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ABSTRACT 
We present the Scalable Adaptive Graphics Environment 

(SAGE), a graphics streaming architecture for supporting 
collaborative scientific visualization environments with 
potentially hundreds of megapixels of contiguous display 
resolution. In collaborative scientific visualization it is crucial to 
share high resolution visualizations as well as high definition 
video among groups of collaborators at local or remote sites. Our 
network-centered architecture allows collaborators to 
simultaneously run multiple visualization applications on local or 
remote clusters and share the visualizations by streaming the 
pixels of each application over ultra high speed networks to large 
tiled displays. This streaming architecture is designed such that 
the output of arbitrary M by N pixel rendering cluster nodes can 
be streamed to X by Y pixel display screens allowing for user-
definable layouts on the display. This dynamic pixel routing 
capability of our architecture allows users to freely move and 
resize each application’s imagery over the tiled displays in run-
time, tightly synchronizing the multiple visualization streams to 
form a single stream. Experimental results show that our 
architecture can support visualization at multi-ten-megapixel 
resolution with reasonable frame rates using gigabit networks. 

CR Categories and Subject Descriptors: I.3.2 [Computer 
Graphics]: Graphics Systems-Distributed/network graphics; C.2.2 
[Computer-Communication Networks]: Network Protocols-
Applications; C.2.4 [Computer-Communication Networks]: 
Distributed Systems-Client/server, Distributed applications 

Additional Keywords: collaborative scientific visualization 

1 INTRODUCTION 
We envision situation-rooms and research laboratories in which 

all the walls are made from seamless ultra-high-resolution 
displays fed by data streamed over ultra-high-speed networks 
from distantly located visualization, storage servers, and high 
definition video cameras [1,6]. It will allow local and distributed 
groups of researchers to work together on large amounts of 
distributed heterogeneous datasets. From our prior work on the 
Continuum [2], we have learned that it is crucial for collaborators 
to have both local control (e.g. on a tablet or laptop) and the 
casual ability to share their work and see what others are working 
on (e.g. on a large tile display). We are taking the next steps 
toward this vision by building LambdaVision - an 11x5 tiled 
display with a total resolution of 100 megapixels and developing 
SAGE, the Scalable Adaptive Graphics Environment (see Figure 
1). High-resolution displays like LambdaVision are necessary to 
support geoscientists working with aerial and satellite imagery 
(365Kx365K pixels maps) and neurobiologists imaging the brain 
with montages consisting of thousands of pictures from a high-
resolution microscope (4Kx4K pixels sensor). SAGE allows the 
seamless display of various networked applications over the high 
resolution displays. Each visualization application (such as 3D 
rendering, remote desktop, video streams, 2D maps) streams its 
rendered pixels (or graphics primitives) to the virtual high-
resolution frame buffer of SAGE, allowing for any given layout 
onto the displays. 

The graphics streaming architecture of SAGE address two non-
trivial problems in scientific visualization. One is heterogeneity: 

since most visualization applications are closely tied to their 
graphics environment, it is difficult to integrate various 
visualization applications into a unified graphics environment. For 
example: visualization applications that are developed for desktop 
computers are rarely able to take advantage of the processing 
power of a cluster of graphics computers; conversely visualization 
applications developed for clusters rarely function on desktop 
computers. The other is scalability: the ability of visualization 
software and systems to scale in terms of the amount of data they 
can visualize and the resolution of the desired visualization [5]. 
SAGE addresses the heterogeneity problem by decoupling 
graphics rendering from graphics display so that visualization 
applications developed on various environments can easily 
migrate into SAGE by streaming their pixels into the virtual frame 
buffer. Also, SAGE provides scalability by supporting any 
number of rendering and displaying nodes, number of tiles, and 
screen resolution, and the SAGE visualization applications have 
extremely fast access to huge database at remote or local sites 
taking advantage of affordable ultra-high-bandwidth networks. 

As for user interaction, SAGE’s Free Space Manager (i.e. 
window manager) provides an intuitive interface for moving and 
resizing visualizations on the tiled display. When a visualization 
window is moved from one portion of the screen to another, the 
Free Space Manager informs the remote rendering clusters of the 
new destination for the streamed pixels, giving the user the 
illusion that they are working on one continuous computer screen, 
even though the systems performing the visualizations may be 
several thousand miles apart. The Free Space Manager is akin to a 
traditional desktop manager in a windowing system, except that it 
can scale from a single tablet PC screen to a desktop spanning 
over 100 million pixel displays. 

 
The main contributions of this paper are: 
• It presents a new paradigm to decouple rendering and 

display processes by dynamically routing pixels from 
applications to high-resolution displays,  

• It describes the design and the implementation of the 
SAGE environment enabled by high-bandwidth networks, 

• Using two benchmark applications, it proposes an 
evaluation of the scalability of SAGE, 

• Finally, various applications ported to the SAGE 
environment are described. 

 
Figure 1. Example of a collaborative SAGE session 



 
 
 
 

Figure 2. Remote rendering : VNC, Microsoft Remote Desktop 
 
 
 
 
 
 
 
 
 
 
Figure 3. Parallel rendering from single source: WireGL 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. SAGE on local area network 

2 RELATED WORK 
There are several existing systems with parallel or remote 

rendering schemes related to SAGE. Figure 2 shows a simple 
remote rendering scheme using a remote desktop network 
protocol such as VNC or Microsoft Remote Desktop. They were 
designed to transmit screens of single desktops to remote 
computers over slow networks operating on event triggered 
streaming mechanisms that are not suitable for real-time 
streaming of scientific visualization or collaborative applications.  

Figure 3 shows a sort-first parallel rendering scheme from a 
single source exploited in WireGL [7] or parallel scene-graph 
rendering. This approach allows a single serial application to drive 
a tiled display and streamed graphics primitives to be rendered in 
parallel on display nodes, but it has poor data scalability due to its 
single source limitation. 

Flexible scalable graphics systems such as Chromium [8] and 
Aura [11] are designed for distributing visualization to and from 
cluster driven tiled-displays. They have a similar parallel 
rendering scheme with SAGE on local area network as shown in 
Figure 4. However, Chromium is not designed to execute multiple 
applications on a tiled display, and its applications have a static 
layout on the tiled display – it can divide the tiled display into 
several parts and execute multiple applications, but each tile can 
support only one application. Chromium’s DMX extension allows 
executing multiple applications and window moving and resizing 
but doesn’t support parallel applications – it has a single source 
(serial application) as shown in Figure 3. Moreover, its design is 
not suitable for graphics streaming over wide-area networks, 
while SAGE is designed for distributed rendering over wide-area 
network, as shown in Figure 5, by using various protocols 
designed for high-bandwidth and high round-trip time networks. 
Also, we will extend SAGE to scalably support distance 
collaboration with multiple endpoints by streaming pixels to all 

the participating endpoints using either traditional router-based 
multicasting or photonic multicasting.  

 IBM’s Scalable Graphics Engine [9] is a hardware-based 
approach that allows for reception of pixels streamed over 
networks and can drive an array of displays synchronously. 
Currently, it is limited to 16 1GigE network inputs, 4 DVI outputs, 
and SGE specific network protocol which prevents users from 
exploiting advanced network protocols. Several SGE devices can 
be ganged and synchronized to drive larger displays. As 10GigE 
(10 gigabit Ethernet) network becomes prevalent, 1GigE network 
interface becomes a drawback of SGE.  

Our previous work, TeraVision [3], is a scalable platform-
independent solution that is capable of transmitting multiple 
synchronized high-resolution video streams between single 
workstations and/or clusters. TeraVision was also designed for 
high-speed graphics streaming over wide-area network and SAGE 
directly exploits its network transport libraries. However, 
TeraVision doesn’t have dynamic pixel routing capability - it has 
a static application layout on a tiled display and isn’t suitable for 
supporting parallel applications and multiple instances of 
applications – we need the same number of TeraVision boxes as 
rendering nodes, and each TeraVision box can stream only one 
application’s pixels. 

3 SAGE 

Figure 6. SAGE components 

 
The Scalable Adaptive Graphics Environment (SAGE) consists 

of the Free Space Manager, SAGE Application Interface Library 
(SAIL), SAGE Receiver, and User Interface (UI client) as shown 
in Figure 6. The Free Space Manager receives user commands 

      Figure 5. SAGE over wide area networks 



from UI clients and controls pixel streams between SAIL and the 
SAGE Receivers. SAIL captures application’s output pixels and 
streams them to appropriate SAGE Receivers. A SAGE Receiver 
can receive multiple pixel streams from different applications and 
displays streamed pixels on multiple tiles – a SAGE Receiver can 
drive multiple tiles. A UI Client sends user commands to control 
the Free Space Manager and receives messages that inform users 
of current status of SAGE. 

3.1 Free Space Manager 
The Free Space Manager is a central control unit of SAGE. It 

communicates with UI clients receiving user commands and 
sending SAGE status messages. When the Free Space Manager 
receives user commands, it sends appropriate control messages to 
SAIL and the SAGE Receivers to perform various SAGE 
functions such as application execution, window movement and 
resize, and window z-order change (overlapping windows). When 
the functions are completed, SAIL or a SAGE Receiver informs 
the Free Space Manager to update SAGE status to the UI clients, 
for example changed window position or size. Functions such as 
window movement and resize require multiple messages to be 
passed between the Free Space Manager and SAIL or SAGE 
Receiver. In that case, the Free Space Manager becomes an 
information broker between SAIL and SAGE Receiver collecting 
information from SAIL and distributing it to SAGE Receiver or 
vice versa. 

Also, the Free Space Manger is an information server for SAGE. 
It contains several possible execution configurations of SAGE 
applications, run-time information of each application instances, 
and the tile display configuration. Execution configurations 
consist of number of rendering nodes, command lines for 
executing applications, initial position and size of the application 
window, and the network protocol for pixel streaming. Multiple 
configurations are possible for each application so the user can 
execute multiple instances of an application with different 
configurations by giving different configurations in the 
application execution commands. Run-time application instance 
information includes current window position and size, z-order of 
the window, performance data of each instance and number of 
instances of each application. Any changes in this information are 
instantly updated to all UI clients so that all of them are 
synchronized with each other and the tiled display – This is very 
important when the UI clients have a GUI. The tiled display 
configuration consists of the number of tiles, number of display 
nodes, screen resolution, mullion information, and information for 
each display node – IP address, number of tiles it drives, positions 
of tiles. When the Free Space Manger is initialized, it sends this 
information to all SAGE Receivers to initialize them also. 

3.2 SAGE Application Interface Library (SAIL) 
SAIL is the library for SAGE applications to communicate with 

the Free Space Manager and stream pixels to SAGE Receivers. 
When a SAGE application is executed, it creates and initializes a 
SAIL object – if the application runs on multiple rendering nodes, 
one SAIL object per each node. For initialization, each application 
node has to give SAIL the pixel format – 24bit RGB, 32bit RGBA, 
16bit RGB, etc - and information about the image rendered by the 
node – resolution of the image and the image’s coordinates in the 
whole application image. Then, SAIL connects to the Free Space 
Manager and the Free Space Manager informs SAIL how it 
should split the application images and where to stream the split 
images. Whenever a SAGE application gives SAIL a new frame 
by a “sageSwapBuffer” call, SAIL splits and sends the new 
images to the proper SAGE Receivers. 

The SAIL API allows the programmers to describe the pixel 
buffer and the position of the buffer into the application output 

image. The latter is needed when programming parallel 
application where each processor will generate a portion of the 
whole picture. This mode is used either to speed up the 
application (each processor generates less pixels) or to achieve 
higher resolution (each processor generates the same amount of 
pixels). The only extra SAIL function in the application is the call 
to the ‘sageSwapBuffer’ function. This minimal API makes very 
easy to port to SAGE any application producing images or pixels 
in an uncompressed format. 

Table 1 shows the code for a minimal SAGE application: it is 
an application that registers with name ‘render’ to the Free 
Space Manager, it is a sequential application (it’s rank is 0), the 
unique process will generate the whole image as described in the 
‘renderImageMap’ data structure, the application will 
generate 24bit images in the RGB format, in a buffer where the 
pixels are laid out from bottom to top. After the initialization 
phase, the application sends the pixels contained in the 
‘rgbBuffer’ variable to the SAIL library. 

 
sailConfig scfg; 
scfg.cfgFile = "sage.conf"; 
scfg.appName = "render"; 
scfg.rank = 0; 
 
sageRect renderImageMap; 
renderImageMap.left = 0.0; 
renderImageMap.right = 1.0; 
renderImageMap.bottom = 0.0; 
renderImageMap.top = 1.0; 
 
scfg.imageMap = renderImageMap; 
scfg.colorDepth = 24; 
scfg.pixFmt = TVPIXFMT_888; 
scfg.rowOrd = BOTTOM_TO_TOP; 
                          
sageInf.init(scfg); 
 
while (1) sageInf.swapBuffer( rgbBuffer ); 

Table 1. Minimal SAGE application 

The partition of the image and the streaming of the pixels to the 
display using various protocols are completely transparent to the 
user. 

3.3 SAGE Receiver 
SAGE Receivers receive pixel streams from SAIL and control 

tiled display residing on the display nodes. They are remotely 
launched by the Free Space Manager and receive all the 
information about the tiled display from it. Each display node has 
only one SAGE Receiver, while more than one SAIL objects can 
exist on a rendering node since they are created per each 
application instance. Hence, a SAGE receiver has to receive 
multiple pixel streams from different application instances or 
different application nodes (on multiple rendering nodes) in one 
instance and has a circular buffer for each stream so that stream 
receiving threads fill the buffers and displaying threads read the 
buffers and display pixels on tiled displays. The current version of 
SAGE does not require applications to change the rendering 
resolution when users resize the application windows. Instead, 
SAGE Receiver scale the applications’ image to fit the new 
window size.  

A SAGE Receiver can drive multiple tiles, if the display node 
on which it resides is connected to more than one tile like 2x1, 
3x1, or 2x2 tiles. The layout of the tiled display is specified in a 
text configuration file, which describes the association and the 
physical arrangement between displays and computers. Table 2 
describes a 2x2 display driven by two computers. 



 
TileDisplay 
        Dimensions 2 2  
        Mullions 0.625 0.625 0.625 0.625 
        Resolution 1280 1024 
        PPI 90 
        Machines 2 
DisplayNode  
        Name yorda1-10 
        IP 10.0.8.121 
        Monitors 2 (0,0) (1,0) 
DisplayNode  
        Name yorda2-10 
        IP 10.0.8.122 
        Monitors 2 (1,0) (1,1) 

Table 2. Tiled display configuration 

3.4 UI Clients 

UI Clients send user commands to Free Space Manager and 
show the status of SAGE to the users. UI clients can be a 
Graphical User Interface (see Figure 7), text-based console, or 
some tracked devices. We have already implemented a text-based 
console and the first version of the SAGE GUI that can execute, 
move, and resize SAGE applications by sending commands to the 
Free Space Manager. UI clients can reside on any machine that 
can be connected to the Free Space Manager by network and 
multiple UI clients can connect to a Free Space Manager and 
interact simultaneously. This let multiple users connect to SAGE 
(a Free Space Manager) from their laptops, tablets, or desktops 
and control SAGE, interacting with each other. 

4 DYNAMIC PIXEL ROUTING 
We discuss here how SAGE achieves dynamic pixel routing 

capability. Section 4.1, 4.3 and 4.4 describe three procedures of 
dynamic pixel routing. Section 4.2 shows how SAGE 
synchronizes pixel streams and the close relation between the 
three procedures and SAGE’s synchronization method. 

4.1 Establishing Network Connections 
Due to SAGE’s window move and resize functionality, the 

possible destinations of a pixel stream from any sender (SAIL 
object) include all receivers (SAGE Receivers). Since we don’t 
want to kill and recreate the network connections between senders 
and receivers whenever a window is moved or resized, we 
establish network connections from all receivers to all senders of 
an application when the application is executed and pick a subset 
of them to use for streaming. If we have M tiles and N senders, 

the total connection number is MxN – when a SAGE Receiver 
drives multiple tiles, we send separate pixel stream for each tile, 
so the actual number of stream destinations are not the number of 
SAGE Receivers but the number of tiles. Also, we create a 
receiving thread and a sending thread for each connection. 
Initially all threads are idle, but the threads associated with 
selected connections are activated when SAGE starts streaming. 

4.2 Synchronization of Streams 
  SAGE’s synchronization method is based on TeraVision [3]’s 

synchronization method using a low latency and high priority 
TCP channel. The main difference is that SAGE has separate sync 
master threads on both the sending and receiving sides. In the case 
of TeraVision, one of sending threads and one of receiving 
threads are picked as sync master and send sync signals to other 
sending or receiving threads. However in the case of SAGE, all 
streams would be blocked if the master sending thread or master 
receiving thread became idle as a result of window move or resize. 
To avoid this, we can pick new sync masters and reconnect them 
to all sync slaves every time we move or resize windows, but this 
is a very inefficient and time-consuming method. Thus, we create 
a separate sync master thread on one of the senders and another on 
one of the receivers.  

On the sending side, every active sending thread sends update 
signals to the sync master when it finishes transferring the 
previous frame. The sync master sends sync signals to all active 
sending threads after receiving update signals from every active 
sending thread – the sync master doesn’t wait for idle sending 
threads’ update. After active sending threads receive the sync 
signal, they start to transfer new frames if the frames are ready by 
the application’s “sageSwapBuffer” call. On the receiving side, 
every active receiving thread stores pixels into its circular buffer 
and the associated displaying thread checks the buffer if a new 
frame arrives and sends an update signal to sync master when it 
finds a new frame. The sync master sends sync signals to all 
displaying threads after receiving update signals from every active 
displaying thread. Displaying threads don’t display new frames 
until they receive sync signals so that all the application images 
are simultaneously updated on tiled displays. 

4.3 Generating Stream Information 
Before SAGE starts streaming, the Free Space Manager 

overlaps the application window’s layout onto tiled display’s 
layout as in the Figure 8 to decide which connections are needed 
for streaming and how to split the application nodes’ image. In 
Figure 8, numbers from 1 to 6 indicate displaying nodes and A 
and B indicate rendering nodes. Active connections that are 
assigned to six pixel streams are 1-A, 2-A, 2-B, 4-A, 5-A, 5-B and 
idle connections are 1-B, 3-A, 3-B, 4-B, 6-A, 6-B. The Free Space 
Manager sends this information to senders and receivers to create 
network streaming buffers and activate the threads associated with 
the active connections and start streaming. 

 

Figure 8. Before window movement 

 
Figure 7. SAGE GUI for a 5x3 tiled display, running 3 applications 



4.4 Modifying Streams 
Through window moving operation, a window’s layout is 

changed as in Figure 9 so that the active connections are 2-A, 2-B, 
3-B, 5-A, 5-B, 6-B and the idle connections are 1-A, 1-B, 3-A, 4-
A, 4-B, 6-A. Four connections (2-A, 2-B, 5-A, 5-B) are still active 
so the sending and receiving threads associated with these 
connections keep running, but the streaming buffer sizes and 
image information (displaying position, aspect ratio, image 
coordinates on the application image) should be changed. The 
previous imagery on the display 1 and 4 has to be cleaned, 
because two connections (1-A, 4-A) have become idle. Two 
connections (3-B, 6-B) are newly active to start pixel streaming 
synchronized with four existing streams. To safely apply such 
changes to pixel streams, we stop the streams momentarily by 
blocking the sync master threads on the sending side and 
receiving side. While the streams are stopped, the Free Space 
Manager generates new stream information (application image 
splitting and active connection lists) and updates the information 
on the sending and receiving sides to recreate the network 
streaming buffers and activates or deactivate threads according to 
the new information. Then, we unblock the sync master threads to 
resume streaming. 

 

Figure 9. After window movement 

5 IMPLEMENTATION 
The current implementation of SAGE can execute multiple 

instances of various visualization applications on local or remote 
rendering clusters and dynamically stream the pixels of the 
applications to tiled displays so that multiple application windows 
can be freely moved or resized on the tiled displays. Each window 
has a unique z-value to decide which window is in front or behind 
the others when multiple windows are overlapping. Also, SAGE 
itself monitors the frame rate of each application and the network 
bandwidth used by it. Figure 10 shows the current implementation 
of SAGE, running three distinct application: a high-resolution 
aerial photography application (on the left), a volume rendering 
application (in the center) and a VNC session (on the right).  

 

Figure 10. Current implementation of SAGE 
 

5.1 Software 
We use C++ as the main language for SAGE implementation. 

The Quanta [12] library is used for message passing between 
SAGE components, TeraVision’s network protocol libraries are 
used for pixel streaming, and OpenGL/GLUT is used for 
displaying pixels on the tiled displays. The current 
implementation has been developed on Linux and ported to 
MacOS-X and MS windows. Any graphics application written in 
C/C++ requires minimal modifications: a few lines of code are 
added to link to the SAIL library. WxPython is used for SAGE 
GUI development. 

5.2 Hardware Infrastructure 

The SAGE architecture consists of a number of rendering 
resources (from single desktop computers to clusters of local or 
distributed PCs capable of rendering graphics either with 
dedicated graphics hardware or software), connected over a high 
speed network to a scalable frame buffer, in our case the 
LambdaVision display (see Figure 11). LambdaVision pushes the 
concept of tiled-display technology [4,5,9] and anticipates the 
geosciences community’s needs by coupling massive data storage 
(50TB of local storage) to a wall of 55 screens driven by 64-bit 
computers attached to each other by tens-of-gigabits of 
networking, for a total over 100Mpixels. 

6 EXPERIMENTS 
We tested the SAGE performance on local area networks using 

6-node display cluster and 6-node rendering cluster. Each node 
has dual AMD 64bit 2.4Ghz processors, Nvidia Quadro3000 
graphics card, 4GB of main memory, and 1GigE network 
interface fully connected to each other through a gigabit network 
switch. We used a simple application, Checker, which keeps 
fetching images from main memory and streaming to the SAGE 
display and a typical OpenGL application, Atlantis, for this 
performance test. In the latter part of this section, we present a 
few real applications as examples of SAGE application. 

6.1 Benchmarks 
We designed a suite of benchmarks on local area networks. In 

all our experiment, total rendering resolution is equal to total 
display resolution. Table 3 shows the performance results of 
Checker running on one rendering node and one display node, 
while varying the frame size (RGB image).  
 
 

 
Figure 11. LambdaVision 



  Checker Checker w/o SAGE Efficiency 
Resolution Frame size (MB) Frame rate (fps) Bandwidth (Mbps) Frame rate (fps) Bandwidth (Mbps) SAGE Network 
512x512 0.75 110 694 1359 8154 8.5% 73.8% 
1024x512 1.50 60 760 670 8040 9.5% 80.8% 
1024x1024 3.00 30 758 338 8112 9.3% 80.6% 
2048x1024 6.00 15 757 168 8064 9.4% 80.4% 
3200x1200 10.99 8 737 92 8086 9.1% 78.3% 

Table 3. 'Checker' performance results 

  Atlantis Atlantis w/o SAGE Efficiency 
Resolution Frame size (MB) Frame rate (fps) Bandwidth (Mbps) Frame rate (fps) Bandwidth (Mbps) SAGE Network 
512x512 0.75 85 510 96 576 88.5% 54.2% 
1024x512 1.50 49 588 55 660 89.1% 62.5% 
1024x1024 3.00 27 648 30 720 90.0% 68.9% 
2048x1024 6.00 14 672 15 720 93.3% 71.4% 
3200x1200 10.99 8 736 9 791 93.0% 78.2% 

Table 4.  ‘Atlantis’ performance results 

 

 
Figure 12. Throughput of Checker 

 
Figure 13. Throughput of Atlantis 

 
Figure 14. Frame Rate of Checker – 2 Displays 

 
Figure 15. Frame Rate of Checker – 6 Displays 

The result tells one SAGE stream can utilize up to 760Mbps 
network bandwidth which is 80.8% of 941Mbps - the maximum 
bandwidth monitored by the Iperf (a network benchmarking tool). 
The reason why the SAGE can’t utilize the full network 
bandwidth is the SAGE overhead – memory copies inside SAIL, 
display overhead, and synchronization overhead. The results 
under “Checker without SAGE” shows the maximum 
performance numbers of the standalone version of Checker 
without network streaming. SAGE efficiency tells how much 
performance a SAGE application can achieve comparing to the 
application without SAGE. One gigabit networks limit the 
efficiency for Checker about 9%, but it means we can expect 80% 

of network bandwidth utilization when the network interface is 
upgraded to 10GigE. 

Table 4 shows the performance results of Atlantis with the same 
experiment setup. Atlantis readbacks the pixels rendered in the 
frame buffer and streams them over networks using SAIL. 
Atlantis without SAGE does readback without network streaming. 
Unlike the case of Checker without SAGE, the bandwidth of 
Atlantis without SAGE is limited below 800Mbps due to readback 
overhead of OpenGL, and SAGE shows high efficiency(about 
90%) for Atlantis. It means SAGE overhead is reasonably small if 
the networking bandwidth is not the bottleneck. The network 



efficiency is worse because the bottleneck is the OpenGL 
readback operation. 

Figures 12 and 13 show the throughput of Checker and Atlantis 
on SAGE for various rendering resolution and number of 
rendering nodes. In both Checker and Atlantis, the throughput 
linearly increases over 4Gbps when we add new rendering nodes. 
It means we can scale the size of data we want to visualize by 
increasing the number of rendering nodes. As increasing the load 
of each node – increasing rendering resolution – Atlantis shows a 
distinct increase in the throughput, but Checker does not. The 
reason why Atlantis’ throughput increases is the readback 
performance becomes better when we read larger chunk of pixels. 
For Checker, the throughput slightly increases with the rendering 
resolution up to a 2.0Mpixel resolution but decreases for a 
3.6Mpixel resolution, because display overhead becomes the 
bottleneck for the 3.6Mpixel resolution to limit the throughput. 

Figures 14 and 15 show we can get higher frame rates when we 
use more rendering nodes to display the same resolution of pixels. 
The data points on each curve have the same display resolution, 
but, as the number of rendering nodes increases, the load for each 
rendering node decreases so the frame rate increases. For six 
displays (Figure 15), the frame rates are linearly increases with 
the number of rendering nodes supporting a 12Mpixel resolution 
(2Mpixel x 6displays) at 14fps and a 6Mpixel resolution (1Mpixel 
x 6displays) at 28fps. For two displays (Figure 14), the frame rate 
does not increase for four and six rendering nodes because 2 
gigabit network bandwidth limitation prevents rendering nodes 
from generating pixels at higher rate even though the load for 
each node decreases. We got similar results for Atlantis as shown 
in Figure 16, however, this time the frame rate increases for 2 
displays and 4 rendering nodes because the bottleneck is the 
readback operation so the rendering performance has not reach the 
network bandwidth limit yet. When we use 6 rendering nodes and 
6 displays, SAGE can run Atlantis at a 13fps frame rate and a 
12Mpixel resolution. 

 
Figure 16. Frame Rate of Atlantis 

6.2 Applications 
To program SAGE-enabled applications, we used the very 

simple SAIL application programming interface. We describe 
briefly four applications which show the benefits of SAGE. 

6.2.1 JuxtaView 
JuxtaView [4] is a cluster-based application for viewing ultra-

high-resolution images on scalable tiled displays. JuxtaView 
benefits from a new parallel computing and distributed memory 
approach for out-of-core montage visualization, so called 
LambdaRAM, a software-based network-level cache system. The 
data is distributed using LambdaRAM, on the memory of all 
nodes of a remote cluster. Aggressive pre-fetching schemes 

employed by LambdaRAM help to reduce latency involved in 
remote memory access. We ported JuxtaView to the SAGE 
environment, where each node of the cluster fetches images from 
LambdaRAM and generates a portion of the total image. The 
pixels are then streamed using SAGE to a high-resolution tiled 
display. JuxtaView is shown in Figure 10, on the left. Using 
SAGE, JuxtaView enables a user to interactively roam through 
potentially terabytes of distributed, spatially referenced image 
data sets such as those generated from electron microscopes, 
satellites and aerial photography. Through the use of a large 
amount of bandwidth, SAGE enables the domain scientist to 
bridge distributed resources including storage, rendering, and 
display clusters. 

6.2.2 Vol-a-tile 
Vol-a-Tile [13] is an interactive tool for exploring large 

volumetric data on scalable tiled displays. Hardware texture 
mapping and level-of-detail techniques provide interactivity. 
OptiStore is the data management server that provides the high 
performance I/O needed to stream data from storage to the nodes 
driving the tiled display over high-bandwidth photonic networks. 
It is designed to handle common data management operations, 
including loading data, maintaining meta-information about the 
data, such as dimension and scaling. In addition, OptiStore 
provides data processing capabilities, including run time 
gradient/histogram generation, sampling, and cropping by 
utilizing functionality in VTK. Network connectivity is provided 
through the QUANTA [12] network toolkit, which utilizes 
aggressive network protocols [10]. Since Vol-a-Tile is an 
OpenGL-based application, we added a pixel ‘readback’ step at 
the end of the rendering phase. These pixels are streamed for 
display using SAGE. This is a minimal modification to the source 
code, and could be applied to any OpenGL applications. This is an 
easy way to port various open-source applications to SAGE. 
Given the fill-limited performance characteristics of volume 
rendering applications (Vol-a-Tile uses OpenGL 3D textures and 
fragment shaders), this applications runs faster on a cluster of 
machines where each rendering node generates a sub-portion of 
the final image. SAGE recombines all the streams and provides 
the user with a coherent picture, which can be moved and scaled 
on any portion of the tiled display. Vol-a-Tile is shown in Figure 
10, in the center. 

6.2.3 OpenGL Wrapper 
Numerous scientific applications and visualization packages are 

using the OpenGL API (OpenDX, VTK, or Paraview for instance). 
The success of Chromium and WireGL shows a need to support 
native OpenGL applications in binary mode (without source code 
modification). We developed an OpenGL wrapper library along 
the scheme used by WireGL: using a shared library mechanism, 
we only capture the calls to the ‘glSwapBuffer’ function and add a 
pixel readback step. The captured pixels are then streamed to 
SAGE. This is an efficient and extremely easy mode to port native 
OpenGL application to SAGE. The performance is sufficient to 
run 1280x1204 resolution application at an interactive framer rate. 
The new generation of PCI-express graphics card will even 
increase the performance several times.  

6.2.4 VNC Viewer 
Finally, we developed a Virtual Network Computer (VNC) 

protocol client that enables user to bring desktop content to the 
SAGE environment. Our VNC application is a regular VNC 
viewer program modified to serve as a proxy between a VNC 
server (of any size and pixel depth) and SAGE. Once the pixels 
are retrieved from the VNC server, the same pixels are given to 
the SAGE API for immediate display. The functionality is critical 



in a collaborative environment where each scientist with his/her 
laptop needs to share information (web browser, presentations…). 
SAGE supports any number of simultaneous VNC applications, 
making use of the large real estate offered by high-resolution tiled 
displays. VNC is shown in Figure 10, on the right. 

7 CONCLUSIONS AND FUTURE WORKS 
SAGE can support collaborative scientific visualizations at 

extremely high display resolution. Decoupling of rendering and 
display addresses heterogeneity and scalability. SAGE’s dynamic 
pixel routing capability enables user to run multiple applications 
freely moving and resizing the application windows. In our 
experiment, we reached over 4.5Gpbs bandwidth and 14fps frame 
rate at a 12Mpixel resolution.  

In the future, our high-bandwidth networks will be upgraded to 
10gigabit networks : Infiniband on local networks and 10gigabit 
Ethernet on wide-area optical networks. When multicasting 
capability is added to SAGE, different endpoints in the 
collaboration may be seeing the same visualization on different 
devices with different display characteristics. Also, we are 
working on new streaming protocols and real-time compression 
which will improve SAGE’s pixel streaming more reliable and 
fast over wide area networks. Eventually, we will extend SAGE to 
stream other graphics data types such as polygons, voxels, or 
progressive mesh so that SAGE can support wider range of 
applications and utilize networks, rendering and display resources 
more effectively. 
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