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SUMMARY 

Virtual reality (VR) is a technology which allows a user to interact with a 

computer-simulated virtual environment (VE). Since its inception it has created an impact in 

many fields, but has not yet gained wide acceptance to be used in a personal context. At the 

same time, personal mobile devices (MDs) have evolved tremendously during recent years. 

The deployment of MDs is becoming pervasive; the hardware configurations are enhanced to 

be comparable to low-end desktop systems; and there are drastic improvements in the 

infrastructures supporting wireless inter-device connectivity and collaboration. These trends 

make novel applications and business models of VEs by the individual users promising and 

desirable. However, to make the key elements of a VE, i.e. visualization and interaction, 

work as smoothly for MD-based systems as for desktop-based systems, three research 

challenges need to be addressed, for which the technical solution portfolio is far from 

complete: 1) which visual factors of a VE make the user’s performance similar to that in the 

real world? 2) How to effectively allow a user to collect his/her own biometrical data to build 

personalized profiles? 3) How to efficiently make use of the processing resources in the 

infrastructure for the compute-heavy tasks for a individual user, such as intelligent human 

computer interaction? 

This work, referred to as Personal Augmented Computing Environment (PACE), 

sets its goal for personalized visualization and scalable human-computer interaction. It 

attacks the three challenging research problems with corresponding solutions. First, to 

understand the visual factors that make VE more like the real world, a set of controlled 

experiments are designed and conducted in a CAVE system. In the experiments three visual  
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SUMMARY (CONTINUED) 

factors, namely scene complexity, stereovision and motion parallax are examined. The results 

suggest that scene complexity and stereovision significantly affect users’ size perception, 

while motion parallax does not exhibit a significant effect. Being conducted by no other 

researchers before, this study helps us to better understand the role of size constancy in VE 

performance. 

Next, an effective process to collect a user’s hand reference images for posture 

profile building is proposed and implemented. The novelty of the proposed process is that it 

takes advantage of the synergies between mobile device and computing infrastructure, and 

uses proactive measure instead of post-processing techniques to improve sample image 

quality. While most hand posture recognizers’ performance are very sensitive to hand sample 

image quality and require them to be taken under strictly controlled laboratory setting, by 

employing the process proposed and implemented by this work, the mobile device user can 

collect hand sample images by themselves with relative ease, and still be able to obtain 

satisfying posture profiles.  

The third contribution of this work is a set of scalable computing techniques to 

speed up the tasks of a vision-based hand detection and recognition using computer clusters. 

These techniques include a novel data structure, called a scanning node tree which is used to 

manage cluster nodes; a unique load balancing algorithm to evenly distribute workload 

across nodes; and a node-to-node messaging protocol for parallel processing. The set of 

scalable computing techniques has been proved to be efficient by various evaluation metrics. 

Enabled by these techniques, a sample application, a hand tracker/controller named Hand  
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Wand is implemented and integrated with a large scale tiled display instrument as a human 

computer interaction device.  

This work also introduces one preliminary and early work for personal VE: a reach-

and-grasp training environment for in-home rehabilitation of stroke survivors. This pilot 

study achieved certain results and were successful to some extent.  



1 

1. INTRODUCTION 

Virtual reality (VR) is a technology which allows a user to interact with a 

computer-simulated environment, be it a real or imagined one. Since the inception of VR, it 

has been used for applications in various fields. Just to name a few: military bases use VR to 

simulate battle field or air combat [7]; manufacturing factories use VR for mocking up of 

assembly process [6]; medical and health care facilities use VR to plan life-critical surgeries 

before they are carried out on real patients [1]; and scientists use VR to display complex or 

large scale data sets [5].  

Although VR has achieved many successes, people’s prediction that VR will be 

integrated into daily life and activity has not been obtained yet. To make the wide acceptance 

of VR for individuals possible, the VR system should be able to provide personalized and 

close-to-real-life visualization and interactivity for its user. On the visualization aspect, not 

only photo-realistic virtual scenes need to be rendered, presence of these virtual scenes also 

needs to have a high-fidelity for virtual-real world registration. On the interaction side, the 

VE should be able to be interacted with using the modalities a user interacts in the real world, 

to blend itself into the user’s daily life seamlessly. This means that a VE system should 

maximize itself in sensing the presence and status of the user; the user’s freedom of 

movement should be as unconstrained as possible; and the display, interaction and 

computation components of the VR system should satisfy the size, price and power 

consumption requirements for portable use. As described in the following sections, 

technology advances in the past decades have created the consumer needs and laid the 

foundation for personal VEs. In the following text of this chapter I firstly review the 
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background of recent technology advances in VEs, mobile devices and infrastructures. Then 

the motivations of this work are explained and research goals to be achieved are stated.  

1.1. Trend of Virtual Environments  

Networked VEs for personal entertainment purpose emerge and quickly become 

popular in the past decades. In a networked VE, users are shown as 3D avatars and the virtual 

universe is composed of such avatars, as well as the virtual objects and scenes the avatars 

reside in. Two representative virtual universes are Second Life [25] and There [26]. Figure 1 

illustrates a typical scene in Second Life, where multiple avatars of the users are socializing 

in a patio. Because of the potential business opportunities, integration of networked 

environments and location-based applications has now drawn the attention of wearable 

system vendors.  Location-based VE provides computer generated visual and audio content 

based on the location context of the user, thus calling for more seamless registration between 

the virtual world and the real world.  The popularity of applications fosters the volume of 

current and future VE systems. For example, Second Life has a reported user population of 2 

million as of 2006.  

Besides virtual universe applications, many traditional information sources are now 

explored by the users through modalities similar to what used to be categorized as virtual 

reality. For example, new geographical information systems that allow people to see a 

location using street map, satellite view, “hybrid” view that integrates the former two, and 

even 3D view of the panoramic camera images of the streets have been offered by major web 

service companies and is now used by millions of users, over a broad spectrum of computing 

platforms, including desktops and mobile devices.  
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The practical needs for networked VE applications also make the needs for 

wearable displays to increase. Compare to the immersive HMDs in traditional VEs, 

augmented displays suit this purpose better because the real world and VE can be optically 

blended to facilitate a user’s experience.  

 

Figure 1 the Second Life Virtual World 

 

1.2. Contemporary Personal Mobile Devices  

The definition for a mobile device was and till now, is still quite fluid. A broad 

consensus now is that mobile devices are pocket-sized computing devices, typically 

comprising a small visual display screen for user output and an interactive gadget for user 

input. Today, the category of mobile devices encompass mobile phones, personal digital 

assistants (PDAs), portable media players, information appliances, personal communicator, 

handheld game consoles, and ultra-mobile PCs (UMPCs), just name a few. The use of mobile 

devices nowadays is virtually pervasive. Take mobile phones alone, as of end of 2007, about 
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half of the world population owns one1. Due to frequent feature and configuration overlaps, it 

is not always easy to differentiate one type of mobile device from another (e.g., a mobile 

phone and a portable media player). Also, nearly all these devices exhibit the common trends 

towards more powerful processing units, standardized and interoperable application 

platforms, and natural human computer interfaces.  

Processing Power 

Because of the high requirements for power saving features, a majority of mobile 

devices use ARM (Advanced RISC Machine) architecture processors. The ARM architecture 

is a 32-bit RISC processor architecture developed by ARM Ltd. that is widely used in a 

number of embedded designs. Power-saving as they are, computing power of the ARM 

processors are rich and also follow Moore’s Law (i.e. doubled every two years) as the 

counterparts in desktop, workstation and sever fields do.  

Typical ARM processors on mobile devices today are running at 300 – 800 million 

instructions per second (MIPS) range. Such processing speeds are still not comparable to 

main stream desktop computer processors, but close to the one two years ago. In other words, 

it could be assumed that mobile device’s computing power is one level lower on the ladder of 

Moore’s Law with desktops, and is closely tracking desktop systems at this pace. This fact 

makes migration of desktop application to mobile devices a natural choice and in practice, is 

already underway.  

Application Platforms 

                                                 

 

 
1 Source from industry analyst Informa Telecoms & Media: http://www.informatm.com/ 
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One challenge in making mobile devices interoperable is that applications 

developed for one brand and/or model of mobile device were generally not able to run on 

other brands and/or models. Also, applications on mobile devices were largely in the 

embedded fashion, where the application itself is taking the responsibility of scheduling, 

resource management and communication with other processes. Embedded applications are 

difficult to develop, maintain and interoperate. As a consequence, most applications only run 

on proprietary systems and universal deployment among various mobile devices is not 

common. These situations were true until early 2000’s. After that, application platforms that 

facilitate interoperability became widely deployed. Nowadays there are three major platforms: 

Sun’s Java Micro Edition (J2ME), Qualcomm’s Binary Runtime Environment for Wireless 

(BREW) and Microsoft’s compact .NET framework. The driving forces for these platforms 

are strong and these platforms are evolving rapidly. For example, J2ME provides a reduced 

version of Java libraries to mobile device application developers. Java application written in 

J2ME could run on any mobile devices that are J2ME compatible, be it a mobile phone, a 

portable media player or a PDA. J2ME libraries are standardized through the form of Java 

Specification Requests (JSRs). As of 2007, 927 JSRs have been proposed and standardized2, 

making a large variety of application features available through J2ME-compatible mobile 

devices.  

Standardize and interoperable application platforms make possible the flourishing 

of mobile device applications. Among these prospective applications are personal VE 

systems.  

                                                 

 

 
2 http://www.jcp.org 
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Human Computer Interfaces 

The main human-computer interfaces on mobile device phones today are 

QWERTY style keyboards and touch screens. There are also devices that make use of inertial 

sensing (Nintendo Wii) and touch-based gestures (Apple iPhone).  

In 1997, the first complete integrated cellular phone and camera solution was 

demonstrated in public. Since then, the advent of the CMOS sensor manufacturing process 

enabled the camera phone technology for mass production. As of 2007, all major mobile 

phone manufacturers offer camera phone in their product lines. Besides merely taking a 

picture, storing locally or sending out, multiple mobile devices manufacturers also provide 

computer vision software libraries that facilitate image and video processing, such as [24]. 

There are still plenty of spaces for novel human-computer interaction methods for mobile 

devices.  

1.3. Emerging Infrastructures  

Personal visualization and interaction tasks are performed in the ecosystem of 

infrastructures (communication and computing services that are not with a specific user), 

which in the past decades have undergone enormous transitions. These transitions could be 

summarized from communication and computation perspectives. From a communications 

perspective, short range wireless protocols enable data to be transferred at higher throughput 

and lower latency; while last mile wireless gap is largely filled by third generation mobile 

phone technology, making mobile applications more convenient to be networked smoothly to 

internet backbones. From a computation perspective, processing power and storage become 

standardized resources that can be consumed by personal users, introducing the concept of 
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Utility Computing or more contemporary, Software as a Service and Infrastructure as a 

Service. 

Short Range Wireless Communications Infrastructures 

Till late 1990’s, mobile devices were connected to base stations either through star 

link or bee-hive networks. Local wireless interconnectivities were mostly low-bandwidth, 

such as Infrared Data Association (IrDA).  With the increasing need for high-bandwidth and 

low-latency local wireless link, several technologies have now gained popularity by hardware 

manufactures. The most widely deployed one is Bluetooth [1]. Bluetooth is an industrial 

specification for wireless personal area networks and provides a way to connect and 

exchange information between devices such as mobile phones, laptops, PCs, printers, digital 

cameras, and video game consoles over a secure, globally unlicensed short-range radio 

frequency. At the time of this work, the mainstream Bluetooth specification version is 1.2, 

which supports 2.1M bit/s of transmission speed.  

The new Bluetooth specification, version 3.0, plans to incorporate ultra-wideband 

(UWB). UWB is radio communications technology that can be used for short-range high-

bandwidth communications by using a large portion of the radio spectrum in a way that does 

not interfere with other more traditional “narrow band” uses.  UWB could achieve data 

transmission rate at 480M bit/s. UWB integration will create a new version of Bluetooth 

wireless technology with a high-speed/high-data-rate option. This new version of the 

Bluetooth technology will meet the high-speed demands of synchronizing and transferring 

large amounts of data, as well as enabling high-quality video and audio applications for a 

variety of mobile devices.  
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Besides radio technologies, high-speed, high-bandwidth short range optical 

communication is also promising to be practically deployed for mobile devices. Optical 

signal transmitted through dedicated fiber link have already proved to be able to carry 

digitized information at gigabit or even terabit per second speed, depending on the number of 

fibers in optical cable housing. Optical transmission in free space is technically more 

challenging than in fiber media, but has gained substantial improvements in component 

miniaturization, optical path stability and optical-electronic conversion on mobile devices. 

There are quite a few industrial-quality mobile device components that are able to transmit 

data at gigabit per second rate. Although the price and power consumption are still 

prohibitive, reduction of both are confidently expected in the near future.   

The improvements in short-range wireless communication infrastructures greatly 

facilitate device interoperability.  

Last-Mile Wireless Communications Infrastructures 

One trend of last-mile wireless communications is the increasing adoption of the 

third generation (3G) mobile phone standards and technology [2]. 3G technologies enable 

network operators to offer users a wider range of more advanced services while achieving 

network capacity through improved spectral efficiency. The most significant feature of 3G is 

that it supports greater numbers of voice and data customers – especially in urban areas – and 

higher data rates at lower incremental costs than 2G mobile systems. A typical 3G 

deployment allows the transmission of 384k bits per second for mobile systems and 2M bits 

per second for stationary systems. Novel services include wide-area wireless voice telephony 
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and broadband wireless data can be carried out in harmony in a mobile environment. As of 

2007, 200 million 3G subscriber have been connected3.  

Another emerging last-mile wireless technology is the Worldwide Interoperability 

for Microwave Access (WiMAX) [3]. WiMAX aimed at providing wireless data over long 

distances in a variety of ways, from point-to-point links to full mobile cellular type access. 

WiMAX is based on the IEEE 802.16 standard, which is also called WirelessMAN. A typical 

WiMAX deployment allows the transmission of 70M bits per second over a 2 kilometers 

distance. At the transmission rate as low as 2M bits per second, WiMAX systems are able to 

operate over a 50 kilometers distance. 

The improvements in last-mile wireless communication fill the gap between mobile 

end users and the main internet trunk, which used to be limited by carrier offerings. The 

difference between mobile communication units and internet terminals are largely morphed, 

if not diminished completely yet.  

Computation Infrastructures  

In the past, corporate or academic mainframes were jealously guarded as strategic 

resources. With the reduction in price of commodity PC-based clusters, as well as 

proliferation of open source software, the new concept Utility Computing starts to be 

accepted by the computer users. Utility computing is the packaging of computing resources, 

such as computation and storage, as a metered service similar to a physical public utility 

(such as water or natural gas). This kind of system has the advantage of a low or no initial 

                                                 

 

 
3 Source: http://en.wikipedia.org/wiki/3G 
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cost to acquire hardware; instead, computational resources are essentially rented. Customers 

with very large computations or a sudden peak in demand can also avoid the delays that 

would result from physically acquiring and assembling a large number of computers. Utility 

computing was initiated by IBM and now both Sun and Amazon have commercial offerings.  

Two more modern terms similar to utility computing are Software as a Service 

(SaaS) and Infrastructure as a Service (IaaS). Both are targeting at flexibly allocated 

hardware and software resources to be used by individual users. In a ubiquitous computing 

environment, the existence of such kind of resources is very important for the user to be able 

to fulfill visualization and interaction tasks. 

1.4. Motivation  

The previous sections of this chapter briefly summarize the trend of VEs, features 

of contemporary mobile devices and the emerging infrastructures. These facts justify the 

practical need of introducing VEs for personal use, as well as the feasibility provided by the 

fast improving device and infrastructure capabilities. However, research portfolio to archive 

the smooth migration of today’s VEs for personal use is far from complete.  Specifically, the 

following challenges need to be concretely addressed: 

1.4.1. Limitation in Understanding of Size Perception Performance  

Being different from traditional personal computers’ two-dimensional visual 

interfaces, three-dimensional (3D) user interface is one of the most important hallmarks of 

VEs and should be well implemented for personal use. Correct perception of the virtual 

object size is one of the key metrics of efficient 3D user interface implementation, and worth 

being carefully studied. This is especially true in the personal use context, where high-
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fidelity registration between the virtual environment and the physical world is desired. Here I 

present two fictitious scenarios where the correct size perception is the key to the 

application’s user experience:  

Scenario 1: 

A stock broking agency provides its customers with wearable 3D HMDs and 

wireless broadband receivers to get the real-time stock price information. Stock prices are 

plotted in interactive 3D graphics as bars, spheres, and cubes, etc. In a HMD, 200 stocks are 

displayed in the same screen and each are tagged with relative review articles to be read 

from. A busy user browses the 3D visualization every morning and skim only these stocks 

that he feels at a higher price than others, based on the size of the bar, sphere or cube he 

perceived. 

Scenario 2: 

A driver uses a portable GPS mounted on the car to navigate routes while driving. 

Using a VE, the GPS displays all the buildings along the road as 3D models. The GPS also 

communicate with other GPS devices in the nearby vehicles and display these vehicles in 3D 

models on the screen. The driver counts on his perception of the building and car sizes to 

adjust driving speed.  

Both applications illustrated are common for personal VE systems (similar services 

are available now but have not yet been used extensively), and sensitive to the size 

perception performance of their users. In Chapter 3 I describe in detail a deployed personal 

VE that trains post-stroke patients of reach-and-grasp tasks, which is dependent on its user’s 

size perception performance.  
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Important as it is, to my best knowledge, there is no literature or systematic human 

study that addresses all major VE factor which affect user’s size perception yet. Three of 

these factors are scene complexity, stereovision and motion parallax. Thus, studying to 

identify the significant factors that affect people’s size perception in VE is a desirable 

research task.  

1.4.2. The Need for Natural Interaction for VR Tracking  

Being able to track the user is an important feature of VEs, because of the high 

requirement for interactivity. To make a VE ready for personal and mobile use, tracking 

module should ideally be tetherless, and able to track in 3D space. At the same time, current 

user interfaces are not fully suited for human-centered VEs. Traditional devices as keyboards 

and mice offer only the capability of working on a planar surface. Novel devices could be 

categorized in three classes: 1) Joystick-like devices, such as FlyBox (BG Systems) and 

Cubic Mouse (FakeSpace Systems). These devices are either mounted on the desk or 

manipulated with both hands. 2) Wearable devices, such as the PINCH gloves (FakeSpace 

System). These devices track the wearer’s body movement and trigger respective commands. 

3) Single hand-held wands, such as the Wand (Intersense). Through integration of 3D 

position tracking, these devices allow single hand operation, as well as certain degrees of 

body movement. Although these devices provide great convenience in traditional VEs, they 

are not suitable for personal VEs. First, they put high requirements for the user’s operation 

skills, which is hard for VE novices. Second, users are burdened with device carrying, either 

explicitly or implicitly. In fact, the limitations of current human-computer interfaces hinder 

expansion of the VEs to serve individual uses.  

1.4.3. Lack of Scalable Computing Techniques for Mobile Devices  



13 

The pervasiveness of mobile devices and the abundance of infrastructure 

processing power do not automatically make the effective synergy between these two of 

entities. In fact, most exchanges between today’s mobile devices and the infrastructure are 

application data: streaming of multimedia contents, for example, video and audio; download 

or upload personal files to web servers, such as social networking or self-publishing sites; 

and, synchronizing personal information (email, office documents) with desktop systems. 

The ideal exchange between mobile devices and computer systems in the infrastructure 

should be both application data as well as user profiles. Mobile devices should be able to 

transfer its user profile to the infrastructure in a nearly transparent and online way that 

minimizes the user’s awareness. At the same time, accesses to the infrastructure processing 

power, including discovery of the computation resource in the infrastructures, initialization 

of collaboration sessions, as well as quality-of-service control should all be automated and 

effectively managed. 

Here is yet another scenario that shows the usefulness of scalable computing 

techniques for mobile devices4:  

An English-speaking traveler is having a business trip in Tokyo and walked into a 

Japanese sushi bar. Unfortunately, all the menus and store signs in the sushi bar are in 

Japanese and the traveler cannot read them at all. Luckily, powerful computer system has 

been deployed in the sushi bar, and available for customer access through wireless link. So 

the traveler use his mobile device to take continuous video stream of Japanese menus and 

store signs and offloads the computer-vision based processing to the computer system in the 

                                                 

 

 
4 Personal communication with Professor Jason Leigh, one of my thesis committee members. 
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sushi bar. The traveler’s mobile device already stored his native language (English) and 

dietary preferences as personal profiles. Such information personalizes the image processing 

process. When the processed result is rendered to the user, menus and store signs are 

translated into English and with a “recommendation” ranking displayed next to each of them. 

Although this scenario is fictitious, it clearly shows why scalable computing for 

mobile devices is still a unsolved research problem today and how big the impact will be if 

this research problem is gracefully solved. 

1.5. Thesis Goals  

Motivated by the research problems described in the above section, this work sets 

three goals to accomplish. 1) to study the visual factors that affect people’s size perception 

performance in a VE. 2) to develop an effective solution to construct user profile for hand 

posture recognition. 3) to investigate scalable computing techniques to facilitate the synergy 

between mobile devices and infrastructure computer systems to implement a high-

performance hand posture based tracker and controller. Grouping these three goals together, 

this work is aiming at implement a prototypical framework for personalized visualization and 

scalable human computer interaction, which is named personal augmented computing 

environment (PACE). The balance between advanced research and practical implementation 

is carefully planned when PACE is envisioned. And this balance is reflected in the planning 

of all the three goals described as below.  

1.5.1. Study of Size Constancy  

Size constancy refers to the capability of a person to correctly perceive object sizes 

in the environment, independent of the objects’ relative location from the viewer. As size 
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constancy in the physical world is natural, users’ size constancy performance is an important 

metric of the quality of a VR system.  This research sets its goal to study three visual factors 

that might have an effect on the users’ size constancy performance in the VE: scene 

complexity, stereoscopy and motion parallax. To achieve this goal, controlled experiments 

that configure a VE with difference combination of these three visual factors are to be 

conducted, data from VR-experienced and VR-naive subjects are to be collected, and 

statistical analysis methods are to be applied to get quantified conclusion of the significance 

of difference visual factors in affecting size constancy performance.  

The VR system that is chosen to conduct the control experiments is the CAVE 

Automatic Virtual Environment (CAVE® 5 ), a projection based virtual reality system 

developed at the Electronic Visualization Lab at the University of Illinois of Chicago (EVL-

UIC). The reason to choose a projection-based VR system and not more contemporary LCD-

based VR systems or mobile device based VR systems is that CAVE is a mature, widely 

deployed, and representative VR system. In the mean time, CAVE system is less prone to the 

interference of other “noisy” environment factors, such as motion artifacts in mobile VR 

systems caused by human body movement and perspective skew in LCD based VR systems 

caused by imprecise calibration of LCD screen mountings.  

1.5.2. Personalized Hand Tracker and Posture Recognizer  

Using the most dexterous part of human body – the hand – for human computer 

interaction in the VE conforms to users’ daily life habit, and has other important advantages 

such as tetherless interaction and expanded degrees of freedom.  Making the users’ hand 

                                                 

 

 
5 The CAVE is trademark of the Board of Trustees of the University of Illinois at Chicago 
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capable of tracking and controlling objects in the VE will greatly facilitate the wide 

deployment of such systems, and push them closer towards portability and mobility. This 

work proposes to realize a hand tracker using computer vision techniques. Hand images are 

to be captured, processed, and mapped to 2D coordinates as well as control commands at the 

rate of VR frame update. A set of hand postures are defined as symbol for control commands 

and when they are performed by the VE user, corresponding commands are issued to the VE.  

To personalize the proposed tracker, user profile needs to be effectively constructed. 

This work aims at implementation of a process that mobile device user are able to take the 

hand sample images by themselves and achieve comparable profile accuracies as what used 

to be done in a strictly controlled environment. The profiles to be constructed include the 

user’s hand shape and skin color models. 

1.5.3. Scalable Computing for Hand Tracking  

To investigate solutions that effectively create the synergy between the mobile 

device and computer systems in the infrastructure, this work aims at designing and 

implementing a prototypical paradigm that use the computation clusters in the infrastructure 

to boost the computation tasks performed by the hand tracker as described in section 1.5.2. 

Discovery, initiation and process offloading to the cluster system in the infrastructure are to 

be automated for the mobile device user, thus to achieve minimal user involvement and 

awareness of the scalable computing process. Two components of the hand tracker, namely 

hand detection and posture recognition are to be accelerated through collaboration among 

nodes of the cluster.  
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The computation cluster to be used in this experimental work is a 32 node cluster 

which serves as a large-scale display node on the global Grid. The cluster system drives a 55-

tile LCD display wall and is an exemplary supercomputing virtual organization (VO) on the 

Grid which has underused computation capabilities. Without loss of generality, this system 

could be regarded as representative of the computer systems ubiquitously existing in a 

mobile device user’s surroundings. 

1.6. Chapter Organization  

This thesis is organized as follows. Following the background introduced in 

Chapter 1, Chapter 2 gives a review of relevant research in addressing similar problems. In 

Chapter 3, a pilot study conducted by the author to deploy personal VE for stroke survivors, 

named VR Hand Trainer is presented. Being an import preliminary work preceding the final 

approaches chosen by the thesis research, VR Hand Trainer provides valuable lessons to for 

the final approaches of this work. Chapter 4, 5, 6 compose the main body of this thesis. A 

human factors study to identify visual factors that significantly determine VE users’ size 

constancy performance is described in Chapter 4. In Chapter 5, extension work from tracking 

a rigid human part, i.e. the head to an articulated human body part, i.e. the hand, are proposed 

and the implementation details are given. Chapter 6 presents the scalable computing 

techniques employed to solve this computation-intensive problem. These techniques are then 

evaluated by a real-world application for interaction with a large scale tiled display system in 

Chapter 7. At last, Chapter 8 draws the conclusions for this research work, and gives 

discussion on lessons learned and possible future works. 
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2. RELATED WORK 

Making use of mobility and hand based interaction techniques has been a long-

standing problem in mobile computing, ubiquitous computing, location-aware computing and 

virtual reality communities. Along with the various researches on this topic, a large number 

of approaches have been proposed and a variety of prototypes have been constructed based 

on the approaches. Some of them emphasize the use of external cameras, while the others 

prefer wearable cameras and other portable devices. In this chapter, several representative 

approaches and systems are briefly reviewed to set the reference baseline of this work.  

The Finger Mouse 

In [28], Quek and colleagues presented Finger Mouse, which is a freehand pointing 

alternative to the ubiquitous mouse. In this system, the user merely performs a pointing 

gesture above the keyboard. A down-looking camera is trained on the keyboard. A user 

typing at the keyboard may switch into the “pointing mode” by simply assuming a hand 

pointing configuration above the keyboard. A vision system constantly monitors the hand 

and tracks the fingertip of the pointing hand. As the user gestures in a horizontal plane just 

above the keyboard, the screen cursor moves accordingly. The user depresses the SHIFT key 

on the keyboard with the non-pointing hand to register a ’mouse button press’. 

Although Finger Mouse has real-time performance, it only tracks fingertip rather 

than the hand posture. It is also not personalized. The limitations of Finger Mouse from the 

viewpoint of nowadays can not only be attributed to the technology restrictions in the 1990s’, 

but also the design goal of the system. The design goal for Finger Mouse is clearly for 2D 

desktop use, rather than immersive and mobile systems: camera is passive and mounted in 
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the desktop workspace; usage of mouse is in conjunction with the keyboard; strict constraints 

are imposed for background noise. However, Finger Mouse’s concept of using the hands as a 

mixture of tracking and interaction devices, of which one hand performs the state switch task 

and the other serves the tracking task, could shed light on this research. The further research 

by Xiong and Quek [29] about unconstrained hand gesture extraction by analyzing oscillation 

cues is related to endeavors towards minimized user involvement and awareness.  

 

Figure 2 Finger Mouse by University of Illinois at Chicago 

 

Incorporating Dynamic Real Objects with VE 

In [27] Lok presented algorithms to generate virtual representations, avatars, of 

dynamic real objects at interactive rates.  Further, he presented algorithms to allow virtual 

objects to interact with and respond to the real-object avatars.  That allowed dynamic real 

objects, such as the user, tools, and parts, to be visually and physically incorporated into the 

VE.  The system uses image-based object reconstruction and a volume-querying mechanism 

to detect collisions and to determine plausible collision responses between virtual objects and 

the real-time avatars.  Those techniques allowed their system to provide the user natural 

interactions with the VE and visually faithful avatars.  
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Lok’s research, in line with a few others, emphasizes the reconstruction of real 

objects in immersive VE. The purpose is not to create human computer interfaces that are 

suitable for mobile users, but rather enhance the users’ experience in fixed setting VEs like 

the CAVE. This design principle is reflected by the using of both mounted and wearable 

cameras and the high requirement on the calibration of mounted cameras. 

 

Figure 3 Real Object – VE integration by University of North Carolina 

 

Gesture Pendant  

At the Georgia Institute of Technology, Starner and fellow researchers did 

extensive work [30, 31] on real-time gesture recognition. One of their earlier applications 

was for American Sign Language (ASL) recognition [31]. The technology was later been 

extended to recognize user-defined gestures. With the aid of a 5-word vocabulary, the 

Gesture Pendant allows ordinary household devices to be controlled, literally, with the wave 

of a hand. The user wears a small pendant that contains a wireless camera. The user makes 

gestures in front of the pendant that control anything from a home theater system, to lighting, 

to the kitchen sink. Therefore, hard to use, hard to understand remotes can be replaced with 

simple hand gestures. The research is still active and evolving. In [30] they used both 
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acoustic sensor and accelerometers for ASL recognition. The restriction of the gesture 

pendant is that it requires active illumination and hand distance to be optimally set. At the 

same time, gesture recognition is based on Hidden Markov Model trained from grey-level 

images. These features put barriers on the application of more advanced computer vision 

techniques. In the mean time, the Gesture Pendant is designed to be a control device only and 

not a tracking device, neither 2D nor 3D.  

 

Figure 4 Gesture Pendant by Georgia Tech 

 

Hand Mouse  

In the Hand Mouse project by Kurata and colleagues [32], the user carries a 

wearable computer, wear HMD and use hand as the sole input for HCI. The system uses 

color-based segmentation to classify hand from the background, and a Gaussian Mixed 

Model (GMM) to dynamically adjust color histogram models. Video captured from wearable 

camera are streamed to a desktop system (Dual-Processor Pentium III) via wireless LAN for 

all processing and the results are sent back to the user. At the same time a video combiner 

feeds the captured video back to the HMD to create augmented reality.  
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The color-based segmentation technique used by Hand Mouse system is sensitive 

to background noise, especially static objects that are of similar color and shape of the human 

hand. Although the authors claim cluster computing techniques are used for parallel 

processing, the processing computer they used is merely a high-availability desktop system 

rather than a real computer cluster. The wearable computer is used as a video terminal only. 

This solution puts a large amount of load on the wireless link and makes the system prone to 

quality-of-service problems. 

 

Figure 5 Hand Mouse by JAIST 

 

HandVu 

HandVu [33] is a software/hardware combination developed by Kolsch at the 

University of California at Santa Barbara. It achieved robust hand tracking, in a real-time 

manner (10 – 45ms for per frame processing). Hand tracking is the main concentration of 

HandVu, and it assigned gesture recognition to application. Based on texture and color 

features of the video image, HandVu is able to detect “Flock of Features” and is more robust 

to background noise interference. 
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HandVu does not give its users the freedom to train hand shape and skin colors of 

their own. It uses a pre-computed general hand shape model for posture recognition. It also 

uses a predefined skin color model for hand detection, and relearns the color profile after the 

hand is detected. Thus, hand detection is not personalized either. At the same time, HandVu 

solely counts on a wearable laptop system rather than scalable computing resources to fulfill 

all the computation tasks, include hand detection, tracking and recognition.  

 

Figure 6 HandVu by University of California at Santa Babara 

 

VR Face Tracker 

Girado at the University of Illinois at Chicago designed and implemented a VR 

face tracker [34] using neural network based techniques. By using dual mounted cameras and 

active IR illumination, the tracker is capable to detect and track human faces in 3D space at 

interactive rate and acceptable latency. Girado’s tracker firstly trains the face model as a 

grey-scale blob using neural network, and then detect this trained blob in the captured image 

to detect the head. Disparity in two camera images is used to calculate depth of the face, and 

in turn determine its 3D space location.  
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The use of neural network for face tracking is both an advantage and a limitation. 

For the pros, neural networks are intuitive to train because they are pixel based and rather 

than feature based; the classification process is embedded in the neurons and thus very 

generic instances can be classified. The cons are that because this embedded classification 

process, tracking of articulated objects such as the human hands is virtually impossible to be 

fulfilled by neural network. Girado’s system is basically tracking a “face-like” grayscale blob 

in the captured image, as human hands are highly deformable, using a similar approach for 

hands will be very sensitive to background noise.  

Scalability is also a key issue that restricts the performance of Girado’s system. 

Because the whole image processing needs to be performed at satisfying frame rate and 

latency, several important components of the image processing are forced to be simplified. 

For example, scaling of the captured image to match the pre-trained template is limited to be 

at only 3 levels. This restricts the freedom of movement of the user’s head and hinders the 

system’s mobility if it is ported for mobile device use. Because the processing time is a 

critical factor for the tracker, recognition is an expensive task to perform. This is acceptable 

for face tracking but not for hand tracking because gesture recognition is a highly preferred 

feature when a hand tracker is deployed. 
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Figure 7 VR Face Tracker by University of Illinois at Chicago 

 

Based on reviewing of the related projects, Table 1 presents a summarized feature 

chart between them and the proposed research. 

Table 1 A Comparison Chart of Proposed Solution and Related Projects 

  Mobility Body Part Tracking 

Dimension  

and Device 

Personalization Interaction Human-factor 

study 

Use of Infrastructure 

Computation 

Resource 

Quek No Hand 2D: Mounted 

Camera 

No Fingertip None No 

Lok No Hand 3D: Mounted and 

Wearable Cameras 

No Hand 

Convex 

Hull 

None No 

Starner Yes Hand No Tracking, 

Interaction Only 

No Gesture None No 

Kurata Yes Hand 2D: Wearable 

Camera 

No Gesture None Yes 

Desktop System 

Kolsch Yes Hand 2D: Wearable 

Camera 

No Gesture Posture 

Comfort 

No 

Girado No Face 3D: Mounted 

Camera 

Yes, face look 

recognition 

No 

Interaction, 

Tracking 

Only 

None No 

Proposed Yes Hand 2D: Mobile and  

Mounted Cameras 

Yes, skin color 

and hand shape 

profile 

construction 

Gesture  Size 

Constancy 

Yes 

Computer Cluster 
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3. VR HAND TRAINER: A PILOT STUDY 

This chapter presents a preliminary work in which a hand-based interaction 

between users and the personal VE is used for rehabilitation. This work is conducted in 

collaboration with field experts in rehabilitation engineering and produces a working system 

that is currently deployed in one of the nation’s top rank rehabilitation hospitals ([35], [36]). 

The personal aspect of this work is that it features a wearable system equipped with HMD 

and EMG triggered control device to be activated only by the wearer’s muscle contraction 

attempts. Also, the user hand is tracked and acts as the mouse cursor in the VE, with a 

magnetic 3D sensor.  The VE, which is used for reach-and-grasp training for stroke survivors, 

has the advantage over current hand rehabilitation devices, in its relative low cost and small 

size and potential to be used at home. The networked feature of the VE also allows 

application in tele-rehabilitation.  

This work also provides a real-life motivation for the development of the final 

approaches of this work. It reveals the gap between the needed features for personal profile 

construction, tetherless interaction and scalable computing, and the limitations in present 

day’s mainstream VE systems.  

3.1. Introduction 

Stroke is among the leading causes of adult disability in the United States [8] [9] 

[12].  Chronic impairment of the upper extremity occurs in roughly one-third of all stroke 

survivors [12].  While finger flexion often appears spontaneously within weeks after a 

cerebrovascular accident, finger extension is less likely to exhibit recovery [16] and creates 

difficulty for voluntary hand opening. The resulting distal limb impairment is especially 

problematic, since proper hand function is crucial to carrying out activities of daily living.  A 
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study from the UK reported that over half of the subjects studied depended on others for 

assistance in ADLs six months post-stroke [14]. 

Thus, a great need for hand rehabilitation therapies exists. None of the current 

therapies, however, has been wholly successful. For example, the effectiveness of electrical 

stimulation may be reduced by hypertonia. Usage of Botulinum toxin [13] further weakens 

already paretic muscles. Participation in constraint-induced training [19] requires some initial 

voluntary extension, thereby limiting eligible stroke survivors.  

A combination of two different technologies, however, may be beneficial. The first 

is virtual reality (VR), which is able to present pre-set or online computed rehabilitation tasks 

with minimized setup and breakdown time. VR also provides many important possibilities 

that are not possible in real-world applications. For example, with precise hand position 

tracking and kinetic calculations, a stroke survivor user (“user” for short in the text hereafter) 

can manipulate virtual objects that are free of mass but can still provide force feedback. The 

second technology entails assistive devices. Research has already shown that devices which 

permit the active production of repetitive movements are helpful for arm rehabilitation after 

stroke. Therapeutic straight-line reaching assisted by the ARM Guide [15] resulted in 

improved active range of motion and peak velocity. In another experiment, assisted unilateral 

training with a PUMA robot led to increased Fugl-Meyer Motor Assessment scores [17].  

Similar results may be achievable with the hand. As far as I know two systems 

which can readily provide assistance to finger extension in coordination with VR: the 

Rutgers-II ND Hand Master haptic device [21] and the CyberGrasp glove (Immersion Inc.) 

[22]. There are some drawbacks with each. The Rutgers-II ND is a point-based system, with 

it, the visual feedback is provided to the user through VR displayed on a non-stereo desktop 
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monitor (“Fish Tank”). Thus, the user is unable to see his real hand together with the virtual 

scene. Additionally, the size of the virtual display is quite limited.  Due to the use of 

pneumatic pistons residing within the palmar space, the maximal PIP flexion angle the glove 

allows is 45º, thereby limiting grasp simulation. CyberGrasp is designed more for haptic 

application purposes; its price and weight (over 500g) are relatively prohibitive for clinical 

use.  

Thus, I have developed a training environment that integrates augmented reality 

(AR) and assistive devices. This environment addresses the limitations of Rutgers-II ND and 

CyberGrasp. AR allows the user to move objects with no mass while seeing his own hand 

overlaid with the virtual scene simultaneously. This experience suggests that see-through AR 

is much less disorienting to stroke survivors than fully immersive VR. Also, by incorporating 

head-tracking and stereoscopy, the virtual scene is made panoramic rather than flat, as that of 

Fish Tank VR. Assistance for finger extension is provided through either a body-powered 

orthosis (BPO), with cables acting on the dorsal side of the hand to pull the fingers, or a 

pneumatic-powered device (PPD) with an air bladder on the palmar side of the hand to push 

the fingers into extension. The two assistive devices share some common favorable 

characteristics: the pieces attached to the hand are lightweight (less than 100g) gloves; they 

work with AR in a coordinated manner; assistance is provided in accordance with a user’s 

voluntary attempt and under the ultimate monitoring and control of the therapist. This design 

diminishes the potential for excessive assistance. Lastly, the monitoring/control interface 

presented to the therapist incorporates visual, audio and force feedback using commercial 

hardware.   
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In pilot experiments, two stoke survivors participated in training under AR-with-

BPO and AR-with-PPD conditions, respectively. Another stroke survivor, acting as a control 

subject, was trained with AR but no device assistance was provided. While the control 

subject showed little post-training improvement, both subjects under the integrated 

environment showed some signs of quantitative and qualitative improvements in hand 

function. 

3.2. Methodology 

3.2.1. Overview of The Training Environment 

In the environment, the user is seated, wearing both head mounted display (HMD) 

goggles and either the BPO or PPD. The HMD shows 3D stereo virtual objects and 

contextual environment. The user is then trained to perform reach-and-grasp tasks of virtual 

objects. Dynamic assistance of finger extension is provided through the assistive device. For 

BPO, the assistance is controlled by the voluntary movement of the user’s unaffected arm; 

for PPD, assistance is controlled by a combination of electromyography (EMG) signal along 

with the difference between present hand opening angle and desired hand opening angle. A 

therapist, who can be either on-site with the user or watching off-site through a video camera 

feed, supervises the user’s movement. The therapist can modify the virtual scene dynamically 

to best meet the needs of the user. An example on-site setup with BPO is shown in Figure 8.  

The experiment environment is made up of four main components: AR element, the 

BPO/PPD element, therapist monitor/control element and a networking element interfacing 

the therapist side and the user side. 

3.2.2. The AR Element 
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Individual VR applications utilize one of four display strategies: HMD, augmented 

display, Fish Tank and projection-based display. The user environment uses an HMD display, 

namely, a SONY PLM-S700 Glasstron. The Glasstron provides a horizontal view angle of 

28º, simulates a virtual 30” screen at 1.2 meters away from the viewer, and has adjustable 

see-through using an LCD shutter system. It is lightweight (120g for head device) and can be 

worn comfortably by the user. By adjusting the see-through level, the amount of the actual 

environment visible through the goggles is altered. This allows the user to see his hand along 

with the virtual object.  

 The scene, as shown in Figure 9, shows the surroundings as well as the object to 

grasp. Proper perception of depth and object size is achieved by both rich visual cues (e.g., 

table, floor, stationary objects) and field stereo. Objects are specially designed to have certain 

sizes and shapes. These instruct the user as to the proper hand posture and opening width 

needed for grasping. Also, objects can only be grasped when the user’s hand contacts the 

virtual object’s surface at “hotspots”. Hotspots are points predefined on the object’s surface, 

at the location of normal grasping. They are invisible, so the constraint they introduce is 

implicit to the user.  



31 

 

Figure 8 On-site Setup of the Training Environment Using BPO. The Therapist Is 

Holding Both the Joystick and Control Switch in His Hands.  (1): HMD, (2): Fish Tank, 

(3): BPO 

Several software packages are used for building the AR element. The Coin3D 

[Systems In Motion] library implements scene graphs, and it provides a comprehensive range 

of graphics and interactive objects.  The CAVE Library [VRCO, Inc.] manages display 

parameters to establish the sense of depth and scale. The Trackd tool [VRCO, Inc.] reads the 

magnetic head and hand trackers’ [Flock of Birds, Ascension Tech] positions and 

orientations, and provides these data to the rendering thread transparently.   

VR objects persist on hard disk in VRML format and map one-to-one to files. I 

implement two levels of object management to achieve scalability and flexibility.  The first 

level is “object library”.  Each folder that contains object files is scanned and an XML-format 

index file is generated for the folder. The index file contains entries of each object’s size, 

location, hotspot numbers, and other information like suggested hand opening width. In this 

step, a “sanity check” for the files is also done to ensure the index contains only valid objects.  

The second level is “library view”, which integrates all the libraries so that all objects 

appears to be in one large repository, thus the details of individual libraries are hidden and 

(2) 

(1) 

(3) 
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dynamic remapping is possible. Another functionality the second level provides, as its name 

suggests, is that the therapist can use his own definition file to create a local “view” of the 

whole repository. These definition files are plain text format and need only contain object 

names.  

 

Figure 9 Overview of Virtual Object and Surroundings Displayed in HMD: Training 

Room, Coke Can Virtual Object and Markers to Provide 3D Cues  

3.2.3. The Assistive Device Element  

The BPO  

The BPO, as shown in Figure 10, is based on prosthetics technology. A glove 

covers the paretic hand, and cables from the glove travel up to a standard figure-of-8 

shoulder harness through metal cable housing. The cables actuate the finger joints. Namely, 

biscapular abduction and glenohumeral flexion pull on the cables, thereby forcing the fingers 

to extend.  This single control moves all fingers simultaneously in a manner akin to that of 

control of the prehensor in arm prostheses.  Alternatively, the cable can be run to a handle 

held by the unimpaired hand; extension of the unimpaired arm extends the fingers on the 
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impaired side.  In either manner, the user controls the amount of assistance provided to finger 

extension. The cable housing over the MCP and PIP joints also serves to prevent 

hyperextension of these joints. 

 

Figure 10 The BPO. A Zipper Sewn into the Palmar Side of the Glove Facilitates 

Donning.  

 

The orthosis is light (450g) and easy to wear. The part of the device that directly 

acts on the impaired hand resides entirely on the dorsal surface so there is no interference 

with palmar grasp. Finger movement space is also maximized (90º PIP flexion angle). The 

amount of assistance utilized to extend the fingers is quantified by an in-line force sensor 

[Sensotec Inc.]. The sensor, spliced into the cable between the cuff and harness, detects the 

amount of force in the cable; this force serves as an estimate of the degree of assistance 

provided.  Force is also encoded into sound pitch to provide audio feedback for the subject, 

as well as being sampled and stored for subsequent analysis. 

One practical issue for body-powered therapy is that when the user becomes 

familiar with the device, they tend to overly rely on the device rather than using their own 
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hand. This design addresses this issue by two means: one, as mentioned, is through the cable 

housings, proper adjustment of their lengths can regulate cables’ maximum free movement 

distance, thus limit maximum assistances that could be provided; the other is through force 

feedback to the therapist (see section D), when excessive assistance is noticed by the 

therapist, he/she will give proper instructions to prevent user from doing so.  

The PPD 

The PPD as shown in Figure 11 is a polyester glove placed on the subject’s hand. 

The glove contains an air bladder situated on the inner surface of the glove such that it 

contacts the palmar surface of the hand.  Inflation of the air bladder forces straightening of 

the palmar surface, and consequently extends the fingers.  The bladder is connected through a 

servo valve [Pressure Control Valve, QB02005, Proportion-Air] to a pressure reservoir 

[1104360, Jun-Air]. The servo valve allows pressures between 0-5 PSI to inflate the glove.  

Another port on the bladder is connected to a pressure relief valve [check valve w/ 6.1 PSI 

spring, 246301000, Halkey-Roberts] that opens at 6.1 PSI to avoid over-inflation. The 

electro-goniometers are attached with Velcro to the velar surface of the glove over the PIP 

and MCP joints. 

Angle measurements from the proximal interphalangeal (PIP) joint of the index 

finger and metacarpophalangeal (MCP) joint of the middle finger are recorded using electro-

goniometers [F35, Biometrics].    Muscle activity is recorded using active surface EMG 

electrodes [Delsys Inc.].  Electrodes are placed on the flexor digitorum superficialis (FDS) 

and extensor digitorum communis (EDC) muscles of the gloved arm to sample muscle 

activity.   Each EMG signal is passed through the DelSys amplifier, full-wave rectified, and 

low-pass filtered before sampling.  
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Feedback control of the PPD uses an EMG signal and PIP/MCP angles as input and 

air pressure as output. Actual joint angles are compared with the desired trajectories 

necessary for opening the hand sufficiently to grasp the object.  These desired finger 

trajectories are derived from the stereotypical spiral trajectories (Equation 1) observed in a 

study by Kamper et al. [23] examining fingertip trajectories during grasp in neurologically 

healthy subjects.  The spiral trajectory may be expressed in Cartesian coordinates (Equation 

2).  With the addition of a constraint relating DIP angle to PIP angle, inverse kinematics may 

be used to translate fingertip location into MCP, PIP and DIP joint angles. 
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r and θ  represent the position in polar coordinates where r represents the distance 

from the origin and θ  represents the angle or rotation.  ld, lm, and lp represent lengths of the 

distal, middle and proximal phalange respectively measured on the index finger of each 

subject.  Units are in millimeters.  

Equation 1 Stereotypical Spiral Trajectories 

The equations used to represent the finger end-point in terms of joint angles are: 
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θ1, θ2, and θ3 are MCP, PIP, and DIP joints respectively.  The locations of x and y 

are shown in Figure 12.  The origin is at the center of the MCP joint.   

Equation 2 2D Finger Endpoint Calculation with Joint Angles and Finger Segment 

Lengths 
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A computer controlled proportional-derivative controller regulates the pressure 

necessary to maintain the required angle for both the PIP and MCP joints during reaching.  

The control regulates pressure to the glove based on the greatest angular flexion error.  When 

the fingers are extended further then the set-point, pressure to the glove is reduced to 

maintain the necessary joint angles.   

 

Figure 11 Picture of the Glove that Contains the Bladder on the Palm of the Hand  

 

EMG feedback is incorporated to ensure active participation of the user.  The 

system senses muscle activity through the electrodes; air pressure is only provided to assist 

extension when EDC activity exceeds a predetermined threshold. 

Two different control strategies are employed for the grasp portion of the grasp-

and-release training dependent on whether virtual or actual objects are used.  When virtual 

objects are displayed to the user, the system monitors the point at which the hand is 

sufficiently extended to hold the object.  When this is true, a signal is sent to the AR element 

to allow grasp of the object.  The object is then attached to the user’s hand when the hand is 
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properly positioned in space over the displayed object.  When the virtual object is held, the 

glove control system continues to regulate pressure to maintain the desired joint angles in 

order to simulate holding a real object. When real objects are displayed to the user, the 

therapist is responsible for determining when the hand is in position to grasp the object. This 

is detailed in section D.   

The release portion of the therapy session is accomplished by monitoring EDC 

activity.  A threshold based on the subject’s maximum recorded EDC activity is set.  When 

the object is held, and activity greater then this threshold is recorded from the EDC muscle, a 

pressure of 5 PSI is used to inflate the glove in order to assist the subject in object release. 

 

Figure 12 Image of Finger Representing Location of (x, y) Origin 

 

3.2.4. The Therapist Monitor/Control Element 

The therapist-side element serves two functions: monitoring and control. During 

training sessions, the user’s hand movement is supervised by the therapist. This can be done 

by either the therapist staying on-site with the user, or watching through a camera link. Under 
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both circumstances, the therapist is also shown the exact scene that the user views, but in 

Fish Tank display. This display for the therapist is especially useful when the user has 

problems with distance and depth perception, as the therapist can guide the user. When the 

therapist determines that the user’s hand is sufficiently opened (dependent on impairment 

level of the hand and the current task), she/he flips a switch to set the hand state to be “ready”, 

which means that the user’s hand is in the correct posture to grasp the object once the hand 

reaches the proper location in space, as determined by the hand tracker. Once the hand 

contacts a hot spot on the object, the object now moves with the user’s hand.  After 

manipulation of the object, the therapist instructs the user to let go of the object. When the 

therapist determines that the hand has been sufficiently opened, she triggers “release” of the 

virtual object with the toggle switch. 

A Logitech RumblePad2 force feedback joystick is used by the therapist to 

dynamically control the virtual scene. Online modifiable parameters of the virtual scene are 

the position and orientation of the object in 3D space, as well as its size. This makes 

configuration of the environment convenient as no thorough pre-calculations are needed for 

these parameters.  

The therapist is provided with dynamic feedback of subject performance.  For BPO, 

the assistive force recorded by the in-line sensor is displayed as a running waveform on a 

computer screen, in addition to the audio feedback. For PPD, the waveforms are for EMG, 

MCP/PCP angles and air pressure, companied by audio prompt for air pressure as well. 

Under both BPO and PPD, it is possible to encode for the assistance provided to extend the 

impaired hand by providing force feedback to the therapist through the joystick. The force 

magnitude is represented by the intensity of joystick vibration. 



39 

3.2.5. Therapist Side and User Side Communication 

Successful coordination of the user-side element and therapist-side element 

requires inter-communication between them. Three kinds of data comprise the traffic stream: 

1) force sensor data (for BPO) or EMG/angle difference/servo pump control combination 

data (for PPD) from user side to therapist side, with bandwidth consumption of about 10kbps; 

2) head and hand tracker positions and orientations, from user side to therapist side; 

bandwidth consumption is also about 10kbps;  3) control commands issued by the therapist, 

from therapist side to user side; this traffic is random (every one or more seconds) and has 

negligible bandwidth consumption. To meet the need for tele-rehabilitation, the bandwidth 

and response time requirements must be able to be satisfied by the network. The 

environment’s overall bandwidth requirement is about 20-30kbps, and response requirement 

is about 8-10ms each way (to meet the 100Hz sampling/control rate). These are all within the 

capability of today’s broadband network services: LAN, DSL and T1.  

3.3. Preliminary Experiment 

Three male stroke survivors, rated between stages 2-3 of the Stage of Hand portion 

of the Chedoke-McMaster Stroke Assessment scale [20] respectively, participated in training 

sessions using the environment for 6 weeks. One of them was using AR with BPO, one was 

using AR with PPD and one was using only AR with no assistive device provided. The 30-

minute training sessions were held three times per week. In each session, the subject tried to 

grasp 15 virtual objects followed by 15 real objects. The therapy was performed on-site.  

3.4. Results 
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Subjects underwent standard functional tests, i.e. box & blocks [18] and Rancho 

[11], before and after the six-week training sessions. Both tests map better performance to 

higher scores. Table 2 indicates that the subject undergoing AR-with-BPO slightly improved 

scores on both box & blocks and Rancho; the subject undergoing AR-with-PPD slightly 

improved the Rancho score, but actually performed worse on the box & blocks; the subject 

undergoing AR-only showed no change in these scores.   

Table 2 Pre- and Post-training Functional Test Results for Three Stroke Survivors  

Box&Blocks Rancho Treatment 

Used 

Chedoke 

Level Pre Post Pre Post 

AR w/BPO 2 1 4 5 6 

AR w/PPD 3 3 1 3 4 

AR only 2 0 0 4 4 

 

Besides the functional tests, I used a custom-developed apparatus to further assess 

the change of voluntary MCP extension.  Speed and maximum displacement were measured 

for voluntary extension against no load.  A servomotor system, described in [13], maintained 

zero-load through servo-control of the motor about zero torque.  

The test results are shown in Table 3. The subject undergoing AR-with-PPD 

showed some improvement in both peak angular speed and angular displacement toward 

extension.  The subject undergoing AR-only exhibited increase in peak velocity, but the 

amount of extension was so small as to render it of little functional consequence.  The subject 

undergoing AR-with-BPO showed no change in either measure. 

Table 3  Pre- and Post-training Biomechanical Metrics for Voluntary Extension  

Peak Angular Velocity 

(degree/second) 

MCP Maximum Displacement 

(degrees) 

Treatment 

Used 

Pre Post Pre Post 

AR w/BPO 11.055 11.21 9.3388 10.5125 

AR w/PPD 115.94 124.19 39.066 45.996 

AR only 12.924 31.327 2.3323 4.7353 
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An analysis was also performed on the assistive force data collected from BPO 

over time. Figure 13 shows the normalized force during each training session. Assistive force 

first increased largely from session 4 to session 6. This increase may have arisen from greater 

patient familiarity with the orthosis which allowed the patient to make greater use of it. 

Starting from session 6, the needed assistive force started to decrease, revealing a significant 

descending slope (p = 0.03).  The overall decrease is 14.5% from pre- to post-training. 

 

Figure 13 Assistive Forces Recorded During Each Training Session for AR-with-BPO, 

with Fitted Trend Line 

 

 

3.5. Discussion And Conclusions 

In this chapter, a training environment for rehabilitation of hand opening in stroke 

survivors is presented. This environment integrates augmented reality, assistive devices and 

the process of repetitive training of grasp-and-release tasks. Compared with current hand 
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rehabilitation robotic devices, it is relatively low-cost and small in size, thus has the potential 

for use in clinics and even at home. The networked feature also allows application in tele-

rehabilitation.  

The preliminary experimental results, functional tests scores, peak angular MCP 

extension speed, MCP maximal displacement, and BPO assistive force, show that after 6 

weeks of training, there was an encouraging trend of modest improvement of finger 

extension capability in the impaired hand.  Both the user and therapist reported that the 

environment was user friendly due to the lightness of the assistive devices and the simple 

steps needed for set up of the environment. I believe that therapies using this environment are 

promising.  Being part of an interdisciplinary research, the training system has been deployed 

in one of the nation’s top ranked rehabilitation hospitals, and is now in daily use to train 

stroke survivors.  

The lessons learned from this work, for a computer scientist, are three-folds: the 

first lesson is that this work shows that advanced visualization application, such as the VE 

used in VR hand trainer, can be massively deployed for personal users. The stroke survivor 

population is a good example of the potential beneficiaries. According to the data from 

American Stoke Association (ASA) in 2005, there were 4.8 millions of stroke survivors and 

the population was increasing at a 700,000/year rate. Even if VR trainers are used by 10% of 

the stroke survivors, the number of deployed systems will outnumber all the VEs deployed so 

far in universities and industries.  

The second lesson is that understanding of human factors is an indispensable part 

of in-depth research in the computer science field of virtual reality. Users of the VR Hand 

Trainer take advantage of the VEs to simulate real life. The ultimate purpose of the usage is 
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not to gain familiarity of the computer itself, but to gain from the transfer of VE to physical 

world. This is quite different from many other fields of computer science research, where the 

computer users explicitly perceive the presence of the computer entity, and the purpose is to 

better use a “computing machine” rather than body parts of the user himself. Insufficient 

knowledge of the physical, physiological and cognitive human factors when the virtual 

reality technology is used will either impede wide adoption of the technology itself, or make 

the introduction of this technology less meaningful or even negative.  

The third lesson is that efficient computation must be conducted in a mixed 

composition of the wearable system and the infrastructures to achieve satisfactorily 

transparent human computer interaction. In this work, a key element of the training 

environment is the tracking system, which continuously monitors the position of the user’s 

head and hand. Compared with the other human-monitoring components used in the system, 

such as the electrodes that monitors muscle contraction EMG or the bend sensors that 

measures hand openness, tetherness of the electromagnetic tracking system is obvious. A 

“smart” environment needs to be introduced and its intelligence heavily relies on the 

environmental computation power. In another words, more natural interaction needs to be 

implemented through scalable computing techniques, for example, utility computing power 

provided in the rehabilitation setting.  

 VR Hand Trainer is a preliminary work, and reflects the spiral learning path when 

conducting research in visualization and interaction problems for the individuals. By working 

with and listening to domain experts, the three strong motivations of this research work 

emerged and in the following chapters, are addressed in detail. 
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4. SIZE CONSTANCY EXPERIMENTS IN THE CAVE 

This chapter presents the work conducted to address one of the research questions 

identified by this thesis: what are the visual factors of a VE that affect users’ performance in 

correct size perception in a VE? To answer this, a set of controlled experiments are designed 

and conducted over a 18-subject test population. Three VE visual factors are examined: scene 

complexity, stereovision and motion parallax. Results suggest that the first two exhibit 

statistical significance, while the last one does not in both of its forms, i.e. active motion 

parallax and passive motion parallax. 

4.1. Introduction 

VEs are used for a variety of research and commercial purposes, such as medical 

diagnosis, scientific data mining and industry manufacturing ([44], [35]). The effectiveness 

of VE in its applications relies heavily on its ability to create perceptions within the 

environment that faithfully replicate those in the physical world. However, due to limitations 

the VE can have a number of flaws that adversely affect its use and the credibility of the 

environments that it offers. One of the more significant aspects of this problem is whether the 

perceived size of an object in the VE is equivalent to that perceived in the physical world 

when object distance from the observer changes. 

The recent work of Kenyon et al. [51] demonstrated size-constancy behavior in 

subjects using a CAVE. For a majority of their population monocular cues were needed to 

accompany the persistent stereovision of the object to fortify its true size. Without these 

monocular cues, a majority of their subjects failed to exhibit size-constancy and adopted a 

visual angle performance. Although subjects in their study could move their head or body 

during the experiments, which would have produced motion parallax, they did not do so. In 
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this study I exposed subjects to both active and passive motion parallax conditions in 

addition to changes in scene complexity and stereovision. Results were similar to those 

performed in the physical world where size-constancy was more prevalent when a rich scene 

environment was used with stereovision. When the richness of environment was turned off 

and stereovision was removed most of the subjects adopted a visual angle performance. 

Results of these experiments also suggested that motion parallax, either created by the VE or 

the observers, had a mix effect on the perception of size constancy. Some subjects benefited 

from motion parallax while others showed no effects at all.  

4.2. Related Work 

Huber et al. [37] did experiments under the applied contexts of minimal access 

surgery (MAS) tasks, and studied the effects of stereoscopy and observer-produced motion 

parallax for distant judgment. Results indicated that stereoscopy confers a considerable 

performance advantage, while providing motion parallax information was not beneficial. 

Experiments by Beall et al. [38] where subjects judged the size of objects’ whose visual 

dimension varied four-fold, concluded that absolute motion parallax only weakly determined 

the visual scale of nearby objects. Rondot et al. [39] studied distance perception during a 

tele-operation task. Their results suggested that stereoscopy and motion parallax were of 

equal significance in distance judgment, and users’ performance varied largely between 

HMD and projected screen settings.  

Additional studies showed inconsistent effect of motion parallax. Ikehara et al., [40] 

compared the results of different experimental methodologies for size-distance perception 

tests. Their results argued that for size and distance perception studies that used point light 

sources and rods could produce different results from each other, but these differences were 
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not significant enough to change their conclusions. Watt et al. [41] raised the question of 

whether enhanced motion parallax, i.e. visually magnified motion parallax would alter the 

result found when using standard motion parallax stimuli. They found no significant effect of 

augmentation on motion parallax effect. Rosen et al. [42] showed that subjects made 

symmetry judgments in VE under different view conditions, and argued that motion parallax 

was not a significant factor in determining such capabilities. Effects of multi-modal 

interaction factors in determining size and distance perception were analyzed in Hirose et al. 

[43], and the authors emphasized the effectiveness of haptic interface in improving distance 

perception accuracy.   

4.3. Methods 

4.3.1. Subjects 

Eighteen subjects were tested (EC1-EC18). Nine were experienced in VE and had a 

minimum of 6 months of using immersive VEs. For the other inexperienced subjects, this 

was their first exposure to an immersive VE. All subjects were tested for visual acuity and 

stereo acuity. All subjects had corrected vision of 20/20 and normal stereovision.  

4.3.2. Apparatus 

All tests were performed using a single wall CAVE – the C-Wall (Configurable 

Wall) [52]. The C-Wall is a high-quality, head-tracked, active stereo wall, that displays an 

image before the viewer by means of a 10x10ft rear-projection screen. The back projector 

pointed to a mirror, which reflected the images onto the screen. To create stereoscopic 

objects, two off–axis perspective images are consecutively displayed; one visible to the right 

eye, the next to the left eye. The visibility of images by each eye is controlled by the stereo 
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glasses (Stereographics, Inc. Beverly Hills, CA) which rapidly turn each lens on and off in 

synchrony with the corresponding images on the screen. A Pentium IV PC created the 

images for the C-Wall. The image resolution was 1024x768 pixels with a refresh rate of 120 

Hz and an update rate of 60 stereo images per second. Each subject’s interpupillary distance 

(IPD) was measured (R.H. Burton Digital P.D. Meter, R.H. Burton LLC, Drive Grove City, 

OH) and incorporated into the CAVE program to generate the stereo images for each subject. 

A six-degrees-of-freedom camera tracking system (Eagle Digital System, Motion Analysis 

Corp., Santa Rosa, CA) provided real-time head position which was used to calculate the 

correct stereoscopic perspective projections for the C-Wall as the viewer moved his/her head. 

The head tracking system had a latency of 65 ms and was calibrated to an accuracy of ±0.1 

inches for the tracking distances used in these experiments. A cordless joystick (RamPad, 

Logitech Inc., Fremont, CA) held by the viewer provided interaction with the VE. 

A virtual Coke bottle textured with the image of a physical 2-liter Coke bottle was 

drawn to test size perception [51]. Characteristics of VE scene were manipulated in order to 

test the effects of scene complexity, motion parallax, and stereovision on perception of 

virtual object size.  

Scene Complexity 

Two scene environments were provided, either a rich environment (ENV), with 

monocular and stereo cues to depth in addition to those confined to the bottle in the scene or 

a sparse environment (No-ENV) with cues to depth confined to the bottle in the scene [51].  

The ENV consisted of a gray-green checkered floor with a wooden textured table in the 

scene; the Coke bottle sat on top of the table. The table’s height above the floor was 

randomly set at one of the three possible heights (30, 33 and 36 inches).  For the No-ENV 



48 

case, the environment consisted solely of a gray background. The virtual Coke bottle was 

presented as being suspended in mid air at different heights from the floor (corresponding to 

the table heights) and at a number of different distances from the user as described above. 

The head was tracked identically to that described above. 

Stereovision 

Two viewing conditions were examined: monocular vision (MONO) and 

stereovision (STEREO).  For the STEREO condition, disparate images were presented to the 

two eyes. Interpupillary distance (IPD) was measured for each subject, and the images for the 

two eyes were created to reflect the different vantage points in order to evoke a stereo image. 

For the MONO condition, the IPD was set to zero in the CAVE program therefore the same 

image was presented to each eye. Consequently, the subjects continued to view the scene 

through the Stereographics headset producing the same visual conditions as when 

stereovision was present.   

Motion Parallax  

Three different motion parallax conditions were tested: no motion parallax (No-

MP), motion parallax generated by the VE (Passive-MP), and motion parallax generated by 

the lateral movement of the viewer (Active-MP). 

For the No-MP condition the subject was instructed to hold his/her head still and 

look straight ahead with no lateral head movement. To ensure the subject was not moving, 

the experimenter monitored the lateral head movements from the tracker, and prompted the 

subject whenever there were head movements greater than 1 inch, the minimum value needed 

to incur motion parallax. 
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For the Passive-MP condition, the whole scene displayed on the C-Wall moved in a 

sinusoidal fashion at 0.25 Hz. Peak scene displacement was 1 ft and peak velocity was 4 

ft/sec. These parameter values were chosen to conform to natural human lateral movement in 

order to facilitate comparisons with active motion parallax ([38], [39]). 

For the Active-MP condition the subject was instructed to move his/her head 

laterally from side to side at 0.25 Hz with a minimum displacement of 1 ft. The subject was 

provided with audio cues for proper movement frequency from an electronic metronome. 

The experimenter monitored lateral head movement through the tracker and prompted the 

subject whenever lateral movement amplitude fell below the desired level.  

 

Figure 14 the Virtual Coke Bottle with Rich Scene Environment 

4.3.3. Experimental Protocol 

Subjects were instructed to adjust the size of the virtual object (2-liter Coke bottle) 

so that they perceived the virtual object’s size as being identical to that of a physical Coke 

bottle if placed the same distance from the subject. To aid in this task, a physical 2-liter Coke 

bottle was visible to the subjects for comparison to the virtual object. The 2-liter Coke bottle 

was placed on a wooden stand covered with black cloth at a height of 3 ft. The stand was 
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positioned at the front left side of the C-Wall at a distance of 3.5 ft. from the subject. Both 

the physical and virtual Coke bottles were 12 inches tall and 5.5 inches (maximum) wide. 

The physical Coke bottle, lit by a standing spotlight, was visible to the subjects by simply 

turning their head 40° to the left. 

The virtual Coke bottle was displayed randomly at one of the five distances from 

the subject: 3.5, 5.0, 6.5, 8 and 9.5 ft.  The subject sat 5 ft. from the C-Wall screen; thus, the 

virtual object could be located in front of, on, or behind the C-Wall screen. The computer 

randomly set the initial size of the virtual Coke bottle from 0.2 to 3.0 times the normal size 

(12 inches) of the bottle. Subjects used the cordless joystick to increase and decrease the size 

of the virtual Coke bottle to what they perceived to be the appropriate size for each trial. The 

head was tracked so the scene was updated appropriately to the position of the subject’s head. 

The independent variables of scene complexity, motion parallax, and stereovision 

had 2, 3, and 2 possible states, respectively. Each condition was repeated 6 times for each 

bottle location for a total of 360 repetitions. To avoid ambiguity hereafter, I call each 

repetition of size judgments that was performed under the same configuration of the 

independent variables a run, and the consecutive block of runs a trial. Additionally, subjects 

performed an initial trial to familiarize themselves with the process. It could be seen that 

except for the initial trial, trials and visual factor configurations mapped one-to-one to each 

other. Table 4 shows this mapping relationship between trial IDs and visual factor 

configurations.   
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Table 4 Mapping between Trial IDs and Visual Factor Configurations 

Trial ID 
Scene 

Complexity 
Stereovision 

Motion 

Parallax 

T0 Initial trial for familiarization 

T1 No-ENV MONO No-MP 

T2 No-ENV MONO Passive-MP 

T3 No-ENV MONO Active-MP 

T4 No-ENV STEREO No-MP 

T5 No-ENV STEREO Passive-MP 

T6 No-ENV STEREO Active-MP 

T7 ENV MONO No-MP 

T8 ENV MONO Passive-MP 

T9 ENV MONO Active-MP 

T10 ENV STEREO No-MP 

T11 ENV STEREO Passive-MP 

T12 ENV STEREO Active-MP 

 

Subjects were encouraged to take 5 minute breaks between runs or as often as they 

needed to avoid fatigue. The total experiment time varied among subjects, from 45 to 60 

minutes.  

4.3.4. Data Analysis 

Subject performance was evaluated quantitatively using several measures based on 

the selected size of the virtual bottle as described in [51]. In brief, SizeRatio represented the 

relative size of the virtual bottle compared to the proper size of the physical bottle: 

tleSizeCorrectBot

ctSetBySubjeBottleSize
SizeRatio =   

Equation 3 Definition of Size Ratio 

 

The numerator in Equation 3 corresponds to the size of the virtual bottle set by the 

subject in each run and the denominator was fixed at 12 inches (height of the physical 2-liter 

Coke bottle).  
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Linear regression of resulting SizeRatio values versus the distances of the virtual 

bottle from subject was then calculated. Since with projection-based VE everything is drawn 

on the CAVE wall, I calculated the visual angle (VA) setting that would result if subjects 

perceived their distance to the bottle as being the distance they were from the CAVE wall 

regardless of the bottle’s virtual distance from the subject. If the subjects’ performance is 

purely determined by visual angle, the SizeRatios will theoretically form a fixed slope, α, 

using the following formula:  

WallDistToCAVE

AVEWalltleSizeOnCCorrectBot
=α   

Equation 4 the Visual Angle Constant in Size Constancy Experiment  

 

In the experiment, α was fixed at 0.2 given a bottle size of 12 inches, and a distance 

between the subject and the CAVE wall of 5 ft. While SizeRatio measured subject’s 

performance in a given run, the relationship between the regression slopes and α indicated 

the consistency of how well the subject performed across all the runs in a given trial. This 

percentage relationship between the subjects’ SizeRatio data regression slopes to that of the 

predicted VA performance was calculated using the equation: 

%100*





=

α

eFittedSlop
lopePercentVAS      

Equation 5 Definition of PercentVASlope 

 

For example, if the regression slopes of the subject’s data were identical to α, then 

the “Percent VA slope” would be 100%, implying that the subject was showing no size-
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constancy. On the contrary, if the subject regression data showed perfect size-constancy, the 

regression slope would be zero and the “Percent VA slope” would consequently also be zero. 

Absolute error for each run and mean absolute error across a trial were calculated 

as another indicator to examine the differences between ideal performance and the SizeRatio 

data collected from population. Absolute error indicates the deviation of a judgment in a run 

to actual virtual bottle size. Mean absolute error averaged absolute errors within a given trial. 

They were computed using the following equations: 

1−= SizeRatiororAbsoluteEr
  

Equation 6 Definition of Absolute Error 

∑=

n

irorAbsoluteEr
n

teErrorMeanAbsolu

1

)(
1

  

Equation 7 Definition of Mean Absolute Error 

 

Percent VA slope and AbsoluteError were both derived from SizeRatio values and 

as aforementioned, described these values from two separate perspectives.  

For the VA slope percentage, I did repeated measures analysis of variance 

(ANOVA) using SPSS (SPSS, Inc), with the independent variables to be the three visual 

factors: scene complexity, stereovision and motion parallax. The purpose of using ANOVA 

was to discover the significance of each visual factor in affecting size-constancy performance. 

While for AbsoluteError, I investigated its mean and distribution in each trial. Comparison of 

these indicators was to reveal that in which trials, i.e. under which visual factor 

configurations did subjects had better size-constancy performance. 
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4.4. Results 

For the population, size-constancy performance, as measured by percent VA, was 

better when viewing the ENV conditions than the NO-ENV conditions (similar to [51]) and 

better under STEREO conditions than MONO conditions (both single-factor ANOVA). 

Furthermore, there were no significant interactions among these three visual factors. All 

other models that used interactions did not explain the data well and all had p > 0.188 or 

more.  

4.4.1. Effect of Scene Complexity 

Comparing the percent visual angle slopes (Equation 5) from the population, for the 

ENV vs. No-ENV trials that had the same motion parallax and stereovision conditions, (i.e. 

T1 vs. T7, T2 vs.T8, T3 vs.T9, T4 vs.T10, T5 vs.T11 and T6 vs.T12), showed that subject 

size-constancy performance was significantly better under the ENV conditions rather than 

the No-ENV conditions (p < 0.0001). The percent VA slopes obtained in the ENV conditions 

(20%±15) more closely matched the slopes expected with size-constancy whereas the slopes 

in the No-ENV viewing conditions (140%±20) more closely matched those associated with 

visual angle performance, as shown in Figure 15.  
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Figure 15  Percent VA Slope Means and Standard Deviations for Different Conditions, 

Motion Parallax (MP) for ENV Conditions Only  

In addition, the ENV condition produced more consistent subject performance and 

the task was easier to perform according to subject reports. As seen in Figure 16, SizeRatio 

settings were consistently closer to 1 in ENV conditions than in No-ENV conditions for 

different bottle positions, especially for the bottles farther from the subject. In contrast, the 

mean SizeRatio for the No-ENV condition increased as the bottle positions receded from the 

subject and with a wider range of SizeRatio settings.  

Improved performance of ENV over No-ENV can be seen with or without 

stereovision. With no stereovision (Figure 16 top), SizeRatio settings for the ENV condition 

ranged between 0.9-1.8 for the bottle distance of 3.5ft- 9.5ft from the subject, for the same 

visual conditions, No-ENV scene produced SizeRatio settings covered twice the range of the 

ENV data i.e., 0.62 – 2.46. With stereovision (Figure 16 lower) the SizeRatio settings under 

ENV condition spanned a smaller range from 0.96 – 1.53 compared to no-stereo. In No-ENV 

condition, the SizeRatio range was smaller i.e., 0.91 – 1.96, than its counterpart in the no-

stereo case. 
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The absolute errors for size judgments made in all the six ENV and six No-ENV 

conditions for the population in Figure 17 shows a clear overall difference between ENV and 

No-ENV performances. The frequency distribution of absolute error for all judgments shows 

that 66.48% of the errors were 0.2 (or 2.4 inches if bottle height used) and below with the 

ENV condition while only 27.6% of the errors fell within this range with the No-ENV 

condition. The mean absolute error values calculated using Equation 7 were 0.53 for all six 

No-ENV conditions and 0.26 for all six ENV conditions.  

 

 

 

Figure 16 Population Performance with Stereovision (a) Off or (b) On, w/o Motion 

Parallax 
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Figure 17 Absolute Error using No-ENV and ENV Conditions 

4.4.2. Effect of Stereovision 

Comparing the percent visual angle slopes from the population, for the STEREO vs. 

MONO trials that had the same scene complexity and motion parallax, (i.e., T1 vs.T4, T2 

vs.T5, T3 vs.T6, T7 vs.T10, T8 vs.T11 and T9 vs.T12), showed that subject performance was 

significantly better in performing sizing task under the STEREO conditions rather than the 

MONO conditions. The VA slopes obtained in the STEREO conditions (40%±20) more 

closely matched the slopes expected with size-constancy and conversely the slopes in the 

MONO viewing conditions (95%±40) more closely matched those associated with visual 

angle performance, as shown in Figure 15.  

This improved performance can be seen in Figure 18 where the mean SizeRatio for 

the MONO condition increased as the bottle’s position receded from the subject. In contrast, 

for the STEREO condition although the mean SizeRatio also increased with bottle distance 

from viewer, it increased at a much lower rate. These observations were independent of the 

setting of scene complexity, a visual factor which has a significant effect as described above.  
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Under MONO conditions, subjects had a wider range of SizeRatio settings as well. 

The SizeRatio settings for the STEREO condition when scene was sparse in VE ranged 

between 0.91-1.96 for the bottle distance of 3.5ft- 9.5ft from the subject, for the MONO 

condition under same scene complexity configuration the SizeRatio settings ranged from 

0.62 – 2.46. When scene was rich, the SizeRatio settings under STEREO condition ranged 

from 0.96 – 1.53. Under MONO condition, the SizeRatio ranged from 0.91 – 1.96. 

 

 

Figure 18 Population’s average SizeRatio settings for trials T1 and T4, using sparse (a) 

or rich (b) scene, w/o motion parallax 

The absolute errors for size judgments, Figure 19, used the six MONO and six 

STEREO conditions from the population. Examination of the absolute error for all judgments 

shows that 54.32% of the errors were 0.2 (or 2.4 inches if measured in the error of size 
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judgment) and below with the STEREO condition while only 34.75% of the errors fell within 

this range with the MONO condition. The mean absolute error values calculated using 

Equation 7 were 0.46 for all six MONO conditions and 0.32 for all six STEREO conditions. 

 

 

Figure 19 Absolute error value distributions under MONO and STEREO conditions 

4.4.3. Effect of Motion Parallax  

Comparing the different motion parallax conditions for trials that had the same 

scene complexity and stereovision, (i.e., T1, T2 and T3; T4, T5 and T6; T7, T8 and T9; T10, 

T11 and T12), showed no statistical difference under any of these conditions. The percent 

VA slope values for all three motion parallax settings overlapped in mean value, and 

standard deviations. These behaviors were found to be independent of the scene complexity 

and stereovision. When scene was sparse and stereovision was turned off, subjects showed a 

visual-angle performance. While when scene was rich and stereovision was turned on, they 

showed a uniform performance towards size-constancy, Figure 15.  When scene was rich and 

stereovision was turned off, subjects’ performance lay between the above two conditions.  
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There was no significant difference in the range of SizeRatio settings. When scene 

was sparse and stereovision was turned off in VE, range of SizeRatio settings under NO-MP 

was 0.62-2.46, under Passive-MP was 0.62-2.42 and under Active-MP was 0.63-2.53. When 

scene was rich and stereovision was turned off in VE, range of SizeRatio settings under NO-

MP was 0.91-2.0, under Passive-MP was 0.9-1.8 and under Active-MP was 1.04-1.71. When 

scene was rich and stereovision was turned on in VE, range of SizeRatio settings under NO-

MP was 0.96-1.53, under Passive-MP was 0.96-1.37 and under Active-MP was 1.01-1.35.  

This illustrates that the population’s performance under the motion parallax conditions were 

not different from each other.  

Although these result showed no significance analyzed as a population, I examined 

the performance of individual subjects under different MP conditions to better understand 

any effects on individual subjects. As stated above, the twelve triples could be grouped into 

four triples of trials, based on different settings of scene complexity and stereovision. I rank 

ordered them, based on a decreasing order of scene richness, as: ENV-STEREO, ENV-

MONO, NOENV-STEREO and NOENV-MONO. Previous statistics told us that within each 

group, how the subject group performed. Here I am interested in that across groups, how 

each subject performed consistently among the three settings of motion parallax. Three 

notations are used to quantify the closeness of the same subject’s performance shown in 

Table 5. For example, under two motion parallax settings M1 and M2, let S1 and S2 be the 

subject’s percent visual angle slopes under M1 and M2 respectively:  if S1 is greater than S2 

by at least 10%, I denote M1 performs worst than (<) M2; if S1 is less than S2 by at least 10% 

I denote M1 performs better than (>) M2; under all other cases, I denote M1 is the same as (=) 



61 

M2. I further use the abbreviations A, P and N to represent Active-MP, Passive-MP and No-

MP respectively.  

 

 

Figure 20 Individual SizeRatio Settings for Trials using a Rich Scene, without (a) and 

with (b) Stereo. 

These results revealed that the eighteen subjects could be categorized into four 

groups, based on their consistency in size-constancy performance across the scene-richness 

groups. Eight subjects (EC1, 2, 5, 10, 13, 15, 16, and 18) exhibit no significant difference in 

size-constancy across all three motion parallax conditions, regardless of the variation in 

scene-richness. Four subjects (EC3, 4, 7 and 12) performed relatively better under Active-
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MP settings than Passive-MP in certain triples. Three subjects (EC9, 11 and 14) performed 

relatively better under Passive-MP settings than Active-MP settings in certain triples. Two 

subjects (EC6 and 8) performed better both under Active-MP settings and Passive-MP 

settings. An instance of improved slope with MP is shown in Figure 20a where there is a 

significant change in the slope with MP conditions.  

There were some subjects where the slope did not give the entire picture of their 

performance. As shown in Figure 20b, this subject shows the same slope for all conditions 

but the motion parallax condition shows an improvement in accuracy of the size setting 

behavior since this data is below the other 2 curves and hovers about a size ratio of 1. 

Table 5 Individual Subjects’ Performance across Scene Richness Groups, With Regard 

to Motion Parallax Settings 

 
ENV-

STEREO 

ENV-

MONO 

NOENV-

STEREO 

NOENV-

MONO 

EC1 same same same same 

EC2 same same same same 

EC3 A>N>P A=N>P same same 

EC4 A>N>P N>A=P same same 

EC5 same same same same 

EC6 P>N=A P=N>A same same 

EC7 A>N=P same same same 

EC8 P>A>N A=P>N same same 

EC9 P>N=A same same same 

EC10 same same same same 

EC11 P>N=A same same same 

EC12 A>N=P same same same 

EC13 same same same same 

EC14 same same N>A=P P=N>A 

EC15 same same same same 

EC16 same same same same 

EC17 A=P>N same same same 

EC18 same same same same 

 

4.5. Conclusions and Discussion 

These experiments illuminate several important issues regarding size-constancy in 

projection based VE systems (the C-Wall is a CAVE variation). This work first verifies the 
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findings of [51] that users can obtain useful size constancy performance in an immersive 

projection-based VE, at view distances and screen resolutions that represent mainstream VE 

systems (1-9 ft., 1024x768 pixels screen). This confirmation supports the need for complex 

scenes and monocular cues in addition to stereovision if wider deployment of VE system in 

size and distance perception sensitive applications, such as visual scientific data analysis and 

virtual metropolitan building planning are to be successful.  

Unexpectedly, I found that motion parallax, produced by the VE or by the observer 

alone, might not be a significant factor in determining size-constancy performance for a 

given population. However, when I reexamined the data for individual subjects, I found that 

the effect of motion parallax in the experiment seems to vary from one subject to the next. As 

might be expected MP was dependent on the richness of the scene. The small amount of 

movement that occurs using a sparse scene was generally not sufficient to improve 

performance. The largest effect can be seen in the ENV:Stereo condition followed by the 

ENV:Mono condition. As seen in Figure 20, I found that some subjects either improved their 

performance by changing the slope of their response (shallower) or produced more veridical 

bottle sizes (SizeRatio ≈ 1). Thus I can see that in some subjects the increase in the number 

or type of visual cue can produce an improvement in performance. Furthermore, there has 

been much published about the errors in distance judgments in VE. If I assume that size 

constancy has a measure of distance judgment included in its process then I might infer that 

in some cases that I might expect improved distance judgments with MP. 

The results are similar to those in the physical world [50] that have shown that a 

subject’s performance lies on continuum between size-constancy and visual-angle and that 

this performance is a function of the cues that are present in the scene. In Figure 21 I show 
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where the subjects’ performance lie given the cues presented6. This is reminiscent of the 

Figure 22 in [49] where they plot their subjects’ performance as the field of view was 

narrowed and subjects moved from size-constancy to VA performance. One might expect a 

population of subjects’ performance to follow the graph as the cues to depth are manipulated. 

This graph shows that the dominant condition for size constancy is a rich scene with 

stereovision (ENV:Stereo). That is followed by a rich scene and monocular condition 

(ENV:Mono). Notice that under sparse visual conditions that stereo (No-ENV:Stereo) 

modestly improves performance compared to monocular viewing (No-ENV:Mono). 

 

Figure 21 Averaged Fitted Slopes across Four Combinations of Scene Complexity and 

Stereovision Conditions with their associated percent VA slopes for each condition. 

These conclusions could be helpful in decision making, for VR system designers 

who build the systems and for users who utilize the systems for specific applications.  

                                                 

 

 
6 As motion parallax was not a significant factor in statistical test, I grouped all subjects’ fitted visual angle into the 

categories No-ENV:MONO, No-ENV:STEREO, ENV:MONO and ENV:STEREO and averaged fitted slope values 

within each category.  



65 

It is worth mentioning that in the physical world 2D cues to depth are natural and 

straightforward. In fact, it takes effort to arrange a situation that would diminish these cues to 

the subject. In VE, displaying less complex scenes is easier than showing more complex ones. 

A VE that has numerous cues to depth (2D and stereovision) takes time to program and 

computer-time to generate. Thus, it is more expensive to generate a complex world compared 

to a sparse world in terms of cost, programming time, and display time. By understanding the 

relationships that exist between the physical and VEs will help us better utilize this 

extraordinary technology by supplying the most important information to the user. 

In these experiments I only analyzed three major visual factors due to the 

hypothesis that they might be of most importance in determining size constancy performance. 

However with the enrichment of VE, multi-modal interaction between the user and VE is 

getting more popular and it could be interesting to examine the effect of other factors, e.g. 

display resolution, haptics, 3D audio etc.   
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5. DESIGN AND IMPLEMENTATION OF A HAND TRACKER 

This chapter gives the technical details about the design and implementation of a 

computer program which does computer vision based hand tracking and posture recognition7. 

This work is a natural extension of and has the same principle as the personalized control 

system in Chapter 5. Extensions are reflected in two aspects: first, computer vision 

techniques are used to replace tethered measuring devices for hand movement; second, users 

are free to construct the personal hand profiles by themselves using mobile devices. As 

described in Chapter 1 of the thesis, the design requirements for the hand tracker are: 

efficient construction and incorporation of user’s personal hand profile; robust detection of 

hand occurrence; real-time conversion of hand movements to 2-D coordinates; and lastly, 

high-accuracy mapping of posture to control commands.    

Comparing with head tracking and face detection, hand tracking and posture 

recognition are more difficult problems. Unlike the human head, which could be abstracted 

as a elliptical blob and processed accordingly ([34, 57]), the human hand is highly 

deformable and difficult to be described by low dimensional parametric models. The hand 

tracker implemented in this work takes the approach of statistical learning for hand 

characterization. In other words, it learns from a database of “hand” and “non-hand” images 

what a hand should look like. In this work, the knowledge obtained by the hand tracker 

during the learning process are two statistical models: a histogram for hand color distribution 

and a decision-tree based classifier for hand shape identification. With the two learned 

                                                 

 

 
7  If not specially explained, I use the short name “hand tracker” to state the hand tracker and posture recognizer 

implemented in the rest of this thesis. 
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statistical models, the hand tracker is able to make judgments about hand presence whenever 

a new frame comes in from video streams captured by a camera.  

Based on the hand tracker design, its components are divided into two groups: an 

off-line preprocessing components group which collects training samples and builds 

statistical models of the human hand; and an interactive computing components group which 

processes the captured video stream from a camera frame by frame, detects/tracks the 

presence of a human hand, and recognizes the gestures performed if there are any. The main 

advantage of this hand tracker over related work is that the off-line preprocessing 

components group is mainly implemented on a mobile device, and makes use of motion 

sensors to control training sample quality. While in most related works, samples are to be 

collected from a public library or in strictly controlled laboratory environment. This 

improvement makes sample collection by the user themselves possible, and has the benefit of 

being able to incorporate individual biometric characteristics. In section 5.4, I present the 

evaluation results that reflect the advantages of the sample collection component. 

To incorporate the personal profile of a specific user into the hand tracking 

algorithms, the first task is to identify what are the human factor invariants of a hand. High-

level features of a hand include its relaxed shape, texture, posture configuration and skin 

color. Among these four high-level features, relaxed shape and posture are not invariants 

because they differ with different degrees of muscle contraction. Texture and skin color are 

invariants within an individual. Between these two, texture information is automatically 

reflected by low-level haar-like image features in shape-based statistical models [53, 54, and 

55]. Thus, besides the shape profile, I chose skin color as the other main feature to construct 
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a personal profile of the hand. In this sense, the hand tracker implemented is multi-modal 

because it makes use of both shape and color features.  

This chapter is organized as follows. Section 5.1 gives overview of the tracker 

design. Components in the off-line preprocessing group are described in section 5.2, while 

components in the interactive computing group are illustrated in section 5.3. Conclusions and 

discussions complete this chapter. 

5.1. Hand Tracker Design Overview 

Figure 22 illustrates the composition of the off-line preprocessing components 

group. In off-line preprocessing, the user captures two image sets with the camera on a 

mobile device: hand images and non-hand images. The set of non-hand images is used 

directly as negative samples, i.e. it contributes to the “what is not a hand” knowledge in the 

trained statistical models. The hand image set is further processed by an image selector. The 

purpose of the image selector is to improve the quality of the positive samples by filtering, 

because sample quality will greatly affect the accuracy of the trained hand shape statistical 

model. Criteria for the selection process are introduced in detail in section 5.2.2. 
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Figure 22 Block Diagram of the Off-line Preprocessing Components Group 

After image selection, a positive sample database is obtained. This database, 

together with the negative sample database derived from non-hand samples, is supplied to a 

feature extraction component to extract haar-like shape features. The shape classifier training 

component subsequently trains classifiers based on these feature-identified samples. In the 

Shape Feature Extraction 

 

Shape Classifier Training  

 

Hand Shape Classifiers 

 

Skin Color Feature 

Extraction 

 

Color Histogram 

Construction 

 

Skin Color Histogram 

Profile 

 

Negative Sample 

Database 

 

Camera on Mobile Device 

Hand Images Non-Hand Images 

 

Image Selector  

Hand Images 

(Selected by 

Criteria) 

 

Positive Sample 

Database 

 



70 

interactive computing components group, the classifiers are going to be used to identify 

hands from captured video frames.  

The shape-based features are color-independent. That is, they are extracted from 

gray-scale only images and one important property of the positive images: skin color of the 

hand is not used during classifier building. To capture the skin color characteristics, the color 

features from the positive samples need to be extracted and converted into corresponding 

statistical models. This task is fulfilled by the color histogram map construction component. 

This component maps all the color points of the hand in positive samples into a color 

histogram. The histogram is then leveraged for hand detection.  

The key thoughts of the off-line preprocessing component groups design are three 

folds: Firstly, a hand classifier of high quality, i.e. low false positive rate and high detection 

rate, should be trained from high quality training samples. This fact is determined by the 

nature of the statistical learning methods. Thus the image selector is introduced; Secondly, 

use of multi-modal features for hand tracking will bring not only the profit of lower the false 

positive rate but also the loss of lower detection rate. However, for the interaction purpose 

application uses, the penalty of lower detection rate is much less than the penalty of false 

positives, which harms the user experience of such a system. Finally, the sample collection 

process should be semi-automated to provide satisfying usability.  
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Figure 23 Block Diagram of the Interactive Computing Component Group 
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Figure 23 illustrates the block diagram of the interactive computing component 

group of the hand tracker. The interactive computing component group makes use of the 

statistical models built by the off-line preprocessing component group. In addition, this 

component group is in charge of processing live video in the interactive environment and 

mapping hand motion to 2D coordinates and postures to control commands. 

Whenever a video frame is captured by the camera in the interactive environment, 

it is scanned to detect if a hand exists in the scene. The criteria to justify if a hand exists are 

based on the statistical models built on shape features and color features. If both features are 

verified, a tracking feature extraction module is engaged to identify the “good features to 

track”, i.e. KLT features as described in ([58]).  The weighed centroid of the tracked features 

is used as the location of the hand and this is used as the 2D coordinates in the interaction 

with the VE.  

In a “tracked” frame, the area where the hand is located is further scanned to test if 

the configuration of the hand satisfies a predefined posture. This is done by comparing the 

hand image in the area to predefined posture templates, and choosing the template that has 

the highest resemblance to captured hand image. The identified posture is then mapped to a 

control command as part of the tracker output.  

After all the processing of one video frame, the tracker prepares itself for the next 

captured video frame. As video frames are captured at an interactive rate, the computation 

conducted by all the components in the interactive computing component group needs to be 

within a strict time limit (no larger than 100milliseconds). This is a major difference from the 

off-line preprocessing component group, where computation has no interactive rate 



73 

requirement constraint. In section 5.3, I illustrate several techniques used to achieve the 

interactive rate goal. 

5.2. Off-line Preprocessing Components 

The off-line preprocessing components collect positive and negative training 

samples and generate color and shape models. Components in this group include the image 

capture component, which collects hand (positive) and non-hand (negative) image samples; 

camera motion capture component, which uses acceleration sensing to proactively capture 

camera motion during sample collection process; color histogram computation component, 

which constructs the skin color profile of a specific user’s hand based on the samples 

collected; and shape classifier training component, which builds the hand shape profile of a 

specific user based on the samples collected. The first three components fit in a mobile 

device while the fourth component is preferably undertaken by the infrastructure. 

5.2.1. Training Sample Collection Component 

 
 

Figure 24 an Example of Hand Images Database: Hand Gesture DB  

 

One common approach to collect training samples for a learning-based computer 

vision system is to get these samples from a public database. Figure 24 shows the Massey 

Hand Gesture Database maintained at the Massey University of New Zealand. The database 
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contains 6 image sets collected from 5 individuals. The total number of images in this dataset 

is about 1600.  The advantage of using a public hand images database is that user does not 

need to be involved in the sample collection process, and the trained classifiers will be user-

independent, i.e. generalized enough to fit a wide range of hands.  

Despite the above arguments, the advantages of using a public hand images 

database are not necessarily true when applied in a personalized computing context. Firstly, 

the skin color of humans varies in a great range. Asians, Africans and Americans, for 

example, could have drastically different skin color pigmentations. Even within the same 

demographic group, skin colors could still differ to a large extent. For example, African 

Americans and Caucasians in the United States, in general, have different skin color tones. 

Figure 25 shows the hand image samples I collected from two subjects, one is a southwest 

Asian and the other is a southeast Asian, luminance coverage and light exposure are carefully 

calibrated so that lighting conditions are ensured to be same for the collection of both sample 

sets. It could be clearly observed that the two subjects’ hand differs with regard to skin color 

to a large extent. Secondly, the semantically identical postures, when performed by different 

individual, could be quite different in shape. Reasons for these differences could be 

finger/palm shape difference and habit of presenting a certain posture. Thus, collecting 

personalized hand image database for an individual user is desirable.  
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Figure 25 Hand Image Samples from Two Subjects Who Have Different Skin Colors 

(Top) Southwest Asian (Bottom) Southeast Asian 
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Before collecting a personalized hand image database, it is important to realize the 

technical challenges of this task. Unlike the pubic databases, which are collected by 

technology-savvy personnel and under controlled conditions, personalized database are to be 

collected by the users themselves. It is not uncommon that the collector themselves are not 

computer vision or photographing experts at all, and the collecting environment are far less 

controlled than a laboratory setting. To make this task even more difficult, number of images 

needed in a hand image database is not a small amount: it should be at least couple of 

hundreds if not any more.  

Because of these reasons, the training sample collection component is implemented 

as a mixture of mobile device- and infrastructure- based applications. This component has the 

important features that make themselves capable of fulfilling the tasks they are assigned: 1) 

the collection process is semi-automated, the user needs only to specify number of hand 

images to be collected, and the application on a mobile device will initiate the camera at 

collection intervals, and performs the capturing task until the specified number of hand 

images has been collected. and 2) Lighting condition and hand depth condition of training 

sample images are automatically measured, used to judge acceptance/rejection of a hand 

sample and feedback to the user.  

A Linux-based camera capture application was developed on a Motorola A1200 

smart phone (Figure 26). The A1200 handset is a high-end mobile device equipped with 

MontaVista® Mobile Linux operating system, 2 mega-pixel Micron color imager, Intel 

XScale 312MHz processor and 1Gigabyte micro SD card.  
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Figure 26 the A1200 Smart Phone  

 

The samples capture application starts with a configuration form as shown in 

Figure 27. In this form, the user specifies whether hand images or background images should 

be collected. The form also allows the user to adjust six parameters that controls the 

application behavior: number of samples to collect, interval between two consecutive sample 

collections, the segmentation intensity threshold, percentage of hand area coverage in the 

whole image, allowed variance in hand area coverage percentage, and whether or not audio 

prompts should be used. The application collects image samples at the specified interval, 

until the specified number of samples has been collected. By default, the hand area coverage 

is set to be 40% with a 5% variance allowed, and audio prompt is set to be true. More details 

of the hand area coverage and hand area variance values can be found in the sections below. 
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Figure 27 Screenshot of the Configuration Form of the Sample Collection Application  

 

There is no special preprocessing for background images since every pixel within 

such images belongs to the same category, i.e. the “non-hand” category. However this is not 

the case for hand image samples. This is because the hand is a highly articulated object and is 

very flexible and deformable. Thus, there are inevitably many non-hand pixels which belong 

to the background captured into a rectangular image that contains the hand. The approach to 

clean these background pixels is to perform preprocessing on the collected hand images. I 

use the steps described below to retrieve background-free hand images.  
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Figure 28 Screenshot of the Viewfinder of the Sample Collection Application 

 

First, the user put his/her hand before a single dark colored background, e.g. a blue 

wall. The hand is captured by the sample collecting application into a raw hand image Iraw, 

with mixed hand and background pixels. 

Then, the application saves a grayscale image Igray from Iraw. It applies intensity 

threshold S on the Igray in the following fashion: If Intensity(Igray, X, Y) < S, then Igray(X, Y) = 

0; otherwise, set Igray(X, Y) = 1. After this, a binary mask is obtained over the raw hand 

image, where pixels of low intensity are set to logical false while pixels of high intensity are 

set to logical true. Because the user is asked to take the hand image before a dark colored 

background. The application can assume that hand pixels are set to logical true while 

background pixels are set to logical false.  

The application verifies if the threshold segmentation is correct by calculating the 

percentage P of logically true pixels in the mask:  
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P = %100*
rOfPixelsTotalNumbe

ixelsgicalTruePNumberOfLo
 

Equation 8 Logical True Pixel Percentage 

 

It only uses Iraw if P is greater than the segmentation intensity threshold. Lower than 

segmentation intensity threshold could indicate that the segmentation is not successful. In the 

case that Iraw is not to be used, the application does not increase the “collected” samples 

counter in this run and gives the user a corresponding audio prompt through text-to-speech 

engine, if the audio prompt option is set. 

If Iraw is to be used, then the application uses the mask generated from Igray to mask 

out the background pixels. After this step, a color image of the hand should be obtained 

which is background-free. The application saves this image as a positive sample and prepares 

for the next capture. 

Figure 29 shows examples of the raw image, binary mask and the preprocessed 

positive sample, respectively. In the sample collection phase, 500 images of each category of 

positive samples are collected, at 2 fps rate.  That is, it normally takes 5 minutes to collect 

positive samples for one hand posture.  
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Figure 29 Raw Hand Image (Left), Binary Mask (Center) and Segmented Color Hand 

Image (Right) 

 

As mentioned before, pixels are not the only data collected by the sample collection 

application. Each training image sample (hand or non-hand) is collected together with the 

mobile device’s motion data with wireless accelerometer/tilt controller affixed to the mobile 

device (Sparkfun WiTilt, Figure 30). How the acceleration data is used for image selection is 

described in detail in section 5.2.2. 

 
 

Figure 30 the SparkFun WiTilt Wireless Accelerometer/Tilt Controller  
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5.2.2. Positive Image Selection Component 

Following sample collection, I am able to obtain a set of positive and negative 

sample images. Among them, all the positive samples satisfy the exposure and depth 

thresholds requirements and have the hand image segmented. These images are ready for 

color model training, but not ready for shape model training yet. The main reason is image 

blur caused by camera movements during sample collection.  

Although improper focus can also cause image blur, it is the secondary issue to 

address when dealing with hand image capture. The reason is that the training hand images 

are collected in a semi-controlled environment: the hand has to be within a certain distance 

from the mobile device camera due to field of view limitations; and the requirement for dark 

color background also helps the imager to easily focus on the hand. In contrast, the slim form 

factor of a mobile device makes its imager very sensitive to users’ hand movements. The 

small field of view of the mobile device camera exacerbates this problem.  

There have been off-the-shelf deblurring algorithms, such as the Lucy-Richardson 

algorithm [64] and Wiener filter [65] but they are post-processing techniques. These 

techniques reconstruct the camera motion from the captured image and have no knowledge 

of the actual motion data. In this thesis, I use an approach that integrates acceleration data to 

understand the camera motion. Unlike post-processing techniques, this approach captures the 

camera motion proactively and stores it together with the captured images. To reduce false 

alarms and make use of the user’s knowledge for the cause of the blur, an arbitrary 

acceleration threshold is to be selected by the user over the collected image samples. The 

user adjusts the level of acceptable levels of motion, and images that satisfy the motion 

threshold are chosen to be incorporated into the model training process. Once the motion 
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threshold is finalized, unqualified images are deleted and thus training with bad data is 

eliminated to the best of the user’s knowledge.  

The accelerometer on WiTilt outputs accelerations along X, Y and Z axis. Total 

acceleration of the board is measured as:  

222

zyxtotal AAAA ++=   

Equation 9 Total Acceleration Calculation 

 

As the WiTilt board has on-board Bluetooth transceiver, data is collected at 50 Hz 

rate and the total acceleration through the duration of one capture interval is recorded as the 

metric of mobile device motion during one sample capture. 

5.2.3. Statistical Model Training Component 

Following image collection and sample selection processes, the positive and 

negative sample databases are ready to be used to build statistical models. Two kinds of 

statistical models of the human hand are to be built, namely the color histogram model and 

the shape classifier model.  

The argument for developing a color histogram model for the hand is that human 

skin usually differs from environment in color. The differences can be described by a 

distribution of skin color in color spaces, usually in the form of a histogram. I train the color 

histogram in normalized RGB color space, with 256 bins on each color dimension. In the 

color space I choose, all colors that can be displayed are specified by the red, green, and blue 

components. One color is presented as one point in a three-dimensional space whose axes are 

the red, green, and blue colors. As a result, a cube can contain all possible colors ([59]). This 
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space and its corresponding color cube in this space can be seen in Figure 31 ([60]). The 

origin represents black and the opposite vertex of the cube represents white.  

 
 

Figure 31 RGB Color Space and the Color Cube 

 

There are two implementation details which should be noted. Due to the memory 

and bus bandwidth limitation of mobile device imagers, they normally do not save raw image 

directly in RGB color space. Instead, another color space YUV is used, where Y indicates the 

luminance of a pixel while U and V indicate the chrominance. The mapping between YUV 

format pixel and RGB format pixel can be described by Equation 10 ([61] [62] [63]). To be 

more specific, the A1200 device saves raw pixels in a compressed variant of YUV format 

called YUV422. The YUV422 format uses 4 bytes (U, Y1, V, Y2) to denote a pixel pair (Y1, 

U, V) and (Y2, U, V). The reason that compression of two neighboring pixels with same U 

and V value is feasible is because of human visual perception, which is sensitive to 

luminance variance but relatively insensitive to chrominance variances. These format 
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conversions are implemented by the sample collection component so that the model training 

component can safely regard image collected are in RGB format. 
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Equation 10 YUV to RGB conversion 

 

Also, due to change of illumination, objects that appear to have the same color in 

human eyes might have quite different RGB values under different lighting conditions. To 

address this I use normalized RGB instead of RGB values. Normalized RGB values 

normalize each color component by an illumination factor, as shown in Equation 11: 
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Equation 11 Calculation of Normalized RGB  

 

The training of skin color model is performed on the average image of all collected 

hand image samples and takes less than a second to process 100 images. The hand shape 

model training process follows the skin color model training process.  

Shape-based statistical training methods map an image into one or more feature 

vectors, and store the knowledge retrieved from these vectors as the representative model for 

the presence or absence of a certain object. There are several choices for feature selection. 

The haar-like features, as shown in Figure 32, computes the intensity difference of 

neighboring rectangular areas as feature values. The advantages of haar-like features are that 

they are easy to compute if the image is pre-processed into an integral image ([53]), and 
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captures texture characteristics of an object, rather than the contour lines. Figure 33 

illustrates three instances of harr-like features when used for hand recognition from 

background, from left to right they are of type 1, 2 and 1 respectively. Another feature type 

that under consideration is SIFT (Scale Invariant Feature Transforms) proposed by Lowe et 

al ([66] [67] [68]). As the name implied, this type of features is robust to scale and rotation 

changes of a certain object in the image. It is also robust to partial occlusions. Both haar-like 

and SIFT features require only grayscale images.  

 

Figure 32 the 14 Haar-like Features used in Hand Tracker 

 

In this work, I choose to use haar-like features to build hand shape models. This 

choice is mainly based on the availability of software package support. Haar-like features 

have been widely used in vision-based object recognition systems and well supported by 

publicly available software packages. Haar-like features computation, together with the pre-

processing step of image integration proposed by Viola and Jones ([53]), are the de-facto 

object recognition methods in Intel’s Open Computer Vision library. Alternatively, software 

packages that support SIFT features computation are relatively fewer in quantity.  

1 2 3 4 5 6 7 8 

9 10 11 12 13 14 
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Figure 33 Instances of Haar-like Features in Hand Detection 

 

5.3. Interactive Computing Components 

The interactive computing components group works in the environment where live 

video is captured and processed in real-time. In the hand tracker context, I define ideal real-

timeness as in synchronization with the VE display frame rate. A typical VE displays 

interactive image at 15 – 30 Hz. Converting to latency, the summed processing time of the 

hand tracker on a single camera frame has to be within 33-66ms. This range also fits the 

conclusion of the study results of Sheridan and Ferrell ([71]), which concludes that a 

maximum latency between event occurrence and system response of 45ms to be experienced 

as “no delay". In the same work Sheridan and Ferrell also state that the threshold of 300ms 

for when interfaces start to feel sluggish, might provoke oscillations, and cause the “move 

and wait" symptom. 

Components in the interactive computing group include the detection component, 

which detects the hand presence in a video frame; the tracking component, which updates the 

hand location in the video frame once it is detected; and the recognition component, which 

identifies the posture of the hand. In the following sections, each component is described in 

detail. 
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5.3.1. Detection Component 

From a high level perspective, hand detection is a pattern matching process (so is 

hand recognition), where the presence of hand is compared with the statistical models built 

earlier by the off-line pre-processing components group. As I have two kinds of statistical 

models pre-built - the skin color model and the hand shape model - there are two sequences 

to make use of them:  

Sequence 1 is to use the skin color model to identify the hand from its background 

then obtain one or more hand-colored foreground blobs. Shape models are subsequently 

applied on these discovered blobs to verify if it is truly a hand posture in the pre-defined 

posture vocabulary.  

Sequence 2 is to use the hand shape model to identify a specific hand posture from 

the captured image, and then use the skin color model to verify that the object retrieved is 

indeed a hand and not a hand-like object that does not have the skin color. In the personalized 

hand detection process, color verification is also helpful in filtering out the hands that do not 

belong to a specific user.  

By comparing the two sequences, I choose to use the shape-first-color-second 

sequence for several reasons. Firstly, using a shape-based model to do the first level 

identification eliminates more false positives than using color-based model to do the same 

job. Foreground color blobs that are identical or close to the skin color are not rare 

occurrences, although most of such blobs can be rejected by shape-based models with 

relative ease, bringing these false positives into the second level identification stage is not 

necessary. Secondly, to identify the skin color foreground blobs calls for a scan of the whole 
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image area, whereas identifying a specific posture could be conducted in one or more smaller 

predefined range-of-interests (ROIs) in VE space. Given that the computational load is 

linearly correlated with the size of the scan area, color-first-shape-second sequence pays a 

higher computation penalty than shape-first-color-second sequence. Lastly, using the color-

based model to do the first level identification has the problem of scalability with respect to 

the number of predefined hand postures, i.e. the hand posture “vocabulary”. All identified 

skin color foreground blobs need to be examined against all possible postures in the 

predefined vocabulary. Conversely, in shape-first-color-second sequence, there is only one 

comparison with the skin color model needed once the hand posture is identified from the 

ROI. 

 

Figure 34 the “V-Shape” Posture Used for Hand Detection 

 

Based on the above reasons, I choose to use the shape-first-color-second sequence. 

The other design consideration is whether to give the user complete freedom of exhibiting 

his/her hand at any posture and at any area of the camera’s field-of-view to be detection, or to 

set up a certain protocol as an agreement between the user and the hand tracker, only when 

this protocol is followed then the hand will be detected? I believe that when used for 

interactive purpose, the detect component’s reliability is more important than its detection 

rate. Missing one or two frames that contains the hand shape form is acceptable – after all, it 
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takes much longer for the human hand to enter/exit a scene than the time of a video frame 

update. Conversely, reporting a hand presence while there is actually no hand there will 

trigger false responses of the system, and in turn frustrate the user who is using the 

interactive environment. Thus, I use the “V-shape” posture as shown in Figure 34 for hand 

shape detection. The protocol is as follows:  

• The detector regulates one or more configurable sub-areas of the camera 

field-of-view that it constantly monitors for hand presence. These sub-areas 

are called “hotspots”. 

• When the user would like to start an interactive session, he/she places the 

hand in front of the camera, making the hand image fall into one of the 

“hotspots”.  

• Not only does the hand need to be within a “hotspot”, it also needs to be of 

a specific posture configuration. Figure 34 shows the “V-shape” hand 

posture I used for the interactive system.  

• Once the detector identifies that the hand image in the “hotspot” is related 

to the predefined posture, it then uses the user’s skin color model to judge if 

the hand-shaped object is indeed of the user’s skin color. If the verification 

is positive, then the detector deems that hand presence has been detected.  

The method that the detector uses to detect a posture match is to scan the image 

area with the template scaled at various sizes. As illustrated by Figure 35. If the hand image 

is completely within the hotspot boundary and it could be covered by a scaled template 



91 

image, then a shape match is returned. The accuracy of detection is independent of the 

hotspot area size. However, scanning time is tightly correlated with the hotspot size. I present 

these results in the evaluation section.  

 

      

 

Figure 35 Template Matching at Different Scales on a Sample Video Frame, the Posture 

is Matched at Scale Level 4. 
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5.3.2. Tracking Component 

The hand tracking process is different from the hand detection process as described 

above. In the hand detection process, whether the hand is in camera’s field-of-view or not is 

not known a priori by the detection component. The detection component needs to constantly 

monitor all the ROIs to respond to the predefined hand posture presence. However, during 

the tracking process, the presence of the hand in camera’s field-of-view is known a priori, 

what is to be determined is where the hand is located in the next video frame. Tracking starts 

right after the hand is detected and stops when no satisfying cues could be found to identify 

the hand existence in the next image frame.  

The human hand is a very adept part of the body as it is highly deformable, thus 

could exhibit a large quantity of arbitrary shapes. At the same time, the multiple joints in 

upper limb give a high degree-of-freedom to the hand, making the combinations of in-plane 

rotation and 3D rotations a big set. Because of the forbidding numbers of possible hand 

configurations, tracking the hand by testing a classifier set against each video frame is not 

practical. To address this challenge, Kanade, Lucas and Tomasi proposed a method to find 

the steep brightness gradient along multiple directions. These gradients are called KLT 

features after the creators’ initials ([58]). In this work I use multiple KLT features to track the 

hand once it is identified by the detection component and the heuristic rules described in [33] 

to manage these KLT features. The implementation scans two consecutive video frames to 

track 30 KLT features and makes use of off-the-shelf KLT feature tracking function from the 

OpenCV library [73]. 
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5.3.3. Recognition Component 

 
 

Figure 36 the Three Hand Postures Used for Posture Recognition 

 

The recognition component fulfills a task that is different from the ones fulfilled by 

the detection and tracking components. Similar to the detection component, the recognition 

component also works on ROI. But the ROI here is not the “hotspots” handled by the 

detection component, but rather the image area identified by the tracking component of hand 

presence. The recognition component constantly monitors the tracked ROI and identifies 

possible presence of the predefined hand postures. In the implementation, the recognition 

ROI size is 320 by 240.  

Figure 36 shows the three hand postures predefined in the posture vocabulary: “V-

shape”, “flat” and “arrow”. Once the hand is tracked, the image area contains the tracked 

hand is processed by the recognition component and compared with all three postures. If the 

shape-based statistical model and the skin color-based histogram both report positive for a 

predefined posture, then the recognition component assert that the posture is performed by 

the user and transmits this decision forward. As I can see, except that the ROIs worked on are 

different, the tasks performed by the recognition component are almost identical with the 

tasks performed by the detection component.  
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Determining how to predict the recognition scan area and scan scales from the 

tracked hand position is the key in determining the recognition rate and performance. 

Because the recognition component only scans the predicted recognition area, inevitably 

some postures will be missed when they are out of the predicted recognition area. However, 

if I set the recognition area to be too large, then the recognition performance will plummet. In 

[33], the author proposes the prediction area as described below: 

Given the center position reported by the tracking component to be [Cx, Cy] and the 

last match scale to be S. Predict the scan area to be a boundary box centered at [Cx, Cy] and 

of width 2 * S * TemplateWidth and of height 2 *S * TemplateHeight, and predict the scan 

scales to be [S/1.75, S*1.75].  

The advantage of the prediction algorithm proposed in [30] is that it takes a 

constant time to compute, regardless of the scale level used for prediction. However, this 

advantage is built on two other drawbacks: firstly, the normalized scan scale range of this 

algorithm is (S’, S’*3.06). However, to effectively capture a 25 by 25 pixel template in a 

VGA size video frame, the theoretical scales range needs to be within (1.0, 18). In practice, 

the range of (1.0, 8.0) is the minimum to achieve satisfying capture results. This is still much 

larger than the (S’, S’*3.06) range. If the hand has large depth movement since last match, 

this algorithm is prone to not being able to recognize the corresponding hand posture in video 

frame. Secondly, when the scale level of last matched image is small, to predict X-Y 

movement by setting the scan area to be 2 * [scaled level times template size] is not valid 

under many occasions, because the hand motion could easily exceed the boundary of the 

predicted area. Say, for example, the hand image maintains 25 by 25 pixels in the video 

frame but moves at 60pixel/frame speed, then the predicted area will never be able to capture 
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the hand image in the video frame. Because in the system presented by [30], all hand tracker 

task computations are performed by a single laptop and workload optimization is critical, it is 

understandable why the specific prediction algorithm is devised. In the hand tracker 

implementation, because I have the scalable computing techniques to speed up processing 

(more details to be given in Chapter 6), a reasonable amount of computation should be put on 

the recognition process to increase recognition rate. Based on these observations, I design the 

prediction algorithm as following:  

Use two predicted recognition areas R1 and R2 for each recognition scan. Both R1 

and R2 are centered at [Cx, Cy], which is the tracked hand position. R1 is of size 320 by 240, 

and R2 is the smaller of the two areas: the whole video frame and a scan area four times of 

R1. When scanning R1, use the scan range of [1.0, 8.0]; When scanning R2, use the scan 

range [9.0, 12.0].  

Similar to the algorithm in [30], the algorithm also computes in constant-time, 

because the two scan areas of it are invariant across frames. The reason of only applying 

large scale levels on the latter scan area is based on the observation that hand movement 

simultaneously on all three directions are rare occurrences. Although it takes more time than 

the method in [33], there do exist scalable computing techniques than can significantly 

improve processing performance (scalable computing techniques are presented in Chapter 6 

in details). Also, the method has no preference over a certain scale range and gives the hand 

posture presence in between scales [1.0, 12.0] evenly and thus is able to recognize some hand 

posture presence that the method in [33] would have missed. Over a video sequence which 

consists of 5597 frames, this prediction algorithm is able to recognize 2962 hand postures 

while the algorithm proposed by [30] captures 2560.  
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5.4. Evaluation Results 

In this section four important metrics of the hand tracker implemented are 

evaluated. The first is the effectiveness of the sample collection method in improving the 

shape model quality. The remaining three which are latency related are performances of 1) 

the detection component, 2) the tracking component and 3) the recognition component.  

The evaluation experiments are undertaken on the head node of a computer cluster.  

The node is 64bit architecture with 2 AMD Opteron processors (2 GHz, Model 246) and 

4GB of DDR 400 MHz RAM. The operating system is SuSE Linux 10.  

Time is measured with the Linux clock() system function call. Experiments show 

that the clock() call is capable of reporting time at a precision of 10 milliseconds. The low 

resolution is due to the fact that the clock() call is subject to context switch latencies. 

Although I have implemented a time measuring tool elsewhere [74] which is able to measure 

at microsecond precision but it is not incorporated in the hand tracker due to current software 

library compatibility issues.  

The camera used here is Flea® (PointGrey, Vancouver, BC, Canana). The Flea® is 

a compact IEEE1394 camera with a 1/3” Sony CCD and 12 bit analog to digital converter. 

The resolution used is 640 by 480 and due to OpenCV driver limitation, live video is 

processed in grayscale mode.   

5.4.1. Effectiveness of Sample Collection Method 

500 hand images are collected for each hand posture and a mixture of 4000 non-

hand images are collected as well to train the shape model. Within the 500 hand images, 50 

are collected from the sample collection application on the A1200 device, the other 450 are 
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derived from the first 50 images by applied a random rotation angle from -5 degrees to 5 

degrees. Out of the 4000 non-hand images, 3000 are from an online negative sample database, 

1000 are collected at EVL-UIC. Again, the first 100 EVL-UIC images are collected using the 

sample collection application on A1200 device, and the remaining 900 are derived by 

applying -5 degrees to 5 degrees rotation angles. 

To evaluate the effectiveness of the exposure and depth threshold control methods, 

classifier performances are tested under three conditions. The first condition, illumination 

and motion controlled, enables the segmentation intensity threshold in the sample collection 

application for hand images, and restricts the total non-gravity acceleration to be 0.1g during 

the shutter time for both hand and background images; the second condition keeps the 

illumination constraint on hand images, but not the motion restriction on either hand or 

background images. Instead, it does post-processing of deblurring on the collected images 

using Lucy-Richardson algorithm [64]; the third condition just uses timed capture to get the 

hand images and background images, and does not apply any constraints during the image 

collecting process. I then use 1500 hand posture images and 1500 background images to train 

the haar-feature shape model under these three conditions, and use the remaining 1500 

background images as testing sample to obtain detection rate and false alarm rate data to be 

plotted into a receiver operating characteristics (ROC) graph. Each ROC curve consists of 16 

data points with varying parameter configuration of the hand shape model to output different 

detection-rate and false positive rate value pairs. 
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Figure 37 ROC Curves Showing the Comparison among Illumination-and-Motion-

Controlled, Illumination-Controlled with Deblurring and Uncontrolled Sample 

Collection Methods 

 

Figure 37 shows the ROC curves for the hand shape models trained under the three 

conditions. It can be observed that without any constraints enforced, the noisy samples make 

the shape model’s performance low: the best detection rate is 0.43, while the best false 

positive rate is only 6.44 * 10
-3

. Considering when the template size is 25 by 25 and the 

frame image size is 640 by 480, each frame contains about 4.7*10
4
 template size sub-areas. 

The false positive rate is equivalent to 8-9 false alarms in each video frame. This accuracy 

performance is not acceptable for the needs.  
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By applying illumination constraints significantly improves the performance of the 

hand shape model trained, the best false positive rate I can get increases to 7.02 * 10
-8

, this is 

about one false positive every 300 frame images when performing 25 by 25 template scan 

over 640 by 480 frame image. However, when the best false positive rate is achieved the 

detection rate is only 0.06. Actually, the best detection rate of the trained hand shape model 

is only 0.65. Obviously, this sample collection method does not suit for the need, albeit it 

already far outperforms the uncontrolled method. 

When both illumination and motion constraints are enforced, I am able to obtain 

both satisfying detection and false positive rates. When the detection rate is 0.82, the false 

positive rate is 5.6 * 10
-8

, which is about one false positive every 380 frames. Given the 

frame capture rate at 50 frames per second, this is equivalent to one false positive every 8 

seconds. In the implemented system with the second stage skin tone verification, I observe 

about 3 false positives in a 5597-frame video sequence.  

5.4.2. Computation Performance of Detection Component 

The processing time of the detection component is almost linearly correlated to the 

hotspot size. Figure 38 illustrates the processing time of the detection component from frame 

to frame, when the hotspot area varies from 10% to 100% of 640 by 480 frame image. The 

detection time is about 15 milliseconds when the hotspot accounts for 10% of the frame size, 

i.e. 200 by 150 pixels. When the whole frame image is monitored, the processing time is 

about 205 milliseconds.  
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Figure 38 Processing Time of the Detection Component, with Difference Sizes of the 

Detection Hotspot 

 

In the implementation of the hand tracker, the detection hotspot is set to be 320 by 

240, i.e. the hotspot accounts for 25% of the frame image size. Figure 39 illustrates the 

processing time I recorded in 682 consecutive frames. In 99% percent of the frames, 

detection component takes 50 milliseconds, while in the rest 1% it takes 60 milliseconds. The 

average detection processing time is 50.1 milliseconds and the standard deviation is 1 

millisecond.  
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Figure 39 Processing Time Distribution of Detecting Hand in a 320 by 240 Hotspot from 

Frame to Frame 

 

5.4.3. Performance of Tracking Component 

I empirically choose 30 to be the number of KLT features to be tracked between 

two consecutive frames. A value less than this makes the tracker prone to tracking loss, while 

a value larger than this makes the number of falsely tracked features to increase. When 30 

KLT features are tracked from frame to frame in 682 consecutive frames, the processing time 

varies from 10 milliseconds to 30 milliseconds and no more than 30 milliseconds. The 

average tracking processing time is 18.48 milliseconds and the standard deviation is 4.24 

milliseconds. 80% of the frames are processed between the 10 milliseconds- 20 milliseconds 

range and 98% of the frames are processed within 20 milliseconds.  
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Figure 40 Processing Time Distribution when Tracking 30 KLT Features from Frame 

to Frame 

 

5.4.4. Computation Performance of Recognition Component 

According to the recognition area prediction algorithm, the recognition component 

scans two areas R1 and R2. Size of scan area and scale ranges when scanning R1 is the same 

as scanning of the hotspot area by the detection component. Besides R1, the recognition 

component also needs to scan R2, which is the lesser of the whole frame image and an area at 

four times the size of R1, at the large scan scale range. The workload of scanning R1 is the 

same as the workload for scanning the hotspot by the detection component. While scanning 

R2 introduces extra processing workload. Figure 41 illustrates the recognition processing 

time recorded over 682 frames. 94% of the frames are processed at 60 milliseconds, 5% of 

the frames are processed at 70 milliseconds and 1% of the frames are processed at 80 

milliseconds. In the experiments, the average recognition processing time is 60.67 

milliseconds and the standard deviation is 2.79 milliseconds.  
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Figure 41 Processing Time Distribution of Hand Recognition from Frame to Frame 

 

5.4.5. Overall Frame-to-Frame Latency of the Hand Tracker 

The frame-to-frame latency of the hand tracker is defined as the time for detection 

in each frame (when the hand tracker is in the detection state), or the sum of tracking and 

recognition in each frame (when the hand tracker is in the tracking state). From the results 

above it can be seen that the frame-to-frame latency is about 50 milliseconds when the 

tracker is in detection state and about 80 milliseconds when the tracker is in the tracking state. 

If I do not perform posture recognition task under the tracking state, then the frame-to-frame 

latency is about 20 milliseconds. So, under the three conditions: detection, tracking with 

posture recognition and tracking without recognition, the frame rate should be 20, 12 and 50 

respectively. In the actual system, due to two other latencies: hardware capturing latency of 

the camera imager and display latency of the rendering, the frame rates measured are 

averaged at 17, 9 and 38 frames per second under these three circumstances. 
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5.5. Conclusions and Discussions 

In this chapter the design and implementation of a hand tracker are described in 

detail. The implemented hand tracker is able to perform at interactive rate (about 10 fps when 

both tracking and posture recognition are undertaken) and satisfy recognition accuracy for 

VE applications. Compare with other state-of-the-art hand tracking systems, this work stands 

out with the following unique features:  

Efficient use of both the cameras on mobile device and in interactive 

environment  

As best as I know, this work is the first that fully uses the camera on a mobile 

device to collect hand and non-hand image samples for statistical model training, and uses 

the camera in an interactive environment for hand tracking and gesture recognition once the 

statistical models are trained. This task separation makes efficient use of both computing 

platforms: the mobile device and the VE, with no sacrifice for posture recognition 

performance and accuracy. Due to the fact that in present days imagers are almost a 

commodity component on mobile devices, this work finds new potentials to make better use 

of them.  

Combines both tracking and controlling functionality 

The hand tracker acts not only as a 2-D coordinates tracking device, but also a 

three-button control device. This fits the requirements of the majority of VE applications, 

which call for inputs from both trackers and/or controllers. 2-D tracking is using optical flow 

methods, which guarantees an interactive rate for the computation, while controlling is 

handled by template matching, thus recognition accuracy is achieved. 
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Constructs and makes use of the personalized profile effectively 

Besides the shape model training in the form of classification trees, this work also 

constructs and makes use of the skin tone profile of the user. Skin tone, as an important 

biometric feature, is captured and modeled completely on the mobile device. The use of 

personalized skin tone information incorporated in color models improves the recognition 

accuracy when classifying hand and non-hand objects, as well as hands from different users. 

Distributive acquisition and storage of the skin tone profile with personal mobile devices 

solves the problem of maintaining a monolithic database for all users, and makes sure that the 

skin color profile is always available when the user needs to perform human-computer 

interaction in a new VE. This solution is thus highly scalable.  

Proactive use of motion data to facilitate high-quality sample collection 

Acceleration data, when captured synchronously with pixel data, is shown to be 

effective in addressing an important challenge for user-conducted image sample collection 

process: image blur caused by camera motion. This work is the first that studies 

quantitatively the comparison between effectiveness of proactive motion-sensing and post-

processing deblurring methods, and shows that the proactive motion-sensing method help to 

build higher quality hand shape models. Because of the introduction of the motion-sensing 

element, the sample collection application gains both friendliness and robustness to a degree 

so that it can be used on a mobile device.  

With all the above statement said, there are also opportunities to improve this work. 

First, SIFT features could be used instead of haar-like features because of the advantage of 

scale and rotation invariance. Due to the exactness match of SIFT key points, the method has 
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an overtraining problem but this could be compensated by boosting methods ([56] [70]). As 

aforementioned, the main barrier to implement the SIFT-based hand detector is availability 

of supporting software packages. To use a publicly available SIFT implementation named 

libsift ([69]) is a follow-up of this research work.  

The second opportunity is to further investigate the use of multi-sensor data for the 

components of the hand tracker. Besides the use of an accelerometer, other sensors can also 

improve the performance from multiple aspects for the hand tracking tasks. For example, a 

magnetometer can indicate the geographical direction the user is facing when collecting hand 

samples, and thus get better natural lighting calibrations. Similarly, if a gyroscope is attached 

to the user wrist while he is using the hand tracking component in interactive computing 

mode, the rotational accelerations from the gyroscope can help the tracker to adjust the 

rotation angles of the gesture templates as well. The idea of proactive use of sensor data on 

mobile device in this chapter is just the beginning effort to explore the usefulness of such 

techniques, and could certainly be extended to cover a broader scope of application fields.  

The third opportunity is computation scalability. Grouping of computational 

components of the hand tracker into off-line preprocessing and real-time computing defines 

the corresponding roles in a synergy of the mobile device and the VE. The multimedia 

peripherals of the mobile device are maximally utilized. In the mean time, the mobile 

device’s processing capacities are also made proper use of by the image preprocessing task. 

On the VE side, its more powerful computation capacity makes it a good candidate for model 

training. However, as have been seen in the evaluation results, a single desktop system still 

cannot fulfill the combined hand tracker tasks at very satisfying frame rate. To make use the 

processing capacity in the infrastructure with higher efficacy, high performance computing 
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techniques should be considered and corresponding solutions need to be developed. In 

chapter 6 I present the scalable computing techniques devised to address the high 

performance hand tracking problem.  



108 

6.  SCALABLE COMPUTING TECHNIQUES FOR HAND TRACKING 

In Chapter 5 the design and implementation of a hand tracker are presented. By 

using shape-based model matching with skin color verification, the tracker achieved 

satisfying detection and false positive rates. However as described in the discussion above, 

lack of scalability is the hand tracker’s characteristic that can be further improved. For 

example, due to the requirement for real-time response time for hand detection, the tracker 

only monitors a sub-region of the camera field of view. This is counter-intuitive as to how a 

vision-based system is expected to behave. In fact, one of the main desired features of a 

vision-based tracking system is that camera existence is nearly unnoticeable. Asking the user 

to follow an explicit protocol for hand detection undermines this goal. If I look further into 

the hand tracking process, I can also find that hand detection and posture recognition belong 

to a special category of pattern recognition problems, where the test data itself is dynamic 

and time-sensitive.  Latency in processing of one test sample might cause the system to miss 

one or more subsequent test samples, and thus give an adverse result not as expected by the 

user. Based on these observations, this chapter investigates the opportunities to apply 

scalable computing techniques for the computation-intensive tasks of the hand tracker. The 

goal is to achieve throughput improvement and processing time speedup, at a reasonable cost 

of the infrastructure resources. I introduce a novel data structure, called the scanning node 

tree, which is able to organize multiple processing nodes into effective synergy for hand 

tracker tasks. Scanning node tree not only fits pre-connected computer clusters, also is 

suitable for ad-hoc systems because of its multi-hop nature. Then I present a load balancing 

algorithm which is to automate the scanning node tree construction process, as well as task 
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partitioning optimization. At last, detailed evaluation results are given with respect to the 

several key metrics of the scalable computing performance.  

6.1. Problem Statement 

Scalable computing is broadly defined as being able to handle a growing amount of 

computing workload in a graceful manner. In the hand tracker case, the problem is how to 

orchestrate a computer cluster to speed up the processing of hand detection and posture 

recognition. More specifically, I aim to achieve the following goals:  

• Increase the throughput of the processed video data. 

Because the hand tracker process a portion of the whole frame image for each video 

frame, under the same frame rate, the higher amount of video data the hand tracker is able to 

process, the larger percentage of the frame image is able to be covered. In practice, at present 

day a video frame’s resolution ranges from VGA (640 by 480) to 4K (4096 by 2160), using 

more processors in a computer pool should be able to handle video frame increases 

gracefully. 

• Decrease the frame processing latency and increase frame-per-second metrics 

Frame latency introduced by processing of the hand tracking tasks is a major factor 

that determines the user’s experience. The time gap between the performance of a certain 

posture by the user to the application’s response to the user with a perceptual modality 

(visual, audio or haptic) is the key to the experiences of using a VE. With regard to the 

frame-per-second metric, it is worth noting that the overall latency of a vision-based tracking 

system is not solely determined by the frame image processing task but also by other factors, 

such as video capture and tracking data output methods. 
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• Get polynomial, preferably linear curve of speed-up values against number of 

computation nodes. 

In a perfect world the processor pool that can be used has unlimited number of  

nodes to be chosen for any cluster computing algorithm. In the real life the number of nodes 

in a computer cluster is usually limited. This is especially true in Beowolf8 clusters because 

they normally use messaging passing software for parallel processing. I would like to use 

only reasonable number of cluster nodes to fulfill certain size of hand tracking computing 

task. The bottom line is that the number of computation nodes should increase polynomially 

and not exponentially with the task size increase. Preferably, number of computation nodes 

needed should increase linearly with the task size increase.  

• Balance the computation load as evenly as possible among participated cluster 

nodes. 

I would like the computational load assigned to each participating node in the 

computer cluster to be as even as possible. One advantage of load balancing is that it could 

help to reduce frame processing time, because frame processing time is determined by the 

longest time a node takes to process a sub-task of the hand tracker. Another reason of the 

load balancing is that the computer cluster usually handles multiple jobs at the same time 

period and the hand tracker is just one of them. To be as friendly as possible to other 

processing jobs maybe the best way is to develop an even load of CPU usage on each cluster 

node.  

                                                 

 

 
8 A Beowulf cluster is a group of usually identical PC computers running a Free and Open Source Software (FOSS) Unix-

like operating system, such as BSD, Linux or Solaris. They are networked into a small TCP/IP LAN, and have libraries 

and programs installed which allow processing to be shared among them. 
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• Get low overall computation and communication overheads 

With the advantage of parallel processing, a parallel processing solution has the 

cost of processing and communication overheads. The processing overhead is introduced by 

the overlaps among sub-tasks when the original task is divided, while the communication 

overhead is usually defined by the passing of data and control messages when a message 

passing implementation is used.  I would like to get low computation and communication 

overheads when the parallelization solution is used.  

The goals are to be achieved with a reasonable assumption of the characteristics of 

the computation resources in the infrastructure. First, I assume that these computation 

resources consist of multiple computer nodes which are interconnected through network links, 

the interconnect topology can be either central-switched or ad hoc. Next, I assume that the 

computation resources can be described by LogP model ([78]). The LogP model 

characterizes a parallel machine by the number of processors (P), the communication 

bandwidth (g), the communication delay (L), and the communication overhead (o). Besides 

its basic form, LogP also has an extension model called LogGP [79] (G captures the 

bandwidth obtained for long messages) to make it more realistic under the circumstances that 

long messages are passed among computer nodes. Because the longest message to be sent in 

the hand tracker case is a VGA sized grayscale frame, the size is about 640x480 bytes and 

counts for only about 3% bandwidth of a gigabit network link. Use LogP to characterize the 

computation resource in the infrastructure is enough and appropriate. 

6.2. Scalability Analysis for Hand Tracker 
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In this section, I give an in-depth anatomy of the computation tasks performed by 

the hand tracker. Recall that the interactive computing components group consists of the 

following three components: hand detection component, hand tracking component and 

posture recognition component.  

The hand detection component monitors the pre-defined detection hotspot and 

report hand presence when there is a pattern matching. The monitoring process is by 

scanning the hotspot area of each frame with different size-scaled posture templates, each 

template matching is added to a matching list, when the whole hotspot has been scanned the 

best one in the matching list is reported as the hand detected. The hand detection component 

takes about 50-60 milliseconds processing time on a 320 by 240 hotspot area.  

If in the interactive environment a VGA resolution (640 by 480) camera is to be 

used, then a hand detection component that is able to run at 50-60 milliseconds per frame is 

able to monitor only a quarter of the frame image size. The processing time bottleneck at a 

single node prohibits the monitoring hotspot from being enlarged. This as described, is the 

throughput problem I am trying to address. Then again, if I define multiple hotspots to be 

monitored, each of them is of the same hotspot size that a single cluster node could handle 

within 50-60 milliseconds time, but the hotspots are assigned to multiple cluster nodes to 

process. Then it is possible that the whole tracker’s detection throughput can be improved. 

From the overhead perspective, the preferred data partition will be making the hotspots 

disjoint with each other. i.e. they do not have overlapped areas. This is acceptable by the 

interactive environment user. Figure 42 shows the proposed parallelization solution. 
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Figure 42 Illustration of the Hand Detection Component Parallelization 

 

The hand tracking component keeps a set of the KLT features identified after the 

first detection, and then tracks them from one frame to the next using iterative pyramid 

matching methods. When some KLT features are lost between two consecutive frames, 

which is common in hand tracking, the hand tracking component is also responsible to 

identify substitute feature points to maintain the size of the KLT feature pool. The hand 

tracking component takes 10-20 milliseconds to calculate 30-50 KLT features across two 

VGA (640 by 480) resolution frame images.  

Unlike the haar-feature calculation process performed by the hand detection and 

recognition components, KLT feature tracking does not calculate as many feature candidates. 

The pyramid iterative method usually has a limited number of levels (the default levels value 

used by OpenCV is 3), and just track the features without feature loss is very fast. At the 

… 
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Image Scale 2 

Image Scale M 

Node 1 Node 2 … Node N 
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same time, either KLT feature tracking or replenishing need to be performed over the whole 

frame image, rather than a sub-region because each level of the pyramids needs to be 

obtained from the whole frame image. Considering these factors, cost introduced by 

communication overhead of parallel KLT feature tracking will be at least comparable to the 

speedup gained, if the cost is not outrunning the gains. These considerations make cluster 

computing for KLT feature tracking less attractive and I decide not to incorporate this in the 

scalable computing solution.  

The posture recognition component scans a hotspot surrounding the tracked hand 

position. If the hand hand performs a predefined posture, the posture recognition component 

reports a match. The template matching method in the posture recognition component is the 

same as the one used by the hand detection component. The main difference between the 

recognition scanning and the detection scanning is that the hotspot used by the recognition 

component is static in size but dynamic in location, i.e. in recognition task the hand tracker 

always scans a fixed-size area around the tracked hand position. While the hotspots used by 

the detection component are static in both size and location.  

The data partitioning method used by the hand detection component, which divide 

the whole frame image into multiple hotspots, does not apply to the recognition component 

because the only hotspot needed is the one surrounding the tracked hand position. In this case, 

I have to look at other parameters that could be used to divide the computation task. Look 

deeper into the scanning algorithm, the scanning scales could be identified as such a 

parameter. Figure 43 shows the proposed parallelization solution for posture recognition.  
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Figure 43 Illustration of the Posture Recognition Component Parallelization 

 

One important point to be addressed is that simple divide-by-scales task partition 

will not be able to achieve good load balancing results, nor even close to this goal. In Section 

6.3.2 I give the details of a load balancing algorithm that solves this problem efficiently.  

6.3. Cluster Computing for Hand Tracker Components  

I use a computer cluster to run the hand tracker detection and recognition 

components in parallel. These two components solve same type of scanning problems, and 

the partitioning parameters are scanning area and scales. Instead of using standard cluster 

computing middleware, such as Message Passing Interface (MPI), this work develops its own 

message-based parallelization solution, build on the QUANTA transport library [72]. 
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Two unique technical aspects of this parallelization solution are proposed and 

implemented: first, a novel data structure, called scanning node tree. The scanning node tree 

is devised specifically for scanning problems. Second, a dedicated load balancing algorithm, 

based on the incorporation of both scanning area and scales. 

6.3.1. Tree-based Node Organization 

I organized the computation nodes in the infrastructure into a fanning-out tree. I 

named this tree the scanning node tree and defined it as a data structure that has the following 

characteristics:  

• Can have one or more levels. 

• Each tree node represents a node in the computation cluster and keyed by the 

physical node’s IP address.  

• Each tree node can have one or more children, or do not have children at all.  

• Each tree node belongs to one and only one of node types: head node type and 

worker node type. There can be only one head node in the tree, which is the 

root. There can be multiple worker nodes. 

• The head node has children which are worker nodes. Each worker node can also 

have children that are other worker nodes.  

• The link between two nodes is defined as a two-way network link that allows 

transmission of data and command messages.  



117 

• Each node has two attributes: scanning area and scanning scales.  A child’s 

scanning area and scanning scales have to be a subset of it parent node. 

Figure 44 illustrates the logical presentation of the scanning tree. In such as tree, 

when a node is assigned a scanning task, it partitions the task and then assigns the sub-tasks 

to all its children, if there are any. The node does not need to know whether its children will 

propagate the sub-task again or not, nor does it need to know or instruct the children about 

task partition strategy at the children nodes. At the same time, each child only fulfills the sub-

task assigned to itself and do not need to know the way its siblings work. The benefit of the 

scanning node tree is that hand tracker tasks can be pre-partitioned at the global level, while 

at each local node it is sufficient to have just a local list of the children, and maintains 

communication link only with its parent and children. If the configuration of a certain node is 

later changed, it does not affect any other nodes except its direct parent and children.  

In implementation, the scanning node tree is stored in the format of a vector, where 

each vector element is a quadruple {IP, AREA, SCALES, CHILDREN}. IP is the IP address 

of the node if it is a worker. When the node itself is the head node, I define the IP field to be 

DETECTION_HEAD for the root of the detection scanning node tree, and the IP field to be 

RECOGNITION_HEAD for the root of the recognition scanning node tree. The area is a 

quadruple {left, top, right, bottom} in percentage presentation of the whole frame image, for 

example, area {0, 0, 0.5, 0.5}, when applied on a VGA (640 by 480) resolution frame image, 

designates the area {0, 0, 320, 240). The scan scales specifies the start scan and stop scan 

scales over the image area designated by AREA. For example, {1.0, 8.0} means that the 

matching starts at the template size, and ends at 8.0 times of the template size. CHILDREN is 

a vector that stores the children’s IP address of the node.  
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Figure 44 Logical Presentation of the Scanning Node Tree 

Table 6 shows the example of the implementation of a scanning node tree. This is a 

detection tree, where the head node is DETECTION_HEAD. The tree has two levels. The 

head node has two children, one has the IP address 10.0.8.121 and the other has the IP 

address 10.0.8.122. Node 10.0.8.122 furthermore has two children, which are node 

10.0.8.123 and node 10.0.8.124. It can be observed that the head node partitions its workload 

based on the scan area. For node 10.0.8.122, it applies a different partitioning strategy and 

partitions the workload based on scales. Node 10.0.8.122 and its two children all scan the 

same image area, but at scales {1.0, 2.0}, {2.0, 4.0} and {4.0, 8.0} respectively. 
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Table 6 Physical Implementation of the Scanning Node Tree 

Node IP Scan Area Scan Scales Children Nodes 

DETECTION_HEAD (0, 0, 0.5, 0.5) (1.0, 8.0) {10.0.8.121, 

10.0.8.122} 

10.0.8.121 (0, 0.5, 0.5, 1.0) (1.0, 8.0) NULL 

10.0.8.122 (0.5, 0, 1.0, 0.5) (1.0, 2.0) {10.0.8.123,  

10.0.8.124} 

10.0.8.123 (0.5, 0, 1.0, 0.5) (2.0, 4.0) NULL 

10.0.8.124 (0.5, 0, 1.0, 0.5) (4.0, 8.0) NULL 

 

By using the vector-based implementation, the tree can be traversed from vector 

item 0. For each vector item Vi, it knows its children by looking at CHILDREN (Vi).  

However, items in CHILDREN (Vi) are IP addresses instead of vector index. For this 

purpose, I construct a IP-to-ID map together with the tree. When each node is created, I push 

it back into the vector, record its IP address and vector index, and put a tuple {IP, ID} into 

the IP-to-ID map.  Table 7 shows the IP-to-ID map constructed from the tree shown in  Table 

6. With this table I can iterate the sub-tree of the tree shown in Table 6 from any node. For 

example, from the DETECTION_HEAD:  

Start Tree Iteration: 

CHILDREN (0) = {10.0.8.121, 10.0.8.122} 

IP_to_ID (10.0.8.121) = 1   IP_to_ID (10.0.8.122) = 2 

CHILDREN (1) = {NULL}    CHILDREN (2) = {10.0.8.123, 10.0.8.124} 

IP_to_ID (10.0.8.123) = 3   IP_to_ID (10.0.8.124) = 4 

CHILDREN (3) = NULL,   CHILDREN (4) = NULL. 

End Tree Iteration. 
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Table 7 IP-to-ID Map Maintained by the Scanning Node Tree 

IP ID 

DETECTION_HEAD 0 

10.0.8.121 1 

10.0.8.122 2 

10.0.8.123 3 

10.0.8.124 4 

 

In this hand tracker, the scanning node tree is defined in the configuration file of 

the tracker. Two trees are defined, i.e. the detection tree and the recognition tree, in two 

different vectors. The HW_DETECTION_CLASSIFIERS <number of detection nodes> 

defines the size of the detection vector, while the HW_RECOGNITION_CLASSIFIERS 

<number of recognition nodes> defines the size of the recognition vector. For each node, it 

has one HW_CLASSIFIER_TYPE definition, specifies whether it is a head node or a worker 

node, and how many children it has. The node also has a HW_CLASSIFIER_NAME 

definition specifies the classifier file that node uses. Then follows is the 

HW_CLASSIFIER_HOTSPOT definition describing the scan area in percentage of the 

whole frame image. Next is the HW_CLASSIFIER_SCALES definition of the start and stop 

scales. At the end of the node definition clauses are zero or more HW_CLASSIFIER_CHILD 

definitions that specify the IP address of each node. Table 8 gives the full text of such a 

configuration file.  



121 

Table 8 the Scanning Tree Defined in Tracker Configuration File 

HandWand Configuration 1.0 

 

#Number of detection classifiers 

HW_DETECTION_CLASSIFIERS 4 

HW_CLASSIFIER_TYPE HEAD 3 children 

HW_CLASSIFIER_NAME buttons.classifier 

HW_CLASSIFIER_HOTSPOT x=0.0->0.5, y=0.0->0.5 

HW_CLASSIFIER_SCALES 1.0->8.0 

HW_CLASSIFIER_CHILD 10.0.8.121 

HW_CLASSIFIER_CHILD 10.0.8.122 

HW_CLASSIFIER_CHILD 10.0.8.123 

# yorda1-10 

HW_CLASSIFIER_TYPE WORKER 0 children 

HW_CLASSIFIER_NAME buttons.classifier 10.0.8.121 

HW_CLASSIFIER_HOTSPOT x=0.5->1.0, y=0.0->0.5 

HW_CLASSIFIER_SCALES 1.0->8.0 

# yorda2-10 

HW_CLASSIFIER_TYPE WORKER 0 children 

HW_CLASSIFIER_NAME buttons.classifier 10.0.8.122 

HW_CLASSIFIER_HOTSPOT x=0.0->0.5, y=0.5->1.0 

HW_CLASSIFIER_SCALES 1.0->8.0 

# yorda3-10 

HW_CLASSIFIER_TYPE WORKER 0 children 

HW_CLASSIFIER_NAME buttons.classifier 10.0.8.123 

HW_CLASSIFIER_HOTSPOT x=0.5->1.0, y=0.5->1.0 

HW_CLASSIFIER_SCALES 1.0->8.0 

 

HW_RECOGNITION_CLASSIFIERS 2 

HW_CLASSIFIER_TYPE HEAD 1 children 

HW_CLASSIFIER_NAME buttons.classifier LOCAL 

HW_CLASSIFIER_HOTSPOT x=0.0->0.5, y=0.0->0.5 

HW_CLASSIFIER_SCALES 1.0->1.0 

HW_CLASSIFIER_CHILD 10.0.8.124 

# yorda4-10 

HW_CLASSIFIER_TYPE WORKER 0 children 

HW_CLASSIFIER_NAME buttons.classifier 10.0.8.124 

HW_CLASSIFIER_HOTSPOT x=0.0->0.5, y=0.0->0.5 

HW_CLASSIFIER_SCALES 1.2->8.0 

 

HW_NUM_BUTTONS 3 

 

6.3.2. Load Balancing Algorithm 

In the previous sections I describe that the work load partitioning over tree nodes 

are based on scan areas and scales. In this section I look at the partitioning problem in more 

detail. Three aspects of the load partitioning and balancing are discussed: computational 

overhead introduced by scan area overlapping; unbalanced workload at each scale level, and 

communication cost introduced by image propagation.  
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6.3.2.1. Scan Area Overlapping  

In Section 6.2 the scan area partitioning is briefly introduced. To scan a frame 

image that used to be scanned by a single node with multiple nodes, the scan areas of these 

nodes cannot be disjoint but have to be overlapped. Otherwise, image patches on the 

boundary of the defined scan areas will be missed and the tracker will have scanning loss if 

the predefined pattern exists in these image patches. To further illustrate this problem, Figure 

45 shows two predefined scan areas who shares a common boundary. In this figure, Wd1 and 

Wd2 are the defined width of scan area 1 and scan area 2. However, if I just scan areas 

covered by defined scan area 1 and defined area 2, any template occurrences within the 

middle pinked area will not be matched because none of scan node 1 or scan node 2 will be 

seeing the whole template instance but just part of it. To make sure template occurrences in 

the middle pink area is also processed, both scan node 1 and scan node 2 need to expand their 

scan area into the neighbor’s defined scan area, thus overlaps are introduced.  

In Figure 45 it can be observed that scan node 1 actually needs to scan an area that 

has the width of Wa1 instead of Wd1. For same reason, scan node 2 actually needs to scan an 

area that has the width of Wa2 instead of Wd2.  The overlap width (Wdi – Wai) is related to the 

template width and the scanning scales. At its minimum, the overlap width has to be equal to 

the product of the template width and the current scanning scale.  

Because each individual node in the scanning tree has overlapped scan area larger 

than its defined scan area, its workload cannot be simply calculated by the percentage of its 

defined scan area size over the whole frame image size, but has to be calculated by the 

percentage of its actual scanned area size over the whole frame image size. As the template 

size itself is an invariant, the larger scan scale is, the larger is this overhead. Quantitatively, 
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the actual scanning workload/defined workload ratio Rad at a specific node can be calculated 

using the following equation: 
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Where: Wd is the defined scan area width, Wt is the template width, S is the 

scanning scale,  Hd is the defined scan area height and Ht is the template height. 

Equation 12 Calculation of the Actual/Defined Workload Ratio 

 

Figure 45 Scan Areas Overlapping to Avoid Scanning Loss and Overhead Introduced 

To get more intuitive understanding of the overhead, Figure 46 plots the overhead 

ratio introduced by overlapping. Here Wd is 320, Hd is 320, Wt is 25 and Ht is 25. S varies 

from 1.0 to 8.0. It is very clear that the overhead ratio increases with the scale level. When 

scale level is 6 and beyond, the overhead ratio exceeds 2.0, which means the processing 

workload of the overlapped area has exceeded the processing workload of the defined area. 
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According to the goals I set for the scalable computing solution, this is an unfavorable 

outcome and will be address by the scanning node tree calculation algorithm in Section 

6.3.2.3.  

  

Figure 46 Overlapping Overhead in Parallel Scanning for 320*240 Defined Scan Area 

and 25*25 Template 

 

6.3.2.2. Unbalanced Workload at Scale Levels 

The previous section discussed the challenge from scan area partitioning for load 

balancing. In this section challenges from scale levels partitioning are studied. Because in a 

scanning process multiple scale levels are used, a simple parallelization algorithm will assign 

each (or a set of) scale level to a different cluster node. For example, scale 1.0 scanning task 

can be assigned to node 1. Scale 2.0 scanning task can be assigned to node 2, etc. However, 

this partition method will not be able to get satisfying speedup results. Since the workloads at 

different scale levels are unbalanced.  
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As I know that the atomic operation in a scanning process is to match a template 

(no matter which scale it is at) to an image patch of the frame image of the same size. The 

complexity of this operation across different scale levels is a quasi constant, because each 

matching evaluation compares nearly the same amount of haar features. What really 

determines the scanning complexity at a specific scale level is the number of scans needs to 

be completed. The number of scans can be calculated using the equation below: 

)]*/()*[(*)]*/()*[( SStepYSHHSStepXSWWansNumberOfSc titi −−=  

Where: Wi is the scan area width, Hi is the scan area height, Wt is the template 

width, Ht is the template height, S is the scanning scale, StepX is the X translation between 

two consecutive scans, StepY is the Y translation between two consecutive scans. 

Equation 13 Number of Scans Needed Calculation 

 

To further illustrate the relationship between number of scans needed and the scale 

level. Let’s set the scan area size to be 320 by 240, the template size to be 25 by 25, X 

translation is 2 and Y translation is 3. In the mean time I vary scale level from 1.0 to 8.0. 

Figure 47 plots the number of scans needed at these scale levels. Please note that the Y axis 

is plotted in logarithm scales. It can be clearly seen that the number of scans needed 

decreases drastically when the scan scale increases. If I simply assign each one (or a set of ) 

scale value to a node, the work load will be very unbalanced. 
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Figure 47 the Number of Needed Scans versus the Scale Level 

 

6.3.2.3. Communication Cost Between Cluster Nodes 

Two reasons make communication cost another important factor to consider in load 

balancing. The first is message latency introduced by network transport. Because in the hand 

tracker application, each frame image is transmitted to all processing nodes for parallel 

processing and the total frame latency is a scarce resource, it is important to control 

communication costs within a certain boundary. In the tree structure node organization, 

message passing is parallel among different levels of the tree, so the total latency can be 

measured by the largest one among the tree levels.  

Another reason is that hand tracker is usually not the main application running on 

the computer cluster but as an auxiliary application to facilitate users’ interaction with other 

applications. Under many occasions these other application themselves are scalable 

applications as well and consumes a large portion of the processing and communication 
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resources of the computer cluster. If the hand tracker takes too much communication cost, the 

other applications’ performance will be hindered. 

The number of frame transmissions can be mapped to the number of edges in the 

tree. That is, the total number of communication cost across the network is the total number 

of edges in the tree multiply the frame size; the total number of communication cost from a 

certain node is the total number of its children multiply the frame size; and the total number 

of communication cost at a certain tree level is the total number of nodes in the next level 

multiply the frame size. 

6.3.2.4. Scanning Node Tree Calculation 

To sum up all the discussions in the previous three chapters, the following 

observations can be made:  

1. Given defined scan area size and template size, the larger the scan scale is, 

the larger the overlapping overhead is. 

2. Given defined scan area size and template size, the larger the scan scale is, 

the less the needed number of scan is. 

3. The communication cost at a specific node is proportional to the number of 

children of the node. If the head is the node that has most children in the 

tree, the total latency introduced by communication cost is proportional to 

the number of the workers that are direct children of the head. 

These observations form the basis of the design consideration of the load balancing 

algorithm: 
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• Based on observation 2, I group multiple large scan scale levels into a group 

to aggregate the workload. And partition the workload at small scan scale 

levels into sub-tasks further processed at next tree level.  

• The partition strategy for the workload at a certain small scan scale level is 

to partition the scan area into multiple sub-scan areas that have overlaps 

with each other. Because the overlapping overheads are small at small scan 

scale levels, this partition makes sure that only reasonable overlapping 

overhead is introduced.  

• When partitioning the workload of a certain node into multiple sub-tasks to 

be processed by its children, I set the arbitrary limit of the number of 

children to be three, the purpose is to control the communication cost from 

this specific node. 

• Because computation workload is only determined by the task itself but 

communication workload is determined by both the task itself and the 

computer cluster configuration, I do not incorporate the communication cost 

into quantified load balancing calculation but calculate it separately. 

To further illustrate this strategy, assume I am going to scan a 320 by 240 

resolution image area with a recognition tree. The template size is 25 by 25, X translation is 2, 

Y translation is 3, and scale levels are from 1.0 to 8.0 and increase at a step of 1.2. 

First, I calculate the number of scans at different scale levels and put them into 

Table 9.  
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Table 9 Workload Partition Based on Scale Levels9 

Node ID Scan Area Scan Scales Number of Scans Needed 

1 (0, 0, 320, 240) (1.0, 1.0) 12800 

2 (0, 0, 320, 240) (1.2, 1.2) 8889 

3 (0, 0, 320, 240) (1.44, 1.44) 6173 

4 (0, 0, 320, 240) (1.73, 1.73) 4287 

5 (0, 0, 320, 240) (2.07, 2.07) 2977 

6 (0, 0, 320, 240) (2.49, 2.49) 2067 

7 (0, 0, 320, 240) (2.99, 2.99) 1436 

8 (0, 0, 320, 240) (3.58, 3.58) 997 

9 (0, 0, 320, 240) (4.30, 4.30) 692 

10 (0, 0, 320, 240) (5.16, 5.16) 481 

11 (0, 0, 320, 240) (6.19, 6.19) 334 

12 (0, 0, 320, 240) (7.43, 7.43) 232 

 

Then, I group the scanning tasks at large scale levels. In this example, scan scales 

from 2.49 to 7.43 are grouped and processed by node id 6. The number of scans needed at 

node id 6 is now 6239, as shown by Table 10.  

Table 10 Workload Partition after Scan Scale Grouping at Large Scale Levels 

Node ID Scan Area Scan Scales Number of Scans Needed 

1 (0, 0, 320, 240) (1.0, 1.0) 12800 

2 (0, 0, 320, 240) (1.2, 1.2) 8889 

3 (0, 0, 320, 240) (1.44, 1.44) 6173 

4 (0, 0, 320, 240) (1.73, 1.73) 4287 

5 (0, 0, 320, 240) (2.07, 2.07) 2977 

6 (0, 0, 320, 240) (2.49, 7.43) 6239 

 

It can be seen that node id 1 and node id 2 are still taking too much workload 

compare to node id 6. Because node id 1 and node id 2 fulfills scan tasks at small scan scales 

(1.0 and 1.2 respectively), the overlapping overhead introduced by scan area partitioning will 

be moderate. Based on this observation, I further divide the workload at node id 1 and node 

id 2 by scan area, each into four sub-tasks. Node id 1 offsets its workload to node id 7, node 

id 8 and node id 9. In the mean time, node id 2 offsets its workload to node id 10, node id 11 

and node id 12. Table 11 shows the new workload partitioning results. 

                                                 

 

 
9 For simplifying purpose, number of scan times are directly calculated with (Wi * Hi) / (Wt*Ht). Without special instruction, 

the number of scan times will be calculated with this in the text now and after. 
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Table 11 Workload Partition after Scan Area Partition at Small Scale Levels 

Node ID Scan Area Scan Scales Number of Scans Needed 

1 (0, 0, 160, 120) (1.0, 1.0) 4416 

2 (0, 0, 160, 120) (1.2, 1.2) 3252 

3 (0, 0, 320, 240) (1.44, 1.44) 6173 

4 (0, 0, 320, 240) (1.73, 1.73) 4287 

5 (0, 0, 320, 240) (2.07, 2.07) 2977 

6 (0, 0, 320, 240) (2.49, 7.43) 6239 

7 (160, 0, 320, 120) (1.0, 1.0) 4416 

8 (0, 120, 160, 240) (1.0, 1.0) 4416 

9 (160, 120, 320, 240) (1.0, 1.0) 4416 

10 (160, 0, 320, 120) (1.2, 1.2) 3252 

11 (0, 120, 160, 240) (1.2, 1.2) 3252 

12 (160, 120, 320, 240) (1.2, 1.2) 3252 

 

 

After the discussion of a specific example, I now describe the load balancing 

method in a formal algorithm. As the scanning node tree is created with the progress of 

workload partition, the final outputs of this algorithm include the scanning node tree in 

vector format. Also because the overlapping overhead and communication cost can be 

calculated during load balancing calculation, they are also included in the algorithm’s outputs. 

Algorithm Calculate_Tree 

Input:  

1. Size of the whole scan area (frame image for detection tree, and predicted 

hotspot for recognition tree): Wi and Hi. 

2. Size of the template: Wt and Ht. 

3. X translation and Y translation at each scanning step: StepX and StepY. 

4. Start, stop and the stepping value of the scanning scales: Sstart, Sstop and Sstep. 

5. The desired speedup: P.  

Output:  
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1. The scanning node tree with scan area and scales partitioned, in vector format: 

Tscan. 

2. The efficiency estimation of overall overlapping overhead, communication cost 

of the head and communication cost across all the tree nodes: O, Chead and Call.  

Pseudo Code: 

Tscan = NULL; 

 O = Chead = Call = 0; 

For (scale = Sstart:Sstop) 

    Calculate the number of scan times needed at scale and put in an array 

scale_level[]; 

End; 

Calculate the sum of all elements in scale_level[], and then create two other arrays 

scale_level_percentage and scale_level_integrated_percentage; 

For (i = 1: sizeof(scale_level) 

    Scale_level_percentage[i] = scale_level[i]/sum; 

    Scale_level_integrated_percentage = sum(scale_level_percentage[i:Sstop]); 

End; 

Iterate the arrary scale_level_integrated_percentage from the END, until find the 

first element k that has the value less or equal to 1/P; 
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Iterate the array scale_level_percentage_from the START, until find the first 

element j that has the value less or equal to 1/P.  

Node.scanArea = {Wi, Hi};  

Node.scales = {Scales[k-1].startScale, Scales[k-1].startScale};  

Add Node to Tscan as head node; 

For i = j:k-2;  

    Node.scanArea = {Wi, Hi};  

    Node.scales = {Scales[i].startScale, Scales[i].startScale};  

    Add Node to Tscan as children of the head node; 

End; 

Group all scales after Scale[k] into a set, assign it to a node and add this node to 

Tscan; 

Split all scales before Scale[j] based on scan area, and append the partitioned nodes 

to Tscan;   

Sum up workload value calculated at all nodes and put this as O.  

Sum up communication cost at the head and put this as Chead; 

Sum up communication cost at all the nodes and put this as Call;  

Output Tscan,  Chead, and Call; 
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I create a utility application tree_calculator as the implementation of the algorithm 

described above. Below are two sample trees calculated using this utility application. In the 

8-node parallelization, the mean percentage workload across all nodes is 14.03% and the 

standard deviation is 5.06%. In the 12-node parallelization, the mean percentage workload 

across all nodes is 10.22 and the standard deviation is 2.64%. It can be seen that the tree 

calculation algorithm is effective in fulfilling the load balancing task. 

 

Head  ScanArea(0->0.5, 0->0.5), ScanScales(1.73-1.73) Load (10.36%) 

Node 1 ScanArea(0->0.5, 0->0.5), ScanScales(1.44-1.44) Load (14.92%) 

Node 2  ScanArea(0->0.5, 0->0.5), ScanScales(1.2-1.2) Load (21.49%) 

Node 3  ScanArea(0->0.5, 0->0.5), ScanScales(2.07-8.0) Load (22.27%) 

Node 4  ScanArea(0->0.29, 0->0.3), ScanScales(1.0-1.0) Load (10.81%) 

Node 5  ScanArea(0->0.29, 0.2->0.5), ScanScales(1.0-1.0) Load (10.81%) 

Node 6  ScanArea(0.21->0.5, 0->0.3), ScanScales(1.0-1.0) Load (10.81%) 

P = 4.0  

Total nodes used = 8, O = 112.28%, Chead = 4, Call = 7 

Node 7  ScanArea(0.21->0.5, 0.2->0.5), ScanScales(1.0-1.0) Load (10.81%) 
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Figure 48 Two Sample Outputs of the Tree Calculation Algorithm 

Head  ScanArea(0->0.5, 0->0.5), ScanScales(2.07-2.07) Load (7.2%) 

Node 1 ScanArea(0->0.5, 0->0.5), ScanScales(1.73-1.73) Load (10.36%) 

Node 2  ScanArea(0->0.5, 0->0.5), ScanScales(1.44-1.44) Load (14.92%) 

Node 3  ScanArea(0->0.5, 0->0.5), ScanScales(2.49-8.0) Load (15.07%) 

Node 4  ScanArea(0->0.29, 0->0.3), ScanScales(1.0-1.0) Load (10.81%) 

Node 6  ScanArea(0->0.29, 0.2->0.5), ScanScales(1.0-1.0) Load (10.81%) 

Node 7  ScanArea(0.21->0.5, 0->0.3), ScanScales(1.0-1.0) Load (10.81%) 

P = 6.0  

Total nodes used = 12, O = 122.69%, Chead = 5, Call = 11 

Node 8  ScanArea(0.21->0.5, 0.2->0.5), ScanScales(1.0-1.0) Load (10.81%) 

Node 5  ScanArea(0->0.3, 0->0.31), ScanScales(1.2-1.2) Load (7.97%) 

Node 9  ScanArea(0->0.3, 0.19->0.5), ScanScales(1.2-1.2) Load (7.97%) 

Node 10  ScanArea(0.2->0.5, 0->0.31), ScanScales(1.2-1.2) Load (7.97%) 

Node 11  ScanArea(0.2->0.5, 0.19->0.5), ScanScales(1.2-1.2) Load (7.97%) 
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6.3.3. Hand Detection Process    

In Section 6.3.1 and Section 6.3.2 I present the static part of the cluster computing 

solution for hand tracker tasks, i.e. the node organization of the computation cluster and the 

load balancing algorithm. In this and the following sections I introduce in detail the dynamic 

part of the cluster computing solution, both for the hand detection and for the posture 

recognition processes. Two different hand tracker applications are launched on the 

processing node depends on whether the node is of type “head” or “worker”.  

6.3.3.1. Head Node Side 

On a head node, the application reads in the detection tree configuration at launch 

time, and then set the scan area and scales of itself based on the configuration settings. The 

head node does not keep the scan area and scales information of any other nodes, including 

its children. After the initialization with configuration settings, the head sends out an 

“INIT_REQUEST” message to all its children, and blocks to wait for the children to respond 

“INIT_RESULT” messages. Once all “INIT_RESULT” messages have been received from 

the children, the head node is ready to start the detection task.  

During the detection process, frame images are pumped in from the camera one 

after another. Each time when the head node acquires a frame image, it forms a 

“DETECTION_REQUEST” message and sends it to all the children. The body of the 

message has the image data of the frame image. Then the head node process the frame image 

with its own scan settings, and put any match result into a vector. The head node then 

receives all the scanning result from its children in “DETECTION_RESULT” messages, and 

put these results into the match vector. If the match vector contains one or more match results, 

a “best match” candidate is used as the sole result of this scan.  



136 

When the hand tracker application on the head node is going to exit, it sends out a 

“CLOSE_REQUEST” to all of its children. For this message, the head node does not expect 

to receive result messages back.  

6.3.3.2. Worker Node Side 

On the worker node side, when the application launches, it reads in the 

configuration file and sets its own scan area and scales according to definitions in the 

configuration. The worker does maintain such information for its children, if there are any.  

The worker node then goes into a block waiting state for any message from its 

parent. It is worth noting here that a worker node’s parent could be either the head or another 

worker note. However, a worker node’s child is always a worker node. When the worker 

node receives a “INIT_REQUEST” message, it propagates this message to all its children, if 

there are any, wait for “INIT_RESULT” response message from the children, and then send 

“INIT_RESULT” back to its parent.  

When the worker node receives a “DETECTION_REQUEST” message, it first 

relays this message, as well as the image data come with it, to all its children. The worker 

node then performs its own scanning task based on the configuration definition, and saves 

any matching result into a match vector. After performing its own scanning, it receives all 

match results from its children, puts them into the match vector, and chooses the best match 

to send back to its parent through the “DETECTION_RESULT” message. 

There are couple empirical rules that should be followed when a node is offsetting 

workload to its children. First, sending the request message together with image data should 

always be undertaken before the local scanning happens. Second, the node should always 
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pick the smallest sub-task to be processed locally and offset the larger sub-tasks out. Third, 

when sending request messages out to children, always send the largest sub-task first. The 

reasoning behind these empirical rules are: 1) the children nodes can start processing at the 

earliest time; 2) the parent node’s communication cost is compensated by lighter processing 

loads; and 3) the child who is assigned the largest subtask is the first to start processing. 

6.3.4. Posture Recognition Process   

Recognition process, just like the detection process, is also processed by a scanning 

node tree. The two processes share a large part in common but also have differences from 

each other. The main difference is that for the recognition process, the overall scan area itself 

is a sub-area of the frame image and might change among frames. Thus each node has the 

responsibility to notify its children about the updated scan areas.   

6.3.4.1. Head Node Side 

On the head node side, when it reads in the configuration file to construct the 

recognition tree, both the scan area and scales information of itself and all its children are 

maintained. This is different from the head node behavior in the detection process, where the 

head node just maintains the scan area and scales information of its own.  

During each recognition iteration, the head node acquires the frame image and 

calculates the recognition scan area. It then compares this scan area with the pre-defined scan 

area from the configuration, and calculates the offset (dx, dy) between the predefined scan 

area and the current-frame recognition scan area. After the offset is calculated, the head node 

applies it over all the pre-defined scan area of its children and then sends the 

“RECOGNITION_REQUEST” messages to all its children. The difference between the 
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“DETECTION_REQUEST” message and the “RECOGNITION_MESSAGE” is that the 

latter has scan area and scales information in its header. The head node then expects 

“RECOGNITION_RESULT” message back from its children.  

6.3.4.2. Worker Node Side 

On the worker node side, when the application launches it reads in the 

configuration settings of itself and any children from the configuration file and set them 

accordingly. The worker node then expects the “RECOGNITION_REQUEST” message.  

Once the worker node receives the “RECOGNITION_REQUEST” message, it 

retrieves the scan area and scales information out of the message header and calculate offset 

(dx, dy) from its pre-defined scan area. The worker node then sets all its children’s scan area 

and scales according to (dx, dy) and their pre-defined settings, and sends corresponding 

“RECOGNITION_REQUEST” messages out to the children. The worker then performs its 

local scanning task and put any match results into a match vector. After the local scanning, 

the worker receives all match results from its children, put them into the match vector and 

then send back to the head.  

6.4. Evaluation Results 

I evaluated the scalable computing techniques on a 32-node computer cluster at 

EVL-UIC. Each node is a 64bit architecture with  2 AMD Opteron processors (2 Ghz, Model 

246), 4GB of DDR 400 Mhz RAM, 1.5TB of shared local storage over parallel filesystem 

(PVFS) [8x250GB on a RAID5 configuration] and 250GB of local storage. Interconnections 

at each node consist of 3 gigabit network interfaces: on-board gigabit, single-mode fiber 

gigabit and multi-mode fiber gigabit. 
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The metrics I am interested in are in line with the design goals listed in Section 7.1. 

These metrics are: throughput improvement for frame image processing; processing time 

reduction and processing speed up at reasonable node costs; balanced workload across cluster 

nodes; and lastly, low communication cost. In the following sections, I present the evaluation 

results over each of these metrics. 

6.4.1. Improvement of Detection Component Throughput  

Because of processing time limitations, the detection component implemented in 

Section 5.3.1 only monitors a hotspot of the size 320 by 240, the user has to put his/her hand 

into a designated area to be detected. In this experiment, I use four nodes to monitor a 640 by 

480 frame image area. There are no scan area overlaps between any two nodes. The scan area 

partition is as follows:  

Node 1: (0, 0, 320, 240); Node 2: (320, 0, 640, 240); 

Node 3: (0, 240, 320, 480); Node 4: (320, 240, 640, 480); 

According to the overhead calculation, the processing overhead is zero because the 

four scan areas have no overlaps. However, the latency caused by communication cost will 

create some impact on frame processing time, and in turn affect frame rate at detection state. 

I define a unit throughput to be the processing of one 320 by 240 scan area, thus, one frame 

processed equals to 4 throughput units. Two control conditions are defined, the first 

condition uses a single node to process the 320 by 240 area; while the second condition uses 

four nodes to process the whole frame image. Each condition is repeated 10 times, each time 

for 200 frames, under different lighting condition and camera field-of-view. Then the mean 

and stand deviations of throughput per second are recorded and shown in Figure 49. 
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Figure 49 Throughput Improvements with Four Nodes in Hand Detection 

 

Data plotted in Figure 49 shows that the hand detection throughput of original hand 

tracker is 19.74±2.02 units. When a four-node scanning node tree is used the throughput 

improved to 69.54±2.97 units. The throughput improvement is about 3.52 when a four-node 

scanning node tree is used. The gap between 3.52 and 4.0 is caused by image streaming 

latency from the head to the other three nodes. 

 

6.4.2. Speedup of Recognition Component 

In this section I study the speedup performance of the scanning node tree, for the 

hand recognition task. The reason to study the hand recognition task instead of the hand 

detection task is because that the former is susceptible for overlap overheads and normally 

more communication cost due to depth of the scanning node tree. Thus, the speedup value 
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predicted by the tree calculation utility will not be exactly the same as the speedup observed. 

It is of interest to see the scanning node tree’s performance in the field.  

This study can be done by predicting different speedup values, and then use the tree 

calculated to measure actually speedup values, and then compare these two. The numerator 

to compute speedup is the time used when hand recognition is performed with a single node 

scanning node tree. I use frame 157 through 5524 of the pre-recorded 5597-frame video 

sequence, where the recognition task starts and ends. Tracking component’s processing time 

is subtracted from overall frame latency to get the recognition component’s processing time. 

To remove the noise of image display latency, each frame image is only processed but not 

displayed.  

 

Figure 50 Predicted and Actual Speedup Values vs. Number of Tree Nodes 



142 

 

Figure 50 shows the actual speedup values recorded at predicted speedup values. It 

can be seen that the actual and predicted values are close to each other when the scanning 

node tree is composed of 12 or less nodes. For the 16-node scanning node tree, there is large 

discrepancy between the actual and predicted values. Also, the actual speedup value 

measured is smaller than the actual value when a 12-node scanning node tree is used. The 

reason is due to network transmission latency for image data broadcast. If the cost of 

communications can be ignored (e.g. for 3- and 4-node scanning node trees) or not 

significant (e.g. for 8- and 12-node scanning node trees), the predicted speedup performances 

of the tree are in line with the actual measured values. 

6.4.3. Efficiency of Load Balancing Algorithm  

In this section I evaluate the efficiency of load balancing algorithm in partition 

workloads across cluster nodes. To study this, I measure the CPU loads at each node in the 

scanning node tree, and compare them with the predicted workload allocations. The Linux 

utility top is used to record CPU workloads during hand recognition task. The experiments 

are undertaken over the pre-recorded 5597-frame video sequence.  

Load balancing are tested under two scanning node tree configurations, one tree 

consists of 8 nodes and the other tree consists of 12 nodes. Figure 51 illustrates the CPU load 

data recorded under both configurations. It can be seen that the load recorded on the worker 

nodes confirms to the tree prediction well, that is, the workload exhibits a ramp curve for the 

head node’s direct children and shows even values for the worker nodes who are children of 

other worker nodes. The head node demonstrates a much higher CPU load than predicted by 

the tree model. There are two reasons for this observation: first, in the tree construction the 



143 

head node is usually the node that has the highest out degrees in the tree, thus it has more 

communication cost than the other tree nodes. Second, besides the recognition task, the head 

node also needs to fulfill tracking and frame image retrieval tasks. These tasks make the head 

node takes significant more workload than the other nodes.  

 

 

Figure 51 CPU Load Distributions over 8 (top) and 12 (bottom) cluster nodes 
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Recall that in the load balancing algorithm, when a node partitions the scan area 

and assign it to all its children, the workload allocation is even. In Figure 51, this means that 

node 4 should have same CPU load as node 5, 6 and 7 in the 8-node tree configuration. 

Similarly, node 4 should have same CPU load as node 6, 7, 8 and node 5 should have same 

CPU load as node 9, 10, 11 in the 12-node tree configuration. However, it could be seen that 

the parent node always consumes more CPU processing than its children nodes. The reason 

for this is because a worker node which has children needs to relay the frame image to its 

children, and the communication cost causes more processing at the node. Except for the 

unbalance discussed above, which are introduced by other processing tasks and 

communication costs, the load balancing algorithm achieves satisfying results comparing to 

its own predictions. 

6.4.4. Communication Cost Results 

In this section I evaluate the communication cost of the hand tracker at different 

scanning node tree configurations, which consists of 3, 4, 8, 12 or 16 nodes. The data is 

measured with two parameters: one is the data flow in and out from the head node during one 

frame, and the second is the number of frames processed every second. The bandwidth 

consumption at the head node is calculated from the product of these two parameters under 

difference tree configurations.  

Under the 3-, 4-, 8-, 12- and 16-node tree configurations, the head node needs to 

send out 2, 3, 4, 5 and 6 frame images respectively during each frame processing. In the 

mean time, the frame per second is recorded to be 18, 21, 26, 35 and 33 respectively. Use 

these values to derive head node bandwidth, the results are shown in Figure 52.  
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Figure 52 Network Bandwidth Consumption at the Head Node 

 

It can be seen that with the increase of the number tree nodes, the communication 

cost of the head node also increases. Assuming the nodes are interconnected with Gbps 

network interfaces, then streaming frame images could take as high as 49% of the total 

bandwidth if not optimized. To further reduce the bandwidth consumption, either frame 

image compression should be performed at the application layer or the interconnect hardware 

and software need to be improved.  

6.5. Conclusions and Discussions   

In this chapter, the scalable computing techniques to improve the hand tracker’s 

performance are presented. I first give the reasons why scalability is an important challenge 

to be address for the hand tracker, as well as the technical difficulties in achieving desired 

outcomes. Then an in-depth analysis of the opportunities for hand tracker performance 
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improvements is conducted. I identify two parameters of the scanning task after the analysis 

as the keys in data- and computation-decomposition, that is, the scan area and the scan scales 

range.  

After identifying the two task parameters for scalable solution design, I propose 

several novel techniques to implement the solution. First, a new data structure, called the 

scanning node tree is proposed and implemented. The scanning node tree organizes multiple 

cluster nodes effectively to fulfill parallel processing of the hand tracker tasks. Using the 

scanning node tree instead of sequential data structures to hold node information reduces the 

communication cost, incorporates task partitioning information in the tree topology itself, 

and is inherently suitable for node addition, node deletion or processing capability changes in 

the cluster. Second, a load balancing algorithm, based on optimized grouping and partition of 

scan areas and scales, is proposed and implemented. The load balancing algorithm requires 

minimal input parameters from the system administrator, and is capable of planning the work 

load partition automatically. The introduction of this algorithm, as shown in the evaluation 

results, reduces the system administrator’s burden to a large extent, and is able to achieve 

optimized usage result of the computation and communication resources of the cluster. Third, 

I design and implement the corresponding applications to be run on head and worker nodes 

of the cluster. A in-house message-passing mechanism among the cluster nodes is also 

designed, implemented and proved to be effective.  

Instead of making the communication cost a quantified parameter into the task 

partitioning and load balancing algorithms, its impact is empirically considered. The reason 

for this is that the scalable solution does not optimize the communication, while there is a 

large quantity of off-the-shelf methods for communication optimizations. For example, at the 
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application layer, image data can be usually compressed by a factor of 5-10. At the link layer 

such as the network interface card drivers, data can also be compressed, or sent and received 

collectively to improve transmission performance. Hardware improvement trends are also 

under the consideration, such as the 10Gbps network cards which are already in market albeit 

still expensive. All these factors can potentially improve the system to perform better than 

the current proof-of-concept implementation. 

Although the scalable computing solution presented in this chapter is directly 

devised for hand tracker task parallelization, in a broader scope, this solution can be applied 

to a set of “scan-and-match” problems, where the task is about identifying pattern 

presence/type in continuous data streams and testing the incoming data is in the form of 

intensive scans at different scales. Such kinds of problems are not rare in the mobile and 

pervasive computing environment, such as pattern recognition in ad-hoc sensor networks.  
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7. HAND WAND: AN EVALUATION APPLICATION 

In this chapter, I evaluate the hand tracker from the application-centric approach. I 

enhance the hand tracker with networking capabilities to integrate it with a high-performance 

graphics rendering middleware. The enhanced hand tracker, named HandWand, serves as a 

human-computer interaction device. This chapter serves as a reference design to integrate the 

hand tracker with a real-life graphical application.  

7.1. Problem Statement 

Developed at EVL-UIC, the LambdaVision [76] is an ultra-high-resolution 

visualization and networking instrument designed to support collaboration among co-located 

and remote experts requiring interactive ultra-high-resolution imagery. LambdaVision 

investigates means to advance both science and public safety as validated by users in various 

disciplines of earth science research, and training exercises in disaster response and crisis 

management. In one application, LambdaVision serves up to 60 trillion bytes (TB) of U.S. 

urban city map data to distributed 100-megapixel displays, enabling scientists and local, state 

and Federal agencies to compare real-time imagery of disasters (fire, earthquakes, hurricanes, 

etc.) with stored city, regional and national maps in high detail [77].  

What’s driving the visualization rendering on the LambdaVision is a graphics 

middleware called Scalable Adaptive Graphics Environment (SAGE) [75]. The network-

centered architecture of SAGE allows collaborators to simultaneously run various 

applications (such as 3D rendering, remote desktop, video streams and 2D maps) on local or 

remote clusters, and share them by streaming the pixels of each application over ultra-high-

speed networks to large tiled displays.  
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There are three reasons to make it attractive to make a vision-based hand posture 

interface for the LambdaVision: the first reason is that SAGE requires one or more computer 

cluster, interconnected by high speed networks as its infrastructure. This requirement 

coincides with the computing facility requirement of the hand tracker. The second reason is 

that LambdaVision has much larger screen size than traditional 2D displays. In turn, 

interaction between the users and the LambdaVision could not be satisfyingly fulfilled by 

traditional interaction techniques, such as a 2D mouse. Vision-based techniques stand 

themselves out under this circumstance on tetherlessness and larger space of freedom 

movement of the users. Last but not least, the performance of SAGE is subject to the 

computation and communication resources availability of the computer cluster, running the 

hand tracker together with SAGE, more hands-on data of the compact of the hand tracker on 

the application it serves for can be measured.  

Based on these three motivations, I enhanced the hand tracker by adding a 

networking interface to it and integrating it with SAGE. The enhanced hand tracker is named 

HandWand. The name comes from a hand held 3D tracker and controller in the original 

CAVE system [44].  

7.2. Design and Implementation 

Based on personal communications 10 , the mechanism SAGE maps interaction 

device data to screen events is as following:  

                                                 

 

 
10 with developers of SAGE UI at EVL-UIC. 
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The devices send data messages to the SAGE device manager through a socket 

interface. The message starts with the device’s name, followed by its type, and then a private 

data part which is specific to the device.  

When a message from the device is received by the device manager, the manager 

checks if SAGE has a plug-in defined for the specific device, based on its name and type. If 

SAGE has the corresponding plug-in defined, then the device manager forward the private 

data part of the message to that specific plug-in to process. 

 
 

Figure 53 Mechanism used by SAGE to Map Device Data to Screen Events 
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The device plug-in parses the private data into tracking and controlling information 

and post UI events through the SAGE event manager.  

SAGE event manager communicates with the freespace window manager through a 

socket interface called SAGE UI port. Freespace window manager then manipulates screen 

pixels. 

From the process described above, I need to design two parts of the HandWand to 

integrate it with SAGE, in other words, the networking interface to communicate with the 

device manager and the SAGE plug-in to parse HandWand data.  

 

7.2.1. Networking Interface 

A TCP-based networking module is designed and implemented for the HandWand. 

The networking module implements a connection manager which listens at port 5853 for 

incoming connections. The connection manager managers a non-blocking TCP server and a 

vector data structure for active clients. When HandWand initiates, it starts the TCP server. 

While HandWand is running, it checks for incoming connections at the beginning of each 

frame processing, in a non-blocking fashion. If there is an incoming connection request, then 

the connection manager accepts this request, and put the client into the active clients vector. 

At the end of each frame processing, the connection manager collects 2D coordinate data and 

posture data and put them into a string in the following format:  

“X, Y, Button” 

In this message string X is a float value from 0 to 1, as the percentage of X position 

with regard to frame image width, and Y is a float value from 0 to 1, as the percentage of Y 
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position with regard to frame image height. Button is a string that equals to the posture name 

if it is detected, and empty if there is no posture detected. If the hand is not tracked in the 

camera’s field of view, then both X and Y are set to be -1.0. When HandWand exits, the 

connection manager disconnects all client connections.  

7.2.2. HandWand Device Plug-in 

The HandWand device plug-in is a post-processing call-back routine run by SAGE 

when a message from HandWand is received. The most simple plug-in would be a routine 

that just breaks the private data into three values: X, Y and Button. In practice, the plug-in 

does more work than simple string token retrievals. There are three tasks that need to be 

fulfilled by the plug-in: coordinate smoothing, OpenCV-SAGE coordinates conversion and 

button press debouncing.  

The hand is highly deformable and often has drastic shape changes during two 

consecutive frames. Although the KLT feature tracker is very robust in tracking the blob 

position of the hand, the exact center position of the hand is difficult to be accurately 

reported (I assume the center of the hand is the center of mass). Because of this, the 2D 

position output of the tracker has frequent local jitters. To remove these jitters, I use a 

moving average window to smooth the coordinate data. The moving average window size is 

5, if the hand lost track within the 5 most recent frames, then only valid position (i.e., 

position readings that are not -1.0) are counted and averaged.  

The second task of the handwand device plug-in is to convert the tracker-reported 

device coordinates into SAGE screen coordinates. In the device coordinates system, the top 

left corner of the frame image is mapped to (0, 0) and the bottom right of the frame image is 
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mapped to (1.0, 1.0). While in the SAGE coordinate system, the bottom left corner of the 

tiled display screen is mapped to (0, 0) and the top right corner of the tiled display screen is 

mapped to (SAGE_WIDTH, SAGE_HEIGHT).  The conversion calculation between SAGE 

and HandWand coordinates can be described by Equation 14. 
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Equation 14 Conversion Calculation between SAGE and HandWand Coordinates 

 

Lastly, due to hand movement and tracker detection rate, when the user keeps 

performing specific posture during a span of frames, it is common that the recognition 

component does not report a series of consecutive posture presences. Instead, the recognition 

component usually reports several blocks of posture presences, with intermittent absence of 

the posture. When the posture presence is translated to button states, there will be multiple 

button press and releases during a semantic “button press”. This is similar to the bouncing 

effect of an electromechanical push button.  

To address the bouncing problem, a debouncing algorithm is used to provide steady 

posture presence/absence state. I keep a posture state window of the most recent posture 

presence/absence states and use a threshold to calculate the smoothed posture presence state. 

This approach is proved to be very effective when the posture state window size is 20 and the 

threshold is 0.8. 

7.3. Running the Integrated System 

Figure 54 shows a scene where the HandWand is used as a human-computer 

interaction device of the Lambda vision. The user can easily move the hand to control a 2D 
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cursor on the screen, and perform postures to be mapped to button presses. In the 

configuration illustrated by Figure 54, the PointGrey camera is mounted on a tripod. By 

positioning the tripod at difference places and depths in front of the LambdaVision tiled 

display, the size of interaction space can be optimized for various application needs.  

 

Figure 54 Running HandWand as a Human-Computer Interaction Device for the 

LambdaVision 

 

Since SAGE also uses pixel streaming across nodes to achieve large scaled area 

displaying, it is of interest to observe whether the deployment of HandWand will hinder 

SAGE performance. Figure 55 shows the means and standard deviations of display 

bandwidth as well as frame rate recorded by SAGE, when running the “Atlantis” benchmark 

application. The “Atlantis” application uses the cluster head node as its sole rendering node, 

and SAGE streams the pixels to a 4 by 5 tile, each at the resolution of 1600 by 1200 pixels. 
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The two conditions are running SAGE with and without running HandWand. When the 

HandWand is running, it is using a 12-node scanning tree for the hand recognition task.  

 

Figure 55  SAGE Display Bandwidth (left) and Frame Rate (right) with and without 

HandWand Running 

 

It can be seen from Figure 55 that when SAGE is running without HandWand 

running, the Atlantis application has the display bandwidth of 455.59±59.74 Mbps and the 

frame rate of 69.21±5.26 fps. When SAGE is running with HandWand running, the atlantis 

application has the display bandwidth of 430.77±49.84 Mbps and the frame rate of 

61.03±6.44 fps. Running HandWand does cause performance degradation of the SAGE 

application but it is only about 11.3% for the display bandwidth and 11.8% for the frame rate 

for this specific experiment. This result is within the acceptable range.  

7.4. Conclusions and Discussions 

In this chapter the design and implementation of a real life application of the hand 

tracker – HandWand – is presented. The HandWand shares the same computing 
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infrastructure with a high-performance graphics middleware, and is proved to be effective as 

a human-computer interaction device for large scale tiled displays.  

I illustrate that to make the hand tracker core functionality usable for applications 

as an interaction modality, only proper data sharing wrappers as well as device data post-

processing need to be added on. Although HandWand uses the socket interface for 

communications, there are no obstacles to restrict it from using other common inter-process 

mechanisms used in VEs, such as shared memory.  

In the HandWand application, the computer vision based posture interface exhibits 

two major advantages compared with traditional interaction techniques. The first is the 

effective use of the high-performance computing facility, while many large scale 

visualization middleware and applications require a computer cluster to run, they usually do 

not use up all the computation and communication resources available. By introducing the 

HandWand optimizes the usage such resources. The second advantage is more flexible 

interaction space. Computer vision based interaction can be performed in a wide space near 

the visualization instrument, as long as this space is in the camera’s field of view. With the 

increasing needs for large scale scientific, public safety and educational visualization 

instruments and techniques, I expect the use of applications like HandWand will gain more 

popularity in the near future. 
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8. CONCLUSIONS AND FUTURE WORK 

This thesis systematically presents the background, needs and technical challenges 

to create a computing environment that fits the population of mobile devices users, is capable 

of being personalized for its user, and utilizes the processing power of the infrastructure to a 

maximized extent. The name of Personal Augmented Computing Environment, or PACE, 

reflects my research endeavors towards such an environment framework that integrates the 

human factors, the mobile/portable device, and the infrastructure computing resources more 

tightly into an ecosystem.  

As stated in the introduction and background chapters, the proliferation of personal 

mobile devices and lack of an available framework to effectively create synergy between the 

mobile devices and infrastructures are the main motivation of this work. The three goals: size 

constancy study, personalized hand tracker and cluster computing for hand tracking reflect 

the research efforts to make a proof-of-concept framework that might benefit next-generation 

consumer products, as well as being useful for the present-day scientific and commercial 

applications. The quantitative and application-centric evaluations conducted as part of this 

work prove that the proposed techniques are feasible, user-friendly and effective.  

Although this work sets the research problems to be specifically on visualization 

and interaction aspects, the motivations, design philosophies and technology solutions 

presented in this work can be surely applied to a wider context. The research problems can be 

generalized into the following four questions:  

Which personal profiles of an individual user should a computing environment 

maintain? 
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In what ways can user-specific characteristics be used to facilitate user-centric 

computing? 

How to effectively partition computational tasks between personal mobile devices 

and infrastructure systems? 

How to maximize the benefits of the infrastructures’ processing power for personal 

tasks using scalable techniques?  

Each chapter of this thesis answers one or more of the above questions to a certain 

extent and contributes a tile to the mosaics of research activities in the related fields. I believe 

that in the next one or more decades, personal mobile devices will be equipped with much 

richer multimedia features, be pervasive like never before, and start to play the central role of 

personal computing, just like the personal computers nowadays taking dominance position 

over their mainframe predecessors a couple of decades ago. 

The contributions of this work can be summarized as follows:  

Firstly, it studies the effects of three major visual factors in a VE on the size 

constancy performance of the VE users. Among the three visual factors, namely scene 

complexity, stereoscopy and motion parallax, the former two seem to have significance in 

determine users’ size constancy performance, while the latter seems not. This work presents 

the set of experiment designed and conducted for studying these three visual factors, as well 

as discussed in detail both the group and the individual performance results.  

Secondly, it proposes and implements an effective personal profile capture and 

construction process that is able to be carried out fully on a mobile device. This process 

allows easy-to-use and robust hand image samples collection by the mobile device users, 
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maintains the user specific characteristics – the hand shape and the skin color – to construct 

personal hand profile. Based on the personal profiles, a hand tracker implemented by this 

work is able to integrate both shape and color cues for hand detection, tracking and gesture 

recognition and has obtained satisfying accuracy and frame rate performances.  

The third contribution this work makes is identification of parallelizable 

computation components in the hand tracker tasks and scalable computing techniques to 

speed up the processing of these components. Scalable computing techniques are applied on 

detection and recognition tasks and achieved satisfying results. I propose a novel data 

structure – the scanning node tree – which can effectively organize computation nodes in 

both centralized and ad-hoc systems. I also propose a load balancing algorithm that 

automates the workload partitioning across the nodes in the scanning node tree. Evaluation 

results show that the proposed techniques can improve system throughput and reduce overall 

frame latency at a reasonable cost of infrastructure networking and processing resources. 

Last but not least, a real-life application: the Hand Wand is designed and integrated 

with a large-scale visualization instrumentation to prove that PACE not only can be a 

reference framework design of future system, but can also contribute to present-day scientific 

visualization systems as a useful interaction modality. 

This work also showcases quite a few research opportunities for following up. Size 

constancy performance, as discussed in chapter 4, can be further conducted in VEs different 

from CAVE-like systems, such as mobile device screens. Hand tracker as discussed in 

chapter 5, can use more advanced features for model training and hand 

identification/recognition. It will also be interesting to integrate other user-specific 

characteristics other than the skin color to construct personal hand profiles. The cluster 
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computing techniques discussed in chapter 6 can be strengthened at least in two ways. One 

opportunity is using hybrid parallelization schemes, which make use of both the vector 

processors and message passing libraries. The other opportunity is to apply scalable 

computing techniques to the cascade training process, which is left in this work.  
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