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SUMMARY

As society continues to generate escalating quantities of data, there is an increasing demand

for perceptual and cognitive aids to help us make sense of the available troves of digital infor-

mation. Visualization represents one of the most effective ways for exploring large datasets

by leveraging our visual-perceptual capacities. Unfortunately, the scalability of visualizations

has been limited by the prevailing display technology. Conventional desktop and laptop dis-

plays provide too few pixels to visualize today’s datasets, forcing users to contextually switch

between different views in order to see alternate projections of the information space. This

limitation has been known to reduce user performance and potentially hinder exploration by

inducing a ‘tunnel vision’ phenomenon where the analysis is focused on and limited to iso-

lated subsets of the information space. However, thanks to advances in display technology, it

is becoming increasingly feasible and affordable to surpass the limitations of conventional dis-

plays by building and acquiring Large High-resolution Displays. These displays are rapidly

proliferating, providing researchers and scientists with more scalable platforms for the visual

analysis and exploration of large and complex datasets.

This dissertation investigates the impact of adopting large high-resolution displays on user

strategy and insight acquisition during exploratory visual analysis. First, we present a theoret-

ical account of the cognitive costs involved in visual exploration, and highlight the implicit role

of the visualization interface in modulating these costs. Second, we propose design patterns for

constructing coordinated, multi-view-based visualizations for large high-resolution displays.
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SUMMARY (Continued)

We then empirically investigate the effects of increasing the physical size and resolution of the

visualization interface through observational and experimental studies. Our findings indicate

improvement in discovery and insight acquisition, when users are provided with physically

larger displays and more pixels. This effect manifests in a significant increase in the number of

observations reported during visual exploration as well as the acquisition of higher-level, more

integrative insights. These results suggest a role for large high-resolution displays in fostering

discovery in data-intensive visual exploration scenarios.
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CHAPTER 1

INTRODUCTION

..

“ Nothing –not the careful logic of mathematics, not statistical models and theories,
not the awesome arithmetic power of modern computers– nothing can substitute
here for the flexibility of the informed human mind.
(Tukey and Wilk, 1966) .. ”

Researchers and scientists in numerous disciplines are increasingly adopting a data-driven

approach to scientific discovery. In this paradigm, the data is first generated from simulations

or collected using scientific instruments (such as telescopes and high-throughput genome se-

quencing methods) before specific hypotheses are developed. Researchers then broadly ex-

plore this data cache to observe patterns of interest, identify promising leads, and formulate

hypotheses and narratives in an attempt to extract knowledge from the data. While the ulti-

mate goal is often to use the data to provide quantitative evidence in support of a theory or a

model, the immediate goal of exploratory analysis is to look at the data from a flexible point

of view, and see relationships that are beyond what existing models and theories would sug-

gest (Tukey, 1977). By leveraging human perception, insight, and intuition, exploratory analysis

favors a broad inquiry, encouraging one to ask plenty of meaningful questions and formulate

multiple hypotheses, which could subsequently be quantitatively verified using confirmatory

techniques (Tukey, 1980).

1
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1.1 Exploratory visual analysis

Exploratory data analysis paradigms emphasize the use of visualization tools to empower

the human mind to directly see and interact with data. Visualization is one of the most effective

ways for communicating large quantities of information to our cognitive centers (Ware, 2012).

Encoding data visually allows one to quickly recognize trends, patterns, and outliers (Card et

al., 1999), which, when combined with one’s domain knowledge, could lead to new insights.

Interactive visualizations take this further by affording interactions that enable users to nav-

igate large datasets and explore relationships between different components of the informa-

tion space. As the user evolves his/her exploratory goals and mental model, the visualization

environment transforms itself to present more relevant information (Heer and Shneiderman,

2012; Pirolli and Card, 2005), respond to user queries (Shneiderman, 1994), and re-organize the

visual layout so that it reflects the user’s mental model (Endert et al., 2012a; Andrews et al.,

2010). Hence, the emerging field of visual analytics seeks to harness the power of interactive

visualizations to facilitate human analytical reasoning (Thomas and Cook, 2005).

1.2 The data deluge

The increasing adoption of the data-driven discovery model presents many opportunities,

but also poses new challenges created by the need to deal with increasingly larger, more com-

plex, multi-dimensional, and multi-faceted datasets. This data deluge, wrought by the rise of

the supercomputer and the proliferation of high-resolution, high-throughput data collection

instruments, is limiting the opportunity for human-guided exploration and causing scientists

to rely excessively on automated techniques (Johnson et al., 2007). Automated analysis tech-
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niques, while fulfilling an important role in data-intensive science workflows, are less suitable

for exploratory analysis when scientists have little a priori knowledge about what is important

or interesting in the data. Our limited capacity to explore ‘big data’ sources and find connec-

tions between disparate pieces of information may lead to dire consequences. For example,

failure to foresee the 9/11 attacks is partially attributed to a failure in ‘connecting the dots’

between otherwise readily available pieces of intelligence (Kean, 2011). Arias-Hernandez et

al. observe that such catastrophic failure in intelligence analysis can be explained in terms of

“the human and technological inability to cope with the information overload produced by

enormous amounts of constantly generated intelligence-related data” (Arias-Hernandez et al.,

2012).

As the scale and complexity of data continue to escalate, these types of problems are likely

to become more common in the future, threatening the viability of human-guided, exploratory

analysis paradigms altogether. Therefore, new perceptual and cognitive aids are needed to

ensure the ability of scientists, researchers, and data analysts to see, explore, and make sense of

their data so that they can continue to make discoveries.

1.3 Visual scalability

Even with the best of designs, the scale and complexity of today’s datasets can easily over-

whelm visualization interfaces. Visualizations frequently suffer from visual clutter, which de-

creases recognition accuracy (Rosenholtz et al., 2007), increases the cognitive workload, and

potentially interferes with the user’s reasoning processes. To cope with larger datasets and re-

duce visual clutter, visualization designers employ virtual navigation techniques, such as pan-



4

ning and zooming, to allow users to navigate the information space and selectively show or

hide different aspects of the data. However, since the majority of users still interact with vi-

sualizations through conventional desktop and laptop displays, most visualization interfaces

are primarily designed to either show a small fraction of the data at an adequate level of detail

or visualize a highly abstracted overview of an entire dataset at a single time. Either scenario

makes the presented information far less useful for exploratory analysis, which is contingent

on the ability to identify and study perceived patterns and outliers across time and space, from

the micro to the macro. This technologically-imposed dichotomy between seeing detail with-

out context or gaining an overview without detail could ultimately lead to a tunnel vision phe-

nomenon (Schaffer et al., 1996), and bias users to focus their analyses on increasingly smaller

information fragments that are examined in isolation. Furthermore, virtual navigation con-

sumes precious cognitive cycles by forcing users to consciously perform operations that are

not essential to the task at hand. It also subjects users to unnecessary optical flow (as expe-

rienced when panning a map to compare different regions, for instance), making it difficult

for them to maintain a ‘mental map’ of the visualization (Purchase et al., 2007). Ultimately,

these shortcomings serve only to increase the mental effort needed to operate a visualization

and distract users from the analytical task at hand (Ball and North, 2005; Rønne Jakobsen and

Hornbæk, 2011).

1.4 Large high-resolution displays

It is important to note that –at least from a perceptual point of view– the scalability of con-

temporary digital visualizations is constrained by limitations in the prevailing display tech-
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nology, as opposed to sensory or perceptual limitations (Yost and North, 2006). Cockburn

et al. observe that our “visual field spans approximately 200x120 degrees, whereas typical

displays extend only 50 degrees horizontally and vertically, when viewed from normal dis-

tance.” (Cockburn et al., 2008). The human retina is also capable of resolving approximately

500 dots-per-inch (DPI) in the fovea from a focal distance of 7cm, easily exceeding the resolu-

tion of most computer displays which are typically limited to 110 DPI (Woodson and Conover,

1964; Ware, 2012).

To overcome the limitations of conventional desktop and laptop screens, researchers and

data scientists are increasingly adopting large high-resolution displays (LHDs) as a platform

for the visual analysis of large-scale data (Leigh et al., 2012; Reda et al., 2013b). Constructed

by tiling multiple LCD monitors to form contiguous display surfaces, these environments of-

ten span entire walls, making for high-resolution display surfaces on which a variety of data

artifacts can be juxtaposed for analysis and correlation. In essence, LHDs “afford users the op-

portunity to trade virtual navigation for physical navigation (turning, leaning, moving around)

thus allowing the user to exploit embodied human abilities such as spatial awareness, propri-

oception, and spatial memory” (Andrews et al., 2011).

Research has shown that LHDs are not mere ‘pixel reservoirs’, but rather serve to funda-

mentally alter the user’s perception of the technology by consolidating the virtual information

world they beget with our physical reality (Swaminathan and Sato, 1997; Tan, 2004). These dis-

plays can also improve user productivity and satisfaction, particularly when one is engaged in

cognitively demanding tasks (Czerwinski et al., 2003). Prior studies have also identified nu-
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merous perceptual and productivity benefits associated with the use of LHDs, compared to

conventional desktop and laptop-based interfaces (Tan et al., 2003; Ball et al., 2007; Yost et al.,

2007; Shupp et al., 2009). However, much of these benefits pertain to basic perceptual tasks,

such as target acquisition and map navigation. On the other hand, studies that have looked

at the cognitive affordances of large displays have primarily focused on the analysis of text

documents as a model task (Andrews et al., 2010; Endert et al., 2012b). In contrast, this disser-

tation investigates the potential role of LHDs in creating digital information lenses that foster the

visual exploration of large and complex datasets. In particular, we focus on the cognitive pro-

cesses involved in exploratory visual analysis in order to characterize and quantify the impact

of increasing the physical size and resolution of visualization interface on insight acquisition

in realistic, open-ended discovery scenarios.

1.5 Research questions

The central thesis in this research is that the adoption of LHDs as a visualization instru-

ment would impact the quantity and quality of insight in data-driven, exploratory analysis

scenarios.

The effects of being able to see and interact with more information at once could have im-

portant consequences for exploratory visual analysis. As information becomes instantaneously

available on a LHD, visual search sets in as the primary mechanism for information foraging.

Attending to different pieces of information becomes be as easy as moving ones eyes across the

screen or turning one’s head, a far less costly alternative to virtual navigation. This increased

utility of visual search serves to reduce the cognitive cost associated with frequent tasks such as
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visual comparison and correlation (Plumlee and Ware, 2006). With appropriate designs, these

changes in the cost structure of low-level visual operators can be channeled to encourage the

breadth of the exploration, and ultimately improve the outcome of the process.

Our goal in this research is to understand the effects of having instantaneous visual access

to orders of magnitude more information on user behavior in the context of exploratory data

analysis. Furthermore, our desire is to incorporate this knowledge into a set of design patterns

to inform the design of future visual analytic interfaces for emerging high-resolution displays.

We shall distill this goal into the following research questions:

• RQ1: What is the effect of increasing the size and resolution of the visualization interface

on user behavior during exploratory visual analysis?

• RQ2: Compared to conventional displays, how does the ability to simultaneously see and

interact with orders of magnitude more information on LHDs affect insight acquisition?

• RQ3: Are there new design patterns for scaling up multi-view-based visualization inter-

faces to LHD environments?

1.6 Organization

The rest of this dissertation is organized as follows: In chapter 2, we contribute a theoretical

foundation for this research and survey the state of the art. In chapter 3, we present a design

framework for scaling up existing visualization designs to LHD environments. Chapter 4 de-

scribes a real-world case study exploring the use of LHD environments in tasks involving the

visual analysis of large ensemble datasets. In chapter 5, we describe an experimental study
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which investigates the effects of increasing the physical size and resolution of the visualization

interface on user behavior and insight acquisition during visual exploration. We conclude in

chapter 6, summarizing our contributions and outlining future research directions.



CHAPTER 2

FOUNDATION AND RELATED WORK

..

“ Contained within the data of any investigation is information that can yield con-
clusions to questions not even originally asked. That is, there can be surprises in
the data… To regularly miss surprises by failing to probe thoroughly with visu-
alization tools is terribly inefficient because the cost of intensive data analysis is
typically very small compared with the cost of data collection.
(Cleveland, 1985) .. ”

Interactive visualizations constitute digital lenses through which we peer at large and com-

plex information worlds. Yet, these lenses are delivering increasingly smaller and isolated

fragments of information upon which we base our decision making. Unless we want to leave

correct decision making to serendipity, we must understand the role of the visualization inter-

face in shaping user behavior and decision making (Amar and Stasko, 2005). In this disserta-

tion, we focus on understanding the effects of scaling up of the physical size and resolution of

the visualization interface on user behavior and insight formation during exploratory visual

analysis.

We begin our discussion with the theoretical foundations of distributed cognition, and

present a conceptual model of the components and processes involved in thinking with the

aid of interactive visualizations. We then turn our attention to exploratory visual analysis,

highlighting the limitations of conventional visualization interfaces and their unintended con-

9
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sequences. Lastly, we motivating the need for more scalable visualization instruments and

describe prior research on the use of large high-resolution displays in information visualiza-

tion and visual analytics.

2.1 Distributed cognition

Humans, among many other organisms, have evolved the ability to process the signal con-

veyed by the visible light, and use it to perceive their surrounding environment, navigate land-

scapes, find food resources and mates, and solve spatial problems. Clearly, these capacities are

not unique to humans. In fact the basic visual perceptual architecture is shared among all mam-

mals, albeit with some important differences. However, what is unique among humans is the

ability to apply these perceptual mechanisms to solve abstract problems that are inherently

non-spatial. This ability to recognize and manipulate external objects in our visual scene as

if they are artifacts of thought is highly important to our capacity to solve complex problems.

One may be tempted at first to downplay the role of external representations in facilitating

higher-order cognition. After all, abstract thought can occur in our heads with our eyes closed.

However, it is generally undisputed that a “person working with the aid of thinking tools is

much more cognitively powerful than that person alone with his or her thoughts” (Ware, 2012).

The line between the human mind and the external world may, as a matter of functional inter-

pretation, be more blurry than the “boundaries of skin and skull” (Clark and Chalmers, 1998).

Cognition can be thought of as an emergent phenomenon that results from the interaction

between an individual and their surrounding environment, including external tools and arti-

facts as well as other individuals who participate in the cognitive activity (Hutchins, 1995a).
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In this view, none of the agents or artifacts involved hold complete knowledge or control over

the process. Rather, the cognitive state of the system and its processes are distributed across

the different components. Accordingly, any cognitive output that system manages to produce

should be attributed to the system as a whole, with the interaction between its various compo-

nents serving as a key mediator of the cognitive function.

This theoretical framework, known as distributed cognition, is relevant to the study of virtu-

ally all information processing systems, both in prehistoric and modern contexts. For instance,

ancient maritime navigation relied extensively on celestial objects, which served as a persistent

form of memory and used to compute an appropriate heading to reach a particular destination.

Today, modern GPS systems largely replaced the need to consult celestial objects, which can-

not be reliably accessed at all times. However, it is important to note that GPS navigation relies

on a complex network of satellite to provide accurate location service. Navigation in modern

cars, vessels, and aircrafts relies on memory deposited in the GPS network, information pro-

cessing provided by local GPS units, as well as the knowledge of crew members, all actively

participating in the transformation of memory and sensory readings into a series of decisions

and steering commands (Hutchins, 1995b).

In an era of ‘big data’ and abundant computing systems, problem-solving and decision-

making almost always take place with the aid of digital, external representations of informa-

tion, which increasingly take the form of interactive visualizations. Examples range from an

epidemiologist trying to understand an ongoing epidemic situation by looking at a real-time

map showing reported disease incidence, to a financial analyst attempting to forecast market
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trends by analyzing and comparing charts depicting historical stock prices. Interactive visual-

ization systems provide scientists, analysts, and engineers with adaptable artifacts of thought

that are not limited to the passive feeding of information to human decision-makers, but rather

serve to scaffold their thinking processes (Pike et al., 2009), while providing essential compu-

tational processing in the background. Modern visual analytic tools thus form an integral part

of our extended cognitive system (Hollan et al., 2000; Liu et al., 2008), providing us with high-

resolution digital lenses while profoundly influencing our decision-making processes.

2.1.1 Thinking analytically with interactive visualizations

Visual analytic systems join cognizing human agents with highly-interactive information

processing and communication tools. In this role, the visualization tool harnesses the com-

putational power of modern computers to transform large amounts of data into visual rep-

resentations. The human user, on the other side, contributes a “highly flexible pattern finder

coupled with an adaptive decision-making mechanism” (Ware, 2012). This coupling of humans

and computers provides a more scalable and effective cognitive function, compared to what

each component can provide by itself. Visual analytic systems can thus be conceptualized at a

high-level as an interaction between the human user and the visualization tool. However, it is

helpful to unravel this black box so that we can begin to understand the flow of information and

the distribution of processing within the system. Sedig et al. presents a conceptual model that

breaks down a visual analytic system into five distinct components: the mental space, the inter-

action space, the representation space, the computing space, and the information space (Sedig

et al., 2012). Figure 1 illustrates this structure.
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Figure 1. A visual analytic cognitive system results from the interaction of five distinct
spaces. VR denotes Visual Representation. Adapted from (Sedig et al., 2012).

Information is usually construed as significant regularities in data, which in turn refers

to discernible energy measurements within natural of simulated phenomena (e.g., climates,

molecular systems, markets, web browsing histories, and health records) (Bates, 2005; Sedig et

al., 2012). A visual analytic tool uses computational resources to transform, sample, normalize,

and filter the data, mapping it to visual representations (denoted as VR). Encoding data visually

enables users to utilize their visual perceptual system to search for and discover regularities

in the data. Transforming such regularities into information and acquiring new knowledge,

however, is a complex mental activity that involves the assimilation of newly acquired in-

formation, higher-order mental computation (e.g., inductive and analogical reasoning), and

potentially conceptual change (Dunbar, 1993; Ohlsson, 2009).
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2.1.2 Distribution of processing in visual analytic systems

Information processing in a visual analytic cognitive system can be distributed among the

different components of Figure 1 (Parsons and Sedig, 2014), although, the optimal distribu-

tion would depend on the particular task the system is intended to support. For instance, in

monitoring and situational awareness scenarios (as in operation control centers, for instance),

a significant portion of information processing would typically fall on the computational com-

ponent of the system, so as to reduce the cognitive workload on the human operator and allow

for faster response. In learning applications, on the other hand, the learner usually benefits

from being required to mentally process the presented information so that he/she can develop

his/her mental model (Hullman et al., 2011; Parsons and Sedig, 2014). Some where in between

these two ends, exploratory visualization interfaces could benefit from a hybrid approach, of-

floading tedious operations onto the computational space, while allowing the user to concen-

trate on developing insights, hypotheses, and beliefs. A related aspect is the locus of control over

the state of the system, which has to be balanced between the human and the visual analytic

tool.

Since our goal in this dissertation is to understand the effects of scaling up the visualization

interface on user behavior in exploratory analysis scenarios, we shall limit our analysis to three

spaces of the model in Figure 1: the mental space, the interaction space, and the representation

space. In particular, we focus on the interaction space, as it represents the link between the

human and the visual analytic tool, serving to coordinate the flow of information between the

two subsystems. Furthermore, we shall limit our discussion to human-guided systems where
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control over the system and the exploratory process resides within the human agent, as this

constitute the most common paradigm in visual analytics.

2.2 Exploratory visual analysis

Generally speaking, visual exploration is a process of broadly surveying the data from a

flexible point of view in order to identify patterns of interests in the data, formulate meaning-

ful questions and hypotheses, and construct plausible narratives to account for observations.

In contrast to confirmatory analysis, which is typically aimed at obtaining an answer to a spe-

cific hypothesis or question (Tukey, 1980), the goal of visual exploration is to obtain a broad

overview of the data, while allowing one to make unexpected discoveries (Krestel et al., 2011).

Visual exploration can be driven by the observations of patterns, outliers, and salient visual

features in the visualization (Treisman, 1986), or it can be guided by prior hypotheses, intuition,

and existing knowledge brought by the analyst (Privitera, 2006; Liu and Stasko, 2010). These

bottom-up and top-down processes often interact in complex ways (Healey and Enns, 2012).

This makes visual exploration a highly emergent activity, during which analysts constantly

adjust their goals and frequently shift their focus to different parts of the information space, re-

framing existing beliefs to incorporate new findings (Klein et al., 2006). This fluidity is crucial

to fostering a meaningful analysis during the early stages of the inquiry, as it enables analysts

to evolve their mental models and formulate new theories and beliefs that make them see their

data from new perspectives (Heuer, 1999).

The ultimate goal of visual exploration is to aid humans in developing insight. The notion

of insight in the visual analytics community, however, is often used in a nebulous way to refer
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to a range of cognitive and neural states, from profound and spontaneous ‘Eureka!’ moments

to the gradual acquisition of “individual observations about the data” (Chang et al., 2009).

In the context of exploratory analysis, the notion of insight could be expanded to include the

formulation of new hypotheses and questions, as these constitute an important outcome of the

scientific reasoning process (Klahr, 2002; Zimmerman, 2005).

2.2.1 Exploratory visual interfaces

One of the most useful paradigms for creating effective exploratory visual interfaces is to

distribute information among multiple views. The main premise of this technique is that “users

understand their data better if they interact with the presented information and view it through

different representations.” (Roberts, 2007). This paradigm, known as Coordinated Multiple Views

(CMV), has been proven effective in a variety of applications and has become a standard tech-

nique in visual analytics. Figure 2 illustrate two example visualizations that employ CMVs to

facilitate exploration.

CMVs allow designers to simplify visualizations by distributing information across mul-

tiple views, making the visualization as a whole easier to understand. However, the scala-

bility of CMV-based visualizations has traditionally been limited by display technology, since

adding an extra view requires the sacrifice of precious screen estate (Wang Baldonado et al.,

2000). Consequently, visualizations usually incorporate a limited number of views (typically

2–6). When the amount of information is too large to fit, views are presented in sequence

using virtual navigation, such as panning and zooming, overview + detail, and window switch-

ing (Cockburn et al., 2008). Virtual navigation thus involves the temporal separation of views, al-
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Figure 2. Two example visualization that illustrate the use of coordinate multiple views to
facilitate visual exploration. The top picture illustrates a recreation of the landmark

visualization of the 1854 Cholera outbreak in London by John Snow, augmented with
additional timeline charts on right side to show statistical information about the number

victims as well as their (fictitious) age and gender. The bottom pictures illustrates a
visualization of the social network in a zebra population, with the left view depicting the

movement of zebra communities in space and time, and the right part depicting the evolution
of their social structure (Reda et al., 2011).
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lowing the user to sequentially move between different projections of the data. Conversely, spa-

tial separation entails the rendering of multiple views side-by-side, enabling a non-sequential

form of access to information. Furthermore, spatial separation typically allows for coordination

between views, which is typically achieved via brushing-and-linking (Becker and Cleveland,

1987).

View1

View2

View3

View4

temporal separation 

time

display

View1 View2

View3 View4

display

spatial separation 

sequential
access to

information

embodied, 
non-sequential

access to information

Figure 3. Temporal separation of views compels users to sequentially switch between views,
causing them to rely excessively on their working memory to retain and integrate information

across views. In contrast, spatially separated views make the relevant information
simultaneously available, affording non-sequential access to information and thus reducing

the cost associated with integrative operations, such as comparison and correlation.

Naturally, conventional desktop and laptop displays skew visualizations towards the tem-

poral separation of views, which tends to increase the cognitive workload on users as they resort
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to retaining increasingly complex features and patterns in their limited visual working mem-

ory (Plumlee and Ware, 2006). On the other hand, the cost of switching between simultane-

ously visible views appears to be insignificant (Convertino et al., 2003). This favors the spatial

separation of views in visual exploration so as to reduce the cognitive costs associated with

low-level analytic operations, including comparison, correlation, and identification of outliers.

Figure 3 contrasts these two alternatives.

At the macro-level, the effort required to navigate, examine, and integrate information

across a large number of temporally-separated views could become too prohibitive, partic-

ularly in scenarios involving the exploration of large-scale datasets. These elevated cognitive

costs –which are subconsciously perceived by users– may act as ‘soft constraints’ (Gray and

Fu, 2004), prompting users to reduce the frequency of view switching and virtual navigation.

Such accommodating behavior may save precious time and reduce the cognitive workload.

Unfortunately, it may also contribute to a ‘tunnel vision’ phenomenon by inducing users to

narrow in onto increasingly isolated parts of the information space. Furthermore, the ability of

users to spontaneously recognize unexpected relationships across temporally separated views

is likely to diminish, causing them to inadvertently miss important connections.

The above two factors can be understood in terms of inhibitory costs that impede explo-

ration (i.e., top-down costs) as well as missed opportunity costs for making unexpected infer-

ences (i.e., bottom-up costs). Their side effects have been observed, to some extent, in stud-

ies that address how intelligence analysts work with large-scale corpora of text documents

(e.g., (Patterson et al., 2001)). However, these unintended consequences are likely to be more
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pronounced in exploratory visual analysis scenarios, where the exploratory goals are less clear

to begin with, and the constraints on visual working memory are sharper. We discuss both

of these facets in the following sections, and then consider how large high-resolution displays

can provide technological intervention to mitigate these unintended consequence, potentially

improving the outcome of the exploratory process.

2.2.2 Missed opportunities: bottom-up costs in visual exploration

The main bottleneck in visual exploration is our visual working memory, which has a lim-

ited capacity of approximately 3–5 items (Vogel et al., 2001). With conventional visualizations,

one needs to frequently switch between a large number of projections in order to compare and

correlate features during visual exploration. Visual context-switching is not only time con-

suming but often requires the explicit manipulation of a graphical user interface, potentially

causing interference with existing stored patterns by ‘flushing’ the content of the visual work-

ing memory (Maxcey-Richard and Hollingworth, 2013). This reduces the chance of retaining

potentially important visual features that are essential to the inferential task.

It is also informative to contrast this form of visual context-switching experienced by visu-

alization users as they are attempting to move through a large information space, by looking

at one projection at a time, with more familiar activities, such as solving a jigsaw puzzle. In

the latter, one tends to move individual pieces and position them side-by-side, in different

arrangements, until the connections between them is clear. Juxtaposition and rearrangement

of pieces is thus essential to solving the puzzle in a reasonable amount of time. The ability

to utilize space to rearrange “physical tokens of statement” allows the player to “change the
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cost structure of the inferential landscape”, and is thus essential to his/her ability to logically

move downstream towards a more complete solution (Kirsh, 2013). After all, solving the same

jigsaw puzzle looking at once piece at a time is a daunting proposition. Similarly, the sequen-

tial switching between view (representing different data projections) during exploratory vi-

sual analysis could ultimately reduce the probability of making inferences about how these

temporally-separated views relate to each other. For example, a user looking at geospatial vi-

sualization may fail to recognize similar clusters of chemical contamination sites across a large

map when such clusters occur in disparate locations that cannot be viewed simultaneously.

2.2.3 Top-down costs in visual exploration

From a top-down perspective, interacting with a visualization incurs significant cognitive

costs that could impeded exploration. While such costs are acknowledged by the visualization

community, they are often understood as factors that hinder the perception of glyphs in visual

representations or decrease user performance on specific tasks. Here, we argue that the costs

associated with the use of visualizations should also be thought of as important factors that

could influence the formation of exploratory goals, the selection of strategy, and ultimately the

outcome of the visual exploration process. These costs are determined in part by the visual

representations employed in a visualization and the set of interaction techniques incorporated

into the visualization interface. However, additional factors, such as the physical size and

resolution of the visualization interface, implicitly affect these costs by modulating the utility

of the visualization with respect to the analytic operators available to users.
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2.2.3.1 Seven stages of action

To understand potential interface-related factors affecting user strategy and goals in visual

exploration, we need to properly distinguish between the different costs associated with the use

of interactive visualizations. For that we turn to one of the longest standing usability models

in the human-computer interaction community, the seven stages of action, developed by Donald

Norman in his seminal work The Design of Everyday Things (Norman, 2002). Norman postulates

a series of stages a user goes through when interacting with a piece of technology in order to

accomplish a specific goal. These seven stages are in the following order:

1. Forming the goal

2. Forming the intention

3. Specifying an action

4. Executing the action

5. Perceiving the state of the world

6. Interpreting the state of the world

7. Evaluating the outcome

The first step in interacting with the world (or with a piece of technology) is to formulate a

goal and specify a state to be achieved. After the goal is formulated, it must be translated into

an intention–a desire to perform some action. This action must be unpacked and mapped onto

the set of available operators. The action is then executed. The next stage is to evaluate whether
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the performed action satisfied the original goal, which begins with perceiving the new state of

the world. The perceived state must be interpreted. Lastly, the user compare the interpreted

state and determined whether the goal has been met.

In addition to the above seven stages, Norman proposes two types of gulfs, which can be

construed as costs or difficulties one has to overcome. The gulf of execution represent difference

between the user’s intention and the set of operators available to the user. Similarly, the gulf

of evaluation reflects the effort needed to interpret the state of the world to determine whether

the goals have been met.

2.2.3.2 Interaction costs in visualizations

At its heart, the seven stages of action is a framework that abstracts the intricacies of human

interaction with their world, with the ultimate goal of improving the design of everyday tech-

nologies from door knobs to computer interfaces. While the framework is intended to ease the

complexity of technologies that serve a well-defined goal, the framework is also adaptable to

human-guided knowledge discovery systems (e.g., interactive visualizations) where the goals

are more fuzzy. Lam’s framework of interaction costs with information visualization represents

one such adaption (Lam, 2008). Lam’s framework is similar in spirit to the seven stages of

actions, with a minor difference in that the costs implied by Norman’s two gulfs are more

explicitly articulated. Lam describes the following types of costs associated with the use of

interactive visualizations, which are also illustrated in Figure 4:

1. Decision costs to form goals: When a visualization depicts a large dataset, users need to

decide on which subsets of the data to explore and what questions to pursue.
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Visual analytic tool

Cognitive resistance 

(2)
Form system operations

System-power costs

(3)
Form physical sequence

Input-mode costs

(4)
Execute physical sequence

Motion costs

(7)
Evaluate interpretation

State-change costs

(6)
Interpret perception
View-change costs

(5)
Perceive state

Visual clutter costs

(1)
Goal formation
Decision costs

Figure 4. The sequence of steps a user takes when interacting with a visualization (in bold)
along with the associated interaction costs (in italics). Adapted from (Lam, 2008). In addition
to the costs, we postulate a ‘cognitive resistance’ feedback force, which could dissuade users

from pursuing integrative questions and prevent them from forming new or lateral
exploratory goals. The circles represent the hypothesized effect of adding additional views to

the interface to reduce temporal-separation, with red circles indicating a hypothesized
increase in the costs and green circles indicating a decrease.

2. System-power costs to form system operations: Once the goal is formulated, it has to be trans-

lated into operations that can be performed using the provided set of interaction tech-

niques. For example, the user may choose to navigate a map using pan and zoom opera-
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tions to focus on a particular region, starting from an existing view instead of spawning

a new one.

3. Input mode costs to form physical sequences: The operation must then be translated into a

series of input commands. For instance, a series of drag-and-drop and mouse wheel scroll

commands could be used to perform a navigation operation. A possible confounding

factor here is the need to choose between multiple input modes when the controls are

overloaded.

4. Physical-motion costs to execute sequences: The input must be executed using motor actions

(e.g., moving the mouse and turning one’s eyes and head). This physical effort could

become strenuous if repeated over an extended period of time.

5. Visual-cluttering costs to perceive state: Interactions may increase visual clutter (due to an

increase in the number of data points being rendered, for instance) or introduce occlusion

(e.g. overlapping views), impeding perception.

6. View-change costs to interpret perception: Interactions can result in significant changes to

the visualization state, which must be interpreted and related to the previous state.

7. State-change costs to evaluate interpretation: To gain insight and update one’s mental model,

the user need to perform mental computation to cognitively integrate information ex-

tracted form multiple views and/or analysis states so that one can begin to understand

the effects of their inquiry.
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2.2.3.3 Soft constraints on visual exploration

The costs articulated in Lam’s framework are usually regarded as a series of processes or

barriers users need to overcome to accomplish a particular exploratory goal. However, the

cost framework also implies ‘cognitive resistance’ (the red feedback arrow in Figure 4), which

manifests as soft constraints that prevent users from forming new or lateral exploratory goals.

Users, as cognitive agents, tend to minimize the cost of acquiring information, just as animals

attempt to minimize the cost of foraging for food in the wild (Pirolli, 2007). Furthermore, users

are likely to alter their exploratory strategy based on the cost of operators available (O’Hara

and Payne, 1998). For instance, visual comparison, a commonly used operator in visual ana-

lytics (Amar et al., 2005), is likely to incur a relatively high cost when users are forced to com-

pare temporally-separated objects (Plumlee and Ware, 2006). We would therefore expect users

to perform less visual comparisons even though this operation might be integral to forming

insight. This bias to the path of least resistance is particularly relevant in exploratory scenarios

where the goals are vaguely defined and the information scent is rather weak (Pirolli et al., 2003).

In such cases, users may unknowingly steer their exploratory strategy to exploit isolated sub-

sets of data, in their attempt to minimize the overhead of visual context-switching induced by

the chronic temporal-separation of views in conventional interfaces.

Adding additional views to the visualization to reduce the frequency of view-switching

could affect interaction costs in a number of important ways (changes are indicted by green

and red circles in Figure 4). More specifically, we would expect a decrease in view-change costs

(step 6) as their would be less frequent disruption to the visual layout wrought by virtual nav-
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igation (Ball and North, 2005), and users would thus have to rebuild their ‘mental map’ less

frequently. Additionally, we would expect a reduction in the costs of integrating information

found in multiple views (step 7) as users would be able to ‘physically’ move between the dif-

ferent views with embodied actions (Andrews et al., 2010), integrating information in a non-

sequential fashion. On the other hand, the addition of views also results in some overhead,

which manifests in rising physical motion costs (step 4) as a result of having to execute more

strenuous physical actions (e.g., head turns, eye movements, and walking up to the display) to

look at the views. Additionally, we would expect an increase in visual clutter costs (step 5) in-

duced by having to ‘read’ a larger number of visual glyphs, and from being required to manage

one’s attention in a larger spatial environment.

2.2.4 Designing around the limits of working memory

The most fundamental tasks in visual exploration revolves around the integration of mean-

ingful visual patterns encountered during the analytic activity. Yet, our ability to integrate in-

formation from multiple sources will always be bound by innate cognitive limits. Chief among

those is the capacity of our working memory (both visual and verbal). When designing visual

analytic interfaces, it is therefore essential to minimize the burden on working memory. As

Ware observes, designs that “work around the limits of working memory capacity can, in many

cases, result in impressive gains in efficiency” (Ware, 2012).

There is an inherent trade-off between the temporal separation of views and the increase

in interpretation and integration costs on one hand, and the spatial separation of views and

the increase in the physical and perceptual/attentional effort required to ‘read’ a more com-
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plex visualization. Therefore, a key design issue in visualization is to balance this trade-off.

The question is, then, do current visualization interfaces effectively balance these costs? Or

do they tip the balance towards either sides of the equation? Naturally, the prevailing display

technology favors the temporal separation of views which could potentially tip the balance,

thus increasing the cost of visual exploration. Fortunately, however, we are witnessing a dis-

ruptive trend in display technology marked by rapid increase in the resolution of LCD panels

accompanied by a sharp drop in their cost. It is thus becoming increasingly affordable for vi-

sualization users to acquire and/or build larger displays with more pixels from commodity

LCD panels. Large high-resolution displays are opening the possibility for a new set of visualiza-

tion designs with a focus on relieving the burden on human cognitive resources, as opposed

to conserving pixels.

2.3 Large high-resolution displays

There is a large body of research that demonstrate advantages to using LHDs in knowledge-

based activities, compared to conventional displays (Czerwinski et al., 2006; Ni et al., 2006).

These benefits are derived from a range of perceptual and cognitive affordances that LHD envi-

ronments appear to provide or enhance. We can group these affordances under two categories:

visual scalability and the provisioning of space to support sense making.

2.3.1 Visual scalability

Visual scalability is typically defined as the “capability of visualization tools effectively

to display large data sets, in terms of either the number or the dimension of individual data

elements” (Eick and Karr, 2002). Eick and Karr’s definition, however, deliberately avoids re-
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ferring to human performance, claiming that these aspects cannot be adequately quantified.

In some respect, this observation is correct, as it is difficult to quantify the value and type of

insight one can gain from looking at and interacting with visualization (North, 2006; Chang et

al., 2009). It is quite possible, however, to measure low-level aspects of human performance,

such as the time to complete a particular task and the accuracy of the outcome, so that we can

begin to understand the potential for visualizations to scale to larger datasets.

There are various ways to increasing the scalability of visualizations. One may use more

scalable visual metaphors and data aggregation methods (Shneiderman, 2008), utilize inter-

action and multi-scale navigation techniques to selectively show and hide information on de-

mand (Shneiderman, 1996; Keim and Schneidewind, 2005), break the data into multiple com-

posite views (Javed and Elmqvist, 2012), or use larger displays with more pixels so as to show

more data points (Reda et al., 2013b). Of course, one may also combine these approaches.

As the technology behind displays improve and their cost continues to decline, Large High-

Resolution displays (LHDs) are becoming an increasingly attractive option. Numerous studies

have explored the relationship between display size, resolution and human performance with

basic visual analysis tasks, including visual search, map navigation, and pattern perception.

Ball et al. explored the tradeoff between virtual navigation and physical navigation afforded

by LHDs. Their results demonstrate that users take significantly less time to perform map

navigation and visual search tasks, as the size and resolution of the display increases (Ball et

al., 2007). Furthermore, users preferred physical navigation (by walking up to and in front of
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the display to access information) over virtual virtual navigation (by panning the map, in this

study).

These results suggest that virtual navigation has a detrimental effect on performance time

in basic visualization tasks. Furthermore, they suggest that one is able to simply add more dis-

plays (possibly up to a certain extent) to improve the scalability of visualizations. However,

the precise reason for this improvement could not be identified. In a followup study, Ball and

North attempted to identify the reason for improved performance in LHD environments by iso-

lating two factors: the field of view, and the ability of users to acquire more information using

physical navigating (Ball and North, 2008). Their results indicated that the opportunity for ac-

quiring more information by physically navigating the display was more crucial to improving

performance, compared to the wide field of view afforded by LHDs. This study suggests the

need for both an adequate size and resolution in displays, so that users can physically navigate

the information space and acquire information with embodied actions as opposed to virtual

navigation. In that respect, context + focus instruments (see Figure 5), which are designed to

provide a high-resolution focal area embedded in a large but low-resolution display (Baudisch

et al., 2002), may be less useful in information visualization scenarios.

The question of what is the optimal display size and resolution remains unanswered (Sim-

mons, 2001). Ware has argued that the optimal display resolution is 4,000 x 4,000, as this num-

ber provides a correspondence between display pixels and ‘brain pixels’, with the latter being

determined by the density of photoreceptors in the retina (Ware, 2000). However, this argu-

ment does not consider the effects of physical navigation. Yost et al. conducted a pair of studies
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Figure 5. A context + focus instrument provides a high-resolution focal area that is embedded
in a large but low-resolution display. Such displays provide a less costly alternative to large
high-resolution displays, but could negatively impact performance in situations that require
frequent, high-fidelity access to data in the peripheral area, as this would essentially compel

users to perform repetitive virtual navigation. Picture copyright by Patrick Baudisch. Used in
accordance with the Creative Commons Attribution-ShareAlike 3.0 license.

to determine the effects of increasing the display’s resolution beyond the visual acuity of the

human eye, by using a large enough display that require users to walk up to the display in

order to see the full detail. (Yost and North, 2006; Yost et al., 2007). They found out that –again

for basic visualization tasks– the time needed to complete the task increases at a slower rate

compared to the increase in the size of the dataset, as long as the resolution of the display is

increased proportionally. They also observed continued performance gains, even when the
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display’s resolution exceeded the visual acuity of the human eye. Similar studies by Shupp et

al. demonstrated additional benefits to curving a LHD around the user (Shupp et al., 2009).

2.3.2 Space to support sense making

One of the main advantages of LHD environments is their ability to engage our spatial cog-

nition and proprioceptive capacities (Tan, 2004; Andrews et al., 2011). Humans cognition is a

fundamentally embodied phenomena that emerges from our interaction with the world. One

of the main resources we have evolved to leverage is space. Space provides us with a flexible

memory system that we can use to externalize our internal limited memory. Kirsh classifies

the myriad ways in which humans intelligently use space under three main categories: using

space to simplify choice by highlight the set of possible actions one can perform on external

objects, using space to simplify perception primarily by means of clustering, and using space

to save expensive internal computations by offloading these computations onto spatial opera-

tions (Kirsh, 1995). One of the fundamental features that make space such an efficient cognitive

resource is the ease with which we can access and manipulate external representations. We

can easily reach out to our immediate surroundings, access physical objects using eye move-

ments and head turns, and manipulate these external objects with our fine motor abilities. All

of these operations can be performed efficiently with little thought and effort, enabling us to

adapt and structure our spatial environments to help us accomplish complex tasks. In fact,

as Kirsh and Maglio point out, experts rely extensively on space, frequently recruiting spa-

tial resources throughout their mental activities. For instance, observations of Tetris players

demonstrated that expert players tend to rotate falling pieces more frequently compared to
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novices (Kirsh and Maglio, 1994). These non-pragmatic spatial operations saved expert play-

ers from exerting mental effort to rotate the pieces, relying instead of space as a computational

resource, ultimately improving the overall performance in the game.

Andrews et al. observed how both professional and novice intelligence analysts were able

to leverage the space and resolution afforded by a LHD in a scenario that involved the analysis

of large collections of text documents (Andrews et al., 2010). The study revealed qualitative

differences in strategy between participants who performed the task on a traditional desktop

display and those who utilized a LHD to conduct their analyses. Participants in the latter group

frequently opened a large number of documents and used the extra screen space, enabling them

to efficiently switch between documents with simple embodied actions (e.g., eye movements

and head turns). Andrews et al. also observed how participants spontaneously leveraged the

expansive display surface to organize information spatially into clusters. For instance, related

documents were clustered on different parts of the display, with some participants creating

more subtle arrangements (e.g., timelines reflecting chronological ordering of events in the

documents). Theses LHD-based arrangements can be considered schemas– high-level repre-

sentations that summarize the relevant information combine them with the analyst’s mental

model, so as to tie them together into a coherent narrative (Pirolli and Card, 2005). Andrews

et al. postulate that the main factor in enabling this form of space-based sense making lies in

the ability to access display pixels physically using embodied interactions, as opposed to using

virtual navigation techniques. In a follow up study, users who were given the same amount of
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virtual space while performing the same task on a conventional desktop display created fewer

structures compared to their counterparts who utilized a LHD (Andrews and North, 2013).

The above studies demonstrate the benefits of having an abundance of digital screen es-

tate, highlighting the fact that people are able to think of LHDs as inherently spatial environ-

ments that afford similar cognitive resources compared to real-world physical environments

(e.g. war rooms (Teasley et al., 2002)). Furthermore, analysis of user-created clusters revealed

that these clusters are organized semantically, indicating that users were able to project their

mental model onto the display. (Endert et al., 2012b). Building on these affordances, Endert

et al. introduced semantic interaction, a technique that leverages user-created spatial clusters

to steer and progressively adapt the underlying data model to the analyst’s mental model

throughout the visual analysis process (Endert et al., 2012a). By recording and analyzing the

user’s interaction with documents on a LHD, Endert et al. were able to infer some of the cog-

nitive operations users implied and use this knowledge to steer the computational processing

of data, effectively unifying information foraging and synthesis (Endert et al., 2011). Combin-

ing these concepts into an integrated tool, Fiaux et al. describe a visual analytics environment

for exploring large document corpora (Fiaux et al., 2013). The tool creates spatially-arranged

document clusters which are chained based on semantic similarity, allowing users to quickly

jump between documents based on topics.

2.4 Summary

The above line of research provides powerful examples and presents a compelling treat-

ment of how one could leverage the space and resolution afforded by LHD environments in
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complex analytical activities involving large quantities of digital information. However, the

above studies focused primarily on the analysis of text documents in scenarios that emphasized

the synthesis of information into one cohesive narrative, so as to model the task of intelligence

analyst. This research, on the other hand, focuses on exploratory visual analysis where the goal is

generally aimed at attaining breadth and diversity. We are particularly interested in the effects

of increasing the visual fidelity of visualizations on the articulation of hypotheses and insights.

Although it is reasonable to expect favorable results in exploratory visual analysis when us-

ing larger displays with more pixels, the perceptual and cognitive mechanisms employed as

well as corresponding user strategies are likely to be very distinct (Larkin and Simon, 1987),

compared to text analytic scenarios. Consequently, the appropriate design principles and guide-

lines for LHD-based visualization interfaces are likely to be distinctively unique. Such design

principles, however, are largely absent from the literature (Andrews et al., 2011). This lack of

knowledge has often led to designs that employ a ‘giant desktop’ metaphor, despite the nu-

merous noted usability issues (Czerwinski et al., 2003; Hutchings et al., 2004). Indeed, there is

evidence from prior studies to suggest that existing visualization and interaction techniques

will not simply scale up, when the size and resolution of the display is increased (Swami-

nathan and Sato, 1997; Rønne Jakobsen and Hornbæk, 2011; Jakobsen and Hornbæk, 2013).

While some of these studies also provide cautionary tales on the danger of flooding users with

too much information, we argue that it is possible to overcome some of these challenges by

providing appropriate cueing mechanisms that help users manage their attention and enable

them to focus on the relevant information without loosing context
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We believe that the coordinated multiple views (CMV) paradigm provides a good starting

point to scale up visualization interfaces from the desktop world to LHD environments. How-

ever, we need to re-examine some of the assumptions in this model and adapt it to this new

platform. In the next chapter, we reconsider the design space of CMV-based visualizations

and present visualization design patterns aimed at taking advantage of the expansive screen

and exquisite resolution afforded by LHDs while reducing the potential of inducing information

overload.



CHAPTER 3

DESIGN PATTERNS FOR LARGE HIGH-RESOLUTION DISPLAYS

Modern visualization practice is predicated on decades-old infrastructure. Small, low-

resolution computer monitors continue to be the principle technological components on which

we base our visualization design principles. However, in the last several years, we have seen

great advances in visualization infrastructure marked by the proliferation of new technolo-

gies, including novel sensing technologies (e.g., Microsoft Kinect), multi-touch devices, and

large high-resolution display (LHD) environments. Unfortunately, current generation of visu-

alization tools have not been designed to take advantage of such new infrastructure. In fact,

many existing visualization and interaction models were specifically conceived to work around

technological limitations. For instance, visualizations rely extensively on virtual navigation –

as epitomized by the overview first, zoom and filter, then details-on-demand mantra (Shneiderman,

1996)– to compensate for limitations in display resolution. Virtual navigation, however, can

be detrimental to user performance (Czerwinski et al., 2003; Ball and North, 2005). One alter-

native is to use coordinated multiple views (CMVs), which are commonly employed, but often

not leveraged to their full potential as such interfaces tend to quickly use up the limited screen

estate available in conventional displays.

This chapter examines some of the commonly used visualization design patterns, and an-

alyzes their expected performance and adaptability to LHDs. Our goal is to improve the scal-

ability of these designs, by leveraging the expanded screen estate and resolution afforded by
37
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LHDs, while providing additional perceptual cues to reduce the potential of inducing informa-

tion overload. We focus on the task of comparative visual analysis, as it represents a commonly

recurring theme in visual analytics. We base our discussion on Ware’s Visual Thinking Design

Patterns (VTDP), which represents a collection of best-in-class designs that have been identified

by the visualization community after years of research (Ware et al., 2013).

3.1 Scope

The design space of interactive visualizations is enormous. Covering the entire design

space would not be feasible in a single dissertation. Therefore, this dissertation will focus on

one task subset, namely comparative visual analysis.

3.1.1 Comparative visual analysis

Comparison is one of the primary elemental operations that can benefit from visual rep-

resentations (Amar et al., 2005; Kehrer et al., 2013). Many complex analytical tasks are built

around comparison, including the analysis of ensemble, spatio-temporal, and genomic data.

Moreover, visual comparison represents a cognitively demanding task that entails the recogni-

tion and conceptual reconstruction of relationships that implicitly exist among a large number

of data items. As the size and complexity of datasets grow, the number of possible patterns

and relationships grows at an even faster rate. While data mining and machine learning tech-

niques can be used to automatically classify large collections of objects into separate groups,

users often find it difficult to interpret and understand the visual and conceptual basis for such

classifications.
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Numerous visualization techniques have been designed to facilitate the comparison of spe-

cific types of information, including graphs (Alper et al., 2013), rankings (Behrisch et al., 2013),

and genomic sequences (Meyer et al., 2009). However, in this research we shall focus on generic

visualization designs that can be used to support comparison in a data-type agnostic manner.

According to Gleicher et al., there are three primary methods for supporting comparisons in

visual representations: juxtaposition, superimposition, and explicit encoding of differences (Gleicher

et al., 2011). We illustrate these three basic approaches in Figure 6.

Juxtaposition Superimposition Explicit encoding 
of differences

Figure 6. Two node-link diagrams can be compared using one of three primary visual
comparison methods:juxtaposition, superimposition, and explicit encoding of differences. Adapted

from (Gleicher et al., 2011).

Explicit encoding of differences provides a powerful way of highlighting similarities and

differences between a set of objects. However, this method is often difficult to use in practice

and can potentially require the use of new visual metaphors altogether. Superimposition of

is often quite effective at highlighting visual differences, but could on the other hand lead to
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visual clutter, particularity when the objects of comparison are already complex. Among the

three, juxtaposition is arguably the most straightforward method involving the placement of

two or more views side-by-side, intuitively mimicking the way we compare physical artifacts.

Moreover, juxtaposition provides a scalable way of leveraging the expansive screen estate and

pixel density in LHD environments. One drawback of juxtaposition is that it compels the user

to manually resolve the differences and similarities by visually scanning the objects. However,

in many domains, such as astronomy and ecology, users frequently express their desire to see

the objects of comparison side-by-side and visually ‘eye ball’ the variations instead of relying

on more simplified representations.

Rather than rely on domain-specific techniques, we shall focus our analysis on designs that

involve the juxtaposition of high-resolution coordinated views, as such designs are likely to be

applicable to a wide range of domains and problems. We couple these designs with interactions

that provide users with visual cues to help them manage their attention. In doing so, we would

be scaling up the long standing model of coordinated multiple views to LHD environments in a

manner that avoids inducing information overload.

3.2 Visual Thinking Design Patterns

Pattern language originated as an architectural concept developed by Christopher Alexander

in 1977 (Alexander et al., 1977). It centers on capturing architectural design ideas as archetypal

and reusable descriptions to aid the design of cities and buildings. This concept inspired the

notion of design patterns developed in the early 90s to codify commonly occurring software

design problems and approaches to their solution (Gamma et al., 1993). Today, design patterns
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are used in the development of all major software systems and have greatly influenced the

design of programming languages (such as Java) and programming toolkits (such as Qt).

Visualization experts have also began to identify a number of recurring designs that are

applicable in different domains and analysis scenarios. For instance, Visual Thinking Design

Patterns (VTDP) is a concept developed by Colin Ware as a design framework that categorizes

best-in-class in visualization designs (Ware et al., 2013). In addition to prescribing a set of ef-

fective designs, VTDP also articulate the cognitive and perpetual operations a viewer employs

to reason about data depicted in a visualization.

The advantage of basing our analysis on VTDPs is that we are starting with known designs

that are thought to exemplify best practices, which have been identified by the visualization

community after years of research. The downside is that we could potentially miss entirely new

design patterns that are unique to LHD platforms. Nevertheless, given the relative novelty of

LHDs and our limited understanding of their affordances, it is reasonable to start with the

existing design space and see how it can be adapted to this new platform.

3.2.1 Components of a VTDP

Each VTDP encompasses one or more cognitive tasks. It also describes a visual form that

can help accomplish the said tasks. Some also include a possible set of interactions that repre-

sent epistemic actions (Kirsh and Maglio, 1994), such as clicking on an object to see more detail.

Epistemic actions represent actions that a user takes to change the state of the visualization

with the goal of acquiring additional information.
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Taken together, the components of a VTDP describe a common design for solving recurring

visual analytic problems in a domain-independent fashion. This description is decoupled from

the technology so as to be as generic as possible. However, it is possible to ask the following

question: given a particular VTDP, what benefits and drawbacks can we expect if we were to

apply the prescribed design to render more data elements using a larger display with a higher

number of pixels? We shall therefore look at some of the VTDP identified by Ware et al. and

analyze the potential gains and costs that can be expected when the visual layout is ‘stretched’

to a big display. By stretch we imply rendering the visualization to take advantage of the extra

resolution afforded by a LHD, while still being able to visually resolve individual glyphs (by

a human eye with 20/20 vision). Furthermore, we shall propose a query-by-example interaction

technique that can be used to selectively highlight features of interest in a perceptually salient

manner.

3.2.2 VTDPs for comparative visual analysis

Table I lists three of Ware et al’s VTPDs along with a brief description of each patterns. The

order of listing starts from low-level patterns which rely mostly on perceptual processing to

high-level design patterns that apply to cognitive tasks. We discuss these VTDPs in the rest of

this section.

3.2.2.1 Visual query

The benefits of using LHDs to improve performance in basic visualization tasks has been

established in numerous studies (Ball et al., 2007; Yost et al., 2007; Shupp et al., 2009). Com-

pared to a traditional desktop display, a larger number of data points can be simultaneously
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TABLE I

A subset of Ware’s Visual Thinking Design Patterns encompassing design patterns that are
applicable in comparative visual analysis scenarios.

VTDP Description

Visual query
Visual queries represent the most basic operation one can perform
with a visualization, by scanning the display for a particular vi-
sual pattern. For instance, a viewer scans a weather chart looking
of lightening symbols to identify locations of thunderstorms.

Pattern comparison in
large information
spaces

A common problem in visualization is to compare two or more
visual objects of varying complexity. The user executes an epis-
temic action to locate the first objects (by panning and zooming,
for instance), retaining a subset of the object in his/her visual
working memory. The user then executes a second epistemic ac-
tion to locate a second object, comparing the contents of the work-
ing memory to it. The sequence is repeated until the comparison
is complete.

Seed and grow

This design pattern can be employed when the information space
is too large or complex that a meaningful overview cannot be ob-
tained from one view. Starting with a particular piece of infor-
mation, the user expands laterally, exploring related elements by
following a series of links or analysis states. For instance, explor-
ing a social network by following the chain of links starting from
a known contact.
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visualized. However, the time needed to execute a visual query is dependent on the saliency

of the target pattern. When the target pattern is pre-attentively distinguishable based on at

least one basic visual feature such as color (Ware, 2012), the search can proceed in parallel and

the search time is significantly reduced. Although we would expect a serial search to take a

significantly longer time on a LHD due to the cost of executing physical movements, finding

perceptually salient targets can be generally sped by up to 30% (Ruddle et al., 2013). For exam-

ple, finding the locations marked by red triangles across the map in Figure 7 is generally faster

when a LHD is used in place of a conventional display with a pan and zoom interface.

Figure 7. Visually querying for the red triangles can be up to 30% faster on a LHD (right)
compared to a conventional desktop display with a pan and zoom interface (left). The

improved performance is conferred by the perceptual saliency of the target and the ability to
utilize physical navigation in place of virtual navigation.
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3.2.2.2 Pattern comparison in large information spaces

A LHD enables more views to be juxtaposed side-by-side, allowing a larger set of objects

to be compared. In this case, users can move their attention across different objects, with epis-

temic actions reduced to simple embodied actions, such as eye movements and head turns.

This eliminates the need to temporally switch between views and reduces cost of comparing

complex objects that cannot be easily held in the visual working memory (Plumlee and Ware,

2006). Figure 8 illustrates an application of this design pattern to visually compare brain scans

from multiple patients.

Figure 8. Comparative visual analysis of brain scans from multiple patients. The expansive
screen estate and resolution afforded by the LHD allows for the juxtaposition of a large

number of high-resolution scans. Consequently, comparison between the scans can be done
in-place without disrupting the layout. A brain prop allows the user to control the orientation

of the scan. Courtesy of the WILD project (Beaudouin-Lafon et al., 2012). Used with
permission.
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There is potential to overload users with too many views, making visual comparison more

difficult. To reduce the chance of inducing an information overload phenomenon, the visual-

ization should make it easier for users to efficiently move their attention among the objects.

This can be done by opting for structured layout that can be navigated predictably, provid-

ing visual landmarks, and/or adding interactions that can serve as visual cuing mechanisms

by enabling users to selectively and interactively highlight patterns of interest. For instance,

a visual query-by-example paintbrush can be used to brush a pattern of interest in one view,

and automatically see instances of that pattern highlighted in other views using a perceptu-

ally salient encode (see Figure 9 for an example). The user can then efficiently attend to these

features using the visual query design pattern.

Figure 9. A visual query-by-example technique can be used to simplify the comparison of
complex objects. A paintbrush tool enables the user to select a visual pattern of interest in one

view (top right corner), causing the visualization tool to automatically extract instances of
similar patterns in other views and highlight them with a perceptually salient encode.
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ViewA1
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Figure 10. Traditionally, a visualization environment maintains a single analytical state
representing one exploratory branch with all views tightly coordinated (left). However, it is

beneficial to allow users to maintain separate analytical states and interact with them in
parallel. One way to achieve this is to provide multiple groups of loosely coordinated views

(right). This paradigm could in turn enable users to develop and grow parallel exploratory
branches, benefiting the breadth of the exploratory activity.

3.2.2.3 Seed and grow

Visual exploration can be seen as an instance of the seed and grow design pattern. The user

starts with a particular view and progressively manipulates the visualization tool to affect the

visual representations and navigate through different projections of the data. At any point in

time, the visualization tool encodes not only a particular projection of the data, but also en-

capsulate the current analysis state (Jankun-Kelly et al., 2007). On conventional displays, the

exploratory activity typically assumes a sequential nature as there is usually enough screen
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space to show a single analytical state at a time, which forces a sequentialization of the ex-

ploration activity, restricting it to a single trajectory. With an LHD environment on the other

hand, a visualization tool can potentially show multiple parallel analytical states at a time, by

providing screen estate to support this activity. This is illustrated in Figure 10.

3.3 Summary

This chapter addresses RQ3 with a set of LHD-based Visual Thinking Design Patterns

(VTDP). The three VTDPs described above were selected to provide a vertically integrated frame-

work for designing exploratory visualizations aimed at supporting tasks involving the com-

parative analysis of large, homogeneous information spaces. Our adaptations of these three

VTDPs should be thought of as broad principles that can guide the design towards perceptu-

ally and cognitively efficient visual interfaces for LHDs. As Ware contends, these VTDPs do

not represents reusable modules as any modularization would necessarily restrict their appli-

cation to a particular domain or problem.

In the following chapter, we present the first of our two studies that aim to evaluate the ef-

fects of using LHD environments within the context of an exploratory visual analysis scenario.



CHAPTER 4

VISUAL ANALYSIS OF ENSEMBLES WITH LARGE HIGH-RESOLUTION

DISPLAYS: A CASE STUDY

Large high-resolution display (LHD) environments have the potential to provide data sci-

entists and researchers with long-needed technological support to enable them to visually ex-

plore and make sense of large-scale datasets. Based on theories of distributed cognition and

an analysis of the cognitive costs involved in interacting with visualizations, we argued that

LHDs can potentially affect user analytic behavior and improve the outcome of the analytic

process.

This chapter presents an exploratory study of an LHD-based visual analysis environment

designed to support the comparative analysis of large ensemble datasets. We describe and

present the results of a user study we conducted to understand how a domain expert employs

the environment to explore a complex real-world dataset in the domain of ecology and behav-

ioral biology. This case study contributes a qualitative understanding of the effects of increas-

ing the physical size and resolution of the visualization interface on user analytic behavior. It

also provides preliminary evaluation of two design patterns presented in the previous chapter.

We motivate the use case, describe the design of the visualization environment, outline the

methodology of this study, and lastly present and discuss our observations.

49
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4.1 Scenario

To understand the navigational strategy and decision-making processes of animals, ecol-

ogists track and analyze their movement patterns. However, biological organisms typically

exhibit stochastic, locally scoped behavioral responses that are difficult to characterize on a

case-by-case basis. Therefore, ecologists resort to collecting large sample sets of animal move-

ment trajectories under a variety of conditions in an attempt to tease out general behavioral re-

sponses. Due to the large number of plausible hypotheses that might explicate an observed be-

havioral pattern, ecologists need a scalable and efficient way of exploring these hypotheses and

generalizing spatio-temporal movement patterns to theories. However, the sheer number of

trajectories collected during experimentation makes the analysis difficult and time-consuming

on conventional displays. This scenario thus provides a good use case to study the affordances

of LHD environments and their impact on user behavior and insight formation within the con-

text of an exploratory visual analysis task.

4.1.1 Dataset

Our dataset comprised approximately 500 trajectories, which represent the movement pat-

terns of Seed harvester ants (Messor cephalotes) under a variety of experimental conditions. The

trajectories were obtained by tracking the movement of ants in the field at approximately 3mm

spatial resolution and a temporal resolution of 30 fixations per second. Each trajectory rep-

resents the movement of a single ant, which has been captured, taken away from its colony,

and placed on the center of an experimental arena to record its behavioral response in a novel
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landscape (see Figure 11). Trajectories range in duration from 10 seconds to approximately 3

minutes.

Release point
Seed 

harvester ant

Trajectory

Figure 11. A video freeze-frame from one of the experiments used to generate the Seed
harvester ants trajectory dataset. Ants were captured, one by one, and released in the middle
of an experimental arena (a rectangular plywood sheet). This posed a navigational problem
to the ant in a visually novel area, prompting it to attempt to return to its colony using the

available environmental cues. The movement of the ant was analyzed and its trajectory was
extracted using a semi-automated computer vision algorithm. The extracted trajectory for

this particular instance is superimposed in purple for illustration.

The goal of the behavioral experiments was to understand the navigational strategy em-

ployed by the ants, and investigate the possibility an adaptive decision-making mechanism

employed by ants to select an appropriate strategy depending on context (Offord et al., 2013).

Trajectories were categorized based on the state of the ant at the time of capture. Some of the

variables included: position of the ant at time of capture relative to the colony’s trail network,
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initial heading, journey direction (heading away from or returning to the colony’s nest), and

whether the ant was carrying a seed (i.e., food item).

4.2 Visual analysis environment

The design of the visualization environments employed two of the design patterns pre-

sented in chapter 3, namely, visual query and information comparison in large information spaces

patterns. We describe the LHD apparatus employed in the study, describe the visual encoding

of individual trajectories, and then elaborate on the visual layout and the interactive features

designed into the visualization environment.

4.2.1 Apparatus

We used the Cyber-Commons environment to visualize the Seed harvester ants dataset. The

Cyber-Commons consisted of thin-bezel, tiled display wall consisting of 18 stereo-capable LCD

panels that are arranged in 6 columns and 3 rows, at a physical size of 7 x 3 meters (see

Figure 12). The display is also capable of showing stereoscopic 3D content using a micro-

polarization technology, which polarizes each pixel row in an alternative direction. The Cyber-

Commons display provided a resolution of 8,192 x 2,304 (approximately 19 Megapixels). How-

ever, due to technical limitations in the graphics architecture at the time, only two thirds of the

total display surface was utilized in order to maintain an interactive frame-rate, at a total res-

olution of 8,192 x 1,536 (about 12.5 Megapixels).

4.2.2 Visual encoding

We utilized the 3D capability of the Cyber-Commons display to encode the temporality of

trajectories. Each trajectory was rendered in stereoscopic 3D, with the XY plane (the display
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Figure 12. Cyber-Commons is a thin-bezel, tiled, high-resolution LCD wall providing a total
resolution of approximately 19 Megapixels. The panels are equipped with a

micro-polarization layer, enabling 3D stereoscopic content to be viewed with polarized 3D
glasses.

surface) encoding the movement of ant on the ground, and the Z+ axis (away from display)

encoding time. The extents of the view was mapped to the borders of the experimental arena.

To generate a stereo-pair, we applied a sheer transformation along the X-axis (negative sheer for

the left eye image, positive for the right), which produced in an orthographic 3D projection that

does not suffer from perspective distortion. Figure 13 illustrates this concept. The trajectories

appear as cylinders sprouting from the display surface and extending out to ‘float’ in front of

the display.

The use of stereoscopic depth cues as an additional perceptual channel made the temporal-

ity of ant movement more evident. This was of paramount importance to our participant who
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was interested in understanding the insects’ decision-making process at the micro-level. Since

our data had relatively high temporal resolution with each trajectory containing 30 fixations

per second, we were able to utilize the expansive horizontal space of the Cyber-Commons dis-

play to depict trajectories at a high temporal resolution. This was achieved by exaggerating

the amount of stereo disparity and increasing the shear coefficient, which caused an increased

horizontal divergence in the stereo pair. The increased divergence resulted in added depth

perception, which helped reveal additional temporal details in the trajectory. To avoid exces-

sive eyestrain,however, we provided a slider to allow the user to control the maximum stereo

disparity (see section 4.2.5)

Screen surface

Time
Pe
rce
ive
d

tra
jec
tor
y

Max stereo disparity at t=N

Left 
eye

Right 
eye

Zero disparity 
at t=0

Figure 13. Visual encoding of an ant trajectory, with stereoscopic depth cues to convey time.
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4.2.3 View layout

We visualize ant trajectories in a grid-based, small-multiples layout (Tufte, 2001). This lay-

out enabled the participant to divide the screen estate into configurable ‘bins’ that can be used

to group related trajectories. For example, one bin can show trajectories of ants captured east

of the colony’s main foraging trail, while a second bin might contain ants captured on the

trail while carrying a seed. Figure 14 shows the overall visualization running on the Cyber-

Commons display. The contents of the groups can also be changed independently, allowing

the user to bring in additional information without disrupting the entire layout.

The number of trajectories in the grid can also be varied interactively. The user can switch

between a number of configurations by pressing a shortcut number on the keypad, such as

1 for a 15 x 4 layout, 2 for a 24 x 6 layout, and 3 for a 36 x 12 layout. These configurations

were chosen to avoid trajectory-bezel overlap, as we wanted to make use of bezels as natural

dividers.

4.2.4 Interactive features

To facilitate the comparative analysis task, we provided two interactive features to enable

the user to explore hypotheses about ant behavior, and quickly determine whether those hy-

potheses are supported by the data. First, a query-by-example brush allows the user to brush the

background of a single trajectory, causing the visualization to highlight motion segments in

all other trajectories when the insect moves over the brushed area. Second, a temporal filter lets

the user specify a filtering time window, causing the visualization to display trajectory seg-
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Figure 14. Visualization of ant trajectories on the emphCyber-Commons wall in a 2D layout
with stereoscopic depth cues. Trajectories can be grouped into ‘bins’ which are given distinct

background colors to make them visually discernible. In this figure, five distinct trajectory
groups are juxtaposed corresponding to ants that were captured on the colony’s main trail

(blue background), west (red), east (yellow), north (gray), and south (green) of the trail.
Copyright © 2012 IEEE. Used with permission.

ments corresponding to insect motion within the specified duration only. We describe these

two features in more detail.

4.2.4.1 Query-by-example brush

The query-by-example brush allowed the user to highlight a particular spatial pattern of

interest in one view, and have the visualization automatically highlight similar instances in

the rest of the layout with a perpetually salient visual encode. In our application, the user can
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brush the background of a single trajectory using a paintbrush tool. This causes segments in

all currently displayed trajectories to be highlighted when the insect moved over a brushed

area. For example, the researcher could brush the west (left) side of a trajectory to highlight all

instances where the ant exited the experimental arena from the west. Figure 15 illustrates this

feature.

When we designed this feature, we envisioned that it would be helpful when looking at

pair-wise similarities between a small collection of trajectories. However, the study showed

that this simple feature played a far more important role: it enabled the participant to visu-

ally cue the trajectory data and perform fast visual queries on the entire layout, owing to the

perceptually silent visual encode.

4.2.4.2 Temporal filter

The temporal filter allowed the user to interactively specify a time window of interest, caus-

ing the visualization to filter out movement segments that occurred outside the specified win-

dow. For example, the user can choose to display the first 30 seconds of the experiment. The

time window can be selected using a range slider (see Figure 15).

4.2.5 Ergonomics

Prolonged viewing of stereoscopic images has been known to cause discomfort for some

viewers, mainly due to excessive binocular parallax and accommodation-convergence con-

flict (Lambooij et al., 2007). To reduce the chance of inducing fatigue, we included a set of

controls in the visualization to modify the 3D view to allow for comfortable, prolonged view-

ing. A slider enables the user to push trajectories so that they lie in front of the display surface,
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Figure 15. The coordinated query-by-example brush (top right corner) along with the
temporal filter (top left) can be used to visually specify and test for spatio-temporal patterns

of interest across a large group of trajectories. In this example, the brush is being used to
query for trajectories bearing east-side exits using a red highlight. A highlight in the majority

of trajectories indicate somewhat uniform exit points suggesting a consistent navigational
strategy employed by ants in this particular group.

behind the display surface, or somewhere in between. Additionally, the time-scale can be de-

exaggerated using a second slider. Using these two sliders, the user can control the maximum

amount of binocular parallax and keep it within a comfortable range while maintaining suffi-

cient depth cues.

4.3 Method

We had two general goals in this exploratory study: first, we wanted to get a sense of how a

user might utilize a visualization tool built around the design patterns presented in the previ-
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ous chapter to explore a large and complex dataset. Secondly, we wanted to understand how

the user adapts his/her analytic strategy to take advantage of an LHD-based visualization en-

vironment. Rather than attempting a full comparative experiment at this stage, we decided

that we could learn more by closely observing one expert user who had a real-world dataset

and a curiosity to explore it.

4.3.1 Participant

Our participant for this study was a doctoral student in behavioral ecology and evolution-

ary biology, with research interests in the collective behavior of insects. The participant was

the principle investigator of the Seed harvester ant projector (described below), and had ex-

tensive background on the behavior of socially foraging insects. For the reasons mentioned in

section 4.1, the analysis of insect behavior is a particularly challenging problem that can benefit

from new exploratory analysis tools.

4.3.2 Procedures

The participant sat approximately 3 meters away from the display and interacted with the

visualization using a mouse and a keyboard. At the beginning of the study, the participant was

given a brief training on how to use the visualization environment. After that, the participant

was given approximately an hour to freely explore and analyze the Seed harvester ants dataset.

The subject wore a pair of lightweight polarized 3D glasses (identical to the typical theatrical 3D

movie glasses) during the entire duration of the study to resolve the 3D stereoscopic encoding

employed in the visualization (see section 4.2.2). We instructed the participant to think aloud

during the activity and video and audio-recorded the session.
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4.3.3 Analysis

We used a two-pass coding scheme to analyze the data with emphasis on the verbal proto-

col. The first pass focused on capturing the participant’s low-level interaction with the visual-

ization environment as well as tagging any insights, questions, or hypotheses uttered by her.

The second pass focused on characterizing the participant’s higher-level strategy and the flow

of the exploratory activity.

4.4 Results

We describe our general observations on how the participant utilized with the environment

and the type of interactions performed during the study. We then examine the flow of the

analytic activity and analyze the participant’s strategy.

4.4.1 Interaction pattern

The participant started her analysis by first attempting to juxtapose and organize trajectory

groups on the large display in a meaningful way. Often, the display was divided into 2–5

groups with each group displaying trajectories of ants captured under different but related

experimental conditions. Once the trajectory group were configured, the participant spent

most of her time investigating potential relationships between the visible groups before moving

on to investigate different groups.

To get a sense of the distribution and types of interaction initiated by the participant dur-

ing the study, we broadly categorize them into two categories: layout-preserving interactions,

which comprise actions that do not cause significant layout changes. This category covers two

interactive features in our visualization: the query-by-example brush and the temporal filter.
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TABLE II

Breakdown of the time spent interacting with the visualization environment.

Type of interaction Time spent interacting

Query-by-example brush and tem-
poral filter (layout-preserving) 57 min (74%)

Workspace management (layout-
changing) 20 min (26%)

The second category comprises layout-changing interactions which cause significant changes to

the visual layout, potentially requiring the user to rebuild a mental map of the visualization.

In our visualization, this category refers workspace management actions, such as organizing the

trajectory groups on the display, by creating and bringing in additional groups of trajectories,

removing existing ones, or adjusting the number of trajectories displayed in the small-multiples

layout.

Table II shows the time spent by the participant interacting with the visualization environ-

ment broken-down by the two categorizes defined above. From this table, can see that the

majority of interactions comprised layout-preserving actions (i.e., query-by-example brushing

and temporal-filtering). This represents a somewhat expected interaction pattern, as we would

anticipate a reduction in the frequency of virtual navigation, when a LHD is used in place of a

conventional display (Ball and North, 2005). The pattern in Table II also serves to confirms our
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general observation that the bulk of the activity was done using layout-preserving actions with-

out the need to perform non-essential actions to explicitly manage the information contents of

the display (by frequently switching between different trajectory groups,), as is typically the

case with a conventional low-resolution display.

Overall, the participant was able to cover 416 out of 496 trajectories in the original dataset

(approximately 84% of the data) during the exploratory activity. These trajectories were visible

at least once during the study, though we cannot tell if the participant looked closely at each

one. We note, however, that a quick glance over trajectories is sufficient when attempting to

identify correlations or variations between multiple trajectory groups, if the query-by-example

brush is used to highlight patterns of interest.

4.4.2 Transition diagram

To get a high-level understanding of the participant’s exploratory strategy, we created a

state transition diagram to characterize the flow between the various components of the ana-

lytic activity. Crucially, this diagram captured key mental states, which were identified from

the verbal protocol during the second coding pass, as well as transitions between these states.

This technique was inspired by the work of Ratwani et al. who applied it to study the cogni-

tive processes involved in qualitative reasoning with the aid of graphs (Ratwani et al., 2008).

However, in addition to identifying relevant cognitive states, we also included epistemic states.

Recall that epistemic actions represent actions that a user takes to change the state of the visu-

alization with the goal of acquiring additional information (Ware et al., 2013).
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Figure 16. A state transition diagram illustrating key states in the participant’s analytic
activity. Three main mental states were identified from the verbal protocol: Observing outliers,
Hypothesis formulation, and Decision making. Additionally two epistemic states were included:

Workspace management and Brushing and linking. The weights of the arrows indicate how
many times a transition has occurred between two states during the activity.

We identified three principle mental states from the verbal protocol: Observing outliers, Hy-

pothesis formulation, and Decision making, which represented instances when the participant

made a clear decision to accept or reject a particular hypothesis. In addition to the three

cognitive states, two epistemic states were included: Workspace management reflected layout-

changing actions induced when the participant would bring in new trajectory groups or rear-

range existing trajectories, and Brushing-and-linking which reflected layout-preserving actions
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invoked using the query-by-example brush and the temporal filter.Figure 16 illustrate the re-

sulting transition diagram.

The most salient features in Figure 16 is the entwinement of Brushing and linking and Hy-

pothesis formulation, which is reflected by frequent transitions between these two states. In

comparison, we see fewer transition to and from the Workspace management state. Generally, the

transition diagram suggests that the activity was primarily driven by hypothesis formulation,

reflecting a top-down approach to the exploratory task (i.e., from mental model to observa-

tions).

4.4.3 User strategy

The main effect we observed for the use of the Cyber-Commons display manifests in the

participant’s reliance on layout-preserving interactions to carry out the bulk of the exploratory

process. The most salient aspect of this process was the use of the query-by-example brush and

the temporal filter, in concert, as a mechanisms to visually query a large collection of trajecto-

ries. Often, such queries were formulated and structured as visual tests to evaluate a particular

hypothesis. For example, to verify the whether off-trail ants employed the sun as a celestial

compass to orient themselves back to the trail, the participant isolated trajectories of ants cap-

tured east of the trail in one group and proceeded to brush the left side of one of the trajectories

to query for west exit points. Upon seeing a red highlight in the majority of trajectories in that

group, the participant concluded that her hypotheses is supported (see Figure 15). Moreover,

the same hypothesis was reinforced upon applying the same visual query to on-trail ants, and
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noticing that this group exhibited entirely different exit points that are non-consistent with

their off-trail counterparts.

One key advantage to using a LHD manifests in how visual queries were operationalized

during the exploratory activity. Rather than making pair-wise comparisons between individ-

ual trajectories, the participant appeared to visually compare sets of trajectories at a time. For

instance, off-trail trajectories were compared against trajectories of on-trail ants. This form of

comparison did not necessarily relate to any particular item, but rather seem to be driven by

collective difference between the two sets (though, in few instance, individual outliers were

noted and were investigated individually). Importantly, this form of set-level comparison was

possible as a consequence of two factors: the ability to simultaneously see two sets of trajecto-

ries and the ability to perceptually highlight the relevant visual attributes (using the query-by-

example brush) so that the two sets can be compared with relative ease.

Another observation we made during the study relates to how new hypotheses were de-

rived by refining an existing hypothesis. Reframing of existing hypotheses often occurred

when a particular visual query could not account for an observed spatio-temporal pattern

(hence partially invalidating the current hypothesis). For instance, upon seeing that a collec-

tion of on-trail ants did not demonstrate a preferential exit point exhibited by off-trail ants, the

participant hypothesized that the former group would be confused by the sudden disappear-

ance of pheromone cues normally found on the trail, and thus would take longer time before

deciding on their next strategy. She then proceeded to brush the center of a trajectory (corre-

sponding to the point of release) with a green color, expecting “off-trail ants [to] start green and
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turn black faster [than their on-trail counterparts] because they know where they’re going.”

This strategy of refining existing hypotheses, based on how different trajectory groups reacted

to a visual query, appears to be an important factor in driving the exploratory activity and

expanding the search towards new hypotheses. Once a relationship is recognized and noted,

the participant seemed to be eager to test for a new visual pattern that offered a somewhat

complimentary narrative.

A further point to note here is the crucial role of stereoscopic depth cues in revealing com-

plex spatio-temporal behavioral patterns. One particularly interesting example came out when

the participant was attempting to investigate whether ants that have dropped their seed dur-

ing the capture process spent more time in the center searching for the seed. To test for this

complex pattern, the participant brushed the center of the experimental arena with green and

set the temporal filter to show the beginning of the experiment. Her intuition became stronger

upon seeing green segments that were roughly perpendicular to the display surface, which in-

dicated little movement. This ability to see temporal pattern unraveled in space appeared to be

crucial in this scenario. The participant later commented that, owing to the 3D stereoscopic en-

coding, she was able to perceive the periodicity of ant behavior not only on a single-trajectory

basis, but also on a larger scale.

4.5 Discussion

Overall, the experience of the participant was overwhelmingly positive. Originally, the

participant relied on Matlab as her primary analysis platform, which allowed her to look at few

trajectories at a time. Our LHD-based visualization environment, on the other hand, appeared
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to be more helpful to the participant in carrying our a large-scale comparative analysis, making

it “easier to think visually than in Matlab”. Results of the study seem to support the usefulness

of the design patterns described in chapter 3, particularly the comparison in large information

spaces pattern and the query-by-example brush. Yet, there is one point that is worthy of further

discussion.

4.5.1 Exploring the hypothesis space

The impact of being able to perform large-scale visual comparisons in a cognitively effi-

cient manner can be understood from looking at the cycle between Brushing and linking and

Hypothesis formulation in Figure 16. The frequent transitions between these two states sug-

gest a close association between the ability to visually query for set-level relationships and

the conceptualization of new hypotheses. Interestingly, these set-level visual queries directly

expressed domain questions, enabling the participant to evaluate hypotheses with primarily

perceptual operations. Importantly, this form of hypothesis validation did not involve cycling

back-and-forth between a series of temporally-separated views, as is typical on a conventional

display, but rather involved quick glancing over trajectories that are already visible on the

Cyber-Commons display. This cognitive efficiency appeared to encourage the participant to

formulate and explore multiple hypotheses in succession, within a short time. In fact, the par-

ticipant spent most of the time contemplating a variety of theories and scenarios and evaluating

them with quick visual queries. Although such visual queries may not be enough to quantita-

tively substantiate a particular hypothesis, they nevertheless provided a high-fidelity, low-cost
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data assessment scheme, enabling the participant to explore a larger hypothesis space (Klahr and

Dunbar, 1988).

The utility of visual queries in this application lies in design of the query-by-example tool,

which provided a flexible visual mechanisms for specifying and highlighting complex spatio-

temporal patterns with a perceptually salient encode. However, this utility is also derived

from the exquisite resolution provided by the Cyber-Commons display, which made it feasible

to visually highlight arbitrary patterns across a large number of trajectories, effectively turning

them into visually-cued information sets that can be efficiently compared using a combination

of visual scans, eye movements, and head turns. On conventional displays, performing this

form of set-level comparison would typically require a significant amount view switching to

see different objects and/or different parts of the information. In contrast, with a LHD such

as the Cyber-Commons, comparing complex objects can be mostly performed in-place, using

layout-preserving interactions and embodied physical actions.

The above distinction has important implications, as it heralds fundamental changes to the

cost structure of visual exploration. Preservation of the visual layout helps users maintain

their mental map (Purchase et al., 2007; Alper et al., 2014), effectively reducing (or perhaps even

eliminating) the view-change costs (see section 2.2.3.2). This reduction in cognitive costs appears

to have encouraged our participant to explore a wide range of relationships and follow up on

multiple hypotheses. Although we did not find evidence that the participant was actively

considering competing theories, our observations indicate that she was able to formulate and
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explore hypotheses that offered complementary accounts, which served to refine her beliefs

during the exploratory process.

Looking at the comments of the participant after the study, we also find evidence that our

LHD-based visualization seems to have broadened her understanding of the problem. For

instance, the participant recounted that the LHD-based visualization represented “the only

way we can appreciate on a big scale –we are not taking about individual trajectories here–

things like the periodicity of ant behavior, the patches of color [resulting from the application of

query-by-example brush], and effects [of spatial context] on navigation and decision making”.

4.6 Conclusions and study limitations

This case study directly addresses RQ1. It provides qualitative evidence that the physical

properties of the visualization interface play an indirect role in modulating the visual explo-

ration activity, potentially affecting the analytic behavior of users in important ways. A larger

visualization interface with more pixels allows one to see a larger portion of the information

space at once, and may thus improve the diversity of relationships one can visually observe.

These low-level affordances may in turn encourage users to explore their data more broadly,

and invest more time in formulating and testing complimentary hypotheses and narratives

during the analysis.

This case study also addresses RQ3, providing preliminary evaluation of the visual query

and comparison in large information spaces design patterns. In particular, the study provides a

compelling example that demonstrate the effectiveness of the query-by-example brush in facili-

tating the comparative analysis of large-scale ensemble datasets in LHD environments.
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There are two main limitations in this study. The first obvious limitation is that our anal-

ysis is based on data collected from a single participant. Since our participant was a domain

expert acting as the principle investigator for the Seed harvester ants project, it was practically

difficult to find and recruit other potential participants with similar background and experi-

ence. This limits our ability to draw broad conclusions from this study. On the one hand, we

are able to provide evidence on the usefulness of the visualization environment presented here

for tasks involving the comparative analysis of ensemble data. On the other hand, it is difficult

to generalize the results of the study beyond this particular application domain. The second

limitation lies in the lack of a baseline condition that would have allowed us to measure the

relative effects of increasing the resolution and size of the display on the exploratory process.

Although our participant had used Matlab extensively (on a conventional laptop display) to

visualize and compare trajectories prior to our study, we do not consider the two conditions

to be comparable, as they provide entirely different sets of interactions.

Following up on results from this exploratory case study, the next chapter presents an ex-

perimental study that addresses theses limitations, within the context of a different application

domain.



CHAPTER 5

EFFECTS OF INCREASING THE DISPLAY SIZE AND RESOLUTION ON USER

BEHAVIOR AND INSIGHT ACQUISITION

In this chapter, we investigate the impact of increasing the physical size and resolution of

the visualization interface on user behavior and insight generation during exploratory visual

analysis. We employ a custom-designed visual analytic environment based on the design pat-

terns articulated in chapter 3, and study users’ analytic behavior and performance under two

display configurations: a small and a large display. As in the previous study, we employ an

open-ended exploratory task situated within the context of a real-world scenario and dataset.

We present the design of an LHD-based visualization environment for exploring spatio-

temporal crime patterns in large metropolitan areas. We then present and discuss the results

of the user study. But first, we motivate the scenario and describe the dataset, which together

provide the analytical task framework for this study.

5.1 Scenario

As cities and government embrace data transparency initiatives, the number of publicly-

available municipal datasets is rapidly increasing. With the availability of detailed police re-

ports on crime incidence, the analysis of crime patterns in is becoming a ‘big data’ problem.

This provides opportunity for government officials, civic groups, and community organiza-

tions to understand evolving crime patterns in urban centers and target affected communities

71
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with appropriate social support programs at the micro-level, in an attempt to reduce crime

incidence and prevent outbreaks before they occur.

We based this study on a scenario that revolved around the analysis of crime activity and

patterns in the city of Chicago. The city has made available a database containing the majority

of crimes that happened between 2001 and present, with detailed information containing ac-

curate location (down to a city block), date and time, crime type, arrest records, among other

information. To make the exploratory task more manageable during the limited experiment

time, we used a subset of the dataset comprising crimes committed between 2006 and 2012,

inclusive. The total number of crimes in this dataset totaled approximately 2.8 million crime

reports, which were broken down into 8 different crime types depending on the nature of of-

fense.

The above scenario furnishes a suitable framework to study the analytical behavior of users

within the context of a visual exploratory task for the following reasons. First, the scenario pro-

vides a semantically rich task for our participants to try to find temporal patterns that govern

crime activity in different parts of the city, identify spaito-temporal correlations between dis-

tinct types of crime, and explore cause-and-effect narratives in an attempt to explicate the ob-

served patterns and correlations. Additionally, the complexity and subtlety of criminal activity

in Chicago, which varies greatly across different neighborhoods and yet appears remarkably

consistent over time, provides a compelling use case of the use of LHD environments to vi-

sually explore the dataset in an attempt to discover ‘hidden’ patterns and outliers within the

larger picture. Lastly, while the analysis of crime activity is by no means an easy task and



73

certainly requires an appropriate level of domain expertise, the task can be considered to be

semantically appropriate for a participant pool drawn from the general population. Although

the correct interpretation and forecasting of crime trends require skill and experience, common

sense judgement and everyday knowledge maybe sufficient to to bootstrap participants and

engage them with the analytical task so that they can begin to generate insights. Since our

goal is to study the process of exploratory visual analysis, we do not require participants to

rigorously verify their observations.

5.2 Visual analysis environment

We describe the LHD apparatus employed in this study. We then proceed to describe the

design of the visualization environments, the visual representations employed, and the set of

interactions provided to participants.

5.2.1 Apparatus

We used the CAVE2 environment as our LHD display apparatus for this study. CAVE2

is a cylindrical system measuring 7.3 meters in diameter and 2.4 meters in height. The en-

vironment consists of 72 thin-bezel stereoscopic LCD panels arranged in 18 columns and 4

rows, creating an approximately 320-degree panoramic environment at a total resolution of 74

Megapixels (Reda et al., 2013b). Figure 17 illustrates the environment.

The choice of CAVE2 was motivated by the fact that the cylindrical configuration of the

environment makes it possible to view the displays at similar distances and visual angles form

the center, which reduces the amount of geometric distortion in the periphery compared to flat

wall displays (Bezerianos and Isenberg, 2012).
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Figure 17. The interior of the CAVE2 environment consists of 72 thin-bezel LCD panels
cylindrically arranged in 18 columns and 4 rows. The inset illustrates a schematic bird’s-eye

view of the environment.

5.2.2 Visualization

The visualization employs two main types of visual representations: heatmaps and timeline

charts. A heatmap is juxtaposed over a geographic map to show crime density in a particular

area in the city over a single year. The timeline charts illustrate aggregate crime trends over

three time scales: monthly to show crime patterns over an entire year, daily to illustrate crime

pattern in a typical week, and hourly to illustrate trends in crime activity during a typically day.

The two representations are combined in one compound view, with the three timeline charts

showing aggregate number of crimes occurring within the extents of the geographic map. Each

view shows crime density of a particular type of crime (e.g. robbery, narcotics violation, se-
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rious crimes, or all crimes combined) over a single year in one particular area. Panning the

geographic heatmap can be paned using familiar drag-and-drop operations to move the map

and show different parts of the city. Moving the map causes the charts to instantly update to

reflect crime trends in the new area. To simplify navigation, we also designed an overview +

detail navigation method by providing an overview map showing the entire city, with a rect-

angular selection box providing an alternate way to pan the map by dragging the rectangle.

Figure 18 illustrates the compound view and the overview + detail navigation method.

overview detail

b
a

c ed

Figure 18. The overview map (left) and the compound view which combines a geographic
heatmap with three timeline charts (right). The compound view shows one year’s worth of

criminal activity (a) for a particular type of crime (b). The heatmap shows the spatial
distribution of criminal activity during the entire year. The three timeline charts show crime
trends occurring within the map at three time scales: monthly (c), daily (d), and hourly (e).
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One important design decision we took early on was to limit the visualization to a single

scale. That is, there was no way to zoom in onto a particular area in the heatmap. This de-

cision was primarily done to eliminate the confounding factor introduced when participants

allowed to ‘read’ the visualization at multiple scales. To compensate for this restriction, the

overview map provided an alternative way of navigating the city. Additionally, we also pro-

vided participants with a slider to adjust the ‘coarseness’ of the heatmap; a coarse-grained

heatmap coalesce crimes into larger blobs, whereas a fine-grained map allows one to almost

see the individual crime incidents as distinct points on the map. This features was important

as the spatial distribution patterns for different types of crimes require different aggregation

levels in the heatmap.

5.2.3 View coordination

To facilitate the comparative analysis of crime patterns between different years and/or

crime types, additional views can created in two ways: from the overview map, or by ex-

tending an existing view. Views created directly from the overview map are not coordinated,

whereas views extended from existing ones are ‘chained’ together and coordinated to collec-

tively respond to user actions. Chained views share the same geographic extent and the same

brushing-and-linking state, but can be set to show different crime types or different years. Pan-

ning the map in one view causes a corresponding movement in all chained views. In addition

to being geographically coordinated, chained views can also be synchronized in one of two

ways: temporally by showing crime activity for the same year but across different crimes cat-

egories (e.g., narcotic crimes, burglaries, and thefts in 2012), or categorically by showing the
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same crime category but over multiple years (e.g. vehicle thefts in 2006, 2009, and 2012). Fig-

ure 19 illustrates this concept. This features was added to simplify the layout of views and

provide a semi-automated way of juxtaposing and organizing a large number of views.

This design was motivated by two aspects we want to provide support for. First, we wanted

to give participants a way to drill down into the data while being able to leverage the size

and resolution of the display environment to maintain contextual awareness. The geographic

heatmap provided a detailed in picture of crime density down the block-level. Secondly, the

flexibility afforded by the chained views meant that they could be used to view different parts

of the city, different years, or different types of crimes, enabling participants to visually look for

correlations in criminal activity across these dimensions. For instance, time synchronization

provide a way to look at temporal patterns in crime activity. Alternatively, categorical syn-

chronizations of views based supports the comparison of crime patterns for different types of

criminal activities, enabling one to find possible relationships between narcotics-related crimes

and homocides, for instance.

Ultimately, chained views represent a set of tightly coordinated views that can be manipu-

lated and navigated collectively. However, multiple autonomous chains can be created in par-

allel and manipulated independently of each others (see Figure 19). This features represents an

instantiation of the seed and grow design pattern (see section 3.2.2.3), providing a mechanisms

for users to instantiate multiple exploratory branches that can be manipulated in parallel and

followed up upon independently. Such independent branches can be used to explore crime
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patterns in different parts of the city, or can potentially provide scaffolds for users to explore

and compare two or more alternative narratives or hypotheses, for instance.

201220092006

TheftBurglaryNarcotics

overview map
categorical sync:

vehicle theft

time sync: 2012

parallel
exploratory
branches

Figure 19. Two sets of chained views. The red chain represents a categorically synchronized set
of views illustrating vehicle theft trends in 2006, 2009, and 2012 in the northwest part of the

city. The blue chain is temporally synchronized, illustrating narcotics, burglary, and theft
crimes in 2012 in the south-central part of the city. Chains are visually linked to their

geographic location in the overview map. Views in each chain are tightly linked to respond
collectively to brushing-and-linking actions and map movements. However, the two chains

can be manipulated independently, providing two parallel exploratory branches.

5.2.4 Automated view layout

To help users organize the screen space, we provided two layout modes:



79

• A freeform layout enabled users to create their own view-layout and position views freely

in the environment using a familiar window-based metaphor.

• A structured layout spread the chained views around the center of the display, align-

ing them with the bezels. This layout mode further provided users with two options,

allowing them to choose between 2 or 4 independent view chains

a

c

b

Figure 20. Two chained views comparing narcotics-related crimes in 2007 (left) and 2012
(right). Two bounding boxes highlight crime patterns in the west-central part of the city (a) as

well as downtown and the near-north side (b). Bounding boxes created in one view are
automatically propagated to all chained views. In addition to highlighting the selected
subregions in the heatmap by greying out non-bounded areas, bounding boxes cause

additional trend lines to be visualized, allowing one to examine detailed crime trends in
subregions of interest within the context of a broader trends (c).
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5.2.5 Brushing-and-linking

Brushing-and-linking in one view propagates to all chained views, and can be done in one

of two ways. First, rectangular bounding boxes can be created and moved within the heatmap,

which are updated accordingly across all chained views. Bounding boxes cause additional

trend lines to be visualized in the chart area, showing crime pattern corresponding to the se-

lected regions. Figure 20 illustrates how bounding boxes work across two chained views. A

second way to achieve linking between the heatmap and the timeline charts is to brush one of

the charts to select a time range, which causing the heatmap to update to reflect crimes that

happened within the brushed time range only.

The bounding boxes serve two main proposes. First, they allow one to visualize crime

trends within a subregion in the heatmap, and compare those trends to the overall trend. Sec-

ondly, they allow a user to mark and highlight important features in the heatmap for compari-

son. This is also facilitated by the fact that the bounding boxes are automatically synchronized

across all chained views, allowing a user to compare crime density in a particular subregion

region across multiple years without disrupting the layout, for instance.

5.3 Methodology

Our first goal in this study is to understand the effects of increasing the physical size and

resolution of the display on the quantity and quality of insights and hypotheses formulated

by participants during the exploratory activity. Our second goal is to understand potential

variations in user behavior induced as a result of increasing the size and resolution of the vi-

sualization interface.
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In this study, we employ two experimental conditions in this study: a small and a large

display. The two conditions provide identical visual representations coupled with the same

set of interactions. However, the two displays afford distinct experiences; the larger display

promotes the juxtaposition of views at the potential risk of overloading the interface with too

much information, while the small display provides a potentially simpler visualization inter-

face that promotes the temporal-separation of views at the risk of providing a narrower view

onto the information space. The key different between the two conditions therefore lies in the

amount of information that can be simultaneously viewed, which serve to implicitly modulate

the utility of the visual analytic operators afforded (hypothesized to be higher with the large

display) as well as the effort needed to manage one’s attention (hypothesized to be lower with

the small display) during the exploratory activity.

5.3.1 Hypotheses

Our hypotheses for this experiment were:

• H1: We hypothesize that the cumulative number of observations would increase with

the large display, driven by the ability to see more views side-by-side. We also expect the

rate of observations (defined as the number of observations reported during a minute

of analysis) to increase with the large display as participants would be able to access

information more efficiently using embodied actions as opposed to virtual navigation,

and thus would be able to devote more time to the actual analytic task.
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• H2: Extrapolating from the case study in chapter 4, we expect an increase in number of

hypotheses formulated by participants given the large display. Similarly, we also expect

an increase in the rate of hypotheses.

• H3: Lastly, we expect participants to acquire higher-level, more integrative insights with

the large display, given the ability to see a larger portion of the information space at

once. One way to measure this effect is to quantify the “broadness” (or “narrowness”) of

observations and hypotheses formulated by participants. We define criteria to measure

this quality in section 5.3.6.

The above predictions are based on results from earlier studies which indicate improved

performance time in basic visualization tasks (Ball and North, 2005; Yost et al., 2007). We be-

lieve that that such low-level performance gains induced by having access to a larger display

would in turn translate to higher-level analytical gains in exploratory visual analysis scenar-

ios. A counter argument, however, is that the surge in the amount of information visible on

the large display would dramatically increase the complexity of visualization interface, hamper

participant’s exploration efforts, and ultimately result in a poorer analytic outcome compared

to the small display. Alternatively, participants may perceive the additional screen estate and

resolution afforded by the large display to be futile, thus resulting in a similar outcome and

user behavior across the two conditions.

5.3.2 Participants

Ten volunteer participants (4 female) were recruited from our lab. The majority of partici-

pants were computer science graduate students, with one being a staff member. Participants
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ranged from 25 to 54 years (mean = 31.3, SD = 8.3). All participants were members of the Elec-

tronic Visualization Laboratory, and thus were familiar with LHD environments and had prior

experience in using the CAVE2 environment in some capacity. However, none of the partic-

ipants had seen or used the particular visualization environment reported here prior to the

study. Participants reported their familiarity with interactive visualizations on a 5-points Lik-

ert scale, with 1 being “not at all familiar” and 5 being “very familiar” (mean = 4.3, SD = 0.8).

Participants also reported how often they perform data analysis tasks as part of their normal

work activities on a 5-points Likert scale, with 1 being “never” and 5 being “a great deal”

(mean = 3.2, SD = 1.0). All participants resided in the Chicago Metropolitan area, and thus

were familiar with most neighborhoods in the city, which made it easier for them to engage in

the task. Although it is likely that participants brought their intuitions and existing perceptions

of crime prevalence throughout the city, we consider this to be an acceptable compromise as

our goal is not to measure the accuracy of participants’ findings, but rather to understand their

exploratory strategy and the type of discoveries they end up making. We refer to participants

as S1–S5 and L1–L5 depending on whether they undertook the experiment with the small or

the large display, respectively.

5.3.3 Procedure

Participants sat in the center of the environment on a swivel, height-adjustable chair at a

distance of approximately 4 meters from the displays and interacted with the visualization us-

ing a standard mouse and keyboard setup. Participants were also provided with a notepad and

pen to use during the activity, if desired. Figure 21 illustrates the experimental setup. While
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the study was open-ended, we provided participants with a written description of their ‘task’

which outlined the scenario and provided a general description of the dataset. Additionally,

the scenario document contained a list of questions for use as starting points. Examples of

questions provided to participants include:

• What year has the most crime occurred in?

• Identify crime ‘hotspots’ throughout the city. Are there distinct hotspots for specific types

of crime?

• How does crime in the city vary with time of day, day of the week, and season?

• When do most crimes occur (time of day, day of week, and season)?

• Are there correlations between different types of crimes?

However, participants were instructed to use the provided list of questions for general guid-

ance, and were told that they are otherwise free to explore the dataset in any way they desire

and followup on questions that are of interest to them. The scenario document is included in

appendix A.

The experiment began with a 15 minutes training session with the experimenter explaining

the task and demonstrating the visualization environment and its various interactive features.

Participants were then given 150 minutes (2.5 hours) to explore the Chicago crime dataset, and

instructed to think aloud during the activity and report interesting observations, salient pat-

terns and outliers, correlations, trends, as well as hypotheses that explicate their observations.

The session was video and audio recorded. Additionally, we collected activity logs which
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Figure 21. A top down view of the experimental setup in CAVE2.

recorded all interactions with the visualization, such as creating new views and bushing the

time charts. Participants were informed that they could end the experiment when they felt

that they have exhaustively explored the dataset. Otherwise, the experiment was terminated

when the 150 minutes of allotted exploration time has elapsed. Participants were allowed to

take breaks during the experiment, if desired. At the conclusion of the study, participants un-

derwent a short semi-structured interview to obtain subjective feedback and comments about

their experience.
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5.3.4 Study design

We used a between-subjects design with a single dependent variable: The display size

(Small, Large). Half of the participants undertook the study using a small display while the

other half experienced the visualization environment on a large display. The small display con-

dition utilized 3 of the 18 columns available in the CAVE2 environment, giving participants a

resolution of 4,098 x 3,072 (12.5 Megapixels) and approximately a 40-degree field-of-view. The

large display condition, on the other hand, utilized 13 columns giving participants a resolution

of 17,758 x 3,072 (54.5 Megapixels) and approximately a 190-degree field-of-view. Figure 22 il-

lustrates these two conditions.

large display small display 

Figure 22. A comparison between the two experimental condition: The small display condition
utilized 3 of the 18 columns in the CAVE2 environments, giving participants a total resolution
of 12.5 Megapixels providing an a 40-degree field of view. The large display condition utilized

13 columns with a total resolution of 54.5 Megapixels and a field-of-view of 190 degrees.
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The two experimental conditions represented by the small and the large display provide

a substantially similar visualization interface comprising identical visual representations and

analytic operators. The only difference between the two conditions lies in the number of views

that can fit on the display, which is influenced by the display size. This factor serves to implic-

itly modulates the amount of information a participant can simultaneously see and interact

with during the exploratory activity.

The difference between the two experimental conditions, in terms of raw pixel count, is

quite significant, with the larger display providing approximately 4 times the resolution and

screen estate. However it is worthy to note that our small display provides 12.5 Megapixels,

outweighing the average resolution of high-end desktop monitors, which are typically limited

to 4 Megapixels. Thus, while we do anticipate an advantage to the large display, we do not

believe the small display condition to be inferior.

5.3.5 Verbal protocol encoding

Our main focus in this analysis was on the video and audio data, which contained a record

of the participant’s verbal protocol as well as the state of the visualization environment at the

time. Due to the close correspondence between the verbal protocol and the state of the vi-

sualization, we decided to encode the verbalizations directly from the video. While Ericsson

and Simon’s original methodology includes transcription and segmentation of the verbal data

as two pre-processing steps (Ericsson and Simon, 1993), omitting these two steps is not un-

usual (Chi, 1997), particularly when protocol segmentation can be done more effectively from

the video stream.
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To encode the verbal protocol, we developed a coding scheme inspired from insight-based

evaluation methodologies (Saraiya et al., 2005; North, 2006). As our goal is to understand the

effects of increasing the display size on insight acquisition and user exploratory behavior, we

were interested in two main themes: insights and exploratory goals. Insights comprise units of

knowledge acquired by participants while interacting with the visualization. They comprise

observations as well as hypotheses (Saraiya et al., 2005), both of which are relatively straightfor-

ward to recognize from the verbal protocol. Exploratory goals, on the other hand, are verbaliza-

tions that reflect objectives participants set for themselves during visual exploration. Because

goal formation is the first step in Norman’s seven stages of actions as well as Lam’s frame-

work of interaction costs (see section 2.2.3.2), coding for goals would enable us to measure the

impact of display size on top-down exploratory behavior (e.g., hypothesis-driven inquiries).

Conversely, measuring insights would also allow us to quantify the impact of display size on

bottom-up analysis processes (i.e., from visual features to insights).

The coding scheme was refined over three coding cycles and finally consisted of the follow-

ing set of codes (see Table III for example coded verbal statements):

• Observation: A unit of knowledge acquired from looking at and interacting with the vi-

sualization.

• Hypothesis: A conjuncture made by the participant, usually as a result of making a series

of observations.

• Question: A statement reflecting an inquiry about the data.
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• Goal: A statement reflecting the formation of an exploratory objective. Questions and

goals are functionally similar in the sense that they both serve to orient the exploration

process. However, we found that objectives, when articulated, were more indicative of

forthcoming exploratory actions, and thus where coded separately from questions.

• Physical navigation: Represents an instance when the participant stood and walked up to

and/or moved in front of the display.

• Comment: Represents a generic verbal statement made by the participant, usually about

some aspect of the visualization environment or the user interface.

5.3.6 Level-of-insight metric

In addition to the above coding scheme, we assigned a level-of-insight (LOI) score to each

observation or hypothesis based on its “broadness” (or “narrowness”), on a scale of 1 to 5.

The goal of this score, which was inspired by the work of Shupp et al. (Shupp et al., 2009),

is to measure the effects of using a larger display on the quality of insights formed, and allow

us to categorically differentiate between potentially distinct types of insight induced by our

two experimental conditions. In this scheme, higher LOI scores are indicative of higher-level,

integrative insights which tie together multiple aspects and/or dimensions of the information

space.

For instance, level-1 observations refer to isolated features found by the participant in one

view (and hence are associated with a single year, for one type of crime, in a particular region

or neighborhood in the city). Level-2, on the other hand, is ascribed to insights that are derived
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TABLE III

Examples of coded statements from the verbal protocol.

Code Example statement

Observation
“In the Loop, the crime pattern is high on Monday, high on Sun-
day, low through the week. This is a... There’s a dip from Tues-
day, Wednesday, Thursday, Friday, Saturday, but it’s high on
Sunday and Monday.”

Hypothesis
“Maybe there was a drop in supply [in reference to a noticeable
dip in narcotics-related crimes in 2012]. Because... I mean there’s
a lot of things that go into the narcotics trade; it’s not just a local
phenomenon, it’s like a global thing.”

Question “Why is the peak crime time at night has changed [to an earlier
hour] across all crimes?”

Goal
“So I’m gonna go and investigate, why is it that in the earlier
years, there were more crimes at one point in time happening in
the afternoon.”

Comment

“One thing I’d comment on is that it is hard for me to compare the
trends in this whole region in the city to the trends in the, um... the
little blocks that I’ve perched out, because it’s so small... It’s such
a small region. I don’t know if you’d need two different scales, or
that would be confusing.”
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from comparing two distinct level-1 features that may or may not be in the same view. For in-

stance, a participant may find higher incidence of robberies in the near-north side of the city

compared to the westside, in 2010. Level-3 scores refer to insights comprising temporal trends

(over several years) or spatial patterns (involving multiple neighborhoods or regions). Level-4

scores take level-3 insights by implicating a second dimension. For instance, one may find ve-

hicle thefts to be fairly constant over the years in the north-side of the city, but detect a decrease

in the south-side during the same period. Lastly, level-5 insights integrate spatio-temporal pat-

terns with observed variations or correlations between different types of crimes. For instance,

based on an analysis of several years of crime trends, a participant may observe that homocides

are correlated with narcotics-related crimes in the west-side, whereas the south-side exhibits

a more pronounced correlation between weapon violations and homocides. Table IV details

the criteria we used to assign the LOI scores and provides example statements from the verbal

protocol for each level.

5.4 Qualitative observations

This section describes our general observations on how participants utilized the provided

environment to explore the Chicago crime dataset. We describe the high-level analytic behavior

of participants, highlighting similarities and variations in strategy between the two display

conditions. Quantitative analysis results are presented in section 5.5.

5.4.1 Gaining an overview

At the beginning of the study, participants exhibited remarkable similarity in how they ap-

proached the task. All participants started by attempting to gain an “overview” of the dataset,
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TABLE IV

Criteria for assigning a level-of-insight (LOI) score to each observation and hypothesis
reported by participants along with exemplifying verbal statements. Insights are scored on a

5-points scale, with higher scores implying broader and more integrative insights.

LOI score Criterion Example statement

1
Refers to isolated features
in a single year, for one
type of crime, in a particu-
lar neighborhood/region.

“I can see that there are a lot of non-serious
crimes, which is kind of expected, for down-
town Chicago.”

2
Refers to comparative in-
sights (variation or corre-
lation) between two level-
1 features.

“In this time period [2012], [there are] more
weapons violations near the lake [compared to
inland areas].”

3

Refers to insights about
spatial patterns (across
neighborhoods/regions)
or temporal trends (across
years).

“Across all years it’s the same seasonal trends
[in narcotics-related crimes], I think, of peak-
ing in the summer and then dropping off in the
fall.”

4

Refers to level-3 insights
combining one additional
dimension (e.g., tempo-
ral trend with observed
variations/correlations
in two or more neighbor-
hoods/regions).

“The spikes [in burglaries], they seem to be con-
sistent [across the years], form what I see. Es-
pecially... It looked like there’s a pattern. Look
here, this, this, and this. It’s exactly the same. If
you compare this one [burglaries in the north-
side], with this one [burglaries in the southside],
same thing.”

5

Refers to insights combin-
ing spatio-temporal pat-
terns with observed vari-
ations/correlations in two
or more crime types.

“A lot of people in this region [in the near north-
side] are buying drugs, but they’re not fight-
ing. There’s no gang activity. There are much
fewer deaths resulting from the narcotics trade.
Where as disproportionally in the southern re-
gions there are more narcotics related homo-
cides.”
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which was typically done with the aid of one or two views created in the freeform layout. Due

to the peculiar geographical aspect ratio of Chicago (approximately 1:2), a single view does not

cover the entire height of the city, making in necessary to pan the view up and down. Most

participants chose to use a single view, setting it to visualize all crimes in the most recent year

(2012 in our case). However, few participants utilized two views at this stage to compare crime

patterns in two years (e.g., 2012 and 2009), or in two separate regions (e.g., north and south).

As an example, Figure 23 illustrates the dual-view setup created by participant L1.

Figure 23. Participant L1 utilized two disjoint views to get an initial overview of the Chicago
crime dataset. The two views were set to visualize crime in 2006 and 2012, enabling him to

make initial assessment of changes in crime patterns. To cover the entire geographical extent
of the city, the participant panned the two views independently.

During the overview phase, which typically lasted for about 10–20 minutes, participants

frequently extracted salient ‘anchor’ features from the heatmap (which were typically scored
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as level-1 or level-2 insights). For instance, participants often reported obvious hotspots indi-

cating high concentration of crimes in the downtown area, the west side, and the far northeast

side. This, the overview phase can be tied to the formation of a qualitative mental model which

would later be used by participants to orient the exploratory activity (Gregory Trafton et al.,

2000).

5.4.2 From overview to exploration

After the overview phase, participants proceeded to explore the dataset in more detail.

For the large display participants, the end of the overview phase was typically marked by a

transition from the freeform to the automated layout mode, with the instantiation of one or two

view chains that typically wrapped around the entire environment. Figure 24 shows the view

setup created by participant L4 immediately after she had completed the initial assessment of

the dataset. Interestingly, this abrupt transition from overviewing the data to what appeared

to be a goal-directed exploratory phase was not observed with the small display. Compared

to the large display participants who quickly adopted the automated layout, most of the small

display participants continued using their initial overview layout with some ‘tweaking’. For

instance, Figure 25 illustrates the layout created by participant S1, with views slightly extended

to make use of the additional screen space, causing some overlap with the overview map.

This preference for the manual layout is justifiable considering that it gave the small display

participants more flexibility in utilizing the available screen estate “down to the last pixel”, al-

beit often at the cost of introducing visual clutter in the interface. Alternatively, participants

may have seen little value in an automated layout on the small display. Participants with
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Figure 24. The post-overview layout created by participant L4 comprised two
temporally-synched view chains that show density for multiple types of crimes in the

central-southern region of the city in 2012. While the two chains spanned 13 display columns,
the participant limited her attention to the 7 central columns of CAVE2, focusing the two

chains on the same area.

Figure 25. Participant S1 adopted this dual-view layout in the overview as well as the
exploration phase.
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the large display, on the other hand, quickly learned to utilize both layouts, switching to the

freeform mode when they felt the need to see an overview of the dataset, and switching back

to the automated mode to conduct goal-directed exploration.

5.4.3 Exploration phase

The exploration phase showed great diversity in strategies between individual participants.

As one would expect, the activity comprised undirected search for ‘interesting’ variations, cor-

relations, or outliers in the heatmap and/or the timeline charts as well as goal-driven explo-

ration. Despite the wide variations in strategy and exploration styles, we observed a number

of consistent differences between the two display conditions.

5.4.3.1 Organizational strategies

Generally speaking, the layout of the workspace in the large display reflected an organi-

zation that was suitable for a particular exploratory task. For instance, Figure 26 illustrate the

setup created by participant L5 to explore the distribution of narcotics-related crimes relative to

the overall crime patterns. This organization scheme reflected L5’s desire to investigate a sud-

den drop in narcotics-related crimes in 2012 compared to other years, based on the hypothesis

that there was a drop in the supply of illicit drugs. Overall, the large display participants seem

to extensively rely on the automated layout to line up views in a manner that would facilitate

search and comparison, making use of the bezels as natural dividers. Often, a change in the

exploratory goal was accompanied by a significant change in the layout.

Participants on the small display also adopted specific organizational layout in response

to specific exploratory goals they set for themselves. For example, participant S2 utilized 4
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Figure 26. Participant L5 utilized four view chains to survey trends in narcotics-related
crimes (top view chains) compared to the overall crime pattern (bottom chains) between 2007

and 2012. This view setup also covered two regions comprising near-north (right) and
near-south (left) neighborhoods.

independent views to observe changes in crimes patterns in the west side between 2009 and

2012 (see Figure 27). However, such goal-specific organizational strategies were observed less

frequently among the small display participants. Instead, we see a tendency in this group to

opportunistically search for ‘interesting’ features in the heatmap and temporal charts, based

on the current layout scheme. Often, participants resorted to ‘recycling’ the current layout

instead of rearranging views or creating new ones. This bias to leverage existing resources is

understandable, given the limited screen space available on the small display. However, it may

have inadvertently ‘locked’ participants into existing visualization and goal states, preventing

them form formulating new exploratory goals.
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Figure 27. Participant S2 utilizing 4 independent views to explore changes in crime trends in
the west side between 2009 and 2012.

5.4.3.2 Cognitive integration

A key difference between the two groups lies in how much time they allocated to explore

each visualization state. Participants with the large display seemed to allocate a considerable

amount of time to explore the current state of the visualization before changing it. During this

time, participants seemed to iteratively generate insight by relating newly observed patterns

to previously discovered ones (which would have still been visible on the display). As addi-

tional information is gathered, observations were incrementally refined and generalized. To

help with integration across a large number of views, participants often utilized the bounding

boxes to highlight patterns of interest (see Figure 28 for an example), seemingly using those to

help them manage their attention in the environment. In contrast, we observed considerable
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‘paging’ behavior on the smaller display with participants rapidly cycling through the years

and/or the different crime types, leading to rapid changes in the state of the visualization (i.e.,

temporal view separation).

Figure 28. Participant L5 analyzing the evolution of crime trends in one region in north-side
of the city (consisting of portions of Wrigleyville and Uptown). Four view chains illustrate
changes in vehicle thefts, serious, non-serious, and all crimes between 2007 and 2012. Note
the use of the bounding boxes to highlight relevant features in the heatmap. To see the ‘big
picture’, the participant stepped away from the desk and stood at the entrance of CAVE2,

taking few minutes to observe the entire layout. During this time, the participant was able to
develop a number of level-4 and level-5 insights on how the distribution of crimes is affected

by proximity to the lake.

To deal with this constant paging, participants developed two general strategies. The first

strategy was to reduce the frequency of paging by simply ignoring one dimension in the in-

formation space. For instance, participant S3 focused his analysis primarily on the most recent
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year (2012 in our dataset). In the few instances where he switched the views to a different year,

he seemed to be motivated to learn about a specific area.

The second strategy involved summarizing observations into verbal descriptions and not-

ing them down on the paper notepad. For example, to understand changes in crime patterns in

the south side, participant S2 resorted to performing pairwise comparison two between views

(showing distribution of weapon violations and homocides) while writing down his observa-

tions on the notepad before switching to a different year. After cycling through the all years

between 2006 and 2012, he went back to his summary and concluded that homocides are be-

coming more diffused whereas weapon violations are increasing. This strategy aided partic-

ipants in integrating patterns observed in multiple temporally-separated visualization states.

Yet, it also appeared to result in significant overhead as some participants seem to eventually

abandon it, and is thus likely to be less effective compared to the ability to see multiple visu-

alization states side-by-side afforded by the large display. Additionally, it may be difficult to

distill down complex pattern into concise verbal descriptions (though we did not analyze the

contents of the written notes generated by participants in this study).

5.5 Quantitative results

We first look at the length of the exploratory activity, and then discuss the quantity and rate

of insights reported for observations and hypotheses, separately. Following that, we describe

variations in the strategy and behavior of participants by analyzing the interaction patterns

under the two display conditions.
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5.5.1 Length of exploratory activity

The length of the exploratory activity comprises the time period spent by the participants

actively exploring the dataset. Recall that the maximum time for exploration was 150 minutes

(2.5 hours). However, participants were free to end this activity earlier, with most participants

choosing to terminate the activity before the 150 minutes of allotted time had elapsed. Figure 29

illustrates average exploration times under the two display conditions.
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Figure 29. Average length of the exploratory activity under two display conditions
(Large, Small). Error bars represent the standard error.

We found a significant effect for display size on exploration time (two − samplet(8) =

3.551, p < .01), with participants choosing to spend an additional 35 minutes on average
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with the large display (mean = 122.5, SD = 17.9) compared to the small display (mean = 87.3,

SD = 15.7).

5.5.2 Reported observations

To determine the effect of increasing the display size on the generation of insights, we ana-

lyzed the number of observations reported by participants during the exploratory activity. We

also looked at the distribution of observations according to our LOI metric. Figure 30 illustrates

the average number of reported observations for each LOI score as well as the combined total.
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Figure 30. Average number of observations reported by participants under two display
conditions (Large, Small). In addition to the combined number of observations (first column
from the right), we show the distribution of observations under our LOI metric (O1 through

O5). Error bars represent the standard error. An asterisk denotes a significant difference
between the two display conditions (p < .05, Bonferroni corrected for 5 tests).
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There was a significant effect for display size on the compounded number of observations

reported by participants (t(8) = 3.23, p < .05), with the large display eliciting approximately

74% more observations on average. We performed chi-squared test with Yates’ correction to

examine the relation between the display size and the distribution of observations. The display

size had a significant effect on the distribution of observations (χ2(4, N = 1327) = 263.37, p <

.001), with the large display inducing higher LOI scores in general.

We also performed post-hoc analysis to further investigate the effects of display size on

observations for each LOI individually. Bonferroni correction was applied to maintain a sig-

nificance level of p < .05 to each of the 5 comparisons tests. The was also a significant effect for

display size on level-3 observations, which comprise insights about temporal and/or spatial

trends (t(8) = 8.161, p < .001), with the large display eliciting approximately 3 times more ob-

servations on average. Similarly, there were significantly more level-4 and level-5 observations

reported with the large display (t(8) = 5.475, p < .001 and t(8) = 6.324, p < .001, respectively).

The numbers of level-1 and level-2 observations reported, on the other hand, did not seem to

be affected by the display size (t(8) = .217, p = .83 and t(8) = 1.552, p = .15, respectively).

Interestingly, none of the participants on the small display condition reported level-5 observa-

tions. We take these results as evidence that the large display supports the generation of more

complex, more integrative insights compared to the small display.

5.5.3 Observation rates

While the quantity of observations appears to be higher with the large display, the above re-

sults do not take into account the fact that participants spent longer times exploring the dataset
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on the large display. Thus, we calculated a rate of observations, which normalizes the num-

ber of observations for each participant by the time it took him/her to complete the activity.

Figure 31 illustrates these rates (in units of observation per minute of analysis).
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Figure 31. Observation rates under two display size conditions. Error bars represent the
standard error. Asterisks denote significant differences between the two conditions (p < .05,

Bonferroni corrected for 5 tests).

After normalization, we do not find significant difference in the combined rate of obser-

vations between the two displays (t(8) = 1.294, p = .23). However, post-hoc analysis with

Bonferroni correction finds significant differences when separately comparing the rate of indi-

vidual LOIs. The rates of level-3 and level-4 insights were significantly higher with the large
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display (t(8) = 5.96, p < .001 and t(8) = 5.597, p < .001, respectively). The average rate of

level-5 was a mere .03 observations per minute with the large display, compared to nil with

the small display (t(8) = 7.466, p < .0001).

We summarize the overall results on the effects of increasing the display size on the quantity

and rate of observations in Table V.

TABLE V

Summary of results on the effects of increasing the display size on the numbers and rates of
observations.

Measure LOI Difference in means
(XLarge −XSmall)

Effect size
(Cohen’s d) t-statistic p-value

Number of
observations

reported

1 02.60 0.15 0.21 p = .83
2 -19.80 -0.96 1.55 p = .15
3 59.40 1.89 8.16 p < .0001
4 25.60 1.77 5.47 p < .001
5 04.00 1.82 6.32 p < .001

All 71.80 1.50 3.23 p < .05

Rate of
observation per

minute of analysis

1 -00.09 -0.60 0.90 p = .39
2 -00.29 -1.38 2.71 p < .05
3 00.41 1.80 5.96 p < .001
4 00.19 1.78 5.59 p < .001
5 00.03 1.87 7.46 p < .0001

All 00.25 0.83 1.29 p = .23
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5.5.4 Hypothesis formulation

Next, we looked at the numbers and rates of hypotheses formulated during the activity.

Figure 32 illustrate the average distribution of hypotheses formulated under our 5-points LOI

scale, in addition to the combined average.
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Figure 32. Average number of hypotheses formulated by participants under two display size
conditions. In addition to the combined number of hypotheses (first column from the right),
we show the distribution of hypotheses under our LOI metric (H1 through H5). Error bars

represent the standard error.

In contrast to reported observations, we do not find a significant effect for display size on

the combined number of hypotheses (t(8) = .587, p = .57). A chi-squared test with Yates’

correction, however, indicated a significant effect on the distribution of LOI scores (χ2(4, N =
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145) = 67.38, p < .001). The large display appeared to skew the distribution towards higher

LOI scores, with the distribution seemingly centered around level-4. In the small display, on the

other hand, hypotheses seem to be distributed between level-1 and level-3. Interestingly, none

of the small display participants formulated level-4 or level-5 hypotheses. Post-hoc analysis

with Bonferroni correction finds no further significant differences between the two display

conditions.

It is worthy to point out that the between-subjects variance in the quantity of reported hy-

potheses was quite large: (Xhyp = 17.6, SDhyp = 10.0) for the large display and (Xhyp =

13.4, SDhyp = 12.4) for the small display. In comparison, there was less between-subject varia-

tion in the number of reported observations: (Xobs = 168.6, SDobs = 37.6) for the large display

and (Xobs = 96.8, SDobs = 32.4) for the small display.

5.5.5 Hypothesis formulation rates

We also calculate the rates of hypothesis formulation, normalizing the number hypotheses

by the duration of the exploratory activity for each participant. Figure 33 illustrates the these

rates (in units of hypothesis per minute of analysis). The combined rate of hypotheses formulation

was not affected by the display size (t(8) = .215, p = .83). Post-hoc analysis finds no significant

effect for the display size on the individual rates.

We summarize results on the effects of increasing the size of the display on the numbers and

rates of hypotheses in Table VI.
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Figure 33. Hypothesis formulation rates under two display size conditions. Error bars
represent the standard error.

5.5.6 Interaction pattern and analytic behavior

To understand the relation between the display size and participants’ analytic behavior and

interaction pattern, we constructed transition diagrams to characterize and quantify the flow

between mental states identified from the verbal protocol and epistemic actions. Recall that

epistemic actions comprises actions that a user takes to change the state of the visualization

with the goal of acquiring additional information (Ware et al., 2013).

The transition diagrams comprised two epistemic states: Brush, link, pan map, which rep-

resent layout-preserving actions, and Modify layout, which represent layout-disruptive actions

resulting in major change to the visualization state, potentially requiring the participant to re-

build his/her mental map. Examples of layout-disruptive actions include switching between
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TABLE VI

Summary of results on the effects of increasing the display size on the numbers and rates of
hypotheses formulated during the exploratory activity.

Measure LOI Difference in means
(XLarge −XSmall)

Effect size
(Cohen’s d) t-statistic p-value

Number of
hypotheses
formulated

1 -3.80 -0.79 1.220 p = .25
2 -2.80 -0.70 1.051 p = .32
3 3.60 1.39 2.761 p < .05
4 6.60 1.42 2.877 p < .05
5 2.20 1.21 2.157 p = .06

All 4.20 0.40 0.587 p = .57

Rate of hypothesis
formulation per

minute of analysis

1 -0.05 -1.00 1.639 p = .13
2 -0.03 -0.76 1.172 p = .27
3 0.02 0.96 1.558 p = .15
4 0.05 1.40 2.787 p < .05
5 0.01 1.23 2.212 p = .05

All -0.01 -0.15 0.215 p = .83

views and changing the contents of one or more view. Additionally, we included three primary

mental states in the transition diagrams: Make observation, Form goal, and Formulate hypothesis,

which are collectively responsible for insight acquisition. We constructed a transition diagram

for each participant.

Formally, the transition diagrams model the exploratory analysis activity as a Markov chain

process (Norris, 1998) involving probabilistic transitions between mental states (i.e., mental

processing) and interaction states (i.e., instances when processing is offloaded onto the visual-

ization tool). Aside from their formal properties, these diagrammatic representations provide



110

participant S5
(small display)

participant L5
(large display)

Figure 34. Two state transition diagrams illustrating differences in strategy between
participant S5 who used the small display to undertake the exploratory task (left) and

participant L5, who utilized the large display (right). The weight of edges represent transition
probability between two states (with log transformation applied). Thus, darker arrows

represent more likely transitions.

us with a convenient way of capturing variations in the analytic behavior of participants. First,

they visually illustrate micro-level differences in strategy between participants. Second, they

enable us to characterize the impact of display size on cognition at a relatively fine-grained

temporal scale by quantitatively analyzing the probability of moving between the different

mental states and epistemic actions during the exploratory activity.

By way of example, Figure 34 illustrates the state transition diagrams for participants S5

and L5. We can see that S5 had to perform an extensive amount of layout-disruptive operations

on the small display compared to L5. Moreover, we can see more transitions to the goal and
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hypothesis formulation states in L5’s diagram, which suggests that the participant was able to

devise and follow up on a larger number of exploratory goals.

average
(small display)

average
(large display)

Figure 35. Two transition diagrams illustrating ‘average’ behavior of participants under the
small (left) and large (right) display conditions.

We also ‘averaged’ the individual diagrams for participants under the same condition, giv-

ing us two average diagrams corresponding to the small and large display. To guarantee equal

contributions from each participant to the average diagrams, we normalized transition fre-

quencies by the time it took a participant to complete the activity. Figure 35 shows the two

average transition diagrams side-by-side, illustrating important differences in the overall be-

havior of participants under the two display conditions. Figure 36 highlights these variations
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Figure 36. A transition diagram illustrating the effect of increasing the display size on the
behavior of participants (left). The weight of an edge represent difference in the transition
probability between the large and the small display (P (a, b) = Plarge(a, b)− Psmall(a, b)).

Edges that have been strengthened are color coded with orange whereas weakened edges are
color coded with purple. The adjacency matrix on the right shows percentage changes in

transition probabilities, with outlined cells indicating significant differences between the two
displays conditions (p < .05, Bonferroni corrected for 25 tests).

with a ‘difference’ diagram and transition matrix, showing the relative changes in transition

probabilities as a result of increasing the display size.

The large display diagram is marked by a decrease in the transition to the Modify layout state

(column 1 of the transition matrix in Figure 36), indicating that participants were less likely to

initiate layout-disruptive epistemic actions on the large display. We also see decreased transi-

tion probability to the Brush, link, pan map state, indicating that participants were also less likely

to initiate brushing-and-linking and map panning operations (column 2 of the transition ma-

trix). However, generally, we see an increased tendency for participants to transition from epis-
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temic actions to insight-generating mental states with the large display (columns 3, 4, and 5).

Furthermore, we see an increased likelihood to stay in these states on the large display (rep-

resented by elements (3,3), (4,4), and (5,5) in the adjacency matrix). Indeed, post-hoc analysis

indicates a significant increase in the probability of remaining in the Make observation state

(t(8) = 4.995, p < .001). Overall, these results suggest that the large display was more effective

at eliciting insights and keeping participants in the ‘cognitive zone’ (Green et al., 2009), where

they are likely to continue to generate additional insights.

5.6 Discussion

The results partially confirm our first hypothesis, which predicts an increase in the quan-

tity and rate of observations reported by participants with the large display. As for our second

hypothesis, which predicts a similar increase in the quantity and rate of hypotheses with the

large display, we do not find evidence to support it. Lastly, our results indicate a significant

tendency for participants to acquire higher-level, more integrative insights with the large dis-

play, confirming our third hypothesis. We discuss these results and then reexamine the analysis

of interaction patterns and user behavior.

5.6.1 Quantity and rate of insight

Our results show a significant increase in the quantity of observations reported by partic-

ipants during visual exploration, given a larger display with more pixels. Participants gener-

ated 74% more observations on average with the large display, partially confirming our first

hypothesis. Given the disparity in the time spent by participants on the activity under the two

display conditions, there are two potential explanations for this increase.



114

The first possible explanation is that the larger display afforded participants the ability

to see more ‘interesting’ features, by enabling them to perform the bulk of their analysis us-

ing mental map-preserving interactions (e.g. brushing-and-linking) and physical embodied

actions (eye movements and head turns). The large display participants were also able to jux-

tapose more views (representing crime patterns in different years, in multiple areas of the city,

and/or distinct types of crime), which may have helped them in perceiving and interpreting

complex crime patterns. Participants who used the smaller display, on the other hand, had

to perform a greater amount of layout-disruptive actions, including cycling between multiple

years or crimes types and rearranging the workspace to keep important views on top. The effi-

ciency of being able to retrieve information with embodied actions may have induced the large

display participants to revisit information more often, ultimately leading to more inquiries

and insights. This explanation is supported by our qualitative observations which suggest a

tendency for participants to thoroughly investigate the current state of the visualization and

integrate information from multiple views on the large display (see section 5.4.3.2). It is also

supported by previous studies which suggest a tendency for users to revisit information more

frequently in LHD environments (Andrews and North, 2013).

The second possibility is that both display conditions afforded an equal opportunity for

participants to generate meaningful insights into crime patterns, but participants on the large

display benefited from a longer exploration time. Recall that participants spent an additional

35 minutes on average performing the exploratory task with the large display. Indeed, our

analysis of observation rates does not find a significant difference between the two conditions.
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Although we see a slight trend suggesting a possible increase in the rate of observation with

the large display (see Figure 31), additional data is needed to quantitatively verify this trend.

Hence, we cannot rule out the possibility that observed differences in the cumulative number

of observations were simply due to participants spending a longer amount of time exploring

the Chicago crime dataset with the larger compared to the small display.

As for our second hypothesis, which predicts an increase in the number of hypotheses for-

mulated by participants when given a larger display, we do not find sufficient evidence to

support it. Although, again, we see a slight trend with an increase in the cumulative num-

ber of hypotheses formulated by the large display subjects (see Figure 32), these differences

are not significant. Furthermore, the aggregate rate of hypothesis formulation is quite similar

for all participants, regardless of which condition they were assigned to. Thus we do not find

evidence for an effect for display size on hypothesis formulation.

The above conclusion stands in contrast with findings from the case study in chapter 4,

which suggest a positive impact for LHDs on hypothesis formulation. One possible explana-

tion lies in individual differences in problem solving style and analytic ability between par-

ticipants, which could have weakened differences between the two conditions. Considering

that hypothesis formulation is generally indicative of higher-order thinking (Bloom, 1956), this

explanation remains plausible even when taking into account the large differences in the re-

ported observations between the two conditions. A second plausible explanation is that our

participants simply lacked the domain expertise necessary to interpret the data to a level that

would have allowed them to formulate a sufficient number of hypotheses, thus preventing
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us from detecting a measurable difference between the two conditions. Compared to the case

study in chapter 4, where the subject was a domain expert having had strong motivation and

curiosity to explore her dataset, this study was carried out with a participant pool drawn from

a population of primarily graduate students who had no prior experience in the analysis of

crime patterns.

5.6.2 Quality of insight

Another key difference between the large and small display lies in distribution of insights

according to our LOI metric (see section 5.3.6 for a definition). Figure 30 shows that the distri-

bution of insights is seemingly centered around level-3. Conversely, the majority of insights

reported on the small display were scored at level-1 or level-2. This provides evidence that

the large display affords the acquisition of more complex and integrative insights. We see a

similar trend in the distribution of hypotheses (see Figure 32), though these differences were

not statistically significant.

This result can be explained by taking into account changes to the cost structure of visual

exploration wrought by the increase in the display size and resolution (see section 2.2.3 for

a theoretical discussion). An important cognitive component in exploratory analysis is sense

making, which refers to the integration of disparate pieces of information into a coherent narra-

tive (Pirolli and Card, 2005). Sense making benefits significantly from the spatial distribution of

information artifacts, with people naturally taking advantage of space as resource to facilitate

the assimilation of fragmentary information (Bradel et al., 2013). Similarly, the large display,

by emphasizing the spatial separation of views, affords the integration of patterns found in dif-
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ferent views, thus allowing people to make more complex inferences. We see evidence of this

form of integration in our analysis of participants’ behavior (see section 5.5.6). In particular,

Figure 36 shows a tendency for participants to remain in insight-generating mental states (par-

ticularly, the Make observation state), where they are likely to integrate their observations and

develop more complex insights about crime patterns without having to ‘leave’ this state (Green

et al., 2009). Our qualitative observations also support this conjecture, with participants seem-

ingly allocating more time to integrate information form multiple views, before changing the

state of the visualization in the large display condition. Participants with the small displays, on

the other hand, were more likely to cycle between views. This may have ultimately o decrease

the probability of arriving at integrative insights, inducing participants to report their isolated

observations, which represent the ‘low hanging fruits’.

Conversely, from a top-down perspective, participants with the large display may be more

likely to form ambitious exploratory goals, which could be perceived as too costly on the small

display. We see evidence of this in Figure 36, which shows an increase in transitions to the

goal formation state with the large display. We also see anecdotal evidence of this from inter-

viewing participants who undertook the experiment on the small display. For instance, when

participant S3 was asked why he focused his exploration on crime activity in 2012 and did

not explore variations across different years, the participant responded: “I only bothered to

look at the years when I knew something about an area– like Cabrini Green and the Taylor

area”. This suggests that the cost of exploring temporal trends in this case was inhibitory that

the participant generally avoided it unless he knew a priori what attributes to focus on. In
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other words, in circumstances of weak information scent (Pirolli, 2007), the small display seem

to skew participants’ exploratory goals towards the acquisition of low-level, isolated insights.

This behavior resembles ‘narrowing in’ behavior observed by Patterson et al. in their study of

how intelligence analyst cope with information overload (Patterson et al., 2001), which caused

some analysts to inadvertently miss highly-profitable pieces of information that lied beyond

their search scope. From this perspective, a large display affords users a wider ‘spotlight’,

enabling them to incorporate a larger variety of views in their analysis.

5.6.3 Cognitive engagement

Our study also raises the question of why participants ‘choose’ to devote significantly more

time to the task, when given a larger display with more pixels. One possible explanation here

is that participants were simply more ‘engaged’ in the analytical task, with the large display

serving to sustain their attention for a longer amount of time.

The notion of engagement is widely cited in the HCI literature (usually in a nebulous man-

ner) as being a positive quality that is often correlated with effective designs. However, engage-

ment is seldom discussed in the circles of visual analytics, except when referring to persuasive

and casual visualizations, which aim to provide rhetorically effective visual designs intended

to induce personal reflection and/or some form of behavioral change (Fogg, 2002; Pousman

et al., 2007). In the realm of visual analytics, we can define cognitive engagement as the “ten-

dency towards investing or being concerned with a stimulus” (Peters et al., 2009). From this

perspective, a larger display with more pixels may provide a more compelling visual stimulus

that invites more interest from users. Alternatively, engagement can be conceptualized of as
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a process, where gaining insight is likely to drive one’s interest in seeking further discover-

ies. With LHD environments inducing cognitive engagement, they are likely to improve the

analytic performance of users in open-ended analysis tasks.

5.6.4 The cognitive costs of physically large displays

Although some participants were able to utilize the full size of the environment, by stepping

way from the display for instance (see Figure 28), most participants in the large display condi-

tion appeared to limit their use of the CAVE2 environment to 6 or 7 columns at a time. Often,

participants focused their attention on either the left or the right side of the environment. When

asked about this, most participants indicated that it was difficult to compare pieces of infor-

mation when located at different sides of the display. Participant L3, for instance, maintained

that by the time he had turned his head to the opposite side and located the necessary infor-

mation, he would have had ‘forgotten’ the pattern he was trying to remember. Conversely,

participants with the small display appeared to have no problem in utilizing the entire size of

the display.

This phenomenon suggests an increase in physical motion costs needed to integrate infor-

mation located across spatially-separated views (see section 2.2.3), particularly if the views are

separated by a relatively large visual angle. Our observations also suggests an upper limit

on the amount of rotational motion users are willing to tolerate, which we estimate to be ap-

proximately 87–102 degrees of visual angle (corresponding to the field-of-view afforded by 6–7

columns in the CAVE2 environment, from its center).
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There are also instances when the large display participants appeared to suffer from in-

formation overload. Participant L5 commented that it was often “so hard to compare so many

things” at once. This may indicate an increase in the effort needed to visually resolve the vi-

sualization and manage one’s attention, given a physically large display. This, in turn, could

have reduced the utility of the large display in some cases, and may have ultimately dimin-

ished the differences between the two experimental conditions for some measures, such as the

hypothesis formulation rates. Furthermore, this phenomenon could partly explain why the

large display participants devoted more time to the activity, by virtue of the task being more

physically and mentally demanding. It is worthy to note, however, that this additional in-

vestment (both in time and effort) translated into considerable advantage with respect to the

analytical outcome.

These observations call for future research into interactions and designs that can further re-

duce the potential for information overload in LHD-based visualization environments. While

some of the interactions provided by our visualization, such as the heatmap bounding boxes,

do seem to help (as all participants utilized them at some point during the activity), they ap-

pear to be insufficient. This motivates the need for more effective perceptual techniques to help

users manage their attention, and efficiently locate and highlight the relevant information in

spatial visualization environments.

5.7 Conclusions and study limitations

This study addresses RQ1. It demonstrates that increasing the physical size and resolu-

tion of the visualization interface positively affects user behavior during exploratory visual
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analysis. In particular, we see a tendency for users to allocate more time to exploring the

visualization and integrating information contained in spatially-separated views, given a large

display with more pixels. Moreover, from a micro-cognition perspective, we see an increased

tendency for users to transition from epistemic actions (i.e., interactions) to insight-generating

mental states. We attribute these key behavioral differences to changes in the cost structure of

visual exploration wrought by the spatial separation of views promoted by LHDs, compared

to the chronic temporal-separation of visualization states induced by conventional displays.

This study also addresses RQ2, demonstrating that the above behavioral adaptations to

LHDs result in a significantly improved analytical outcome, reflected by an increase in the

quantity of insights reported. Furthermore, we see a significant tendency for users to develop

higher-level, more integrative insights, when given a larger display with more pixels.

Lastly, this study addresses RQ3 by providing a preliminary evaluation of the seed and grow

design pattern. Our observations suggest that users were able to leverage the design concept

of view chains to devise effective organizational strategies and collectively control views on a

LHD in support of exploratory goals.

The main limitation in this study is that it relies on a novice participant pool drawn from

the general population to undertake a complex analytical task. Participants had no prior ex-

perience in the analytical scenario posed by the study, which revolved around the analysis of

crime patterns in a major metropolitan area. This may have impacted participants’ level of

motivation, selection of strategy, as well as their understanding of phenomenon depicted in

the visualization. Therefore, we expect some of the effects measured in this study to change in
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real-world visual analytic applications. One important consideration is that a domain expert

might be able to override some of the heuristic biases faced by out participants in the small

display condition, and thus diminish the analytical advantage conferred by the large display.

Lastly, it is worthy to point out again that our participants had prior experience in using

LHD environments within the context of general knowledge-based activities, such as conduct-

ing collaborative brain storming sessions and meetings. Consequently, the results of the exper-

iment may have been slightly biased in the favor of this more experienced participant pool. It is

therefore reasonable to expect a learning curve with users who are novice with the technology

before they are able to achieve comparable results.



CHAPTER 6

CONCLUSION

As we enter a ‘big data’ era, our society is being confronted with staggering quantities

of data that are being generated at ever escalating rates. Consequently, there is an increasing

need for effective perceptual and cognitive aids to help us make sense of the available troves of

digital information. Visualization represents one of the most effective ways for exploring and

communicating large quantities of data. However, the scalability of visualizations has often

been limited by the prevailing display technology. Thanks to advances in display technology,

Large High-resolution Displays (LHDs) are becoming increasingly common, and beginning

to take on an important role in providing data scientists and researchers with a visualization

instrument for the exploration and analysis of large-scale datasets. Compared to conventional

desktop and laptop displays, LHDs enable greater quantities of information be visualized at

once, thus potentially alleviating the ‘tunnel vision’ phenomenon often experienced by people

working with large data sources.

This dissertation has sough to provide an understanding of the analytical affordances of

LHDs and their effects on scientific discovery in scenarios that involve the exploration of large

and complex datasets. We have demonstrated, through exploratory and experimental studies,

that increasing the physical size and resolution of the visualization interface can fundamentally

impact user behavior and insight acquisition during exploratory visual analysis. Our results

123
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provide evidence to suggest a positive effect for the use of LHDs which manifests in a broader

exploratory behavior along with the acquisition of higher-level, more integrative insights.

This chapter concludes the dissertation by summarizing our contributions and outlining

future research directions suggested by this research.

6.1 Contributions

This dissertation was motivated by three research questions:

• RQ1: What is the effect of increasing the size and resolution of the visualization interface

on user behavior during exploratory visual analysis?

• RQ2: Compared to conventional displays, how does the ability to simultaneously see and

interact with orders of magnitude more information on LHDs affect insight acquisition?

• RQ3: Are there new design patterns for scaling up multi-view-based visualization inter-

faces to LHD environments?

Following is a summary of our primary contributions along with a discussion of how they

address the above research questions.

6.1.1 Theory of how interaction costs affect exploratory behavior

A primary concern of visual analytics is the design of effective visual interfaces that facil-

itate human exploration and analytical reasoning in circumstances involving large quantities of

information. In this sense, a visual analytic interfaces does not passively supply information

but rather serves to scaffold user activity, shaping the entire analytical cycle while providing

key cognitive resources (e.g., memory). It is therefore crucial to understand how variations in



125

the design of the interface affect user strategy and behavior. Based on the work of Lam (Lam,

2008) and Norman (Norman, 2002), we contributed a theory of how interaction costs affect

user behavior in exploratory scenarios where user goals not defined a priori and the informa-

tion scent is weak. Our theory postulates a ‘feedback’ effect associated with costly interactions

which propagates back to influence decision making and goal formation processes, causing

users to ‘narrow in’ and focus on the exploitation of isolated subsets of the information space.

This theory, which provides us with a conceptual foundation to begin to address RQ1 and

RQ2 empirically, also predicts that the spatial separation of views afforded by LHDs would

alleviate some of these costs, thus encouraging a broader exploratory behavior and possibly

the acquisition of more insights.

6.1.2 Visualization design patterns for LHD environments

LHDs presents visualization designers with opportunities to design more scalable visual

analytic environments, enabling users to see and interact with orders of magnitude more infor-

mation. However, existing design paradigms need to be readapted to this new environment.

In chapter 3, we developed an extension to Ware’s Visual Thinking Design Patterns (VTDP),

extending four of his VTDPs to LHD environments. Our adaptations provide vertically inte-

grated framework (based on empirically and theoretically motivated design heuristics) for con-

structing multi-view-based visualization interfaces for LHDs. This subset of VTDP is aimed

at supporting tasks involving the comparative analysis of large, homogeneous information

spaces. Additionally, our design patterns contribute two conceptually novel design ideas:
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• Scalable query-by-example technique: Involves an extension of the traditional brushing-and-

linking technique in conjunction with a small-multiples layout. It can be used to facilitate

the comparative analysis of large ensemble datasets. Using a familiar brush metaphor,

the user can specify a pattern of interest in one views and cause the system to automati-

cally highlight similar patterns in other views (based on a domain-dependent similarity

function), using a perceptually salient encode.

• Loose coordination model: An extension to the Coordinated Multiple Views (CMV) model,

allowing for multiple levels of coordination between views. This extension allows for

better utilization of the screen estate in LHD, giving users more control over the state of

the visualization to support parallel exploration threads as well as the efficient storage

and retrieval of previous exploratory outcomes.

Although the presented design patterns are by no means complete, they contribute design

solutions to RQ3, and provide practitioners and researchers with a starting point to begin to

systematically investigate how LHDs reshape the design space of multi-view-based visualiza-

tions.

6.1.3 Impact of LHDs on user analytic behavior

A key contribution of this dissertation is to demonstrate important differences in user be-

havior wrought by a possible reduction in visual exploration costs as a result of increasing the

size and resolution of the visualization interface. This difference is marked by a significant ten-

dency for users to invest more time in the exploratory process. Furthermore, we have observed

slight tendency for participants to form and pursue more exploratory goals, possibly increas-
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ing user engagement with the task and leading to a broader exploratory strategy. Lastly, our

analysis of verbal protocols suggest a significant increase in users’ tendency to transition to

and ‘remain’ in insight generating mental state, when given a larger display with more pixels.

These results suggest that the ability to utilize visual search as the primary mechanism for in-

formation foraging is likely to drive the exploratory process towards the formation of more

ambitious exploratory goals, while keeping users in the ‘cognitive zone’ by avoiding unneces-

sary context-switching (Green et al., 2009).

The above results directly addressRQ2. While some of these effects are based on qualitative

observations rather than significant quantitative differences, the gamut of behaviors exhibited

by participants are consistent with our theoretical account. We believe that additional data

would serve to quantitatively confirm these trends.

6.1.4 Impact of LHDs on insight acquisition and scientific discovery

Lastly, this dissertation has demonstrated that the use of LHDs as an interactive visualiza-

tion medium can fundamentally impact the outcome of the analytical process, and the nature

of insights acquired during visual exploration. As the study described in chapter 5 illustrates,

increasing the physical size and resolution of the visualization interface is correlated with a

significant increase in the quantity of observations reported by users. Furthermore, we see a

significant tendency for users to develop broader, more integrative insights, when given access

to a larger display with more pixels. These observed effects demonstrate a potential role for

LHDs in supporting the cognitive processes implicated in scientific discovery, particularly in

scenarios that involve the visual analysis of large datasets.
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These results address RQ3, but also raise questions about the common wisdom of cham-

pioning minimalistic visualization interfaces so as to avoid distracting users and overloading

them with too much information. While such long held wisdom reflects valid concerns, we

would argue that it is often invoked prematurely.

6.2 Future research directions

This research has investigated the impact of using LHDs on user behavior and insight ac-

quisition in exploratory visual analysis. While we do contribute design patterns that are suit-

able for constructing LHD-based visual interfaces, this work makes no attempt at defining

or even constraining the design space. Having identified significant benefits to reducing the

temporal-separation of views by increasing the size and resolution of the visualization inter-

face, a natural next step is to begin to systematically investigate this design space. There have

been some earlier attempts at sketching out some of the broad outlines for a design space for

multi-view-based visualizations. For instance, Yost et al. propose that view layout, which char-

acterize how views are physically located within the display, as one of the principle axes of

such a design space (Yost et al., 2007). Some of the distinct design instances on this axis include

attribute-centric layouts, which are commonly referred to as small-multiples, and space-centric

layouts, which rely on embedding abstract information views in a larger spatial context (e.g.,

a geographical map) at a corresponding location.

Although the above definition of the design space addresses the issue of information layout

within a large, spatial visualization environment, it does not make an attempt at constraining

the possible range of interactions that can be realized with multi-view, LHDs-based visualiza-
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tions. Other researchers attempted to address interaction design by leveraging the affordances

of freeform layouts as a way to communicate semantics between the user and the visualization

tool, by dynamically clustering related information artifacts (Andrews et al., 2010; Endert et

al., 2012a).

Our seed and grow design pattern, which allows for loose coordination between views, can

be construed as one point on an orthogonal axis, which we shall refer to as the coordination

model. Tight coordination between views have always assumed to be essential in conventional

multi-view interfaces. However, there is an inherent benefit to loosening coordination in LHD

environments and restricting it to a subset of views. For instance, as our second study shows,

uncoordinated views could function as independent ‘lenses’, allowing one to project and jux-

tapose two disparate parts of the information space side-by-side for comparison. They can

also be used as non-volatile storage of earlier exploratory outcomes. Disjoint views could also

provide scaffolds to enable users to explore and follow up on multiple narratives in parallel.

We also found from informal comments of participants in the second study that they want to

have some control over the coordination model. That is, users want to be able to dynamically

specify which views are coordinated and which are not, so that they can adapt the visualization

environment to their analytic process. The challenge here is to support dynamic arrangement

and coordination while retaining interface usability.

Articulation of a coherent interaction design space for multi-view, LHD-based visualiza-

tions is still an open question (Andrews et al., 2011). The ‘overview first, zoom and filter, then

details-on-demand’ have been the dominant interaction model for information visualizations
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on conventional displays (Shneiderman, 1996). However, the studies in this dissertation sug-

gest that zooming and panning would subject users to excessive visual flow and temporal-view

separation. Are there new interaction models that can better support visual exploration of large

information spaces on LHD environments? And how should interactions be operationalized

in a larger spatial environments with orders of magnitude more information? These are some

of the open questions that warrant future research.

Another aspect that was not investigated in this research is collaboration between mul-

tiple users. One of the main reasons why people acquire LHD environments is to provide

a platform that foster collaborative problem solving between collocated teams (Leigh et al.,

2012; Reda et al., 2013b). While this dissertation has limited itself to studying the cognitive

processes of a single person, it would be of interest to look at the exploratory visual analysis

process when multiple collocated individual participate in the activity. Would we expect the

analytical performance of a group of researchers or scientists to improve, when given access to

a larger display with more pixels?

A collaborative LHD-based visualization interfaces would require distinctive set of interac-

tions to support a wide range of synchronous and asynchronous processes within the activity.

Previous research by Jagodic et al. have resulted in the design of an multi-modal input and

interaction framework intended for use within the context of knowledge-based activities that

fall under everyday usage scenarios (Jagodic et al., 2011). However, it is likely that there are

unique requirements and solutions for data-intensive visualization applications (Isenberg et
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al., 2011). Collaborative visual analytics with LHD environments remains a widely-open field

that is ripe with many opportunities and challenges.

6.3 Final remarks

The results of this research is a testament of human perceptual and cognitive abilities to

deal with scale and complexity, when given appropriate technological support. We have ar-

gued that large high-resolution displays can fundamentally impact the analytic behavior of

users and ultimately improve the outcome of the visual analytic process. However, much re-

search lies ahead to fully understand the unique affordances of this platforms, and much work

remains to be done to apply this research towards the development of scalable visual analytic

environments to help us stay abreast with the rising tide of data.
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Appendix A

USER STUDY DOCUMENTS

Phone: 312-996-1711 http://www.uic.edu/depts/ovcr/oprs/ Fax: 312-413-2929 

 
Exemption Granted 

February 17, 2014 
 
Mhd Reda, MS 
Computer Science 
851 S. Morgan, Rm. 1120 SEO 
M/C 152 
Chicago, IL 60607 
Phone: (312) 996-3002 / Fax: (312) 413-7585 
 
RE: Research Protocol # 2014-0140 

“Evaluating the Use of Large, High-Resolution Displays in Visual Data Analysis” 
 
Sponsor(s): None 
 
Dear Mhd Reda: 
 
Your Claim of Exemption was reviewed on February 16, 2014 and it was determined that your 
research protocol meets the criteria for exemption as defined in the U. S. Department of Health 
and Human Services Regulations for the Protection of Human Subjects [(45 CFR 46.101(b)]. 
You may now begin your research. 
 
Exemption Period:  February 16, 2014 – February 16, 2017 
Performance Site:  UIC 
Subject Population:  Adult (18+ years) subjects only 
Number of Subjects:  30 
 
The specific exemption category under 45 CFR 46.101(b) is: 
(2) Research involving the use of educational tests (cognitive, diagnostic, aptitude, achievement), 
survey procedures, interview procedures or observation of public behavior, unless: (i) 
information obtained is recorded in such a manner that human subjects can be identified, directly 
or through identifiers linked to the subjects; and (ii) any disclosure of the human subjects' 
responses outside the research could reasonably place the subjects at risk of criminal or civil 
liability or be damaging to the subjects' financial standing, employability, or reputation. 
 
You are reminded that investigators whose research involving human subjects is determined to 
be exempt from the federal regulations for the protection of human subjects still have 
responsibilities for the ethical conduct of the research under state law and UIC policy.  Please be 
aware of the following UIC policies and responsibilities for investigators: 
 
1. Amendments You are responsible for reporting any amendments to your research protocol 

that may affect the determination of the exemption and may result in your research no longer 
being eligible for the exemption that has been granted. 
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2014-0140 Page 2 of 2 February 17, 2014 

 
2. Record Keeping You are responsible for maintaining a copy all research related records in a 

secure location in the event future verification is necessary, at a minimum these documents 
include: the research protocol, the claim of exemption application, all questionnaires, survey 
instruments, interview questions and/or data collection instruments associated with this 
research protocol, recruiting or advertising materials, any consent forms or information 
sheets given to subjects, or any other pertinent documents. 

 
3. Final Report When you have completed work on your research protocol, you should submit a 

final report to the Office for Protection of Research Subjects (OPRS). 
 
4. Information for Human Subjects UIC Policy requires investigators to provide information 

about the research protocol to subjects and to obtain their permission prior to their 
participating in the research. The information about the research protocol should be presented 
to subjects in writing or orally from a written script.  When appropriate, the following 
information must be provided to all research subjects participating in exempt studies: 

a. The researchers affiliation; UIC, JBVMAC or other institutions, 
b. The purpose of the research, 
c. The extent of the subject’s involvement and an explanation of the procedures to be 

followed, 
d. Whether the information being collected will be used for any purposes other than the 

proposed research, 
e. A description of the procedures to protect the privacy of subjects and the confidentiality of 

the research information and data, 
f. Description of any reasonable foreseeable risks, 
g. Description of anticipated benefit, 
h. A statement that participation is voluntary and subjects can refuse to participate or can stop 

at any time, 
i. A statement that the researcher is available to answer any questions that the subject may 

have and which includes the name and phone number of the investigator(s). 
j. A statement that the UIC IRB/OPRS or JBVMAC Patient Advocate Office is available if 

there are questions about subject’s rights, which includes the appropriate phone numbers. 
 
Please be sure to: 
àUse your research protocol number (listed above) on any documents or correspondence with 
the IRB concerning your research protocol. 
 
We wish you the best as you conduct your research. If you have any questions or need further 
help, please contact me at (312) 355-2908 or the OPRS office at (312) 996-1711. Please send any 
correspondence about this protocol to OPRS at 203 AOB, M/C 672. 
 

Sincerely, 
 
 
 
 Charles W. Hoehne 

Assistant Director 
Office for the Protection of Research Subjects 

 
cc: Peter C. Nelson, Computer Science, M/C 152 
 Andrew Johnson, Computer Science, M/C 154 
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Evaluating the Use of Large, High-Resolution Displays in Visual Data Analysis, page 1 of 5 

 
 

 
 
    
 
 
 
 
 
 
 University of Illinois at Chicago 
 Consent for Participation in Research 

“Evaluating the Use of Large, High-Resolution Displays in Visual Data Analysis” 
 
Why am I being asked? 
 
You are being asked to be a subject in a research study about Large, High-Resolution displays 
conducted by Computer Science PhD candidate MHD Khairi Reda at the University of Illinois at 
Chicago.  You have been asked to participate in the research because you are not a minor and 
may be eligible to participate.  We ask that you read this form and ask any questions you may 
have before agreeing to be in the research.   
 
Your participation in this research is voluntary. Your decision whether or not to participate will 
not affect your current or future relations with the University or your grade in any UIC courses. 
If you decide to participate, you are free to withdraw at any time without affecting that 
relationship.  
                       
Why is this research being done? 
 
Large, High-Resolution displays are becoming increasingly common. Scientists and researchers 
often use these displays to analyze large amounts of data, which would otherwise be difficult to 
do on traditional computer screens. It is important to develop techniques for creating effective 
visualization tools for such environments.  The Electronic Visualization Laboratory at UIC has 
been a pioneer in the study of visualization interfaces for large displays. The development of 
better visualization tools has the potential to increase productivity and accelerate scientific 
discovery. 
 
What is the purpose of this research?  
 
The purpose of this research study is to understand the benefits and drawbacks associating with 
using Large, High-Resolution displays in the context of visual data analysis. Results form this 
study will allow us to devise guidelines for creating effective visualization tools in the future. 
 
 
 
 

Leave box empty - For office use only 
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Evaluating the Use of Large, High-Resolution Displays in Visual Data Analysis, page 2 of 5 

What procedures are involved?  
 
If you agree to be in this research, we will ask you to do the following:   
 

• You will undertake a simulated data analysis scenario, and use an interactive 
visualization tool to explore a dataset that will be given to you. The description of the 
scenario will be provided to you along with a list of questions about the data. Your task is 
to try to answer those questions. There are no ‘right’ and ‘wrong’ answers here. Rather, 
your answer should reflect your assessment of the data. 
 

• Follow a short training on how to use the visualization tool.  
 

• Use the visualization tool to explore the provided dataset and answer the questions. You 
may also follow up on any additional questions you may come up with during your 
analysis. The maximum durarion for this part of the study will be 2.5 hours.  

 
• Undertake a short interview after you finish the task. 

 
• During the study, you will be video and audio taped. We also ask that you try to keep 

talking aloud while thinking. Try to say anything that goes through your head. 
 

• If you have questions during the study, please feel free to ask the researcher at any time. 
You may also take breaks at any time during the study. 

 
 
Approximately 30 subjects may be involved in this research at the University of Illinois at 
Chicago. 
 
What are the potential risks and discomforts? 
 
The research has no foreseeable risks to you as a participant.  Your information will remain 
confidential, and is not linked to your performance with the University of Illinois at Chicago. 
 
Are there benefits to taking part in the research?  
 
You will not receive any direct benefit for participating in this study. By participating in this 
research, however, you will also be contributing to the field of data visualization. 
 
Will I be reimbursed for any of my expenses or paid for my participation in this research? 

 
You will not be reimbursed for any expenses you incur by participating in this research nor will 
you be compensated in any way for your participation. 
 
What are the costs for participating in this research? 
 
There is no cost to you for participating in this study. 
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What about privacy and confidentiality?  
 
The only people who will know that you are a research subject are members of the research 
team. No information about you, or provided by you during the research, will be disclosed to 
others without your written permission, except: 
 

• when necessary to protect your rights or welfare (for example, if you are injured and 
need emergency care or when the UIC Institutional Review Board monitors the 
research or consent process); or 

 
• when required by law. 

 
When the results of the research are published or discussed in conferences, no information will 
be included that would reveal your identity. If photographs, videos, or audiotape recordings of 
you will be used for educational purposes, your identity will be protected or disguised. Any 
information that is obtained in connection with this study and that can be identified with you will 
remain confidential and will be disclosed only with your permission or as required by law.   
 

• All identifying data, including images, recordings, and questionairs will be kept under 
lock and key at the Electronic Visualization Laboratory for the duration of the study.  
Access to this data will be restricted to the prinicipal investigator, MHD Khairi Reda, and 
his co-investigators. 
 

• All other information that might identify you, such as response times, will be labeled with 
a numerical identifier to maintain your anonymity.  The index of study participant names 
and numbers will be kept under lock in the Elecronic Visualization Laboratory. 

 
• We will reguest additional consent from you if we desire to use identifying images or 

recordings of you in a publication or for public presentation. 
 

• All identifying images, recordings, and questionnaire results will be destroyed once the 
data has been fully analyzed or within one year, whichever comes first. 

 
What if I am injured as a result of my participation?  
 
In the event of injury related to this research study, treatment will be made available through the  
University of Illinois at Chicago Hospital.  However, you or your third party payer, if any, will  
be responsible for payment of this treatment. There is no compensation and/or payment for such  
medical treatment from the University of Illinois at Chicago for such injury, except as may be 
required of the University by law. If you feel you have been injured, you may contact the  
researcher, MHD Khairi Reda at the Electronic Visualization Laboratory, 312-996-3002. 
 
Can I withdraw or be removed from the study?  
 
You can choose whether to be in this study or not.  If you volunteer to be in this study, you may 
withdraw at any time without consequences of any kind.  You may also refuse to answer any 
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questions you don’t want to answer and still remain in the study. The investigator may withdraw 
you from this research if circumstances arise which warrant doing so.   

 
Who should I contact if I have questions?  
 
The researcher conducting this study is MHD Khairi Reda.  You may ask any questions you have 
now.  If you have questions later, you may contact him at:  
Phone: 312-996-3002 Email: mreda2@uic.edu 
 
The faculty sponsor of this research is Associate Professor Andrew E. Johnson.  You may 
contact him at: 
Phone: 312-996-3002 Email: ajohnson@uic.edu  
 
What are my rights as a research subject? 
 
If you have any questions about your rights as a research subject, you may call the Office for 
Protection of Research Subjects at 312-996-1711.  
 
What if I am a UIC student? 
 
You may choose not to participate or to stop your participation in this research at any time. This 
will not affect your class standing or grades at UIC.  The investigator may also end your 
participation in the research.  If this happens, you class standing or grades will not be affected.  
You will not be offered or receive any special consideration if you participate in this research. 
 
What if I am a UIC employee? 
 
Your participation in this research is in no way a part of your university duties, and your refusal 
to participate will not in any way affect your employment with the university, or the benefits, 
privileges, or opportunities associated with your employment at UIC.  You will not be offered or 
receive any special consideration if you participate in this research. 
 
 
Remember: Your participation in this research is voluntary. Your decision whether or not to 
participate will not affect your current or future relations with the University. If you decide to 
participate, you are free to withdraw at any time without affecting that relationship. 
You will be given a copy of this form for your information and to keep for your records. 
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Signature of Subject or Legally Authorized Representative 
 
I have read (or someone has read to me) the above information. I have been given an opportunity 
to ask questions and my questions have been answered to my satisfaction. I agree to participate 
in this research.  I have been given a copy of this form. 
 
 
         
Signature     Date 
 
      
Printed Name 
 
______________________________ 
E-mail address 
 
         
Signature of Researcher   Date (must be same as subject’s) 
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 University of Illinois at Chicago 
 Consent to Use Identifying Media from 
 

“Evaluating the Use of Large, High-Resolution Displays in Visual Data Analysis” 
 
Why am I being asked? 
 
We would like to use images, video, or audio recordings of your participation in the study for 
publication or presentation. We seek your consent to use this media in unaltered form that may 
allow others to identify you. We ask that you read this form and ask any questions you may have 
before giving consent.   
 
Your decision to give this consent is voluntary. Your decision whether or not to give consent will 
not affect your current or future relations with the University or your grade in any UIC courses. 
                       
What will this media be used for? 
 
We wish to use images, video, or audio recordings that include your likeness in a publication 
about the results of our study. This may also lead to opportunities to present the results of the 
study in a conference setting. The media selected with your likeness or voice has not been altered 
to prevent others from identifying you. The media will only be used to support arguments 
regarding the hypothesis of our study within the publication or at the presentation. The media 
will not be used to convey any personal information about your individual mannerisms, 
personality, or behavior traits. 
 
Can I review or edit the media before they are used?  
 
You have the opportunity to review the images, video recordings, and audio material bearing 
your likeness at this time. You may decline to give your consent for individual media items if 
you so desire.  Once you have reviewed the media items and signed this consent agreement, you 
will not have another opportunity to edit or review the images, video, or audio content before 
publication or conference presentation. 

 
Who should I contact if I have questions?  
 
The researcher conducting this study is MHD Khairi Reda.  You may ask any questions you have 
now.  If you have questions later, you may contact him at: 
Phone: 312-996-3002, Email: mreda2@uic.edu 
 
The faculty sponsor of this research is Associate Professor Andrew E. Johnson.  You may 
contact him at:  
Phone: 312-996-3002, Email: ajohnson@uic.edu  
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What are my rights as a research subject? 
 
If you have any questions about your rights as a research subject, you may call the Office for 
Protection of Research Subjects at 312-996-1711.  
 
Remember: Your participation in this research is voluntary. Your decision whether or not to 
participate will not affect your current or future relations with the University. If you decide to 
participate, you are free to withdraw at any time without affecting that relationship. 
You will be given a copy of this form for your information and to keep for your records. 
 
 
Signature of Subject or Legally Authorized Representative 
 
I have read (or someone has read to me) the above information. I have been given an opportunity 
to ask questions and my questions have been answered to my satisfaction. I agree to participate 
in this research.  I have been given a copy of this form. 
 
 
         
Signature     Date 
 
      
Printed Name 
 
         
Signature of Researcher   Date (must be same as subject’s) 
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Hypothetical scenario: Exploratory analysis of crime patterns in Chicago 

The City of Chicago has asked for your help in analyzing crime patterns in the city. The 
city has been witnessing a slow but steady decline in crime rate over the last decade. 
However, in the last two years, there has been a resurgence of crime in some areas. City 
officials want your expertise to help characterize crime patterns across the different 
neighborhoods. The city is also asking for your advise on how to deploy additional law 
enforcement resources to combat and deter crimes. 

The city has given you access to its database of crimes from the year 2006 to the present. 
This dataset lists the majority of crimes that happened in the last 7 years. Crimes are 
identified by location, time, and type of crime (e.g., robbery, violation of liquor law, 
vehicle theft, homicide, etc...). The city has given you access to an interactive 
visualization tool, which shows crime data on city maps. You will be using this tool to 
explore the crime database, and try to identify and characterize crime patterns in the 
different neighborhoods as well as out of the ordinary crime activity.  

To help you with this task, the city has provided a list of questions for you to use as a 
starting points. The city is also interested in other questions you can come up with and 
any additional insights you can glean from the data. 

List of questions: 

• What year has the most crime occurred in?  

• What neighborhoods are inflected by crimes most?  

• Identify crime ‘hotspots’ throughout the city. Are there distinct hotspots for 
specific types of crime?  

• How does crime in the city vary with time of day, day of the week, and season?  

• When do most crimes occur (time of day, day of week, and season)?  
 

• Are there correlations between different types of crimes?  
 

• The city wants to deploy 50 additional full-time police officers. Which areas 
should the police officers by deployed to? And during what times of the day?  
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