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Abstract

Purpose—To evaluate the effect of transforming a right-censored outcome into binary, 

continuous, and censored-aware representations on radiomics feature selection and subsequent 

prediction of overall survival (OS) and relapse-free survival (RFS) of patients with oropharyngeal 

cancer.

Methods and Materials—Different feature selection techniques were applied using a binary 

outcome indicating event occurrence before median follow-up time, a continuous outcome using 

the Martingale residuals from a proportional hazards model, and the raw right-censored time-to-

event outcome. Radiomic signatures combined with clinical variables were used for risk 

prediction. Three metrics for accuracy and calibration were used to evaluate eight feature selectors 

and six predictive models.

Results—Feature selection across 529 patients on more than 3,800 radiomic features resulted in 

increases ranging from 0.01 to 0.11 in C-index and area under the curve (AUC) scores compared 

with clinical features alone. The ensemble model yielded the best scores for AUC and C-index 

(often > 0.7) and calibration (Nam-D’Agostino test statistic often < 15.5 with 8 df). The random 

forest feature selectors achieved the best performance considering all metrics. Random regression 

forest performed the best in OS prediction with the ensemble model (AUC, 0.75; C-index, 0.76; 

calibration, 8.7). Random survival forest performed the best in RFS prediction with the ensemble 

model (AUC, 0.71; C-index, 0.68; calibration, 19.1).

Conclusion—Including a radiomic signature results in better prediction than using only clinical 

data. Signatures generated randomly or without considering the outcome result in poor calibration 

scores. The random forest feature selectors for each of the three transformations typically selected 

the greatest number of features and produced the best predictions at acceptable calibration levels. 

In particular, random regression forest and random survival forest performed best for OS and RFS, 

respectively.

INTRODUCTION

Radiomics entails extraction of quantitative imaging features from computed tomography 

(CT), magnetic resonance imaging, or positron emission tomography images. A large 

number of radiomic features can be extracted from these images to characterize tumor 

intensity, shape, and texture. Feature selection identifies tumor signature profiles that can be 

used for prognostic or predictive evaluation of patient outcomes1 and that have been 

putatively associated with clinical and survival outcomes.2–5

Several end points, such as overall survival (OS), local control, freedom from distant 

metastasis, or combined outcomes such as relapse-free survival (RFS), are said to be right-

censored because an individual may not have experienced the event before the end of their 

follow-up duration. At any given point during study follow-up, a patient may not have yet 

experienced an event but is still at risk for an event with further follow-up. Samples for 

which the outcome has not been observed at the last follow-up are said to be censored. 

However, the majority of machine learning approaches and feature selection algorithms are 

built for either binary (eg, 1 or 0, yes or no) or continuous noncensored outcomes. Although 

some methods have been developed to perform feature selection using the right-censored 
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outcomes directly (ie, follow-up time and censor flag),6 censored time-to-event data 

frequently must be preprocessed depending on the machine learning and/or feature selection 

algorithm of choice. For example, to apply many existing machine learning algorithms, the 

outcome is often transformed into a binary outcome7 using a predetermined follow-up time 

(eg, whether the individual experienced local recurrence within 5 years). However, 

converting the algorithm to select for discrimination of 5-year control necessitates a decision 

regarding how to code patients with less than 5 years of follow-up who are still at risk but 

have not yet had an event. Frequently, ad hoc approaches, such as removing those patients 

from the analysis or treating them as nonevents, are used. A third alternative is to use the 

Martingale residual (a continuous outcome) generated from a Cox proportional hazards 

model as the outcome variable for feature selection algorithms requiring a continuous 

outcome.2,8,9

It is well known that machine learning approaches noncognizant to right-censoring lead to 

poorly calibrated risk prediction because they fail to accurately account for unequal follow-

up times (but discrimination is relatively unaffected).10 However, it is unclear what effect 

data preprocessing approaches to handle right-censoring have on algorithms for feature 

selection. To interrogate the potential impact of right-censoring on radiomics feature 

identification for longitudinal outcomes, we implemented the following specific aims, 

comparing performance over several predictive models for oropharyngeal cancer (OPC). 

First, we evaluated the performance of different feature selection algorithms using three 

distinct right-censored data preprocessing approaches (binary, censor incorporating 

[continuous], and censor aware) to represent the censored time-to-event survival data. 

Second, we assessed the identified radiomic features upon subsequent predictive model 

specification, using a library of established and novel risk prediction approaches (Cox 

proportional hazards, random forest [RF], random survival forest [RSF], logistic regression, 

logistic elastic net), which have been adapted to right-censored outcomes using inverse 

probability of censoring weights.

To the best of our knowledge, this is the first attempt to systematically evaluate and generate 

hypotheses on the effects of outcome transformation for radiomics feature selection in model 

performance. A continuous outcome derived from the Martingale residuals has been used in 

other imaging biomarker studies11 but has not been previously used in radiomic feature 

selection studies.

METHODS AND MATERIALS

Data Source

Our institutional database was retrospectively reviewed for patients with OPC who were 

treated at The University of Texas MD Anderson Cancer Center (Houston, TX) from 2005 to 

2013 after institutional review board approval. Eligible patients who were diagnosed with 

OPC that was pathologically confirmed by either a biopsy or a surgical excision and who 

received their treatment on a curative intent were eligible. All patients with OPC were 

nonsurgically managed with radio-therapy with or without systemic therapy either in 

neoadjuvant or concurrent settings. Demographic, clinical, toxicity, and outcome data were 

collected for these patients.
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For imaging data, contrast-enhanced CT scans at initial diagnosis before any active local or 

systemic treatment were retrieved to our commercially available contouring software 

(Velocity AI v3.0.1; Varian Medical Systems, Palo Alto, CA). The volumes of interest, 

including the gross primary tumor volumes, were manually segmented by a radiation 

oncologist in three-dimensional fashion and then inspected by a second radiation oncologist. 

The generated volumes of interest and CT images were exported in the format of DICOM 

and DICOM-RTSTRUCT to be used for radiomics features extraction.

Radiomics Analysis

The gross primary tumor volumes were contoured on the basis of the International 

Commission on Radiation Units and Measurements 62/83 definition.12 Radiomics analysis 

was performed using the freely available open-source software Imaging Biomarker Explorer, 

which uses the Matlab platform (Mathworks, Natick, VA). We extracted features that 

represent the intensity, shape, and texture. The categorization of these features was ranked as 

first, second, and higher texture features on the basis of the applied method from pixel to 

pixel.13 More details about this process can be found in the Appendix and Appendix Table 

A1.

Data Processing

Figure 1 shows the overall processing pipeline, including the procedures for feature selection 

and evaluation. Features that have a high Spearman rank correlation (≥ 99%) with at least 

one other feature or with little variability were removed because they are not helpful in 

outcome prediction. Highly skewed features were log transformed.

To further select the radiomic features, we considered eight feature selection and extraction 

algorithms. Each feature selection algorithm assumes that the outcome of interest is binary, 

continuous, or time to event with censoring indicator. Preprocessing the data for these three 

different outcomes permits the use of many different feature selection algorithms beyond 

those for right-censored data. We considered three different ways of preprocessing the time-

to-event outcome to be used in feature selection algorithms:

1. Binary outcome. The outcome is dichotomized on the basis of whether the event 

was experienced before the median observed follow-up time. Censored patients 

whose follow-up time is less than the median value are removed from the feature 

selection process.

2. Censor-incorporating outcome. The Martingale residual is computed from a Cox 

proportional hazards model. The Martingale residual can be thought of as the 

variability in the time-to-event outcome that is not explained by the clinical 

covariables included in the model. The multivariable Cox model adjusted for sex, 

age, tumor subsite, T stage, N stage, American Joint Committee on Cancer 

(seventh edition) stage, human papillomavirus (HPV) status, and smoking status. 

The Martingale residual is a continuous outcome.

3. Censored-aware outcome. The follow-up time and censoring indicator are used 

directly.
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Each type of outcome was used with at least two different feature selection algorithms from 

the machine learning literature. A total of eight feature selection and extraction methods 

were applied to the data set, most of which are supervised. We also considered an 

unsupervised method, principal component analysis (PCA), as a result of its popularity in 

high-dimensional data analysis. For completeness, we also compared the performance of the 

feature selection methods with randomly selecting 10 radiomic features and using clinical 

features only. The feature selectors include minimum redundancy maximum relevance 

(MRMR), Wilcoxon rank sum test (Wilcoxon), RF, RReliefF, random regression forest 

(RRF), incremental association Markov blanket (IAMB), RSF, and PCA. Table 1 

summarizes the algorithms and the type of outcome variable they require (binary, 

continuous, or time to event). Some of the methods can also be used as predictive models 

(noted in Table 1). More details can be found in the Appendix.

The selected radiomics features identified using the feature selection algorithms together 

with other relevant clinical features were used for outcome prediction. For this study, we 

considered estimating 5-year OS and RFS. All the patients included in this study had 

complete radiomic data for the primary tumor but may have been missing other clinical data. 

Missing values were imputed using multivariable imputation by chained equations26 before 

evaluation. A third level, labeled unknown, was used for missing HPV values.

The predictive models used to estimate 5-year OS and RFS included logistic regression, Cox 

proportional hazards,27 RF and RSF,19 logistic elastic net,28 and an ensemble (ie, 

combination) of these five models. Some of these prediction algorithms do not directly 

handle right-censored survival data. We used inverse probability of censoring weighting to 

extend machine learning methods for survival analysis.10

The following three different metrics were used to evaluate model performance: Harell’s C-

index, area under the curve (AUC), and Nam-D’Agostino calibration test statistic.29 If the 

models are well calibrated, the calibration test statistic follows a χ2 distribution with 8 df. 
Test statistics greater than 15.5 would indicate that the models are significantly 

miscalibrated at the P = .05 significance level. The AUC and C-index are measures of the 

predictive power of the learning model, where higher values indicate better predictive power. 

Ten-fold cross-validation was used for evaluation.

RESULTS

Data

Table 2 lists the demographic characteristics, clinical features, and OS and RFS outcomes of 

the 529 patients. The cohort was predominately male (87%), and the median age was 58 

years (range, 21 to 88 years). Most cancers (87%) were stage IV according to American 

Joint Committee on Cancer staging. More than half of the cohort (58%) was HPV positive. 

Twenty percent of patients died during follow-up, and 18% experienced a relapse. Median 

follow-up time was 70 months. More than 3,800 radiomic features accompanied the clinical 

data for the patients.
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Model Performance

Figure 2 shows heatmaps displaying the performance metrics for each feature selector and 

model pair in predicting OS and RFS. Comparing the different risk prediction methods, the 

ensemble model resulted in the best performance for many feature selectors across all 

metrics. Often AUC and C-index were greater than 0.7, and the calibration test statistic was 

less than 20. For all feature selectors with the ensemble model, the average C-index, AUC, 

and calibration scores for OS were 0.719, 0.696, and 16.69, respectively; the average scores 

for RFS were 0.655, 0.686, and 18.82, respectively. Logistic regression and RF models 

tended to result in poor calibration test statistics (typically > 20) independent of the feature 

selection method. The RSF predictions were comparable to RF predictions in AUC and C-

index scores, with both following the ensemble, but calibration scores were poor for some 

selectors, more frequently for RFS than OS. Elastic net and Cox models had more 

acceptable values for calibration in general (with elastic net being better more consistently); 

however, the Cox model’s AUC and C-index scores were lower and comparable to those of 

the logistic model.

Considering the different radiomic feature selector algorithms, compared with only clinical 

data, all supervised methods selected a subset of features that generally resulted in higher 

AUC and C-index scores for both RFS and OS. For reference, using only clinical features 

resulted in AUC and C-index scores less than 0.70 for OS and 0.65 for RFS. From here on, 

we discuss the results of the different feature selection algorithms in the context of the 

ensemble risk prediction model because this was consistently the best-performing model. 

Random selection performed better than PCA and occasionally achieved fairly high AUC 

and C-index scores; however, it rarely achieved acceptable calibration scores, especially for 

RFS. The feature selection procedures that use a binary outcome (MRMR, Wilcoxon, and 

RF) all had similar C-index scores (0.66) and AUC scores (0.69 to 0.70) for the RFS 

outcome. However, RF was the best performing among the features selectors using a binary 

outcome when considering OS with C-index (0.72 to 0.73) and AUC (0.70 to 0.72). In 

general, the RF selectors (RF, RRF, and RSF) achieved the best overall scores. Occasionally, 

an RF selector would tie with another selector or be beat by a small margin (< 0.01 for AUC 

and C-index), and sometimes calibration scores were high, as was the case for RSF in 

predicting OS. Regardless, an RF-based selector always achieved the highest AUC and C-

index scores with a reasonable calibration for both outcomes. RRF performed the best for 

OS (AUC, 0.75; C-index, 0.76; calibration, 8.7), and RSF performed the best for RFS (AUC, 

0.71; C-index, 0.68; calibration, 19.1).

Effect of Censored Outcome Transformation

Table 3 lists the number of features selected by each method for the OS and RFS outcomes 

and a list of the features selected by at least two methods. The number of features selected 

ranged from one to 24 (mean, 10.1 features), with RF methods selecting the largest number 

of features. There was no significant overlap between the features selected by the different 

methods. The number of features selected was slightly larger for the RFS outcome (OS, 64 

features; RFS, 78 features). RFS has a considerably larger amount of overlap in selected 

features between the methods with three times as much overlap as OS. For OS, four features 

were selected by at least two methods (with F32. Neighbor Intensity Difference 25 

Zdilar et al. Page 6

JCO Clin Cancer Inform. Author manuscript; available in PMC 2019 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Complexity being the only one selected by all three binary methods). The features selected 

by the continuous methods had no overlap with the binary selected ones. For RFS, 12 

features were selected by at least two methods.

Figure 3 shows the AUC and calibration metrics for the ensemble model using RF as the 

feature selection algorithm for binary outcome (RF), continuous outcome (RRF), and 

censored-aware outcome (RSF) for both OS and RFS. For comparison, we also include 

random selection of 10 features, PCA, and clinical only results. As can be seen, for OS, the 

RRF exhibits both the best calibration and best AUC. For RFS, RSF shows the best AUC 

with a reasonable calibration (albeit > 15.5).

DISCUSSION

The ensemble model consistently made the best predictions across all selectors considering 

all three metrics for both outcomes. Combining clinical features with radiomic features 

improves predictions; however, unsupervised feature selection results in miniscule 

improvement, bad calibration, or both. In general, RF-based selectors select a larger number 

of features and tend to produce the best accuracy results while maintaining acceptable 

calibration levels. In particular, the RF selectors for the censored-aware outcome and censor-

incorporating outcome (RSF and RRF, respectively) achieved the highest predictive power. 

The different outcomes, OS and RFS, did not significantly affect the number of features 

selected in total by all of the methods; however, the RFS outcome resulted in more overlap 

in features selected between the feature selection methods, although neither outcome 

resulted in a large overlap in total.

We observed similar results to other previous studies. A few of the selected features (eg, 

F29. IntensityDirectGlobalMax) were also selected in another study,2 which indicates that 

these features in particular have predictive value and may be enhanced by the inclusion of 

other nonredundant radiomic features. As discussed elsewhere,7 where only the binary 

outcome was considered, MRMR and Wilcoxon performed fairly well, with MRMR 

performing slightly better depending on the model. As presented in Leger et al,6 where only 

the right-censored outcome was considered, RF feature selectors performed well in 

predicting outcome depending on the model used. In general, RF models are considered 

state of the art in machine learning literature, and their efficacy is also apparent in our 

results.

Supervised methods should be preferred over unsupervised ones such as PCA because the 

metric scores are consistently better and resulting features can be interpreted more easily. 

There was significant variability in the number of selected features among the supervised 

methods; a few methods selected few features. Those feature selectors that selected fewer 

features, such as incremental association Markov blanket and RReliefF, which both selected 

less than five features, performed consistently worse than the other selectors. Among all 

feature selectors and considering all prediction models, the RF, RRF, and RSF feature 

selectors provided the best predictions for OS and RFS (and consistently selected higher 

numbers of features). In particular, of the three, RRF and RSF selected the most predictive 

radiomic signatures. In addition, RF’s implication of a binary outcome imposes some 
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limitations in survival analysis, especially when the number of censored samples is high. We 

recommend the use of RRF or RSF instead of RF in these cases.

Limitations of this study include the use of 10-fold cross-validation for evaluation. Features 

were selected on the same set of patients for which the learning models were applied 

because of the small number of patients with radiomic data and large number of radiomic 

features. However, because we compared the performance among the feature selectors, and 

each feature selector was informed by the same set of patients, we do not expect that any 

feature selector had an advantage over others. In addition, the proportion of censored 

patients was high for both outcomes. As more patient data are collected and the amount of 

censoring changes, we will be able to evaluate outcome transformation across various 

amounts of censoring.

Finally, in the initial pruning of radiomic features, we kept features that were less than 99% 

correlated with another feature. The value of 99% was chosen as a conservative threshold; 

however, the number of selectable features remained large, and many highly correlated 

features still remained in the data set. Although different feature selection algorithms select 

different features for PFS and OS, these may be in fact highly correlated features. With 

removal of features with ≥ 90% correlation, more than 90% of the raw features can be 

removed. However, this could result in lower performance if relevant features are pruned. 

Combining the pruned features can minimize this information loss.

This study highlights how different feature selection algorithms can be used when the 

outcome of interest is right-censored and creates a framework for future radiomic 

applications. Although the development of new methods for extracting quantitative data 

from imaging features is beyond the scope of this article, the methods evaluated herein can 

guide the selection of the most informative features for a particular outcome. In particular, 

the RF group exhibited the highest predictive scores, with RRF (continuous outcome) for OS 

and RSF (censored-aware outcome) for RFS exhibiting the best predictive performance. For 

data sets with a substantial amount of censoring, we advocate using the censor-incorporating 

and censored-aware outcomes with RRF and RSF, respectively.
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Appendix

Radiomics Analysis

Each patient’s head and neck contrast-enhanced computed tomography (CT) image was 

identified and individually checked. For each patient, the primary tumor volume was 

identified by two expert radiation oncologists to whom the relevant clinical data were not 

released. The gross tumor volumes (GTVs) were contoured on the basis of the International 

Commission on Radiation Units and Measurements 62/83 definition of the gross tumor 

representing the gross demonstrable extent and location of the tumor.12 The common 

ontology used to represent the primary (p) tumor volumes was GTVp. The manual 

segmentation of the GTVp was done using the commercial treatment planning software 

Velocity AI 3.0.1 (powered by VelocityGrid; Varian Medical Systems, Palo Alto, CA). In 

addition, the contours were done with the guidance of the findings from the physical 

examination, endoscopic examination, and other radiology such as magnetic resonance 

imaging and positron emission tomography. Slices with metal artifacts that did not allow an 

accurate identification of the GTVp were omitted. Then, CT images with GTVp generated 

were extracted in the format of Digital Imaging and Communications and Medicine 

(DICOMRT). Radiomics analysis was performed using the freely available open-source 

software Imaging Biomarker Explorer (IBEX), which was developed by The University of 

Texas MD Anderson Cancer Center and uses the Matlab platform (Mathworks, Natick, VA). 

The CT images in the format of DICOM and the GTVp contours in the format 

DICOMRTSTRUCT were imported into IBEX. We extracted features that represent the 

intensity, shape, and texture. The categorization of these features was ranked as first, second, 

and higher texture features on the basis of the applied method from pixel to pixel.13 The 

intensity values (Hounsfield units) and shape of the region of interest are ranked as first-

order features, and they are extracted directly or by a histogram analysis before any 

mathematical transformation with no respect to the spatial configuration. The intensity 

features (entropy and variance) describe the gray level dispersion, but it depends on the gray 

level spatial distribution precision. The second-order features represent intratumoral 

heterogeneity with the integration of the spatial distribution. These second-order features 

include gray level co-occurrence matrix, gray level run length matrix, and neighbor intensity 

difference.13 These features also involve the development of a parent matrix, which is an 

equation of energy, entropy, dissimilarity, and correlation features. The trilinear interpolation 

preprocessing filter was applied to resample the voxel size in the three dimensions to a 

constant value.

The x, y, and z dimensions of the voxel size were set to 0.488, 0.488, and 1 mm, 

respectively. The calculation of intensity-based features was preceded by applying the 

Laplacian of Gaussian filter. The standard deviation (sigma) of the Laplacian of Gaussian 

filter ranged from 0.5 to 2.5 voxels for a total of five iterations (Ganeshan B, et al: Clin 

Radiol 67:157–164, 2012). The Butterworth smoothing preprocessing filter was applied 

before extracting the intensity and texture features to calculate the impact of smoothing and 

noise removal on the radiomics features. The regions of interest were fitted to 512 × 512 

pixels when applying the Butterworth filters. The uniformity of voxel size was ensured by 

applying the two-dimensional Butterworth filters with the three-dimensional voxel size 
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before the smoothing process. More of these statistical texture features, along with their 

relevant equations, were illustrated by Davnall et al (Insights Imaging 3:573–589, 2012). 

More details describing the data can be found in a report by the M.D. Anderson Cancer 

Center Head and Neck Quantitative Imaging Working Group.2 Appendix Table A1 lists the 

radiomic features, their categories, and their definitions.

Feature Selection

Here, we briefly describe each feature selection method and any relevant parameters and 

implementation details. The minimum redundancy maximum relevance feature selector is 

frequently used in gene expression experiments.14 It seeks to find a subset of features that 

are individually highly correlated with the outcome (relevance), yet distinct from any other 

selected features (redundancy). Redundancy, W, is minimized and is defined by the 

following equation:

W = 1
S 2 ∑

i , j ∈ S
I(i, j)

Relevance, V, however, is maximized and is defined by the following equation:

V = 1
S ∑

i ∈ S
I(i, h)

In both equations, S refers to the set of all features considered. I(i, j) and I(i, h) are both 

measures of correlation or association between covariables or a covariable and outcome. 

Maximum relevancy and minimum redundancy can then be achieved by obtaining the 

maximum difference between V and W or the maximum ratio of V to W. The mRMRe R 

package15 is used for selecting the features. We specify 10 features as the number of features 

to select because this is near the average number of features selected by the other methods.

The Wilcoxon rank sum test, also known as the Mann-Whitney U test, is a statistical test for 

feature importance and does not assume a normal distribution of the data.16 We run 

Wilcoxon with 10 different splits of the data set. We select the features by splitting the data 

set into 50 folds via Monte Carlo cross-validation and running the feature selector over these 

splits where the test set is a tenth of the number of rows. The top features are those which 

that the greatest number of times in the top 20 features of each fold. The cutoff for the 

features is determined based on where the largest decline in occurrences is. For example, if 

feature A appears five times, feature B appears four times, feature C appears one time, and 

all other features appear zero times, then only features A and B will be selected because the 

largest jump in number of occurrences happens between B and C. Boulesteix17 provides the 

R package, WilcoxCV, which we use for the Mann-Whitney U test with cross-validation.

A random forest18 is an ensemble-based method consisting of decision trees and is typically 

used for classification. A single decision is formed by splitting a single feature into multiple 

nodes where each node is some value or set of values for the feature. In a random forest, 

instances for each tree are bootstrap sampled from the data set, and the splitting feature for a 
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node of a tree is chosen from a random subset of features. Two other random forest feature 

selectors, random regression forests18 and random survival forests,24 are used as well. They 

are also based on an ensemble of trees; however, they predict different outcome types. 

Random survival forests predict right-censored outcomes with survival trees, and random 

regression forests predict continuous outcomes with regression trees. A combination of 

variable hunting and variable importance20 is used for feature selection with all of the 

random forests. The random forests are over five Monte Carlo iterations. All of the random 

forests are implemented with the R package randomForestSRC.19

RReliefF is a feature selector and an extension of the Relief and ReliefF algorithms. The 

Relief family of algorithms calculate a feature importance value for each feature by 

calculating the distance between pairs of near observations that fall in the same and different 

classes.21 Features with more similar values for observations having the same class get 

higher importance values, and likewise, features with more different values for observations 

not having the same class get higher importance values. Unlike Relief and ReliefF, which 

require a class-based outcome, RReliefF is able to calculate feature importance on the basis 

of a continuous outcome. This is achieved by probabilistically determining whether the 

instances are different and is based on the relative difference between the outcomes. Feature 

importance for the Relief algorithms in general is expressed by the following equation:

W [A] = P (di f f . valueo f A nearest inst . f rom di f f . class)
− P(di f f . valueo f A nearest inst . f rom same class)

Choosing the cutoff point for which features to select is done in the same way as the 

Wilcoxon feature selector, except instead of basing the cutoff point on number of 

occurrences, it is established by finding the largest gap in the feature importance value 

returned from the algorithm for each feature. The RReliefF algorithm is implemented with 

the R package CORElearn.21

The incremental association Markov blanket (IAMB)22 feature selector finds a subset of 

features that excludes those independent of the target outcome. IAMB works in the 

following two phases: a growth phase and shrink phase. The growth phase adds independent 

features on the basis of mutual information and continues until no new features are added. 

The shrink phase eliminates false positives by measuring conditional independence between 

the outcome and each feature chosen in the growth phase. We use the R package MXM,23 

which provides a variant of IAMB suitable for right-censored outcomes.

Principal component analysis (PCA) is the only unsupervised method as well as the only 

feature extraction method used. PCA transforms the set of features into a set of components 

that are uncorrelated and thus can reduce dimensionality.25 We do not desire every 

component because most do not give much additional information. Instead, we retain a 

number of components, which explains at least 95% of the variance in the data, and this can 

be a small number of components compared with the actual number of features. Because 

with this dimensionality reduction technique, the feature space is transformed, it is not as 

clear which features are indicative of the outcome; thus, interpretation of feature importance 

is not as straightforward when using PCA compared with the other methods, which return a 
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subset of the original features. No features are log transformed before extraction, as in the 

other methods; however, all features are scaled and centered.

Table A1.

Computed Tomography–Derived Intensity Histogram, Shape, and Texture Features Set

Feature Category and Feature Definition

Gray level co-occurrence matrix 
25

 Auto-correlation The correlation texture measures the linear dependency of gray levels on those of 
neighboring pixels*

 Cluster prominence A measure of the skewness or asymmetry*

 Cluster shade A measure of the skewness or asymmetry*

 Cluster tendency Assess whether nonrandom structure exists in the data by measuring the 
probability that the data are generated by a uniform data distribution*

 Contrast Returns a measure of the intensity contrast between a pixel and its neighbor over 
the whole image†‡

 Correlation Returns a measure of how correlated a pixel is to its neighbor over the whole 
image†‡

 Difference entropy3†

 Dissimilarity*

 Energy†‡

 Entropy*

 Homogeneity3†‡

 Homogeneity 23†‡

 Information measure 
correlation 13†‡

 Information measure 
correlation 23†‡

 Inverse diff moment norm3†‡

 Inverse diff norm3†‡

 Inverse variance3

 Max probability*

 Sum average3†‡

 Sum entropy3†‡

 Sum variance3†‡

 Variance3

Gray level run length matrix 25§

 Gray level nonuniformity

 High gray level run emphasis

 Long run emphasis

 Long run high gray level 
emphasis

 Long run low gray level 
emphasis

 Low gray level run emphasis
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Feature Category and Feature Definition

 Run length nonuniformity

 Run percentage

 Short run emphasis

 Short run high gray level 
emphasis

 Short run low gray level 
emphasis

Neighbor intensity difference 25‖

 Busyness

 Coarseness

 Complexity

 Contrast

 Texture strength

Intensity direct3

 Energy

 Global entropy The intensity entropy among all the voxels

 Global max The intensity maximum among all the voxels

 Global mean The intensity mean among all the voxels

 Global median The intensity median among all the voxels

 Global min The intensity minimum among all the voxels

 Global std The intensity standard deviation among all the voxels

 Global uniformity The intensity uniformity among all the voxels

 Interquartile range The interquartile range of the intensity values among all the voxels

 Kurtosis Measures the peakedness of all the voxels’ intensities

 Local entropy max First, at each voxel, compute entropy in its neighborhood region. Then, compute 
the maximum among all the voxels’ entropies calculated from step 1.

 Local entropy mean First, at each voxel, compute entropy in its neighborhood region. Then, compute 
the mean among all the voxels’ entropies calculated from step 1.

 Local entropy median First, at each voxel, compute entropy in its neighborhood region. Then, compute 
the median among all the voxels’ entropies calculated from step 1.

 Local entropy min First, at each voxel, compute entropy in its neighborhood region. Then, compute 
the minimum among all the voxels’ entropies calculated from step 1.

 Local entropy std First, at each voxel, compute entropy in its neighborhood region. Then, compute 
the standard deviation among all the voxels’ entropied calculated from step 1.

 Local range max First, at each voxel, compute range value (Max Value-Min Value) in its 
neighborhood region. Then, compute the maximum among all the voxels’ range 
values calculated from step 1.

 Local range mean First, at each voxel, compute range value (Max Value-Min Value) in its 
neighborhood region. Then, compute the mean among all the voxels’ range values 
calculated from step 1.

 Local range median First, at each voxel, compute range value (Max Value-Min Value) in its 
neighborhood region. Then, compute the median among all the voxels’ range 
values calculated from step 1.

 Local range min First, at each voxel, compute range value (Max Value-Min Value) in its 
neighborhood region. Then, compute the minimum among all the voxels’ range 
values calculated from step 1.
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Feature Category and Feature Definition

 Local range std First, at each voxel, compute range value (Max Value-Min Value) in its 
neighborhood region. Then, compute the standard deviation among all the voxels’ 
range values calculated from step 1.

 Local std max First, at each voxel, compute standard deviation in its neighborhood region. Then, 
compute the maximum among all the voxels’ standard deviation values calculated 
from step 1.

 Local std mean First, at each voxel, compute standard deviation in its neighborhood region. Then, 
compute the mean among all the voxels’ standard deviation values calculated from 
step 1.

 Local std median First, at each voxel, compute standard deviation in its neighborhood region. Then, 
compute the median among all the voxels’ standard deviation values calculated 
from step 1.

 Local std min First, at each voxel, compute standard deviation in its neighborhood region. Then, 
compute the minimum among all the voxels’ standard deviation values calculated 
from step 1.

 Local std std First, at each voxel, compute standard deviation in its neighborhood region. Then, 
compute the standard deviation among all the voxels’ standard deviation values 
calculated from step 1.

 Mean absolute deviation The mean absolute deviation of the intensity values among all the voxels

 Median absolute deviation The median absolute deviation of the intensity values among all the voxels

 Percentile Percentiles of the intensity values among all the voxels

 Quantile Quantiles of the intensity values among all the voxels

 Range The intensity range (Max Value-Min Value) among all the voxels

 Root mean square

  Skewness Measures the asymmetry of all the voxels’ intensity

  Variance

Intensity histogram3

 Interquartile range The interquartile range of the occurrence probability values in the histogram

 Kurtosis Measures the peakedness of the occurrence probability values in the histogram

 Mean absolute deviation The mean absolute deviation of the occurrence probability values in the histogram

 Median absolute deviation The median absolute deviation of the occurrence probability values in the 
histogram

 Percentile Percentiles of the occurrence probability values in the histogram

 Percentile area Percentiles of values in the accumulative histogram

 Quantile Quantiles of the occurrence probability values in the histogram

 Range Measures the range (Max Value-Min Value) of the occurrence probability values in 
the histogram.

 Skewness Measures the asymmetry of the occurrence probability values in the histogram

Shape

 Compactness 1 Compactness1 = (Volume)/(sqrt(pi)*(SurfaceArea)^(2/3))3

 Compactness 2 Compactness2 = 36*pi*(Volume^2)/((SurfaceArea)^3)3

 Convex Measures the proportion of the pixels in the convex hull that are also in the region3

 Convex hull volume The mean volume of the two-dimensional convex hulls that are the convex 
envelopes of each slice’s binary mask3

 Convex hull volume 3D Three-dimensional volume of the convex hull that is the convex envelope of binary 
mask3

 Mass3
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Feature Category and Feature Definition

 Max 3D diameter Largest pairwise Euclidean distance between voxels on the surface of the tumor 
volume3

 Mean breadth Denotes integral of mean curvature3

 Number of voxels The number of voxels treating the edge voxels differently3

 Orientation Measures the angle between the x-axis and the major axis of the ellipse in two 
dimensions3

 Roundness Measures how much the binary mask is close to circle in two dimensions3

 Spherical disproportion3

 Sphericity3

 Surface areail¶ The surface area of the binary mask

 Surface area density Surface Area Density = (surface area of the binary mask)/(volume of the binary 
mask)3¶

 Volume The physical volume treating the edge voxels differently¶

*
Soh LK, Tsatsoulis C: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans 

Geosci Remote Sens 37:780–795, 1999
†
Haralick RM, Shanmugam K, Dinstein I: Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–

621, 1973
‡
Haralick RM, Shapiro LG: Computer and Robot Vision. Boston, MA, Addison-Wesley Longman Publishing, 1992

§
Tang X: Texture information in run-length matrices. IEEE Trans Image Process 7:1602–1609, 1998
‖
Amadasun M, King R: Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern 19:1264–

1274, 1989
¶
Legland D, Kiêu K, Devaux M-F: Computation of Minkowski measures on 2D and 3D binary images. Image Anal Stereol 

26:83–92, 2007
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Fig 1. 
Pipeline for identification of radiomic signatures. Low-variance features and high-correlated 

features are pruned. Clinical features are appended to selected features, and missing data are 

imputed before evaluation with the learning models. m, radiomic features; MICE, 

multivarible imputation by chained equations; PCA, principal component analysis.
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Fig 2. 
Heatmaps for each of the different feature selection and learning models showing C-index 

for (A) overall survival (OS) and (B) relapse-free survival (RFS), area under the curve 

(AUC) for (C) OS and (D) RFS, and calibration for (E) OS and (F) RFS. Darker color 

indicates a better score for all metrics. IAMB, incremental association Markov blanket; 

LEN, logistic elastic net; MRMR, minimum redundancy maximum relevance; PCA, 

principal component analysis; RF, random forest; RRF, random regression forest; RSF, 

random survival forest.
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Fig 3. 
Area under the curve (AUC) values with SEs and calibration values for the ensemble model 

when different feature selectors are used for overall survival and relapse-free survival. PCA, 

principal component analysis; RAND, random selection of features; RF, random forest; 

RRF, random regression forest; RSF, random survival forest.
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