
High-Performance Scalable Graphics Architecture
for High-Resolution Displays

Byungil Jeong+, Luc Renambot, Rajvikram Singh, Andrew Johnson, Jason Leigh
Electronic Visualization Laboratory, University of Illinois at Chicago

ABSTRACT
We present the Scalable Adaptive Graphics Environment

(SAGE), a graphics streaming architecture for supporting
collaborative scientific visualization environments with
potentially hundreds of megapixels of contiguous display
resolution. In collaborative scientific visualization it is crucial to
share high resolution visualizations as well as high definition
video among groups of collaborators at local or remote sites. Our
network-centered architecture allows collaborators to
simultaneously run multiple visualization applications on local or
remote clusters and share the visualizations by streaming the
pixels of each application over ultra high speed networks to large
tiled displays. This streaming architecture is designed such that
the output of arbitrary M by N pixel rendering cluster nodes can
be streamed to X by Y pixel display screens allowing for user-
definable layouts on the display. This dynamic pixel routing
capability of our architecture allows users to freely move and
resize each application’s imagery over the tiled displays in run-
time, tightly synchronizing the multiple visualization streams to
form a single stream. Experimental results show that our
architecture can support visualization at multi-ten-megapixel
resolution with reasonable frame rates using gigabit networks.

CR Categories and Subject Descriptors: I.3.2 [Computer
Graphics]: Graphics Systems-Distributed/network graphics; C.2.2
[Computer-Communication Networks]: Network Protocols-
Applications; C.2.4 [Computer-Communication Networks]:
Distributed Systems-Client/server, Distributed applications

Additional Keywords: collaborative scientific visualization

1 INTRODUCTION
We envision situation-rooms and research laboratories in which

all the walls are made from seamless ultra-high-resolution
displays fed by data streamed over ultra-high-speed networks
from distantly located visualization, storage servers, and high
definition video cameras [1,6]. It will allow local and distributed
groups of researchers to work together on large amounts of
distributed heterogeneous datasets. From our prior work on the
Continuum [2], we have learned that it is crucial for collaborators
to have both local control (e.g. on a tablet or laptop) and the
casual ability to share their work and see what others are working
on (e.g. on a large tile display). We are taking the next steps
toward this vision by building LambdaVision - an 11x5 tiled
display with a total resolution of 100 megapixels and developing
SAGE, the Scalable Adaptive Graphics Environment (see Figure
1). High-resolution displays like LambdaVision are necessary to
support geoscientists working with aerial and satellite imagery
(365Kx365K pixels maps) and neurobiologists imaging the brain
with montages consisting of thousands of pictures from a high-
resolution microscope (4Kx4K pixels sensor). SAGE allows the
seamless display of various networked applications over the high
resolution displays. Each visualization application (such as 3D
rendering, remote desktop, video streams, 2D maps) streams its
rendered pixels (or graphics primitives) to the virtual high-
resolution frame buffer of SAGE, allowing for any given layout
onto the displays.

The graphics streaming architecture of SAGE address two non-
trivial problems in scientific visualization. One is heterogeneity:

since most visualization applications are closely tied to their
graphics environment, it is difficult to integrate various
visualization applications into a unified graphics environment. For
example: visualization applications that are developed for desktop
computers are rarely able to take advantage of the processing
power of a cluster of graphics computers; conversely visualization
applications developed for clusters rarely function on desktop
computers. The other is scalability: the ability of visualization
software and systems to scale in terms of the amount of data they
can visualize and the resolution of the desired visualization [5].
SAGE addresses the heterogeneity problem by decoupling
graphics rendering from graphics display so that visualization
applications developed on various environments can easily
migrate into SAGE by streaming their pixels into the virtual frame
buffer. Also, SAGE provides scalability by supporting any
number of rendering and displaying nodes, number of tiles, and
screen resolution, and the SAGE visualization applications have
extremely fast access to huge database at remote or local sites
taking advantage of affordable ultra-high-bandwidth networks.

As for user interaction, SAGE’s Free Space Manager (i.e.
window manager) provides an intuitive interface for moving and
resizing visualizations on the tiled display. When a visualization
window is moved from one portion of the screen to another, the
Free Space Manager informs the remote rendering clusters of the
new destination for the streamed pixels, giving the user the
illusion that they are working on one continuous computer screen,
even though the systems performing the visualizations may be
several thousand miles apart. The Free Space Manager is akin to a
traditional desktop manager in a windowing system, except that it
can scale from a single tablet PC screen to a desktop spanning
over 100 million pixel displays.

The main contributions of this paper are:
• It presents a new paradigm to decouple rendering and

display processes by dynamically routing pixels from
applications to high-resolution displays,

• It describes the design and the implementation of the
SAGE environment enabled by high-bandwidth networks,

• Using two benchmark applications, it proposes an
evaluation of the scalability of SAGE,

• Finally, various applications ported to the SAGE
environment are described.

Figure 1. Example of a collaborative SAGE session

Figure 2. Remote rendering : VNC, Microsoft Remote Desktop

Figure 3. Parallel rendering from single source: WireGL

Figure 4. SAGE on local area network

2 RELATED WORK
There are several existing systems with parallel or remote

rendering schemes related to SAGE. Figure 2 shows a simple
remote rendering scheme using a remote desktop network
protocol such as VNC or Microsoft Remote Desktop. They were
designed to transmit screens of single desktops to remote
computers over slow networks operating on event triggered
streaming mechanisms that are not suitable for real-time
streaming of scientific visualization or collaborative applications.

Figure 3 shows a sort-first parallel rendering scheme from a
single source exploited in WireGL [7] or parallel scene-graph
rendering. This approach allows a single serial application to drive
a tiled display and streamed graphics primitives to be rendered in
parallel on display nodes, but it has poor data scalability due to its
single source limitation.

Flexible scalable graphics systems such as Chromium [8] and
Aura [11] are designed for distributing visualization to and from
cluster driven tiled-displays. They have a similar parallel
rendering scheme with SAGE on local area network as shown in
Figure 4. However, Chromium is not designed to execute multiple
applications on a tiled display, and its applications have a static
layout on the tiled display – it can divide the tiled display into
several parts and execute multiple applications, but each tile can
support only one application. Chromium’s DMX extension allows
executing multiple applications and window moving and resizing
but doesn’t support parallel applications – it has a single source
(serial application) as shown in Figure 3. Moreover, its design is
not suitable for graphics streaming over wide-area networks,
while SAGE is designed for distributed rendering over wide-area
network, as shown in Figure 5, by using various protocols
designed for high-bandwidth and high round-trip time networks.
Also, we will extend SAGE to scalably support distance
collaboration with multiple endpoints by streaming pixels to all

the participating endpoints using either traditional router-based
multicasting or photonic multicasting.

 IBM’s Scalable Graphics Engine [9] is a hardware-based
approach that allows for reception of pixels streamed over
networks and can drive an array of displays synchronously.
Currently, it is limited to 16 1GigE network inputs, 4 DVI outputs,
and SGE specific network protocol which prevents users from
exploiting advanced network protocols. Several SGE devices can
be ganged and synchronized to drive larger displays. As 10GigE
(10 gigabit Ethernet) network becomes prevalent, 1GigE network
interface becomes a drawback of SGE.

Our previous work, TeraVision [3], is a scalable platform-
independent solution that is capable of transmitting multiple
synchronized high-resolution video streams between single
workstations and/or clusters. TeraVision was also designed for
high-speed graphics streaming over wide-area network and SAGE
directly exploits its network transport libraries. However,
TeraVision doesn’t have dynamic pixel routing capability - it has
a static application layout on a tiled display and isn’t suitable for
supporting parallel applications and multiple instances of
applications – we need the same number of TeraVision boxes as
rendering nodes, and each TeraVision box can stream only one
application’s pixels.

3 SAGE

Figure 6. SAGE components

The Scalable Adaptive Graphics Environment (SAGE) consists

of the Free Space Manager, SAGE Application Interface Library
(SAIL), SAGE Receiver, and User Interface (UI client) as shown
in Figure 6. The Free Space Manager receives user commands

 Figure 5. SAGE over wide area networks

from UI clients and controls pixel streams between SAIL and the
SAGE Receivers. SAIL captures application’s output pixels and
streams them to appropriate SAGE Receivers. A SAGE Receiver
can receive multiple pixel streams from different applications and
displays streamed pixels on multiple tiles – a SAGE Receiver can
drive multiple tiles. A UI Client sends user commands to control
the Free Space Manager and receives messages that inform users
of current status of SAGE.

3.1 Free Space Manager
The Free Space Manager is a central control unit of SAGE. It

communicates with UI clients receiving user commands and
sending SAGE status messages. When the Free Space Manager
receives user commands, it sends appropriate control messages to
SAIL and the SAGE Receivers to perform various SAGE
functions such as application execution, window movement and
resize, and window z-order change (overlapping windows). When
the functions are completed, SAIL or a SAGE Receiver informs
the Free Space Manager to update SAGE status to the UI clients,
for example changed window position or size. Functions such as
window movement and resize require multiple messages to be
passed between the Free Space Manager and SAIL or SAGE
Receiver. In that case, the Free Space Manager becomes an
information broker between SAIL and SAGE Receiver collecting
information from SAIL and distributing it to SAGE Receiver or
vice versa.

Also, the Free Space Manger is an information server for SAGE.
It contains several possible execution configurations of SAGE
applications, run-time information of each application instances,
and the tile display configuration. Execution configurations
consist of number of rendering nodes, command lines for
executing applications, initial position and size of the application
window, and the network protocol for pixel streaming. Multiple
configurations are possible for each application so the user can
execute multiple instances of an application with different
configurations by giving different configurations in the
application execution commands. Run-time application instance
information includes current window position and size, z-order of
the window, performance data of each instance and number of
instances of each application. Any changes in this information are
instantly updated to all UI clients so that all of them are
synchronized with each other and the tiled display – This is very
important when the UI clients have a GUI. The tiled display
configuration consists of the number of tiles, number of display
nodes, screen resolution, mullion information, and information for
each display node – IP address, number of tiles it drives, positions
of tiles. When the Free Space Manger is initialized, it sends this
information to all SAGE Receivers to initialize them also.

3.2 SAGE Application Interface Library (SAIL)
SAIL is the library for SAGE applications to communicate with

the Free Space Manager and stream pixels to SAGE Receivers.
When a SAGE application is executed, it creates and initializes a
SAIL object – if the application runs on multiple rendering nodes,
one SAIL object per each node. For initialization, each application
node has to give SAIL the pixel format – 24bit RGB, 32bit RGBA,
16bit RGB, etc - and information about the image rendered by the
node – resolution of the image and the image’s coordinates in the
whole application image. Then, SAIL connects to the Free Space
Manager and the Free Space Manager informs SAIL how it
should split the application images and where to stream the split
images. Whenever a SAGE application gives SAIL a new frame
by a “sageSwapBuffer” call, SAIL splits and sends the new
images to the proper SAGE Receivers.

The SAIL API allows the programmers to describe the pixel
buffer and the position of the buffer into the application output

image. The latter is needed when programming parallel
application where each processor will generate a portion of the
whole picture. This mode is used either to speed up the
application (each processor generates less pixels) or to achieve
higher resolution (each processor generates the same amount of
pixels). The only extra SAIL function in the application is the call
to the ‘sageSwapBuffer’ function. This minimal API makes very
easy to port to SAGE any application producing images or pixels
in an uncompressed format.

Table 1 shows the code for a minimal SAGE application: it is
an application that registers with name ‘render’ to the Free
Space Manager, it is a sequential application (it’s rank is 0), the
unique process will generate the whole image as described in the
‘renderImageMap’ data structure, the application will
generate 24bit images in the RGB format, in a buffer where the
pixels are laid out from bottom to top. After the initialization
phase, the application sends the pixels contained in the
‘rgbBuffer’ variable to the SAIL library.

sailConfig scfg;
scfg.cfgFile = "sage.conf";
scfg.appName = "render";
scfg.rank = 0;

sageRect renderImageMap;
renderImageMap.left = 0.0;
renderImageMap.right = 1.0;
renderImageMap.bottom = 0.0;
renderImageMap.top = 1.0;

scfg.imageMap = renderImageMap;
scfg.colorDepth = 24;
scfg.pixFmt = TVPIXFMT_888;
scfg.rowOrd = BOTTOM_TO_TOP;

sageInf.init(scfg);

while (1) sageInf.swapBuffer(rgbBuffer);

Table 1. Minimal SAGE application

The partition of the image and the streaming of the pixels to the
display using various protocols are completely transparent to the
user.

3.3 SAGE Receiver
SAGE Receivers receive pixel streams from SAIL and control

tiled display residing on the display nodes. They are remotely
launched by the Free Space Manager and receive all the
information about the tiled display from it. Each display node has
only one SAGE Receiver, while more than one SAIL objects can
exist on a rendering node since they are created per each
application instance. Hence, a SAGE receiver has to receive
multiple pixel streams from different application instances or
different application nodes (on multiple rendering nodes) in one
instance and has a circular buffer for each stream so that stream
receiving threads fill the buffers and displaying threads read the
buffers and display pixels on tiled displays. The current version of
SAGE does not require applications to change the rendering
resolution when users resize the application windows. Instead,
SAGE Receiver scale the applications’ image to fit the new
window size.

A SAGE Receiver can drive multiple tiles, if the display node
on which it resides is connected to more than one tile like 2x1,
3x1, or 2x2 tiles. The layout of the tiled display is specified in a
text configuration file, which describes the association and the
physical arrangement between displays and computers. Table 2
describes a 2x2 display driven by two computers.

TileDisplay
 Dimensions 2 2
 Mullions 0.625 0.625 0.625 0.625
 Resolution 1280 1024
 PPI 90
 Machines 2
DisplayNode
 Name yorda1-10
 IP 10.0.8.121
 Monitors 2 (0,0) (1,0)
DisplayNode
 Name yorda2-10
 IP 10.0.8.122
 Monitors 2 (1,0) (1,1)

Table 2. Tiled display configuration

3.4 UI Clients

UI Clients send user commands to Free Space Manager and
show the status of SAGE to the users. UI clients can be a
Graphical User Interface (see Figure 7), text-based console, or
some tracked devices. We have already implemented a text-based
console and the first version of the SAGE GUI that can execute,
move, and resize SAGE applications by sending commands to the
Free Space Manager. UI clients can reside on any machine that
can be connected to the Free Space Manager by network and
multiple UI clients can connect to a Free Space Manager and
interact simultaneously. This let multiple users connect to SAGE
(a Free Space Manager) from their laptops, tablets, or desktops
and control SAGE, interacting with each other.

4 DYNAMIC PIXEL ROUTING
We discuss here how SAGE achieves dynamic pixel routing

capability. Section 4.1, 4.3 and 4.4 describe three procedures of
dynamic pixel routing. Section 4.2 shows how SAGE
synchronizes pixel streams and the close relation between the
three procedures and SAGE’s synchronization method.

4.1 Establishing Network Connections
Due to SAGE’s window move and resize functionality, the

possible destinations of a pixel stream from any sender (SAIL
object) include all receivers (SAGE Receivers). Since we don’t
want to kill and recreate the network connections between senders
and receivers whenever a window is moved or resized, we
establish network connections from all receivers to all senders of
an application when the application is executed and pick a subset
of them to use for streaming. If we have M tiles and N senders,

the total connection number is MxN – when a SAGE Receiver
drives multiple tiles, we send separate pixel stream for each tile,
so the actual number of stream destinations are not the number of
SAGE Receivers but the number of tiles. Also, we create a
receiving thread and a sending thread for each connection.
Initially all threads are idle, but the threads associated with
selected connections are activated when SAGE starts streaming.

4.2 Synchronization of Streams
 SAGE’s synchronization method is based on TeraVision [3]’s

synchronization method using a low latency and high priority
TCP channel. The main difference is that SAGE has separate sync
master threads on both the sending and receiving sides. In the case
of TeraVision, one of sending threads and one of receiving
threads are picked as sync master and send sync signals to other
sending or receiving threads. However in the case of SAGE, all
streams would be blocked if the master sending thread or master
receiving thread became idle as a result of window move or resize.
To avoid this, we can pick new sync masters and reconnect them
to all sync slaves every time we move or resize windows, but this
is a very inefficient and time-consuming method. Thus, we create
a separate sync master thread on one of the senders and another on
one of the receivers.

On the sending side, every active sending thread sends update
signals to the sync master when it finishes transferring the
previous frame. The sync master sends sync signals to all active
sending threads after receiving update signals from every active
sending thread – the sync master doesn’t wait for idle sending
threads’ update. After active sending threads receive the sync
signal, they start to transfer new frames if the frames are ready by
the application’s “sageSwapBuffer” call. On the receiving side,
every active receiving thread stores pixels into its circular buffer
and the associated displaying thread checks the buffer if a new
frame arrives and sends an update signal to sync master when it
finds a new frame. The sync master sends sync signals to all
displaying threads after receiving update signals from every active
displaying thread. Displaying threads don’t display new frames
until they receive sync signals so that all the application images
are simultaneously updated on tiled displays.

4.3 Generating Stream Information
Before SAGE starts streaming, the Free Space Manager

overlaps the application window’s layout onto tiled display’s
layout as in the Figure 8 to decide which connections are needed
for streaming and how to split the application nodes’ image. In
Figure 8, numbers from 1 to 6 indicate displaying nodes and A
and B indicate rendering nodes. Active connections that are
assigned to six pixel streams are 1-A, 2-A, 2-B, 4-A, 5-A, 5-B and
idle connections are 1-B, 3-A, 3-B, 4-B, 6-A, 6-B. The Free Space
Manager sends this information to senders and receivers to create
network streaming buffers and activate the threads associated with
the active connections and start streaming.

Figure 8. Before window movement

Figure 7. SAGE GUI for a 5x3 tiled display, running 3 applications

4.4 Modifying Streams
Through window moving operation, a window’s layout is

changed as in Figure 9 so that the active connections are 2-A, 2-B,
3-B, 5-A, 5-B, 6-B and the idle connections are 1-A, 1-B, 3-A, 4-
A, 4-B, 6-A. Four connections (2-A, 2-B, 5-A, 5-B) are still active
so the sending and receiving threads associated with these
connections keep running, but the streaming buffer sizes and
image information (displaying position, aspect ratio, image
coordinates on the application image) should be changed. The
previous imagery on the display 1 and 4 has to be cleaned,
because two connections (1-A, 4-A) have become idle. Two
connections (3-B, 6-B) are newly active to start pixel streaming
synchronized with four existing streams. To safely apply such
changes to pixel streams, we stop the streams momentarily by
blocking the sync master threads on the sending side and
receiving side. While the streams are stopped, the Free Space
Manager generates new stream information (application image
splitting and active connection lists) and updates the information
on the sending and receiving sides to recreate the network
streaming buffers and activates or deactivate threads according to
the new information. Then, we unblock the sync master threads to
resume streaming.

Figure 9. After window movement

5 IMPLEMENTATION
The current implementation of SAGE can execute multiple

instances of various visualization applications on local or remote
rendering clusters and dynamically stream the pixels of the
applications to tiled displays so that multiple application windows
can be freely moved or resized on the tiled displays. Each window
has a unique z-value to decide which window is in front or behind
the others when multiple windows are overlapping. Also, SAGE
itself monitors the frame rate of each application and the network
bandwidth used by it. Figure 10 shows the current implementation
of SAGE, running three distinct application: a high-resolution
aerial photography application (on the left), a volume rendering
application (in the center) and a VNC session (on the right).

Figure 10. Current implementation of SAGE

5.1 Software
We use C++ as the main language for SAGE implementation.

The Quanta [12] library is used for message passing between
SAGE components, TeraVision’s network protocol libraries are
used for pixel streaming, and OpenGL/GLUT is used for
displaying pixels on the tiled displays. The current
implementation has been developed on Linux and ported to
MacOS-X and MS windows. Any graphics application written in
C/C++ requires minimal modifications: a few lines of code are
added to link to the SAIL library. WxPython is used for SAGE
GUI development.

5.2 Hardware Infrastructure

The SAGE architecture consists of a number of rendering
resources (from single desktop computers to clusters of local or
distributed PCs capable of rendering graphics either with
dedicated graphics hardware or software), connected over a high
speed network to a scalable frame buffer, in our case the
LambdaVision display (see Figure 11). LambdaVision pushes the
concept of tiled-display technology [4,5,9] and anticipates the
geosciences community’s needs by coupling massive data storage
(50TB of local storage) to a wall of 55 screens driven by 64-bit
computers attached to each other by tens-of-gigabits of
networking, for a total over 100Mpixels.

6 EXPERIMENTS
We tested the SAGE performance on local area networks using

6-node display cluster and 6-node rendering cluster. Each node
has dual AMD 64bit 2.4Ghz processors, Nvidia Quadro3000
graphics card, 4GB of main memory, and 1GigE network
interface fully connected to each other through a gigabit network
switch. We used a simple application, Checker, which keeps
fetching images from main memory and streaming to the SAGE
display and a typical OpenGL application, Atlantis, for this
performance test. In the latter part of this section, we present a
few real applications as examples of SAGE application.

6.1 Benchmarks
We designed a suite of benchmarks on local area networks. In

all our experiment, total rendering resolution is equal to total
display resolution. Table 3 shows the performance results of
Checker running on one rendering node and one display node,
while varying the frame size (RGB image).

Figure 11. LambdaVision

 Checker Checker w/o SAGE Efficiency
Resolution Frame size (MB) Frame rate (fps) Bandwidth (Mbps) Frame rate (fps) Bandwidth (Mbps) SAGE Network
512x512 0.75 110 694 1359 8154 8.5% 73.8%
1024x512 1.50 60 760 670 8040 9.5% 80.8%
1024x1024 3.00 30 758 338 8112 9.3% 80.6%
2048x1024 6.00 15 757 168 8064 9.4% 80.4%
3200x1200 10.99 8 737 92 8086 9.1% 78.3%

Table 3. 'Checker' performance results

 Atlantis Atlantis w/o SAGE Efficiency
Resolution Frame size (MB) Frame rate (fps) Bandwidth (Mbps) Frame rate (fps) Bandwidth (Mbps) SAGE Network
512x512 0.75 85 510 96 576 88.5% 54.2%
1024x512 1.50 49 588 55 660 89.1% 62.5%
1024x1024 3.00 27 648 30 720 90.0% 68.9%
2048x1024 6.00 14 672 15 720 93.3% 71.4%
3200x1200 10.99 8 736 9 791 93.0% 78.2%

Table 4. ‘Atlantis’ performance results

Figure 12. Throughput of Checker

Figure 13. Throughput of Atlantis

Figure 14. Frame Rate of Checker – 2 Displays

Figure 15. Frame Rate of Checker – 6 Displays

The result tells one SAGE stream can utilize up to 760Mbps
network bandwidth which is 80.8% of 941Mbps - the maximum
bandwidth monitored by the Iperf (a network benchmarking tool).
The reason why the SAGE can’t utilize the full network
bandwidth is the SAGE overhead – memory copies inside SAIL,
display overhead, and synchronization overhead. The results
under “Checker without SAGE” shows the maximum
performance numbers of the standalone version of Checker
without network streaming. SAGE efficiency tells how much
performance a SAGE application can achieve comparing to the
application without SAGE. One gigabit networks limit the
efficiency for Checker about 9%, but it means we can expect 80%

of network bandwidth utilization when the network interface is
upgraded to 10GigE.

Table 4 shows the performance results of Atlantis with the same
experiment setup. Atlantis readbacks the pixels rendered in the
frame buffer and streams them over networks using SAIL.
Atlantis without SAGE does readback without network streaming.
Unlike the case of Checker without SAGE, the bandwidth of
Atlantis without SAGE is limited below 800Mbps due to readback
overhead of OpenGL, and SAGE shows high efficiency(about
90%) for Atlantis. It means SAGE overhead is reasonably small if
the networking bandwidth is not the bottleneck. The network

efficiency is worse because the bottleneck is the OpenGL
readback operation.

Figures 12 and 13 show the throughput of Checker and Atlantis
on SAGE for various rendering resolution and number of
rendering nodes. In both Checker and Atlantis, the throughput
linearly increases over 4Gbps when we add new rendering nodes.
It means we can scale the size of data we want to visualize by
increasing the number of rendering nodes. As increasing the load
of each node – increasing rendering resolution – Atlantis shows a
distinct increase in the throughput, but Checker does not. The
reason why Atlantis’ throughput increases is the readback
performance becomes better when we read larger chunk of pixels.
For Checker, the throughput slightly increases with the rendering
resolution up to a 2.0Mpixel resolution but decreases for a
3.6Mpixel resolution, because display overhead becomes the
bottleneck for the 3.6Mpixel resolution to limit the throughput.

Figures 14 and 15 show we can get higher frame rates when we
use more rendering nodes to display the same resolution of pixels.
The data points on each curve have the same display resolution,
but, as the number of rendering nodes increases, the load for each
rendering node decreases so the frame rate increases. For six
displays (Figure 15), the frame rates are linearly increases with
the number of rendering nodes supporting a 12Mpixel resolution
(2Mpixel x 6displays) at 14fps and a 6Mpixel resolution (1Mpixel
x 6displays) at 28fps. For two displays (Figure 14), the frame rate
does not increase for four and six rendering nodes because 2
gigabit network bandwidth limitation prevents rendering nodes
from generating pixels at higher rate even though the load for
each node decreases. We got similar results for Atlantis as shown
in Figure 16, however, this time the frame rate increases for 2
displays and 4 rendering nodes because the bottleneck is the
readback operation so the rendering performance has not reach the
network bandwidth limit yet. When we use 6 rendering nodes and
6 displays, SAGE can run Atlantis at a 13fps frame rate and a
12Mpixel resolution.

Figure 16. Frame Rate of Atlantis

6.2 Applications
To program SAGE-enabled applications, we used the very

simple SAIL application programming interface. We describe
briefly four applications which show the benefits of SAGE.

6.2.1 JuxtaView
JuxtaView [4] is a cluster-based application for viewing ultra-

high-resolution images on scalable tiled displays. JuxtaView
benefits from a new parallel computing and distributed memory
approach for out-of-core montage visualization, so called
LambdaRAM, a software-based network-level cache system. The
data is distributed using LambdaRAM, on the memory of all
nodes of a remote cluster. Aggressive pre-fetching schemes

employed by LambdaRAM help to reduce latency involved in
remote memory access. We ported JuxtaView to the SAGE
environment, where each node of the cluster fetches images from
LambdaRAM and generates a portion of the total image. The
pixels are then streamed using SAGE to a high-resolution tiled
display. JuxtaView is shown in Figure 10, on the left. Using
SAGE, JuxtaView enables a user to interactively roam through
potentially terabytes of distributed, spatially referenced image
data sets such as those generated from electron microscopes,
satellites and aerial photography. Through the use of a large
amount of bandwidth, SAGE enables the domain scientist to
bridge distributed resources including storage, rendering, and
display clusters.

6.2.2 Vol-a-tile
Vol-a-Tile [13] is an interactive tool for exploring large

volumetric data on scalable tiled displays. Hardware texture
mapping and level-of-detail techniques provide interactivity.
OptiStore is the data management server that provides the high
performance I/O needed to stream data from storage to the nodes
driving the tiled display over high-bandwidth photonic networks.
It is designed to handle common data management operations,
including loading data, maintaining meta-information about the
data, such as dimension and scaling. In addition, OptiStore
provides data processing capabilities, including run time
gradient/histogram generation, sampling, and cropping by
utilizing functionality in VTK. Network connectivity is provided
through the QUANTA [12] network toolkit, which utilizes
aggressive network protocols [10]. Since Vol-a-Tile is an
OpenGL-based application, we added a pixel ‘readback’ step at
the end of the rendering phase. These pixels are streamed for
display using SAGE. This is a minimal modification to the source
code, and could be applied to any OpenGL applications. This is an
easy way to port various open-source applications to SAGE.
Given the fill-limited performance characteristics of volume
rendering applications (Vol-a-Tile uses OpenGL 3D textures and
fragment shaders), this applications runs faster on a cluster of
machines where each rendering node generates a sub-portion of
the final image. SAGE recombines all the streams and provides
the user with a coherent picture, which can be moved and scaled
on any portion of the tiled display. Vol-a-Tile is shown in Figure
10, in the center.

6.2.3 OpenGL Wrapper
Numerous scientific applications and visualization packages are

using the OpenGL API (OpenDX, VTK, or Paraview for instance).
The success of Chromium and WireGL shows a need to support
native OpenGL applications in binary mode (without source code
modification). We developed an OpenGL wrapper library along
the scheme used by WireGL: using a shared library mechanism,
we only capture the calls to the ‘glSwapBuffer’ function and add a
pixel readback step. The captured pixels are then streamed to
SAGE. This is an efficient and extremely easy mode to port native
OpenGL application to SAGE. The performance is sufficient to
run 1280x1204 resolution application at an interactive framer rate.
The new generation of PCI-express graphics card will even
increase the performance several times.

6.2.4 VNC Viewer
Finally, we developed a Virtual Network Computer (VNC)

protocol client that enables user to bring desktop content to the
SAGE environment. Our VNC application is a regular VNC
viewer program modified to serve as a proxy between a VNC
server (of any size and pixel depth) and SAGE. Once the pixels
are retrieved from the VNC server, the same pixels are given to
the SAGE API for immediate display. The functionality is critical

in a collaborative environment where each scientist with his/her
laptop needs to share information (web browser, presentations…).
SAGE supports any number of simultaneous VNC applications,
making use of the large real estate offered by high-resolution tiled
displays. VNC is shown in Figure 10, on the right.

7 CONCLUSIONS AND FUTURE WORKS
SAGE can support collaborative scientific visualizations at

extremely high display resolution. Decoupling of rendering and
display addresses heterogeneity and scalability. SAGE’s dynamic
pixel routing capability enables user to run multiple applications
freely moving and resizing the application windows. In our
experiment, we reached over 4.5Gpbs bandwidth and 14fps frame
rate at a 12Mpixel resolution.

In the future, our high-bandwidth networks will be upgraded to
10gigabit networks : Infiniband on local networks and 10gigabit
Ethernet on wide-area optical networks. When multicasting
capability is added to SAGE, different endpoints in the
collaboration may be seeing the same visualization on different
devices with different display characteristics. Also, we are
working on new streaming protocols and real-time compression
which will improve SAGE’s pixel streaming more reliable and
fast over wide area networks. Eventually, we will extend SAGE to
stream other graphics data types such as polygons, voxels, or
progressive mesh so that SAGE can support wider range of
applications and utilize networks, rendering and display resources
more effectively.

8 ACKNOWLEDGMENTS
We would like to thank numerous people involved in the

development of SAGE: Alan Verlo, Lance Long, and Pat Hallihan
provided us with diligent support to help debug and solve various
network and system issues, Ratko Jagodic, Allan Spale, Julieta
Aguilera for designing the GUI and logo for SAGE, valuable
inputs by Nicholas Schwarz, Arun Rao, Charles Zhang, and
Venkatram Vishwanath.

The Electronic Visualization Laboratory (EVL) at the

University of Illinois at Chicago specializes in the design and
development of high-resolution visualization and virtual-reality
display systems, collaboration software for use on multi-gigabit
networks, and advanced networking infrastructure. These projects
are made possible by major funding from the National Science
Foundation (NSF), awards CNS-0115809, CNS-0224306, CNS-
0420477, SCI-9980480, SCI-0229642, SCI-9730202, SCI-
0123399, ANI-0129527 and EAR-0218918, as well as the NSF
Information Technology Research (ITR) cooperative agreement
(SCI-0225642) to the University of California San Diego (UCSD)
for "The OptIPuter" and the NSF Partnerships for Advanced
Computational Infrastructure (PACI) cooperative agreement (SCI-
9619019) to the National Computational Science Alliance. EVL
also receives funding from the State of Illinois, General Motors
Research, the Office of Naval Research on behalf of the
Technology Research, Education, and Commercialization Center
(TRECC), and Pacific Interface Inc. on behalf of NTT Optical
Network Systems Laboratory in Japan. The GeoWall, GeoWall2,
Personal GeoWall2 (PG2), and LambdaVision are trademarks of
the Board of Trustees of the University of Illinois.

REFERENCES
[1] Larry L. Smarr, Andrew A. Chien, Tom DeFanti, Jason Leigh, Philip

M. Papadopoulos "The OptIPuter" Communications of the ACM,
Volume 46, Issue 11, November 2003, pp. 58-67.

[2] Park, K., Renambot, L., Leigh, J. and Johnson, A., "The Impact of
Display-rich Environments for Enhancing Task Parallelism and

Group Awareness in Advanced Collaborative Environments", In
Workshop on Advanced Collaboration Environments, June 22-24,
2003, Seattle, WA.

[3] Rajvikram Singh, Byungil Jeong, Luc Renambot, Andrew Johnson
and Jason Leigh “TeraVision: a Distributed, Scalable, High
Resolution Graphics Streaming System” , in the proceedings of
IEEE Cluster 2004, San Diego, September 20-23, 2004.

[4] Naveen K. Krishnaprasad, Venkatram Vishwanath, Shalini
Venkataraman, Arun G. Rao, Luc Renambot, Jason Leigh, Andrew
E. Johnson, and Brian Davis “JuxtaView – a Tool for Interactive
Visualization of Large Imagery on Scalable Tiled Displays” , in the
proceedings of IEEE Cluster 2004, San Diego, September 20-23,
2004.

[5] W. Blanke, C. Bajaj, D. Fussell, and X. Zhang, “The Metabuffer: a
Scalable Multiresolution Multidisplay 3-D Graphics System using
Commodity Rendering Engines.” Tr2000-16, University of Texas at
Austin, February 2000.

[6] J. Leigh, L. Renambot, T.A. DeFanti, M.D. Brown, E. He, N.K.
Krishnaprasad, J. Meerasa, A. Nayak, K. Park, R. Singh, S.
Venkataraman, C. Zhang, D. Livingston, M. McLaughlin, “An
Experimental OptIPuter Architecture for Data-Intensive
Collaborative Visualization”, 3rd Workshop on Advanced
Collaborative Environments, Seattle, WA, June 2003

[7] G. Humphreys, I. Buck, M. Eldridge, and P. Hanrahan, “Distributed
rendering for scalable displays.”, IEEE Super-computing 2000.

[8] G. Humphreys, M. Houston, Y. Ng, R. Frank, S. Ahern, P. Kirchner,
and J. T. Klosowski, “Chromium: A Stream-Processing Framework
for Interactive Rendering on Clusters”, Proceedings of SIGGRAPH
2002.

[9] Kenneth A. Perrine, Donald R. Jones, William R. Wiley “Parallel
Graphics and Interactivity with the Scaleable Graphics Engine”
Proceedings of the 2001 ACM/IEEE conference on Supercomputing.

[10] E. He, J. Leigh, O. Yu, T. A. DeFanti, “Reliable Blast UDP:
Predictable High Performance Bulk Data Transfer”, IEEE Cluster
Computing 2002, Chicago, IL, Sept 2002.

[11] D. Germans, H.J.W. Spoelder, L. Renambot, H. E. Bal, "VIRPI: A
High-Level Toolkit for Interactive Scientific Visualization in Virtual
Reality", Proc. Immersive Projection Technology/Eurographics
Virtual Environments Workshop, Stuttgart, May 2001.

[12] Eric He, Javid Alimohideen, Josh Eliason, Naveen Krishnaprasad,
Jason Leigh, Oliver Yu, Thomas A. DeFanti, “Quanta: A Toolkit for
High Performance Data Delivery over Photonic Networks,” Journal
of Future Generation Computer Systems (FGCS), Elsevier Science
Press, Volume 19-6, August 2003.

[13] Nicholas Schwarz, Shalini Venkataraman, Luc Renambot, Naveen
Krishnaprasad, Venkatram Vishwanath, Jason Leigh, Andrew
Johnson, Graham Kent, Atul Nayak, “Vol-a-Tile - a Tool for
Interactive Exploration of Large Volumetric Data on Scalable Tiled
Displays”, IEEE Visualization 2004, Poster session, Austin, TX,
October 2004.

