
Toward Real-time

Interactive Virtual Prototyping

of Mechanical Systems:

Experiences Coupling Virtual Reality

with Finite Element Analysis

Tom Can�eld, Terry Disz, Michael E. Papka and Rick Stevens
Mathematics Computer Science Division

Argonne National Laboratory

Argonne, IL 60439

Milana Huang

Electronics Visualization Laboratory

University of Illinois at Chicago

Chicago, IL

and

Valerie Taylor and Jian Chen
Electrical Engineering and Computer Science Department

Northwestern University

Evanston, IL

ABSTRACT

Virtual prototyping involves a synthesis of engineer-
ing methodology and immersive, three-dimensional vi-
sualization technology. Ideally, this is a process in
which computational models are used in place of phys-
ical models in the development of a new product or de-
sign concept. If used successfully, virtual prototyping
can lead to more rapid product design and develop-
ment.

Software is currently being developed that will en-
able virtual prototyping of mechanical systems in the
CAVE1 (CAVE Automatic Virtual Environment) at
Argonne National Laboratory. This software has two
principal components: (1) fast simulation software,
FIFEA (Fast Implicit Finite Element Analysis), for
analyzing mechanical systems and (2) virtual reality
display software for visualizing results and allowing
user interaction. This paper discusses various issues
related to the coupling of �nite element software to

1CAVE and ImmersaDesk are trademarks of the University

of Illinois Board of Trustees.

the CAVE display system.

Keywords: Virtual Reality, CAVE, Virtual Proto-
typing, Finite Elements

INTRODUCTION

Virtual prototyping of mechanical systems can be
accomplished on many levels by integration of immer-
sive three-dimensional visualization technology and
powerful tools to do computational simulations inter-
actively. Interactive immersive visualization allows
observers to move freely about computer-generated
three-dimensional objects and to explore new envi-
ronments. This technology can be used to extend
our perception and understanding of the real world
by enabling observation of events that take place in
spaces that are remote, protracted or dilated in time,
hazardous, or too small or large to enable viewing of
intricate details. Virtual reality strives to be a more
natural user interface to complex data, allowing the



scientist to focus on the analysis of the data rather
than manipulation of the analysis environment [2]. Vi-
sualization and navigation in this environment allow
one to preview new design concepts for \look" and
\feel." Design function can be exercised and tested
by using tools to do kinematic analysis and multibody
dynamics simulation in this environment. Design per-
formance can be tested by incorporating appropriate
analysis tools, for example, �nite element models to
do stress and/or thermal analysis. The challenge is to
perform these functions quickly and accurately enough
to enable e�ective virtual prototyping.

SYSTEM COMPONENTS

The system we describe comprises four compo-
nents: (1) visualization and simulation environment,
(2) graphics-rendering machinery, (3) parallel super-
computer, and (4) software system.

Visualization and Simulation Environment

A unique capability exists in the Futures Labora-
tory at Argonne National Laboratory for developing
tools and testing virtual prototyping concepts. Within
this laboratory are a CAVE and an ImmersaDesk (a
one walled CAVE) to do immersive three-dimensional
visualization [3] . These two devices are networked
with the IBM SP supercomputer via regular ethernet
or high-speed OC3 ATM connections. Figure 1 shows
the hardware components of the system, which are de-
scribed in detail below.

The CAVE is a multi-person, room-sized, high-
resolution, three-dimensional video and audio environ-
ment. The CAVE is a theater 10�10�9 feet, made
up of three rear-projection screens for walls and a
down-projection screen for the 
oor. Electrohome
8000 projectors throw full-color workstation images
onto the screens at 96 Hz, giving 2,000�2,000 linear
pixel resolution to the surrounding composite image.
Computer-controlled audio provides sound to multi-
ple speakers within the CAVE. A user's movements
are tracked with tethered electromagnetic sensors: one
sensor tracks head movements, the other a hand-held
wand. Stereographics' LCD stereo shutter glasses are
used to separate the alternate �elds going to the eyes.
A SGI Onyx with three Reality Engines is used to cre-
ate the images that are projected onto the walls and

oor. The location and orientation of the head sensor
are used by the SGI Onyx to render images based on

the viewer's location in the virtual world. Hence, sub-
tle head movements result in slightly di�erent views
of the virtual objects, consistent with what occurs in
reality. Other observers can passively share the vir-
tual reality experience by wearing LCD glasses that
are not tracked.

The ImmersaDesk is a lower-cost, more portable,
and smaller alternative to the CAVE. The Immer-
saDesk provides the illusion of data immersion via vi-
sual cues, including wide �eld of view, stereo display,
and viewer-centered perspective. A Silicon Graphics
(SGI) Power Onyx computes a single stereo display.
This image is projected on 4�6 foot screen with a res-
olution of 1,024�768.

Graphics-Rendering Hardware

The SGI Onyx is a shared-memory multiprocessor
with a high-performance graphics subsystem. The sys-
tem at Argonne National Laboratory has 128 MB of
memory, 10 GB of disk, four R4400 processors, and
three RealityEngine2 graphics pipelines. Each Real-
ityEngine2 has a geometry engine consisting of Intel
i860 microprocessors, a display generator, and 4 MB
raster memory. The Onyx is used to drive the CAVE
virtual environment interface as discussed above. The
ImmersaDesk uses only one RealityEngine2 graphics
pipeline connected to a single Electrohome Marque
8000 high-resolution project to project images onto
the one translucent screen.

Parallel Supercomputer

The simulation environment consists of a 128 pro-
cessor IBM PowerParallel SP with a high-performance
input/output system. Each SP node has an RS/6000
cpu with 128 MB of memory and a 1 GB local disk and
is connected to other SP nodes via a high-speed inter-
leaved switch. Some of the nodes are equipped with
ATM, HIPPI, and Ethernet interfaces. Collectively,
the SP system is also connected to 220 GB of high-
speed disk arrays and an Ampex DST-800 automated
tape library.

Software System

Virtual prototyping of mechanical systems requires
two principal components: (1) computational software
to do the engineering analysis, and (2) virtual reality
display software to do the visualization and allow user
interaction. These processes involve multiple levels



O
N

Y
X

 S
h

ared
 M

em
o

ry

. . .

RS6K

RS6K

RS6K

RS6K
IBM
Vulcan
Switch

Ethernet

ATM OC-3c

ATM

Ethernet

R4400

R4400

R4400

R4400

SGI Serial

SGI SerialWand

Header Tracker

M8000

IBM PC

Reality
Engine

Reality
Engine

Reality
Engine

Silicon Graphics ONYX

128 node IBM SP  

 

     ImmersaDesk(TM) 

Figure 1: Parallel Computing/Visualization Environment.

of concurrency and can be implemented in a hetero-
geneous computing environment. Both components
should run concurrently and must share data at inter-
vals during the course of a simulation.

We are currently developing fast �nite element soft-
ware (FIFEA) to do analysis of mechanical system
coupled with the virtual reality environment. This �-
nite element program runs in parallel using MPI (Mes-
sage Passing Interface) on an IBM SP [6], whereas the
display process runs on a shared-memory multiproces-
sor SGI ONYX.

FIFEA

FIFEA uses implicit-�nite elmenent methodology
to do dynamic analysis of solid structures. It can be
used to model the thermal-elastic response of materi-
als during low-speed contact with friction. It employs
a pseudo-rigid body formulation to decouple the large
displacements and rotations due to rigid body motion
from the small relative displacements and strains asso-
ciated with elastic deformation and thermal stresses.
This formulation enables the analyis of a wide variety
of e�ects within mechanical systems.

The use of stable implicit time integration o�ers
the possibility of performing dynamic �nite element
analysis in real time. However, these methods can be-

come inaccurate and lose high-frequency information
when the sampling rate is too small. This limits the
usefulness of the method in dynamic analysis to low
speed mechanical systems. In this case speed depends
on many factors, such element size and the frequency
content of the driving forces.

In the pseudo-rigid body formulation, a set of multi-
body dynamic equations is derived assuming each
body is rigid. These equations are solved to determine
the motion of each body. The dynamic equations for
momentum and energy are formulated in the moving
frame of reference with additional Coriolis forces. The
equations are then solved to determine the additional
accelerations, velocities, displacements and tempera-
tures by using unconditionally stable implicit time in-
tegration.

The coordinates in a moving body are de�ned by
the following transformation:

Xi = XC
i + Aij(X̂j � X̂C

j ) ;

where X̂i are the coordinates of the material points
in initial rest con�guration, X̂C

i are the coordinates
of the body centroid in the rest con�guration, XC

i

are the coordinates of the body centroid, and Aij is
the rotation of the body relative to the �xed reference
frame. Aij is an orthogonal matrix. The motion of the



body centroidal coordinates, XC , and the rotation of
the body, Aij, are determined by the solution of the
multibody dynamics equations [10]. A material point
in a deforming body is given by

xi = ui +Xi = ui +XC
i +Aij(X̂j � X̂C

j ) ;

where ui is the displacement relative to the moving
coordinates of the body.

In the �nite element formulation, a process of semi-
discretization is used to interpolate the displacement
and temperature �elds over the elements:

ui = uiaNa(�k) ;

� = �aNa(�k) ;

where �k are the local coordinates of the element and
the subscript a indicates the node number. In this
case summation over the nodal connectivity of the el-
ement is implied by the repeated subscript.

In order to determine the elastic displacements and
temperatures, it is necessary to solve the partial dif-
ferential equations for momentum and energy,

�
::
ui = Tij;j + bi � �

::

X i ;

�cp
:

� = hi;i + �

where � is the density, Tij is the Cauchy stress, bi is
the body force, cp is heat capacity per unit mass, hi
is the heat 
ux, � is a heat source or sink, and �

::

X i,
is a Coriolis force.

After applying a Galerkin formulation and a fair
amount of algebraic manipulation one obtains a set of
matrix equations [7] in the form,

Kq = f

whereK is the global \sti�ness" matrix, q is the vector
of independent variables and f is the vector of forcing
terms. These equations and the multibody dynam-
ics equations are solved at every time step during the
course of the simulation.

Parallelism in FIFEA

FIFEA was designed to run on distributed memory
computer architectures using message passing. With-
out modifying the source code the program may be
compiled to run on a network of one or more desk-top

workstations, workstation clusters, or a massively par-
allel MIMD (multiple instruction multiple data) su-
percomputer.

FIFEA is written in C with some low-level routine
written in Fortran. FIFEA makes extensive use of
the PETSc (Portable, Extensible, Toolkit for Scienti�c
Computation) to do linear algebra and to manipulate
sparse matrices and vectors [1]. All of the message
passing within FIFEA uses MPI. This is either done
explicitly or implicitly in PETSC, which is also writ-
ten on top of MPI.

MPI is standardized interface that enables mes-
sage passing on wide variety of parallel computer sys-
tems, especially those with distributed-memory archi-
tectures [6]. The main advantage of using MPI is
portability. However, in machines were the manufac-
turers have implemented MPI layered on top of their
native message-passing hardware, little or no loss in
performance occurs. The same code, developed and
tested on a network of workstations, can be recom-
piled to be run on a massively parallel supercomputer.

PETSc is a suite of data structures and routines
that enables the numerical solution of large-scale prob-
lems that arise when considering systems of partial dif-
ferential equations. It is usable from FORTRAN, C,
and C++ programs. It also uses the message passing
standard MPI for all interprocessor communications.

PETSc has an extensive set of tools that have been
designed to facilitate computation on unstructured
grids [11]. In FIFEA we have employed these tools
to reduce development time, thereby permitting us to
concentrate on the proper discretization of the �nite
element equations and the multibody dynamics.

We use PETSc to de�ne distributed vectors and
matrices, to do assembly operations on these dis-
tributed data structures, to apply constraints, and to
solve the resulting systems of linear equations. PETSc
gives us quite a bit of 
exibility. By design, our current
systems are symmetric and positive de�nite. Such sys-
tems can be solved e�ectively using a PETSc's solver,
BlockSolve95 [8]. Without recompiling FIFEA, we
can change the matrix storage structure and solver
methodology by simply changing a set directives in
the PETSc startup �le. If physics is introduced that
renders the equations nonsymmetric, PETSc allows us
to change the matrix storage structure and solution
method without rewriting the PETSc interface.



The parallelism of FIFEA is achieved at several lev-
els: the �nite element computations, the repetitive
parallel assembly, the parallel contact detection, and
the solution of large systems of global equations. The
current version of FIFEA can employ one of two meth-
ods to do domain decomposition and to distribute the
clusters of approximately the same number of elements
among the Np processors. The �rst is Jones and Plass-
mann's simple cutting algorithm [9], and the second is
a version of Farhat's greedy algorithm [5]. This choice
is left to the user. Once the elements have been dis-
tributed to the processors, only trivial parallelism is
needed to compute the individual contributions of the
�nite elements to the global sti�ness matrix and force
vector.

One feature of FIFEA is its ability to detect surface
interactions and calculate contact forces between bod-
ies for multibody dynamics and �nite element analysis.
This is accomplished by extracting the surface mesh
from the �nite element mesh. Only node-on-face con-
tacts are considered. The search is accomplished by
encapsulating the clusters of elements on each pro-
cessor with parallel pipeds. Structured grids are con-
structed within each parallel piped to provide an ad-
dressing scheme that is used to restrict the search. It is
similar to the pigeonhole scheme described by Whirley
and Engelmann [13].

Coupling of the Simulation and Graphics

A programwas written to display the results of FIFEA
simulations in the CAVE environment. It was used to
analyze an automotive disk brake system. The pro-
gram allows the user to select various features of the
display and control various aspects of the simulation.
It can be used to display the external geometry of the
�nite element model, the domain decomposition, and
the results, such as the temperature and stresses, pro-
jected onto the surface of the model. In the present
implementation the user can to reset the simulation
in its current con�guration or restart it from the ini-
tial conditions. The mode of analysis can be changed
from �nite element simulation to rigid-body mode by
menu selection. The image of a car is used to provide
context in the demonstration of the disk brake model
as illustrated in Figure 2.

The virtual reality display program was executed
on the SGI Onyx. It consists of three distinct pro-
cesses (communication, rendering, and tracking) that
manage, respectively, communication with the paral-

Figure 2: Virtual Disk Brake.

lel simulation, calculations for surface graphics, and
interactive commands. The program is written using
the CAVE Library [3], to do the low level graphics ren-
dering, local parallel processing, head tracking, and
interactions with the wand. It is a library of C func-
tions and macros that control its operation and sim-
pli�es the development of applications for the CAVE.
It includes functions to keep all the devices synchro-
nized, produce the correct perspective for each wall,
keep track of the walls that are in use, and provide the
applications with the current state of all the CAVE el-
ements.

Communications between the display program and
the �nite element program is accomplished through
the use of the CAVEComm library. The CAVEComm
library is a set of routines designed to do communica-
tions between virtual environments and supercomput-
ers. It enables the development of supercomputer sim-
ulations with virtual reality visualizations that can be
displayed at multiple sites, with each site interacting,
viewing, and communicating about the results being
discovered.

RESULTS

The disk brake model was used in the virtual pro-
totyping system to identify potential bottlenecks and
evaluate performance. The disk brake model is com-
posed of two brake pads and a rotor. These bodies are
divided into 3,790 elements with 5,635 nodes. FIFEA
solves the multibody dynamics equations for the three
bodies and for the displacements and temperatures at
the 5,635 nodes. Since there are four degrees of free-
dom per node, a linear system of algebraic equations
with 22,540 equations must be solved at each time



CPUs 1 2 4 8 16
Time (sec) 1100 530 361 255 240
Speedup 1.00 2.08 3.05 4.31 4.58

Table 1: Execution times and speedup for the disk
brake problem.

CPUs 1 2 4 8 16
Solves 78.9 72.4 72.1 66.6 53.1

Table 2: Percentage of time spent doing matrix solves
on the disc brake problem.

step.

The measurement of lag times for analysis of the
disk brake in the virtual prototyping environment have
been reported previously [12].

Computational experiments were performed to de-
termine e�ective use of the IBM SP for this size prob-
lem. A short FIFEA run with problem initialization
and one dynamic time step was timed on 1, 2, 4, 8, and
16 CPUs. The results of these measurements, shown
in Table 1, indicate that this size problem gains little
performances increase by using more than eight pro-
cessors on the IBM SP.

SUMMARY

In our measurements we have identi�ed the major
contributors to lag time to be the time to send the
data for visualization and the time to do the simula-
tion. The communication times can be improved by
the use of high-speed networking. The overwhelm-
ing amount of time spent in the simulation is solving
matrix equations (see Table 2). This computation is
necessary for implicit time integration of the �nite el-
ement equations. The time required, however, may
be decreased by improvements in iterative algorithms,
alternative domain decompositions, and reformulation
of the �nite element equations to improve the condi-
tioning of the matrices.

We are currently addressing many of the issues
raised in this paper actively pursuing solutions to re-
duce simulation time and lag in virtual prototyping.

Acknowledgments

Work by researchers at Argonne Natinoal Labora-
tory was supported by the O�ce of Scienti�c Com-

puting, U.S. Department of Energy, under Contract
W-31-109-Eng-38. The Work at Northwestern Uni-
versity was supported by an NSF Young Investigator
award.

References

[1] S. Balay, W. Gropp , L. Curfman McInnes, and B.
Smith, PETSc 2.0 Users Manual, Technical Report
ANL-95/11, Argonne National Laboratory, 1995.

[2] G. Bishop, H. Fuchs, et al., Research Directions
in Virtual Environments, Computer Graphics Vol.
26: pp. 153{177, 1992.

[3] C. Cruz-Neira, D. Sandin, and T. DeFanti.
Surround-screen projection-based virtual reality:
The design and implementation of the CAVE.
ACM SIGGRAPH '93 Proceedings, Lawrence Erl-
baum Associates, pp. 135{142, 1993.

[4] T. L. Disz, M. E. Papka, M. Pellegrino and R.
Stevens, Sharing Visualization Experiences among
Remote Virtual Environments, High Performance
Computing for Computer Graphics and Visualiza-
tion Proceedings of the International Workshop
on High Performance Computing for Computer
Graphics and Visualization, Springer-Verlag, pp.
217{237, 1995.

[5] C. Farhat, A Simple and E�cient Automatic FEM
Domain Decomposer, Computers and Structures,
Vol. 28, pp. 579{602, 1988.

[6] W. Gropp , E. Lusk and A. Skjellum, Using MPI
Portable Parallel Programming with the Message-
Passing Interface, MIT Press, Cambridge, Mass.,
1994.

[7] T. J. R. Hughes, The Finite Element Method,
Prentice-Hall, Inc., Englewood Cli�s, NJ, 1987.

[8] M. T. Jones and P. E. Plassmann, Solution of
Large, Sparse Systems of Linear Equations in Mas-
sively Parallel Applications. In Proceedings of Su-
percomputing '92, IEEE Computer Society Press,
1992.

[9] M. T. Jones and P. E. Plassmann, Computational
Results for Parallel Unstructured Mesh Computa-
tions, Computing Systems in Engineering, Vol. 5,
No. 4{6, pp. 297{309, 1994.

[10] A. A. Shabana, Dynamics of Multibody Systems,
John Wiley & Sons, New York, 1989.



[11] B. Smith and W. Gropp, Scalable, Extensible,
and Portable Numerical Libraries, Proceedings of
Scalable Parallel Libraries Conference, pp. 87{93,
1993.

[12] V. Taylor, M. Huang, T. Can�eld, R. Stevens,
D. Reed, and S. Lamm, Performance Modeling of
Interactive, Immersive Virtual Environments for
Finite Element Simulations, High Performance
Computing for Computer Graphics and Visual-
ization, Proceedings of the International Work-
shop on High Performance Computing for Com-
puter Graphics and Visualization, M. Chen, P.
Townsend, and J. A. Vince, eds., Springer-Verlag,
pp. 238{252, 1995

[13] R. G. Whirley and B. E. Englemann, Slidesur-
faces with Adaptive New De�nitions (SAND) for
Transient Analysis, Proceedings of the ASME: New
Methods in Transient Analysis. AMD Vol. 143, pp.
65{71, 1992.


