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THE BIGGER PICTURE The industrial revolution transformed society via large-scale automation of
manufacturing. Today, AI- and robotics-driven automation of scientific research seems set to usher in a
new era of accelerated discovery. But just as the industrial revolution depended on new replicable and scal-
able manufacturing processes andmethods for delivering the copiousmechanical power required by those
processes, so the automated discovery revolution demands newmethods for implementing research auto-
mation processes and for connecting those processes to computing and data power. We present here new
methods that address these essential needs by allowing scientists to capture common automation patterns
in reusable flows and to embed such flows in a global trust, data, and computing fabric that enables instant
access to powerful AI, simulation, and other computational capabilities.We use examples from synchrotron
light sources to show how these methods can be realized in software and applied at scale.

Production: Data science output is validated, understood,
and regularly used for multiple domains/platforms
SUMMARY
Powerful detectors at modern experimental facilities routinely collect data at multiple GB/s. Online analysis
methods are needed to enable the collection of only interesting subsets of suchmassive data streams, such
as by explicitly discarding some data elements or by directing instruments to relevant areas of experimental
space. Thus, methods are required for configuring and running distributed computing pipelines—what we
call flows—that link instruments, computers (e.g., for analysis, simulation, artificial intelligence [AI] model
training), edge computing (e.g., for analysis), data stores, metadata catalogs, and high-speed networks.We
review common patterns associatedwith such flows and describemethods for instantiating these patterns.
We present experiences with the application of these methods to the processing of data from five different
scientific instruments, each of which engages powerful computers for data inversion,model training, or
other purposes. We also discuss implications of such methods for operators and users of scientific fa-
cilities.
INTRODUCTION

Humphry Davy observed that ‘‘[n]othing tends so much to

the advancement of knowledge as the application of a new

instrument.’’1 Today, powerful new instruments such as

upgraded synchrotron light sources,2–5 free-electron lasers,6
This is an open access article under the CC BY-N
microscopes,7,8 telescopes,9 field laboratories,10 and robotic

laboratories11–13 provide exciting new means to study phenom-

ena in a broad range of scientific disciplines.

The power of these new instruments derives from their ability

to probe reality rapidly and at fine spatial and temporal scales.

In so doing, they can generate data at rates (multi-GB/s) and
Patterns 3, 100606, October 14, 2022 ª 2022 The Author(s). 1
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volumes (100 + TB/day14,15) that demand online computing, both

to extract interesting information from data streams and to

enable rapid configuration and steering of instruments to maxi-

mize information gained during scarce experimental time. Tight

coupling with powerful computing resources, such as data cen-

ter clusters, high-performance computing (HPC), or artificial

intelligence (AI) accelerators, is often needed both to process

this fire hose of data and to enable real-time feedback to

experiments.

Such coupling requires flexible methods for coordinating ac-

tions and resources across diverse experimental and computing

environments. We present common patterns for processing data

from scientific instruments and describe tools that enable conve-

nient specification of high-level flows linking diverse actions and

the flexible mapping of such flows onto diverse physical re-

sources to meet reliability, scalability, timeliness, and security

goals as an experiment runs. (We use the term flow rather than

the over-used workflow to emphasize our interest in capturing

specialized data-processing patterns associated with scientific

instrumentation.) Specifically, we (1) identify common patterns

encountered when scientists develop and run online data pro-

cessing flows; (2) show how Globus automation services16,17

can be used to capture such patterns; (3) present experiences

applying such methods in five different application scenarios;

and (4) examine the implications of such flows for both

computing and experimental facilities.

RESULTS

Patterns for integration of instruments and computing
Exponential growth in the rate at which instruments can

perform measurements requires corresponding exponential

improvements in the speed at which the resulting data are

processed. This means increasing use of automation and

computation at every stage in the experimental process,

including steps that were previously not rate limiting and

thus could be performed manually, such as recording and in-

terpreting results and configuring the next experiment. New

methods may be needed to capture data at high rates, extract

interesting events in high rate streams, identify and filter out

uninteresting phenomena, detect and/or correct errors,

design further experiments, and perform simulations to

choose between alternative experimental configurations—

and to combine many such steps into automated experiment

management flows.

As in other areas of design, the identification of recurring pat-

terns18,19 can contribute to cost reduction and performance

improvement. A design pattern captures a solution to a problem

or class of problems in a reusable form via documentation of its

purpose/intent, applicability, solution structure, and sample im-

plementations. In this section, we enumerate patterns we and

others have observed when processing data from scientific in-

struments and review the nature of the resources required to

implement the patterns.

What: Actions that are frequently included in flows

Data collection. Data collection captures data and associated

metadata generated at high speeds, in unconventional formats,

and on specialized devices and makes those data available to

subsequent analyses.
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Data reduction. Data reduction reduces the volume of data to

be processed and/or stored in other steps by applying either

general-purpose compression20,21 or domain-specific feature

detection (e.g., to find diffraction peaks in X-ray imaging22,23).

Data inversion. Sophisticated computations are often required

to convert sensor data into useful forms: for example, to

generate a three-dimensional (3D) or 4D representation from

multiple 2D images24,25 or a 2D image from diffraction patterns.

This step may be performed incrementally while data are

collected or after all data are available.

Machine-learning (ML) model training. In this increasingly pop-

ular approach to data reduction, previously collected data (from

current or prior experiments and/or simulations) are used to train

ML models to recognize interesting phenomena for data reduc-

tion or rapid response.26–30

Experiment steering. Even better than discarding uninteresting

data is to collect only interesting data in the first place. Scientists

may use analyses of results from current or prior experiments to

determine what experiment or measurement to perform next.

Steering can range from fine-grained control of apparatus,

such as taking (more) data from one part of a sample, to

coarse-grained (e.g., choosing the next sample). Experiment

steering can use design of experiment methods or more sophis-

ticated active learning,31 Gaussian processes,32 Bayesian opti-

mization,33 reinforcement learning,34 or other methods.

Coupled simulation. Computational simulation can be used

during experiment steering to eliminate (or prioritize) experi-

mental configurations.

Data storage and publication. A flowmay include steps to orga-

nize and store data and associated metadata (e.g., concerning

experimental sample, configuration of apparatus, data process-

ing steps) so as to make it findable, accessible, interoperable,

and reusable (FAIR).35

Where: Alternative places to perform flow tasks

Analysis methods such as those just described can easily over-

whelm instrument computers. Indeed, some analyses can

consume tens or even hundreds of thousands of cores,36,37

albeit typically in a bursty manner. Similarly, experiments can

generate petabytes. The aggregate compute and storage de-

mand across a research institution or multi-instrument research

facility can be large, and shared (rather than per-instrument)

computing facilities become attractive or even essential to

exploit economies of scale in capital and operations costs.

A public cloud is a credible option for certain instrument work-

loads,38 but data center systems can be more cost effective,39

especially when high-capacity, low-latency networks can sup-

port high data rate instruments and experiment steering. Custom

silicon may be required for certain data processing steps.40,41

Specialized accelerators may be used for tasks such as ML

model training and inference.42–44

When demand outstrips supply, adaptive methods may be

used to direct compute and storage requests to different re-

sources, prioritize certain tasks, and substitute alternative

computational methods. In effect, computation may occur

across a computing continuum45–47 that extends from data

acquisition computers co-located with experiments to power-

ful clusters in data centers. For a given flow, computation may

occur at multiple points across this continuum. For example,

rapid quality control may be executed near an instrument on



Figure 1. Two examples of instrumentation + computation applications, showing constituent flows

Left: serial synchrotron crystallography; right: high-energy diffraction microscopy. In each, a variety of computing systems (including, on the right, a Cerebras AI

accelerator) are used to enable rapid collection and analysis of data from synchrotron light source experiments. In each subfigure, we show, as directed acyclic

graphs linking distinct actions, both the distinct flows used to automate different functions (above) and their deployment in the context of the applications (below).

The callouts indicate quality of service requirements.
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a co-located device, machine-learning (ML) training on

specialized AI hardware, and large-scale reconstruction on a

data center cluster. The ‘‘best’’ location for a computation

can be hard to determine and may change over time accord-

ing to data location, resource availability, cost, and

performance.

Example realizations of patterns

The two flows in Figure 1, to be described in more detail in

application experiences, illustrate some of the elements just

described. Serial synchrotron crystallography (SSX) experi-

ments collect diffraction data from target crystals. Several

flows combine to process batches of acquired images, identify

‘‘hits,’’ refine crystal structures, and catalog results for later

use. High-energy diffraction microscopy (HEDM) is used to

characterize polycrystalline microstructures. This flow uses ac-

quired data to train a neural network model for detecting peak

positions in raw data. After training on a suitable AI accelerator,

the flow transfers the trained model to the instrument for on-

line use.
Implementing flows with the Globus platform
Having reviewed patterns for coupling experimental facilities

with computation, we now examine how these patterns may

be realized in practice, with the goal of providing actionable in-

formation that readers can apply to develop and execute their

own flows.

We believe strongly that the widespread integration of scienti-

fic instruments into computational flows requires reusable flow

specifications that can be easily adapted to different applica-

tions, instruments, and computational environments. Thus, our

chosen approach to flow authoring and execution combines

automation services for the specification and execution of flows

with a research automation fabric to enable decoupling of ab-

stract automation actions (e.g., move data, run program, publish

records) from the specifics of individual data stores, computers,

and catalogs—so that, for example, different compute and

storage tasks can be directed to different resources (e.g., data

center cluster, cloud, local accelerator) depending on needs

and availability. In the following, we describe these two sets of

capabilities in turn. For concreteness in presentation, we employ
capabilities provided by the Globus platform,48 which address

both sets of needs.

The Globus research automation fabric

TheGlobus platform comprises a set of cloud-hosted services to

which users can make various requests: for example, to transfer

data from one storage system to another, run a computation on a

computer, and load or search data in a catalog. In each case, the

appropriate cloud service handles details such as authentica-

tion, authorization, monitoring of progress, and retries on failure

that would otherwise hinder a scientist’s work. We leverage the

following Globus services:

d IAM services (Auth, Groups) for single sign-on and man-

agement of identities and credentials and delegation.

d Data services (Transfer, HTTPS, Share) for access to, and

managed movement of, files.

d Metadata management (Search, Identifiers) for indexing

and generating persistent references to data.

d Compute services (funcX, OAuthSSH) for invocation and

management of computational tasks.

d Automation services (Flows, Triggers, Queues) for execu-

tion of flows and related activities.

The Globus Transfer49 and funcX50 services interact with local

proxy agents deployed on storage systems and computers,

respectively: Globus collections (implemented by Globus Con-

nect software) for data actions, and funcX endpoints (imple-

mented by funcX software) for compute actions. These agents

are deployed persistently at many experimental and computa-

tional facilities and can also be deployed as needed by scien-

tists. The Globus cloud services plus the proxy agents imple-

ment a universal compute and data fabric that encompasses

any and all resources on which agents are deployed—in aggre-

gate, tens of thousands of resources at thousands of institutions

worldwide, ranging from cloud providers to clusters, supercom-

puters, and AI accelerators. Searchable registries support the

discovery of agents that a user has permission to access.

All Globus platform services leverage the Globus Auth security

fabric51 for management of user identities and credentials, gen-

eration of OAuth 2 access tokens52 for programmatic invocation

of services, and generation of delegation tokens that allow
Patterns 3, 100606, October 14, 2022 3



Figure 2. A simple example flow and its

implementation

From top to bottom: (1) User perspective of a simple

flow that, successively (shown left to right),

(A) transfers data from an instrument to an analysis

computer, (B) runs an analysis, (C) asks a user to

review the analysis result, and, if (D) the user review

is positive, (E) publishes the data to a repository. (2)

The Globus platform services engaged by the

transfer, compute, query, and search action pro-

viders. (3) The resources interacted with by those

platform services: instrument storage system, co-

located analysis storage system and storage com-

puter, scientist, and data repository. Not shown are

the Globus Auth service that handles identities and

access tokens, and the Globus Flows service that

coordinates flow execution.
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services to act on a user’s behalf. Crucially, data and computa-

tion remain at the edge: they never reach the cloud. Globus

high-assurance service levels allow for management of pro-

tected (e.g., HIPAA) data.

Globus automation services

Globus automation services—Globus Flows, Triggers, and

Queues16—build on the fabric provided by Globus platform ser-

vices to allow scientists to specify and execute sequences of ac-

tions (or, sometimes, choices) called flows. A flow is specified as

a JSON document—or, as described below, by using a Python

toolkit, Gladier (for Globus Architecture for Data-Intensive Exper-

imental Research). Flow execution may be invoked explicitly by

the scientist or be triggered by an external event, such as gener-

ation of new data at an instrument. The Globus Flows service

then manages flow execution. A web interface allows users to

monitor the progress of a flow’s execution and to detect and di-

agnose errors (see Figure S1).

Figure 2 shows an example flow and provides more details

on how flows are implemented. Each type of action that

may be invoked in a flow is handled by a persistent action

provider service. Action providers can run programs (funcX,50

OAuthSSH53), transfer files (Globus Transfer49,54), publish

data to catalogs (Globus Search55), manage data permissions

(Globus Share56), and generate persistent identifiers (Globus

Identifiers57), among other tasks relevant to instrument data

processing. In general, an action provider implements flow ac-

tions by requesting that the appropriate service (e.g., Globus

Transfer, funcX) initiate the action and then polling periodically

to see whether the action has completed. (As we discuss later,

this polling can be a source of overhead.) All action provider

services implement a consistent, asynchronous REST API,58

facilitating the integration of new activities. Additional action

providers may be deployed to support specific instruments,

compute resources, or provide other customized needs by

adhering to a well-defined interface.16

The implementation of Globus-operated action services,

like those of other Globus platform services, leverages cloud

services (e.g., Amazon Lambda, Step Functions, Simple

Queue Service) for reliability and scalability. Cloud-based

hosting enables delivery of research process automation ca-

pabilities to a wide user base without requiring users to down-

load and install software. It also provides economies of scale,
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thereby reducing the costs associated with distributing

software.

The Gladier toolkit

We have developed a Python toolkit, Gladier,59 to assist in the

authoring and management of flows for instrument science.

This toolkit defines wrapper functions for registering funcX

actions and flow definitions, invoking a new instance of a flow

(a ‘‘run’’) with specified inputs, and monitoring a specified direc-

tory for file events. These functions allow for concise definitions

of flows that integrate instrument and computation, as shown in

Listing 1.

A Gladier user deploys client libraries on remote sources (e.g.,

on a computer co-located with an experiment) to detect events

and invoke flows. A Gladier tool definition, implemented as a

Python object, provides the information needed to populate a

flow action. The Gladier toolkit provides implementations of

common tools (e.g., transfer) as well as examples for experi-

ment-specific tools (e.g., Stills processing with the Diffraction

Integration for Advanced Light Sources [DIALS] package60);

users may add other tools by implementing the Python class.

To deploy and run a flow, users simply provide a list of tools to

be used along with specific flow input arguments. Gladier uses

this specification to register the necessary funcX functions and

create and then register the flow definition.

We observe that flows for different experiments tend to follow

similar patterns, independent of the experiment modality; the

major area of customization concerns application-specific func-

tions used to operate on data. Thus, scientists often can employ

an existing flow unchanged, simply specifying different compute

and data endpoint identifiers and storage paths; different pro-

cessing function(s); and a different Globus Search catalog for

publication. In other cases, they can adapt an existing flow by

adding and deleting tools from the description and writing and

deploying new funcX functions as required. Further, users can

create, version, and share custom tools via GitHub, making

them available for others to adopt within other flows.

The Gladier toolkit represents a relatively early attempt to pro-

vide a Pythonic interface to Globus Flows. Experiences thus far

have been positive. Nevertheless, we imagine that future appli-

cations will motivate extensions—for example, to simplify spec-

ification of conditional execution and input schemas, both sup-

ported in Globus Flows but not handled well in the current



Listing 1. A simple SSX analysis flow, as defined with the Gladier toolkit. The flow comprises two tasks, one for the transfer from
instrument to a compute resource, and one to run theDIALSStills processing function on the transferred data. For brevity, we useU1,
U2, and U3 and P1 and P2 to represent UUIDs and paths, respectively.

from gladier import GladierBaseClient

@generate_flow_definition

class SSXFlow (GladierBaseClient):

gladier_tools = [

’gladier_tools.tools.Transfer’,

’gladier_ssx.tools.DialsStills’

]

flow_input = {

’funcx_endpoint’: U1,

’transfer_source_endpoint_id’: U2,

’transfer_destination_endpoint_id’: U3,

’transfer_source_path’: P1,

’transfer_destination_path’: P2,

}

ssx_flow_client = SSXFlow ()

run_id = ssx_flow_client.run ( flow_input )
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toolkit. We expect to develop other interfaces (e.g., web) to sup-

port other communities.

Application experiences
We use five instrument + computation applications to illustrate

how the patterns and technologies described in preceding sec-

tions can be realized and applied in practice. These applications

link a number of scientific instruments and computing facilities,

including Advanced Photon Source (APS) and Stanford

Synchrotron Radiation Lightsource (SSRL) beamlines and the

Argonne Leadership Computing Facility (ALCF).61 Each example

is implemented by using the Gladier toolkit to define, configure,

and manage one or more flows. For each, we provide pointers in

the supplemental information to the source code for both the full

application and a simplified implementation that can be run on a

personal computer, plus a sample dataset.

In each of the cases presented here, scientists had previously

employed manual and ad hoc methods to implement similar,

although typically simpler, behaviors: for example, by capturing

data locally, transferring data via portable media to a cluster, and

manually running analysis codes. After being introduced to Glad-

ier tools, they implemented, with varying degrees of assistance

from Gladier developers, the flows described in the following.

X-ray photon correlation spectroscopy (XPCS)

This experimental technique is used at synchrotron light sources

to study materials dynamics at the mesoscale/nanoscale by

identifying correlations in time series o � f area detector im-

ages.62,63 Current detectors acquire megapixel frames at up to

2 kHz at 16-bit depth and 50 kHz at 2-bit depth (4 GB/s); next-

generation detectors are expected to generate tens of GB/s or

more.64,65 Computing correlations at these rates requires

powerful computing, both to process large quantities of data

and to enable rapid response for experiment feedback.

We describe a flow developed to automate the collection,

reduction, and publication of XPCS data at the APS 8-ID beam-

line. Each experiment can produce hundreds of thousands of im-

ages, with precise rate and image size controlled by the scientist.
During image acquisition, the instrument’s experiment manage-

ment system typically creates a data file for every 20,000 images,

with a size of �2.4 GB; to enable use of the automation services

described in this paper, it is configured to trigger a flow each time

such a file is created.

The flow, illustrated in Figure 3, comprises 10 steps: (1) copy

the experiment data file to a compute facility (transfer); (2)

extract metadata, such as data acquisition parameters and

processing instructions, from the experiment data file

(compute); (3) copy these metadata to persistent storage

(transfer); (4) load metadata into a Globus Search catalog,

providing visibility into the data that are being processed and

the software version and input arguments to be used during

subsequent processing steps (search); (5) run the XPCS Boost

correlation analysis function, a matrix-heavy operation that is

best run on a GPU (compute); (6) run a plotting function to

create correlation plots and compact images for display in

the portal (compute); (7) extract metadata from correlation plots

(compute); (8) aggregate the correlation plots, new metadata,

execution logs, and compact images for publication (compute);

(9) transfer the aggregated data and metadata to persistent

storage (transfer); and (10) add the aggregated metadata and

associated data references to the catalog entry created in

step 4, thus allowing the scientist to verify quality and also mak-

ing data available for future uses (search).

Before using this flow, it must be defined and registered with

the Globus Flows service, and any tools and infrastructure

used by the flow must be installed and configured if not already

in place. We describe these steps in some detail in the supple-

mental information so as to illustrate the process by which a

new flow is configured, deployed, and operated. A similar pro-

cess is required for each of the other applications described in

this section.

We note that while all computational steps (2, 5–9) can run on

general-purpose CPUs, step 6, XPCS Boost analysis, benefits

from the use of GPUs, and thus the flow, is typically configured

to access a funcX endpoint associated with a GPU resource.
Patterns 3, 100606, October 14, 2022 5



Figure 3. Depictions of the flows presented in the paper

An x-ray photon correlation spectroscropy processing flow, XPCS; three serial synchrotron crystallography flows, SSX-Stills, SSX-Prime, and SSX-Publish; a

ptychography image reconstruction flow, Ptycho; a training flow for a neural network function approximator, BraggNN; and a high-energy diffraction microscopy

far-field reconstruction flow, HEDM. Text above each circle names the action; text below describes its application in the flow.
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Using GPUs, the flow can process a dataset and produce visu-

alizations to the scientist in about 240 s (see Table 1) and in

around 50 s with dedicated resources.

SSX

SSX is a technique in which a bright synchrotron beam and

specialized apparatus are used to collect diffraction data from

many crystals, at rates of tens of thousands of images per

hour.66 It can collect diffraction data from samples at room tem-

perature and produce higher quality data than conventional crys-

tallography due to reduced radiation damage.67

At APS Sector 19, a typical SSX experiment generates around

40,000 1,475 3 1,255 16-bit pixel images per sample, with tens

of samples processed during a beamtime. While the detector is

capable of operating at 100 Hz, for a data rate of 370 MB/s, the

experiment is flux limited and is typically performed at roughly

10 Hz, or 37 MB/s. As images are produced, they are processed

(in batches) with the DIALS package to identify crystal lattices, or

hits, in each image. As hits are accumulated, they are processed

with the post-refinement and merging (PRIME) package68 to

solve the crystal structure. DIALS and PRIME outputs are pub-

lished to an SSX repository and cataloged for subsequent use.
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These activities are implemented by three distinct flows.

The first, SSX-Stills, transfers a batch of acquired images to

a computing facility and uses the DIALS Stills package to

perform quality analysis on each image and identify those

that contain a good quality diffraction (a hit). It comprises 10

steps: (1) transfer image data from the beamline to a

computing facility (transfer); (2) confirm necessary input files

are present (compute); (3) create configuration files for anal-

ysis (compute); (4) perform DIALS Stills processing on each

raw image (compute); (5) extract metadata from files regarding

hits (compute); (6) generate visualizations showing the sample

and hit location (compute); (7) gather metadata and visualiza-

tions for publication (compute); (8) transfer metadata and visu-

alizations for publication (transfer); (9) ingest results, meta-

data, and visualizations to an SSX Globus Search catalog

(search); and (10) transfer the results back to the beamline

(transfer).

The SSX-Prime flow uses diffractions from SSX-Stills to solve

the crystal structure. This flow is run first when at least 1,000 hits

have been identified, and then again to refine the structure as

additional hits become available. It (1) performs PRIME analysis



Table 1. For the instance of each flow with median runtime, the

times taken by its constituent transfer, compute, and search

action(s), in seconds, and the aggregate overhead, both in

seconds (OH) and as a percentage of total runtime (%OH)

Experiment Runtime Transfer Compute Search OH %OH

BraggNN 259.5 64 162.1 0 33.4 12.9

HEDM 498.2 16 405.9 1 75.3 15.1

Ptycho 2,283.3 11 2,259.4 0 13.0 0.6

SSX-Publish 355.2 3 306.2 1 44.9 12.7

SSX-Prime 332.6 152 53.7 0 126.9 38.2

SSX-Stills 1,041.4 97 860.0 1 83.4 8.0

XPCS 240.0 12 177.9 2 48.1 20.0
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to solve the structure (compute) and (2) copies the structure back

to the beamline (transfer).

The SSX-Publish flow publishes results obtained to date, plus

derived data such as histograms, to a repository and catalog. Its

six steps are as follows: (1) gather results, metadata, and visual-

izations (compute); (2) create an archive file containing pro-

cessed data (compute); (3) create histograms of the analysis

(compute); (4) transfer metadata and results for publication

(transfer); (5) publish results to the SSX repository and

catalog (search); and (6) transfer results back to the beamline

(transfer).

These three flows are initiated by a local agent deployed at the

instrument that monitors the creation of files. In the experiments

reported here, an SSX-Stills flow is triggered for each of the 512

images and an SSX-Publish flow for each of the 4,096 images; an

SSX-Prime flow is triggered initially when at least 1,000 hits have

been identified, and then again after each SSX-Stills flow

completion. This flexibility allows each activity to proceed at an

appropriate pace and permits new flows to be triggered given

the result of previous flows, further advancing the automation

of the scientific process.

The result is an indexed, searchable collection of processed

images and associated statistics that is updated continuously

while an experiment is running. Scientists use this catalog to

determinewhether sufficient data have been collected for a sam-

ple, a second sample is needed to produce suitable statistics, or

a sample is not producing sufficient data to warrant continued

processing.69

Ptychography

This coherent diffraction imaging technique can image samples

with sub-20 nm resolutions.70 A sample is scanned with overlap-

ping beam positions while corresponding far-field diffraction

patterns, 2D small-angle scattering patterns containing fre-

quency information about the object, are collected with a pixe-

lated photon counting detector. Current detectors routinely

generate 1,030 3 514 12-bit pixel frames at 3 kHz for �20

Gbps71 and TBs per experiment. Next-generation detectors

will have readout speeds of more than 100 kHz and increased

pixel counts, resulting in multi-PB datasets.

Phase retrieval is applied to ptychography data to recover

phase information in reciprocal space. Typical phase retrieval al-

gorithms are iterative and hence computationally expensive.

ML-based methods that perform phase retrieval in a non-itera-

tive manner72–74 can achieve speedups of tens73 to thousands74
of times, opening the door to real-time imaging and thus auto-

mated steering of experiments. However, phase retrieval is high-

ly sensitive to material properties, and hence theMLmodel must

be retrained for each new material.

The Ptycho flow performs 2D inversion and phase retrieval on

diffraction patterns. It comprises three steps:75 (1) transfer data

from experimental facility to computing facility (transfer), (2) pro-

cess each diffraction pattern to obtain a full image (compute),

and (3) transfer intermediate results back to experimental facility

(transfer). During a ptychography experiment, hundreds of in-

stances of this flow can be initiated concurrently. Further, this

flow can be extended with 3D reconstruction steps and sci-

ence-specific AI/ML methods: for example, feature segmenta-

tion and event or phenomena detection to enable feedback

loops for experimental steering.

HEDM

This non-destructive technique combines imaging and crystal-

lography algorithms to characterize polycrystalline material

microstructure in three dimensions (3D) and under various in

situ thermo-mechanical conditions.22,76 The technique uses a

synchrotron beam to map grains in a polycrystalline aggregate

by considering diffraction patterns as a function of rotation

angle. It thus requires identification of diffraction ‘‘spots’’ for

each grain. Far-field (�10 mm) HEDM, near-field (�1 mm)

HEDM, and tomography may be combined when studying a ma-

terial,76 with, for example, far-field data used to guide near-field

measurements.

We present two distinct HEDM applications that implement

different approaches to HEDM data analysis. The first, HEDM,

involves flows for collection, analysis, and storage of far-field

and near-field data and for coordination of those activities. We

show in Figure 3 the first of these flows, which involves eight

steps: (1) transfer data from experimental facility to computing

facility (transfer); (2) process each raw image using MIDAS77

(compute); (3) extract metadata from files regarding hits (iden-

tified crystal diffractions) and generate visualizations showing

the sample and hit locations (compute); (4) process each set

of processed images (from step 2) to refine structure

(compute); (5) gather metadata (compute); (6) transfer meta-

data to storage facility (transfer); (7) publish raw data, meta-

data, and visualizations (search); and (8) transfer the results

back to the experimental facility (transfer). A single flow typi-

cally moves �11.5 GB and consumes �400 s of compute

time in steps 2 and 4.

The MIDAS package used by the HEDM application deter-

mines peak positions and shapes by fitting the observed inten-

sities in area detector data to a theoretical peak shape such as

pseudo-Voigt. While the HEDM flow presented allows scientists

to harness powerful computing for these computations, the

higher data rates at new experimental facilities greatly increase

overall computational costs.29 A promising alternative, explored

in our secondHEDMapplication, BraggNN, is to train and deploy

a neural network approximator to the conventional curve fitting

function. The neural network training can be performed on a

powerful data center computer (e.g., conventional cluster or AI

accelerator), after which the trained network can be deployed

on a lightweight ‘‘edge’’ device at the instrument for real-time

diffraction peak analysis to power applications such as experi-

ment steering and anomaly detection.
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Figure 4. Resource usage over time by five experiments

Total flows, data transferred, and compute time used (on 64-core ALCF Theta nodes), per quarter, for the five experiments described in application experiences.
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The BraggNN flow, as shown in Figure 3, explores the feasibility

of this approach and, in particular, the relative costs of data trans-

fer, network training, and network deployment. It comprises just

four steps28,78: (1) copy data from beamline to computing facility

(transfer); (2) prepare the data for training (compute); (3) train the

BraggNN model (compute); and (4) copy the trained model back

to the beamline (transfer). In the experiments described below,

data are collected at SSRL and transferred to ALCF for training

on AI accelerators such as the Cerebras wafer-scale engine.79

The ease with which Gladier permits retargeting of compute tasks

proved invaluable when selecting an appropriate platform for

different neural network architectures.

Application usage
Scientists have employed the methods and tools described

above at APS and ALCF since early 2020 at a cadence that

has varied with instrument availability and research priorities

but that is generally increasing. Usage across the five experi-

ments described in this article, summarized in Figure 4, encom-

pass 49,367 distinct flow runs that consumed over 11,700 node

hours of compute and transferred roughly 108 TB. The variation

in usage across experiments and over time is primarily due to the

sporadic nature of experiments at large-scale facilities. There are

periods of downtime in which few, or no, experiments are run.

We see a general increase over time in the number of flows run

and the amount of data transferred. The decrease in compute

time in Q4 2021 is due to the fact that the compute-intensive pty-

chography experiment was not running during this period.

Several experiments are deploying more ambitious and expen-

sive computational methods now that the feasibility of on-de-

mand computing has been established.

We explore in Figure 5 the ability for flows to keep pace with

data acquisition rates. Specifically, we show a 12 h period in

which XPCS flows are executed during an experiment session.

During a preparatory period of roughly 4 h, the scientists run oc-

casional bursts of flows to calibrate equipment and ensure that

the analysis pipeline is operational. Here, we see up to 39 in-

stances of the XPCS flow executing concurrently, each with

the 11 steps shown in Figure 3. The subsequent 8 h of the exper-

iment represents steady-state processing in which flows are

executed as the result of data acquisition. We see here that

approximately 10 flows execute concurrently throughout the
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experiment, showing that the flows meet the required data

acquisition rate of one file per minute. The additional flows repre-

sent out-of-band reprocessing tasks executed by the scientists.

We compare the runtime of each flow in Figure 6. Here, we see

mean and quartiles for the more than 2,600 flow runs. We see

that the Ptycho flow has significantly longer execution times

and also higher variance in execution time (25th to 75th percen-

tile is approximately 2,000 s) than other flows. This variance is

primarily due to unpredictable compute cluster queue delays,

as these flows were run without dedicated reservations. Impor-

tantly, flows complete reliably despite such delays.

We show in Figure 7 a breakdown of action execution time for a

single instance of each flow. We select the instance of that flow

with median total runtime and show the time spent executing

each action as measured by the respective action provider. We

illustrate overhead as the difference between the time measured

by the action provider to perform the task and the time recorded

by the Globus Flows service to complete a step. Overheads

include costs incurred asGlobusFlows transitions between steps,

invokes action providers to submit a task, and, most significantly,

polls for action status (see next paragraph). Flowdurations ranged

from a mean of 31 s for XPCS to 3,527 s for Ptycho. All except

SSX-Prime are compute bound. For SSX-Prime and some other

flows, the overheads (see Table 1) reveal opportunities for optimi-

zation (e.g., by improved polling strategies), but none are so high

as to hinder experiments.

Figure 8 drills down on the runtime and overhead of individual

steps within the XPCS flow. The histograms in the top row are of

runtimes for each of the flow’s 11 steps, over 2,197 flow execu-

tions; those in the bottom row are the associated per-step over-

heads. The varied performance seen in the runtime graphs for

transfer and compute actions is expected, as these actions

involve functions that may run for minutes and transfers that

move gigabytes and that are subject to compute cluster queue

and Globus Transfer limits, respectively. The similar distributions

seen in the runtime and overhead graphs for the same action are

due to the exponential backoff polling interval (starting at 1 s)

used by Globus Flows: the longer an action takes to execute,

the less frequently Globus Flows polls the action to check

completion. (The backoff maximum of 10 min is reflected in the

maximum overhead of roughly 500 s.) The two search actions

show more consistent performance (within 20 s), although still



Figure 5. The number of concurrent XPCS flows over a roughly 12 h

period, March 10–11, 2022

The initial peaks are burst tests before beginning the experiment; by 00:00, a

constant stream of data from the beamline is processed.

Figure 6. Distribution of runtimes for the seven flows discussed in

the text

Box plots show upper and lower quartiles, with whiskers to 1.53 the inter-

quartile range.
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with outliers. Roundtrip times to cloud services are not a signifi-

cant source of overhead for any action. These results show,

again, overheads that are acceptable for these applications

but with opportunities for optimization.

DISCUSSION

We discuss implications of the patterns and technologies

described here for various stakeholders. We base this discus-

sion on our experiences working with the five example applica-

tions described in application experiences, each of which use

the patterns and technologies outlined in this article to meet their

science needs.

Adopting patterns
The patterns presented in this article can be used to design and

implement instrument-linking applications using technologies

different than those presented here (i.e., they could be imple-

mented using other components). The patterns illustrate

common steps that are necessary for such use cases and outline

requirements for related systems. Implementations of these pat-

terns present concrete examples that can be reused and adapt-

ed to other use cases.

Adopting Globus and Gladier
The Gladier toolkit and Globus platform are publicly available

and accessible to the research community. Thus, users can

define new flows or adapt published flow templates that

implement common patterns, including those described

here. Our platform-based approach means that a user need

only ensure that Globus and funcX endpoints are in place

before running a flow in a new environment. At many scientific

facilities, required endpoints are already deployed, in which

case users need only modify a template to specify endpoints,

data locations, and compute functions. In environments where

endpoints are not already available, users must first deploy

the endpoint software to make their resources accessible—a

relatively straightforward task as Globus Transfer endpoint

software is distributed in native Linux packages and for

MacOS and Windows PCs, while funcX endpoint software

can be installed via Python pip (Package Installer for Python).

A happy consequence of these low deployment costs and our
use of Python has been considerable diversity in our early

adopter community. For example, the flows described in

application experiences were authored by both computer

scientists and domain scientists, with little support from

our team.

Use of a cloud platform
Our use of Globus platform services for IAM, data, flow automa-

tion, and computation simplified the realization of the patterns

described here. Because Globus operates on a public cloud

with publicly accessible APIs and web interfaces, users can

readily start, monitor, and manage flows irrespective of where

they and where their flows are located. They also benefit from

the heightened reliability that results from outsourcing the man-

agement of multi-step flows spanning distributed resources to a

reliable cloud platform with replicated state. The cloud-hosted

services architecture also makes it easy for users to compose

flows in different ways to meet different needs, without the

need to apply monolithic software stacks.

The Globus platform’s use of web authentication and authori-

zation standards (e.g., OAuth 252) provides a rich IAM ecosystem

for managing the security of complex flows. This approach al-

lows users and resource owners to manage what actions are

performed and by whom and also supports the complexities of

real-world use cases. For example, Globus Auth allows for

secure integration with external tools (e.g., facility data manage-

ment systems) by using various OAuth 2 grant types (e.g., for

public clients), group-based community accounts for shared

computing access, and delegated authorizations for flows to

securely invoke external services.

The ease with which the platform can be extended to edge re-

sources by deploying data and compute agents (Globus collec-

tions and funcX endpoints, respectively) is important for use

cases that require edge computing. These lightweight and easily

installed agents offer crucial capabilities that allow execution of

actions on remote and diverse resources. They may be operated

by resource owners to support any authorized users or, alterna-

tively, deployed by an individual user to process their own re-

quests only.
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Figure 7. For the instance of each flow with median runtime, a time-

line for its constituent actions

The empty spaces between steps correspond to flow orchestration over-

heads. Note that the Ptycho analysis times are scaled to 50% (from 2,261 to

1,130 s total) so as to better show details in the other flows.

ll
OPEN ACCESS Article
While the Globus platform provides capabilities needed to

implement a broad range of flows, it does not (and cannot) offer

every capability desired by users. Thus, another advantage of

the platform model is that we are able to prescribe a common

asynchronous REST API and flexible OAuth-based IAM model

such that others can implement and integrate external actions

with the platform. This API and IAMmodel could be used to inte-

grate capabilities provided by other cloud-hosted research plat-

forms, such as Tapis28 and CILogon/CoManage.80 Integrating

other platforms is dependent on the need for platforms to ‘‘trust’’

one another so that authorization decisions can be routed to

different authorization servers. Adoption of common token

formats (e.g., SciTokens81) would further enable consuming

services and agents to validate assertions from different autho-

rization domains.

A potential disadvantage of cloud-based platforms such as

Globus is the need for continuous connectivity between

research facility and cloud, which introduces a new failure

mode and may not be permitted by cybersecurity policies.

We see such concerns declining due to the high availability,

reachability, and security of modern clouds but note that a

possible compromise is to use local computers for initial data

capture while leveraging the cloud platform for more advanced

capabilities.

Implications for computing facilities
Rapidly advancing and evolving experimental apparatus and

associated computational methods result in growing demands

for computing and storage. The appropriate combination of

custom silicon, edge computing, and data center computing

likely will evolve over the next decade and beyond; however, it

remains natural to turn to large computing facilities (e.g., data

centers, clouds) for both capacity and hardware specialization

(e.g., accelerators). Such facilities are natural rallying points for

data storage and organization coupled with close access to

compute resources. These needs are particularly important

given the adoption of new computing modalities, such as AI

and digital twins.82,83
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The experiences reported here show the benefits of a plat-

form that permits easy redirection of tasks to different destina-

tions so that choices can be made based on user preferences

and/or institutional policies. However, enabling such redirec-

tion relies on facilities exposing interfaces for remote access

to data and computing, IAM infrastructure to enable seamless,

yet secure, access to such resources, and methods for

enabling access (e.g., to service accounts) without prior direct

trust relationships.

Even simple mechanisms can drive innovation. For example,

ScienceDMZs84 have enabled unobstructed data flows to/from

scientific computing facilities, deployment of user-managed

and Globus-accessible storage has allowed scientists to rapidly

collaborate using shared data, and support for container tech-

nologies has reduced barriers for porting applications between

systems.85 These mechanisms should all be universally adopted

by computing facilities to enable instrument + computa-

tion flows.

Our work has highlighted other capabilities that could

reduce barriers for linking instruments and advanced

computing.86 Flexible, on-demand access to computing ca-

pacity is needed to support bursty online workloads. The

modest computing demands associated with our five experi-

ments were satisfied at ALCF by a mix of backfill queue, stan-

dard queues, and reservations, but such capabilities may no

longer suffice as demands increase. Some sites operate

both specialized queues and dedicated and on-demand clus-

ters,87–89 but more flexible scheduling mechanisms are likely

needed. In high-demand situations, the ability either to transi-

tion automatically (through standardized and exposed IAM

infrastructure) to other computing facilities, including to the

commercial cloud (funcX supports provisioning of cloud in-

stances), without direct intervention from experimental scien-

tists could allow the scientists to stay focused on real-time

needs. New facility evaluation metrics are needed that

encompass not only utilization but also responsiveness for

real-time workloads.

Planning for future computing-enhanced experimental sci-

ence suffers from inadequate knowledge of future demand and

the cost-performance tradeoffs associated with meeting de-

mand in different ways. It will be important to establish system-

atic tracking of resource demand and availability at both

experimental and computing facilities. Also needed is a cohort

of staff with expertise in both experimental science and

computing to assist with the development, deployment, and

executing of flows such as those described here.

Implications for experimental facilities
Effective coupling of experimental and computational facilities

requires both modern computing infrastructure at experiments

and high-quality internal and external network connections;

many facilities still have deficiencies in these areas. Adoption

of the ScienceDMZ architecture84,90 is important so as to elimi-

nate bottlenecks in network paths. Experimental facilities must

support deployment of the Globus and funcX software needed

to integrate with the cloud-based compute and data fabric

described here. This is both a social and technical challenge. Ad-

ministrators must allow for policies that permit deployment and

provide for external connectivity, both to computing facilities



Figure 8. Run time distributions in seconds

Distributions of run time (first row) and overhead (second row), in seconds, for each of the 11 steps in the XPCS flow.

MD, metadata.
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and to cloud-hosted platform services. Facilities must provision

hardware near instruments so that agents can be deployed close

to data sources. Work is also needed to integrate IAM ecosys-

tems. Many facility users are locked within a single IAM domain.

Adoption of federated IAM, such as that provided by Globus

Auth and adopted by a growing number of scientific computing

facilities, can integrate diverse IAM domains. By adopting stan-

dard mechanisms, facilities can make their identities accessible

to modern cloud platforms.

There are opportunities for yet more sophisticated integration.

For example, direct integration of the methods described here

with the software tools employed by scientists reduces barriers

for use by providing familiar interfaces to automation capabil-

ities. Flows can also be used to control experiments, a practice

that will require implementation of common APIs, perhaps align-

ing with the action provider API, for instruments and other

devices.

Full automation (without human intervention) will require that

experiments generate meaningful events that can be used to

trigger flow executions.91 In the applications reported here, flows

are triggered by mechanisms that monitor co-located file sys-

tems to integrate with beamline software. Other integrations

are possible, such as connecting with instrument control sys-

tems like EPICS,92 Bluesky,93 LabView,94 and ROS95 that allow

for generation of events.

Implications for scientists
Higher data acquisition rates, larger datasets, andmore complex

processing flows mean that scientists must increasingly

embrace automation to remain competitive. The outsourcing of

automation tasks to cloud-hosted platforms, as described

here, can simplify this transition by avoiding the need for larger

local hardware and software deployments. However, scientists

must be willing to trust external providers to handle mission-crit-

ical functionality. The growing reliance on cloud-hosted services

in our daily lives, coupled with their extreme availability and reli-

ability, helps to expedite this transition.

Adopting the patterns and methods proposed here requires

that scientists decouple traditionally monolithic workflows

into a series of discrete steps that may be executed separately.

This approach can improve understandability and make it

easier to substitute implementations for individual steps (e.g.,

to update an analysis routine) and to execute steps in more
preferable locations (e.g., in terms of cost, availability, and

performance).

We see increasing use of ML techniques for data analysis and

for selecting experiment configurations, samples, and pro-

cesses, with an increasing focus on completing the feedback

loop to enable automated steering of experiments. These devel-

opments make it yet more important to automate data capture

and cataloging so as to provide a clear provenance path when

data are used for ML model training.

Facilitating FAIR science
The methods described in this article can contribute to making

experimental data FAIR35,96 by making it easy to integrate data

publication into data acquisition and analysis flows. In the SSX,

HEDM, and XPCS examples presented here, data plus descrip-

tive metadata (expressed in an extensible schema based on that

of DataCite97) are published automatically to a Globus Search

catalog, with an auto-generated interactive portal (e.g., see Fig-

ure 9). These catalogs have been used to index collections con-

taining many terabytes in thousands of files. Trained models can

also be published.98

Related work
Specialized data processing systems have been developed in

fields such as high energy physics40 and very long baseline

interferometry.99 At the Large Hadron Collider, �1 PB/s data

streams are reduced by custom electronics and then pro-

cessed on a distributed computing grid with hundreds of

thousands of cores.40 More routine linking of instruments

with computers100–103 predates the Internet.104 Automation

has involved both experiment-specific code105,106 and

orchestration and analysis solutions targeted at specific

communities.107–110 However, none enable specification and

reuse of end-to-end flows as is done here.

Experimental facilities use control systems such as EPICS92 to

drive instruments and monitor experiments. Bluesky93 provides

Python interfaces for experiment control and data collection.111

These systems can be combined with analysis tools and work-

flow systems to process data as they are captured. Streaming

protocols can be used to expedite data movement.112,113

The Globus data fabric on which we build here is widely de-

ployed in the US and other countries.56 Other data sharing ap-

proaches, varying in scope, maturity, and adoption, include
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Figure 9. SSX data analysis portal

Facets on the left allow for selection of different proteins (nsp10nsp16 is selected here), chips, and creation dates. Search results, shown on the right, provide

researchers with a quick summary of the experiment and visual representation of the analysis results.
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logistical networking,114 Rucio115 and StashCache116 in high en-

ergy physics, ELIXIR117 for the life sciences, PANdata118,119 and

EXPANDS120 for photon and neutron science, iRODS,121 and the

European Open Science Cloud.122

The term scientific workflow encompasses many technolo-

gies.123–125 Scientific workflow systems are commonly used to

orchestrate many-task computational campaigns126–128 that

may execute local programs or submit jobs to data center com-

puters. Research on workflow scheduling, execution, and

related problems has enabled impressive scale and perfor-

mance within individual systems or across multiple computers

under coordinated control.129,130 In contrast, the patterns that

are our focus engage many concerns besides orchestration of

compute jobs.131 We require methods for linking diverse activ-

ities and resource types, from computations on computers to ex-

periments on scientific instruments; integrating different

resource types; bridging authentication domains; managing

flows that may run for days or even weeks; and organizing and

arbitrating among collections of flows. These concerns motivate
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our decision to build on the cloud-hosted Globus platform,48

which provides for robust orchestration of diverse activities

managed by purpose-specific agents that are already widely de-

ployed. (The TavernaWeb services orchestration platform, while

not cloud hosted, had similarities.132) The extensibility of the

Globus platform allows for the introduction of new non-compute

elements into flows and thus into the patterns realized by

these flows.

Bridging instruments and distributed computation requires ca-

pabilities for reliable and secure remote task submission. This

challenge motivated Grid computing133,134 and the superfacility

concept.135 Facilities have developed specialized interfaces for

remote job submission136,137 and for managing workloads on

and across systems.129,138 Remote execution has been inte-

grated with Jupyter notebooks.139–141 The ability to compute

anywhere enables users to leverage specialized computing

resources designed for low-cost, distributed, and edge

computing.142 AI systems deployed at experimental facilities

support rapid data filtering at the edge.28



ll
OPEN ACCESSArticle
Domain-specific data repositories can play a pivotal role in

fostering collaboration.143–145 Science gateways146,147 address

data and compute challenges by abstracting underlying re-

sources and providing intuitive analysis interfaces.

The value of federated identity and single sign on as means

of streamlining access to scientific resources is broadly

recognized,148–151 although not yet universally adopted.

Globus Auth complements such initiatives by using OAuth to-

kens52 to delegate to third parties (e.g., a funcX server) the

right to perform certain tasks, such as transferring data and

running functions, on a user’s behalf. Delegation methods

have been developed previously.152–154

Summary
Maximizing the value obtained from new instruments requires

tight coupling with heterogeneous and large-scale computing fa-

cilities and new online computing methods to automate data

collection, processing, and dissemination. We have reported

on our experiences working with five groups of instrument scien-

tists, first to understand their current and future computing chal-

lenges and second to automate various of their research flows.

We described an automation approach that leverages Globus

platform services to enable construction of flows by composing

modular components that execute programs, transfer files, pub-

lish data to catalogs, manage data permissions, and generate

persistent identifiers, among other tasks. Importantly, given dy-

namic resource availability, our approach achieves a separation

of concerns between what actions are applied in each flow and

where those actions are performed.We also describedGladier, a

Python toolkit that abstracts registration of funcX functions, flow

authoring, and flow execution with specific input arguments and

simplifies the coupling of such flows to experiments.

The five experiments discussed here vary significantly in their

data rates, flow and action runtimes, use of heterogeneous re-

sources, and geographically distributed execution. We provide

quantitative evaluations of those differences and demonstrate

that ourmethods can, in each case, support the robust, scalable,

and performant execution required for production use, with

overheads that are acceptable even for complex and long-

running flows.

This work represents a first step towards identifying, and

capturing in reusable forms, a broad collection of patterns for

processing data from scientific instruments—patterns that range

from online data processing to ML training and data cataloging.

We believe that understanding these patterns and the methods

and resources required to support their execution will have

important implications for a range of stakeholders, from individ-

ual scientists to compute facilities, experimental facilities, and

cloud-based research platforms.
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