'07),

Jeju, Korea (August 2007).

71. Sheridan T. and Ferrel W., “Remote Manipulative Control with Transmission Delay”,

IEEE Transactions on Human Factors in Electronics, 4:25-29, 1963.

169

72. DeFanti, T., Leigh, J., Yu, O., Krishnaprasad, N., Eliason, J., Alimohideen, J., He, E.

“Quanta: a Toolkit for High Performance Data Delivery”. Future Generation Computer

Systems 1005 (2003).

73. Bouguet, J.Y., “Pyramidal Implementation of the Lucas Kanade Feature Tracker”.

Intel Technical White Paper, included in OpenCV distribution.

74. Luo, X., “TSC-I2: a Micro-Second Precision Time Measuring Tool”, http://tsc-

xluo.sourceforge.net.

75. Jeong B., Renambot L., Jagodic R., Singh R., Aguilera J., Johnson A. and Leigh, J.

“High-Performance Dynamic Graphics Streaming for Scalable Adaptive Graphics

Environment”, IEEE/ACM International Conference for Supercomputing (SC06),

Tampa, FL (December 2006).

76. Renambot L., Jeong B., Jagodic R., Johnson A., Leigh J. and Aguilera, J.,

“Collaborative Visualization using High-Resolution Tiled Displays”, CHI 06

Workshop on Information Visualization and Interaction Techniques for Collaboration

across Multiple Displays, Montreal, Canada (April 2006).

77. http://www.evl.uic.edu/cavern/lambdavision/

78. Culler D., Karp R., Patterson D., Sahay A., Schauser K.E., Santos E., Subramonian R.,

and von Eicken T, “LogP: Towards a Realistic Model of Parallel Computation”,

SIGPLAN Not. 28, 7 (Jul. 1993), 1-12.

79. Alexandrov A., Ionescu M., Schauser K., and Scheiman C., “LogGP: Incorporating

Long Messages into the LogP Model for Parallel Computation”, Journal of Parallel and

Distributed Computing, 44(1):71--79, 1997.

170

10. VITA

NAME: Xun Luo

EDUCATIONS: B.S. Computer Science. University of Electronic Science and Technology.

Chengdu, China. 1999.

M.S. Computer Science. University of Electronic Science and Technology.

Chengdu, China. 2002.

Ph.D. Computer Science. University of Illinois at Chicago. USA. 2008.

EXPERIENCES: Software Engineer, Motorola China. (2001 – 2002)

Software Intern, Qualcomm Inc. (2006)

Senior Software Engineer, Motorola Labs. (2006 –2008)

Research Assistant (2003 – 2006), Electronic Visualization Laboratory,

University of Illinois at Chicago.

PUBLICATION: Luo X., Schuler F. and Jonnalagadda K., "Token-Based Dynamic

Authorization Management of RFID Systems". US Patent Pending.

Schuler F., Jonnalagadda K. and Luo X., "Method, System and Configuration

for Activity Management & Data Exchange for Shared Group Activity Task

& Item Tracking". US Patent Pending.

Liu H., Luo X. and Yao Y.W., "Two Manifold Learning Techniques for

Sensor Localization", In Proceedings of the 2007 IEEE International

Conference on Systems, Man and Cybernetics(SMC'07), Montreal, Canada,

Oct. 2007.

Luo X., Piret K. and Guan Y., "A Service Framework for Temporal Link

Analysis with Historical Segments Integration", In Proceedings of the 2007

IEEE International Conference on Systems, Man and Cybernetics(SMC'07),

Montreal, Canada, Oct. 2007.

Luo X., "PACE: Augmenting Personal Mobile Devices with Scalable

Computing", In Proceedings of the 7th IEEE International Symposium on

Cluster Computing and the Grid(CCGrid'07), Rio de Janeiro, Brazil, May

2007.

Luo X., Kenyon R.V., Kamper D.G., Sandin D. and DeFanti T., "The Effects

of Scene Complexity, Stereovision, and Motion Parallax on Size Constancy in

171

a Virtual Environment", In Proceedings of IEEE Virtual Reality Conference

2007(VR'07), Charlotte, NC. March 2007.

Simone L.K., Sundarrajan N., Luo X., Jia Y. and Kamper DG., "A Low Cost

Instrumented Glove for Extended Monitoring and Functional Hand

Assessment", Journal of NeuralScience Methods, October, 2006.

Luo X., Kenyon R.V., and Guan Y. "Pervasive Web Community

Summarization: A Machine Learning Approach". In Proceedings of the 2006

International Conference on Machine Learning; Models, Technologies &

Applications (MLMTA'06). Las Vegas, NV, June 2006.

Luo X., Kenyon R.V., Kline T., Waldinger H. and Kamper D.G., "An

Augmented Reality Environment for Post-Stroke Finger Extension

Rehabilitation", In Proceedings of IEEE 9th International Conference on

Rehabilitation Robotics (ICORR'05), Chicago, IL. June 2005.

ACTIVITIES: IEEE Technical Committee on Scalable Computing Young Researcher Travel

Grant, 2007.

University of Illinois at Chicago Provost Award for Graduate Research, 2006.

Google "Summer of Code 2006" Award, 2006.

Google "Summer of Code 2005" Award, 2005.

USENIX Student Travel Award, 2004.

External reviewer for IEEE VR and 3DUI.conferences

External reviewer for International Journal of Integrated Computer-Aided

Engineering

172

11. APPENDIX

This appendix is the copy of the approval notice document from the UIC

Institutional Review Board (IRB) for the size constancy study protocol used in thesis

research.

