
Remote Visualization of Large Scale Data for
Ultra-High Resolution Display Environments

Sungwon Nam1, Byungil Jeong2, Luc Renambot1, Andrew Johnson1,
Kelly Gaither2, Jason Leigh1

1 Electronic Visualization Laboratory,

University of Illinois at Chicago
842 W. Taylor St., Chicago, IL 60607

snam5, renambot, spiff @ uic.edu
aej @ evl.uic.edu

2 Texas Advanced Computing Center
10100 Burnet Rd. Bldg 196, Austin, TX 78758

bijeong, kelly @ tacc.utexas.edu

ABSTRACT
ParaView is one of the most widely used scientific tools that
support parallel visualization of large scale data. The Scalable
Adaptive Graphics Environment (SAGE) is a graphics
middleware that enables real-time streaming of ultra-high
resolution visual content from distributed visualization resources
to scalable tiled displays connected by ultra-high-speed
networks. Integrating these two technologies enables
visualization of large-scale data at an extremely high resolution
to be displayed on distantly located scalable tiled displays. The
benefits, limitations, and future directions for this approach will
be discussed.

Categories and Subject Descriptor
I.3.2 [Computer Graphics]: Graphics Systems –
Distributed/network graphics

General Terms

Experimentation, Performance

Keywords
Large-scale data, remote visualization, ultra-high resolution
visualization, ParaView, SAGE

1. INTRODUCTION
The volume of scientific data collected from sensors and
simulations continues to grow exponentially. Individual data
objects are now on the order of terabytes and will soon reach
petabytes. This magnitude of data easily exceeds the capacity of
a personal computer or even a modest compute cluster.
Visualizing this large-scale data therefore is best achieved
through the use of High Performance Computing resources to
render the computationally intensive visualization, while
allowing users to employ thin clients connected over emerging
high-speed networks to view the results. A parallel visualization
application that is well suited to this model is ParaView [5, 8]. It
enables users to visualize and interact with the large-scale data
on a remote visualization cluster via an interactive client running
on the users’ laptop or desktop computer. However, the

resolution and interactivity of visualizations is limited by the
clients’ screen resolution and available network bandwidth.

On the other hand, the use of scalable tiled display walls to view
visualizations of large-scale data at near native resolution is
becoming increasingly popular due to its growing affordability.
Furthermore the expansive size and exquisite resolution of the
display has been conclusively demonstrated to positively impact
the scientific discovery process by allowing researchers to
juxtapose multiple high-resolution visualizations [6, 9, 18, 20].
We have developed an “operating system” for such ultra-high
resolution display systems known as Scalable Adaptive
Graphics Environment (SAGE) [13]. SAGE facilitates launching
visualization applications on separately distributed remote
clusters as well as streaming the resulting visualization directly
to the users’ tiled displays. The uniqueness of SAGE lies in its
ability to stream the visualizations to any portion of a tiled
display as individually managed windows. Such windows not
only allow a user to manipulate and view the visualization, but
also provide users a way to manage multiple streams to their
liking. SAGE allows users to scale the traditional notion of the
thin-client to extremely high resolution given sufficient network
bandwidth.

ParaView itself can support visualization on a tiled display with
two limitations: 1) the tiled display has to be directly connected
to the rendering nodes – there is no remote visualization for a
tiled display; 2) It only allows one dataset to be visualized at a
time, occupying the entire display. Our approach integrates
ParaView with the SAGE framework, to enable ParaView to
overcome these limitations. Furthermore SAGE, through
Visualcasting, provides the ability to replicate visualization
streams to multiple destinations thereby enabling distance
collaboration. The contributions of this paper are threefold:

• It provides users with a solution to visualize large-scale
data that best leverages the use of ultra-high resolution
scalable tiled displays and remote High Performance
Computing resources.

• It demonstrates the viability of a scalable thin-client-based
approach to remote visualization.

• It provides users of VTK-based [3, 5, 7, 17] applications
with a means to perform remote visualization on scalable
tiled displays.

2. RELATED WORK
Perrine et al. and Klosowski et al. presented the merits of high-
resolution display for various visualization applications using
IBM’s Scalable Graphics Engine (SGE) [14, 16]. SGE is a
hardware frame buffer for parallel computers. Disjoint pixel
fragments are joined within the SGE frame buffer and displayed
as a contiguous image. SGE supports up to sixteen 1GigE inputs
and can drive up to eight displays with double-buffering to
support display systems of up to 16 megapixels. SAGE and SGE
are similar in that they both receive graphics data from multiple
rendering nodes and route that data to high-resolution displays.
However, SAGE differs from SGE in that the former is a
software approach which is much more flexible and scalable
than the latter. Since SAGE does not require any special
hardware, and network technologies such as 10GigE and novel
transport protocols are easily applied to SAGE. SGE, on the
other hand, is bound to 1GigE inputs and the SGE-specific
network protocol. There is no theoretical limitation to scaling
the performance of SAGE by adding more rendering and display
nodes. Conversely, network bandwidth, number of inputs and
memory capacity limit the performance of SGE.

There are several parallel rendering systems that can benefit
from SAGE or SGE. WireGL [11] or parallel scene-graph
rendering is a sort-first parallel rendering scheme from a single
data source. This approach allows a single serial application to
drive a tiled display by streaming graphics primitives that will
be rendered in parallel on display nodes. However, it has limited
data scalability due to its single data source bottleneck. Flexible
scalable graphics systems such as Chromium [12] or Aura [10]
are designed for distributing visualizations to and from cluster
driven tiled displays. However, since these systems enable only
one application at a time with a static layout on a tiled display,
they require a graphics streaming architecture such as SAGE or
SGE to move, resize and overlap multiple application windows.

XDMX (Distributed Multi-head X11) [1] is another system that
can drive a tiled display. It is a front-end proxy X server that
controls multiple back-end X servers to make up a unified large
display. XDMX can also support Chromium to display multiple
applications on a tiled display. However, XDMX does not
support parallel applications. This limits its scalability with
respect to large datasets.
No other systems discussed so far were designed to stream
graphics data over a high-speed wide-area network. In contrast,
SAGE has both a TCP and a UDP-based high-speed pixel
streaming architecture for wide-area networks that have multi-
ten gigabits of network bandwidth. The architecture is open so
that it may use new streaming protocols designed for high-
bandwidth and high round-trip time networks that are not
considered in the streaming architectures of SGE and
Chromium. In addition, SAGE takes the mullions (borders) of
each LCD panel of tiled displays into consideration when
displaying application windows. Hence, the mullions appear to
be placed on top of a large continuous image.
TeraVision [19] developed by EVL is a hardware-based scalable
platform-independent solution that is capable of transmitting
multiple synchronized high-resolution video streams between
single workstations and/or clusters. While TeraVision can also
stream graphics data over wide-area networks, it has a static
application layout on a tiled display. It is suitable for streaming a
single desktop to a high-resolution tiled display but not for

supporting parallel applications or multiple instances of
applications.

3. INTRODUCTION TO PARAVIEW AND
SAGE
In this section, we will briefly introduce ParaView’s modes of
operation in multi-processor environments, and the underlying
model of SAGE and its capabilities.

3.1 ParaView
ParaView is a scientific visualization tool designed to analyze
large datasets by taking advantage of distributed memory
computing environments [4]. While a user can perform the
computations and rendering in a single machine by running a
single instance of ParaView, multiple instances running in
parallel is preferred for visualizing large datasets. ParaView
supports various modes of operations on a distributed computing
environment (Figure 1) [2].

 Client-Server Mode: a server (a single PC) which is
located remotely, performs the computation and
rendering, and the resulting pixels are streamed to a
desktop client. This mode enables remote visualization
but does not support parallel computation and
rendering.

 Distributed Server Mode: a cluster of computers
performs the computation and rendering in parallel. In
this mode, the master node of the cluster composites
the final image and sends it to the client. Hence, the
resolution of the final image is limited to client’s
desktop resolution.

 Tiled-Display Mode: a cluster of computers performs
the computation and rendering in parallel. Each cluster
node renders and composites its image fragment (view
frustum) and displays it on physically connected
display. This mode does not support remote
visualization.

Figure 1. ParaView’s two modes for supporting scalable
visualization: (a) In the Distributed Server mode, the
head node sends the final image to the client. (b) In the
Tiled Display mode, the final image is displayed on
monitors attached to rendering cluster.

While ParaView supports remote parallel rendering via its
Distributed Server mode, and ultra-high resolution rendering via
its Tiled Display mode, it does not support both at the same

time- SAGE bridges this gap. The next section describes how
this is accomplished.

3.2 SAGE
Unlike other tiled display approaches, such as Chromium,
SAGE delegates the rendering of graphics to remotely located
compute clusters, and relies on the use of high speed networks to
stream the pixels of the visualization to the displays. This “thin-
client” model has the advantage that large cluster farms or
supercomputers can be brought to bear to render datasets that
may be too large to fit on an individual graphics card.
Furthermore, SAGE’s Visualcasting service replicates and
distributes the high-resolution visualization streams at
interactive frame rates to multiple distantly located tiled displays
thereby enabling collaborative visualization. Users can
juxtapose and manipulate multiple high-resolution visualization
windows on their tiled display.

4. PARAVIEW AND SAGE
INTEGRATION
This section describes the integration of ParaView with SAGE
using SAIL (the SAGE Application Interface Library).

4.1 Integrating Visualization Applications
with SAGE
There are two ways to integrate a visualization application into
the SAGE framework. First, visualization applications can be
modified to use a thin API layer called SAIL (the SAGE
Application Interface Library) that will capture the application’s
frame buffer and then stream it to the remote tiled display. SAIL
is also capable of supporting parallel rendering applications
where multiple nodes may be generating a sub-portion of the
overall full image. SAGE takes each of the individual sub-
images and stitches them together in real-time for presentation
on the tiled display.

A second approach leverages VNC server to stream the entire
computer desktop screen to the tiled display. In this model
SAGE launches a VNC client that is enhanced so that the
received pixels are placed in a frame buffer that are then routed
to the tiled display. This approach enables any computer or
laptop to “push” its screen onto the tiled display without
modifying any application code. While using VNC to stream
pixels to SAGE can give users easy access to tiled display, the
resolution is limited to the users’ desktop resolution.

4.2 SAIL in ParaView
To support parallel visualization at an ultra-high resolution on
SAGE-driven tiled display, one must use SAIL. The integration
of SAGE with ParaView involves applying SAIL to ParaView
in its Tiled Display Mode. SAIL captures the graphics buffers
on each node of the rendering cluster, and streams them to a
SAGE-driven tiled display (see Figure 2).

ParaView is built on top of the Visualization Toolkit (VTK)
[17], which includes a class called vtkXOpenGLRenderWindow.
This class is responsible for creating and managing OpenGL
windows on an X display. It is on this X display that the VTK
renderers draw. And its member function Frame() is responsible

for executing the graphics swapbuffer call. SAIL API calls are
inserted in this member function to retrieve pixel data from the
framebuffer and stream them to a tiled display. ParaView
performs sort-last rendering, i.e. each renderer loads partial data
into its main memory and renders it. The rendered images are
composited into image fragments at each render node according
to the viewport of each renderer. Each instance of SAIL reads
the image at each rendering node and streams it to a tiled display
driven by SAGE.

The main advantage of this approach is that the display and
network streaming of the visualization are totally transparent
from the application. Thus, ParaView can be optimally
configured for rendering without having to be concerned about
optimizing for network streaming, or the layout of the tiled
display. SAGE manages the network streaming and the image
scaling on the tiled display. Furthermore, multiple ParaView
applications can be launched on other remote compute clusters,
and their results can be simultaneously streamed for viewing and
comparison on a tiled display as individual windows. Multiple
ParaView sessions on SAGE-driven tiled display in action is
shown in Figure 3.

Figure 2. Diagram showing four render nodes streaming
to a SAGE-driven tiled display using SAIL embedded in
VTK’s OpenGLRenderWindow.

Figure 3. 100 million pixel tiled display at EVL displaying
two ParaView sessions. On the left, two local rendering
nodes stream to the display. On the right, four remote
rendering nodes stream from TACC.

5. IMPACT OF STREAMING DELAY
Users can take advantage of remote ultra-high resolutions
visualization by using ParaView integrated into SAGE at a cost
of additional delay introduced by various SAGE components in
the streaming pipeline. This delay could impede the user’s
ability to interact with the remote visualization. In this section,
we will describe a model for predicting the delay, which is a
combination of the delay at the sender (rendering node) and the
receiver (display node).

5.1 Delay at the Render Node
Once rendering is completed, a rasterized image resides in the
framebuffer of the render node, A SAIL object in the render
node delivers pixels to tiled display. It first copies pixels from
the framebuffer to main memory (incurring capture delay), waits
for other render nodes to finish rendering and copies the pixels
to main memory (synch delay). The image is then split into
multiple pixel blocks (split delay), and sends groups of pixel
blocks to their destined display nodes.
To simplify the model, we assume following:

 The rasterized image is divided evenly. The number of
pixels generated by each render node is uniform. Thus
the image size Sfrustum in each node is the final image
size Simage divided by total number of render nodes
Nren_node. And the capture delay at a render node is
proportional to Sfrustum .

Sfrustum = Simage / Nren_node (1)

 Rendering delay at a node is uniform (assuming a well

balanced parallel renderer). This simplifies the
synchronization delay Dsync to be a function of the
number of render nodes, i.e.:

Dsync = Cs Nren_node (2)

Thus, the streaming delay at a render node Drender_node is the sum
of these three components (capture delay Dcapture , sync delay
Dsync , and split delay Dsplit), and can be represented as follows.

Dcapture + Dsync + Dsplit (4)
where

Dcapture = Cc Sfrustum (5)
and

Dsplit = Cb Sfrustum (6)

By substituting (2), (5), and (6) with (4), the streaming delay at a
render node is therefore:

€

Drender _ node =
Cc + Cb

Nren _ node

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ ⋅ Simage + CsNren _ node

 (7)

Given the number of rendering node, the delay can be shown as
a linear function of image size. Also, (7) can be seen as a
function of the number of render node with given image size.
We found that the effect of image size dominates other factors in
streaming delay. However, the number of rendering nodes also
affects parallel computation and rendering performance in
ParaView. In many cases, the delay from ParaView’s rendering
dominates over SAGE’s streaming delay as we will show in the
Section 6. The number of rendering nodes should therefore be
chosen to minimize the delay incurred by ParaView. In the
Section 6, we will also show how the delay varies with respect
to the final image size.

5.2 Delay at the Display Node
The pixel receiving and displaying procedures start when the
first group of pixel blocks arrive from the network. Each display
node copies pixel blocks to its texture memory, waits for the
other display nodes to finish copying the pixels, and displays the
image on the screen. The following are our assumptions upon
which our model is based:

 An image is evenly distributed across display nodes.
Thus the number of pixel block groups that each
display node receives is uniform. The number of pixel
block groups at each display node can be calculated by
dividing the total number of pixel block groups for the
final image (Simage / Sgrp) by the number of display
nodes Ndisplay_node .

Ngrp = Simage / (Sgrp Ndisplay_node) (8)

 When pixel blocks arrive at a display node, they are
queued until the display process retrieves and copies
them into its texture memory. We assume this
queueing delay DQ is constant.

The delay at a display node Ddisplay_node is sum of the queueing
delay DQ, delay to copy to texture memory Dcpy, and the
synchronization overhead Dsync. Dcpy is of course propotional to
the size of the image fragment that a display node receives and
displays (Ngrp Sgrp); and Dsync is a function of the number of
display node.

Ddisplay_node = DQ + Dcpy + Dsync (9)
where

Dcpy = Ct Ngrp Sgrp (10)
and

Dsync = Cs Ndisplay_node (11)

By substituting (8) with (10), and (11) with (9), we obtain the
following.

€

Ddisplay _ node = DQ +
CtSimage

Ndisplay _ node

+ CsNdisplay _ node
 (12)

The delay at a display node can be viewed as a function of the
final image size, or a function of the number of display nodes.
Similar to the delay at a render node, the final image size is a
dominant factor contributing to the delay. Therefore, one can
lower the delay by maintaining sufficient number of display
nodes. However, as (12) suggests, the delay also increase as the
number of display nodes increases. Therefore a carefully
balance is needed for optimal performance. We will discuss this
more in Sections 6.

6. EXPERIMENTAL EVALUATION
In this section, we will present our experimental results showing
delay with respect to the size of the dataset and final image. We
used Texas Advanced Computing Center (TACC)’s Spur
visualization nodes for computation, and rendering. Each node
has four quad core 2.4GHz AMD Opteron processors, 128GB
main memory, and 4 Nvidia Quadro 5600 Graphics Hardware in
PCI-Express slots. For the remote display we used Electronic
Visualization Laboratory (EVL)’s 100-megapixel
LambdaVision driven by a 30-node cluster. The cluster nodes
are equipped with 64-bit dual 2.4GHz AMD Opteron processors,
4GB main memory, and Nvidia Quadro 3000 Graphics
Hardware in an AGP slot. We connected the two sites using
EVL’s 10 Gigbit/s National Lambda Rail connection.

6.1 Frame Rate and Total Delay
A 7.7 million cell thunderstorm dataset was contour-filtered
with ParaView to generate isosurfaces with varying numbers of
polygonal mesh cells. The number of isosurface cells used for
the experiment were 1, 2.5, 4.1, and 5.5 million cells. Four
rendering nodes at TACC rendered the isosurfaces in parallel
and 16 display nodes at EVL received and displayed the pixels.
The frame rate and total delay while interacting with the
ParaView client was measured. Figure 4 and 5 show the
overhead imposed by SAGE. As data size increases, rendering
delay dominates over SAGE streaming delay.

6.2 SAGE Delay
SAGE delay is dependent on image size (number of pixels to
stream) and number of render/display nodes as described in (7)
and (12). In this experiment, we fixed data size and varied other
factors that affect SAGE delay. Figure 7 shows SAGE delay
with respect to image size with 4 render nodes at TACC
streaming to 16 display nodes at EVL. The curves with dotted
lines represent expected delay according to the model described
in section 5. The actual delay observed was much less than the
model because we assumed capture (5) and split delay (6) at the
render side and copy delay (10) are linearly proportional to the
image size in the model. The capture delay is the dominant
factor among other components and is highly dependent on
hardware performance. At the display side, the copy delay is
minimal compared to queueing delay DQ. The queueing delay
can be lowered by reducing the number of pixels that has to be
delivered to each node. This is shown in Figure 6. In our
experiment, a single render node evenly distributes pixels (its
image fragment) to four display nodes.

Figure 4. Graph showing the effect of frame rate vs
number of cells in a polygonal mesh data. The size of the
image streamed is 3200x2400. As data size increases, the
delay incurred by SAGE becomes negligible.

Figure 5. Graph showing ParaView and SAGE delay. The
size of the image streamed is 3200x2400. SAGE delay
remains constant because the image size is constant
whereas ParaView delay increases as data size increases.

Figure 6. Graph showing the delay at the display side vs
number of display nodes. Four rendering nodes stream an
image of size 3200x2400. The delay is reduced as we add
more display nodes.

0

2

4

6

8

10

12

14

16

1 2.5 4.1 5.5

Fr
am

es
 P

er
 S

ec
on

d

Number of Cells (million)

without SAGE
with SAGE

0

100

200

300

400

500

600

1	 2.5	 4.1	 5.5	

To
ta

l D
el

ay
 (m

ill
is

ec
on

d)

Number of Cells (million)

ParaView
SAGE

0

10

20

30

40

50

60

2 4 8 16

D
el

ay
 (m

ill
is

ec
on

d)

Number of Display Nodes

Figure 6. Delay incurred by SAGE is shown with model.
This graph shows increasing deal from SAGE as the image
size increases. When the image size is doubled, SAGE delay
is increased by only small fraction.

7. CONCLUSIONS AND FUTURE WORK
The integration of ParaView and SAGE enables ParaView and
VTK-based applications to stream ultra-high resolution
visualizations from remote rendering servers to clients ranging
from laptops to scalable tiled displays. This paper has shown
that the overhead imposed by such a capability is negligible
compared to the overall time typically needed for rendering
large-scale data.
In the current ParaView/SAGE integration, when a user enlarges
a window on the tiled display, the image is not rendered at
higher resolution; rather the pixels are enlarged to fill the screen
space. In the future we will enhance SAGE to send window
dimensions to ParaView so that it can dynamically render
images of greater resolution. Ideally to ensure continued
scalability, ParaView should attempt to utilize more rendering
nodes in order to keep frame rates up.
In the future, we intend to also integrate VisIt [3] and VisTrails
[7] with SAGE. We expect this integration to be relatively
straightforward as both of these visualization tools use VTK as
their base visualization framework.

8. REFERENCES
[1] Distributed Multihead X Project,

http://dmx.sourceforge.net
[2] ParaView on Multiple Processors,

https://visualization.hpc.mil/wiki/Paraview_on_Multiple_P
rocessors

[3] VisIt Visualization Tool,
https://wci.llnl.gov/codes/visit/home.html

[4] J. Ahrens, K. Brislawn, K. Martin, B. Geveci, C. Law, and
M. Papka: "Large-scale data visualization using parallel
data streaming", Computer Graphics and Applications,
IEEE, vol.21, no.4, pp.34-41, 2001.

[5] J. Ahrens, B. Geveci, C. Law, D. H. Charles, and R. J.
Chris: ‘ParaView: An End-User Tool for Large-Data
Visualization’: ‘Visualization Handbook’ (Butterworth-
Heinemann, 2005), pp. 717-731

[6] R. Ball, and C. North: "Analysis of User Behavior on High-
Resolution Tiled Displays," Human-Computer Interaction,
INTERACT 2005, pp.350-363, 2005.

[7] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E.
Scheidegger, C. T. Silva, and H. T. Vo: "VisTrails:
enabling interactive multiple-view visualizations",
Visualization, 2005. VIS 05. IEEE, pp.135-142, 2005.

[8] A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, and J.
Favre: "Remote large data visualization in the paraview
framework", Proceedings of the Eurographics Parallel
Graphics and Visualization, pp.162-170, 2006.

[9] M. Czerwinski, G. Smith, T. Regan, B. Meyers, G.
Robertson, and G. Starkweather: "Toward characterizing
the productivity benefits of very large displays," Human-
Computer Interaction, INTERACT 2003, pp.9-16, 2003.

[10] D. Germans, H. J. W. Spoelder, L. Renambot, and H. E.
Bal: "VIRPI: a High-level Toolkit for Interactive Scientific
Visualization in Virtual Reality," Immersive Projection
Technology/Eurographics Virtual Environments Workshop,
2001.

[11] G. Humphreys, I. Buck, M. Eldridge, and P. Hanrahan:
"Distributed rendering for scalable displays," Proceedings
of the 2000 ACM/IEEE conference on Supercomputing
(CDROM), Dallas, Texas, United States, 2000.

[12] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P.
D. Kirchner, and J. T. Klosowski: "Chromium: a stream-
processing framework for interactive rendering on
clusters," Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, San
Antonio, Texas, 2002.

[13] B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguilera,
A. Johnson, and J. Leigh: "High-Performance Dynamic
Graphics Streaming for Scalable Adaptive Graphics
Environment," Supercomputing, 2006. SC '06. Proceedings
of the ACM/IEEE SC 2006 Conference, pp.24-24, 2006.

[14] J. T. Klosowski, P. D. Kirchner, J. Valuyeva, G. Abram, C.
J. Morris, R. H. Wolfe, and T. Jackman: "Deep view: high-
resolution reality", Computer Graphics and Applications,
IEEE, vol.22, no.3, pp.12-15, 2002.

[15] S. Nam, S. Deshpande, V. Vishwanath, B. Jeong, L.
Renambot, and J. Leigh: "Multi-Application Inter-Tile
Synchronization on Ultra-High-Resolution Display Walls,"
Multimedia Systems, Arizona, USA, 2010.

[16] K. A. Perrine, and D. R. Jones: "Parallel graphics and
interactivity with the scaleable graphics engine,"
Proceedings of the 2001 ACM/IEEE conference on
Supercomputing (CDROM), Denver, Colorado, 2001.

[17] W. J. Schroeder, L. S. Avila, and W. Hoffman:
"Visualizing with VTK: a tutorial", Computer Graphics
and Applications, IEEE, vol.20, no.5, pp.20-27, 2000.

[18] L. Shupp, R. Ball, B. Yost, J. Booker, and C. North:
"Evaluation of viewport size and curvature of large, high-
resolution displays," Proceedings of Graphics Interface
2006, Quebec, Canada, 2006.

[19] R. Singh, J. Byungil, L. Renambot, A. Johnson, and J.
Leigh: "TeraVision: a distributed, scalable, high resolution
graphics streaming system," Cluster Computing, 2004
IEEE International Conference on, pp.391-400, 2004.

[20] D. S. Tan, D. Gergle, P. Scupelli, and R. Pausch: "With
similar visual angles, larger displays improve spatial
performance," Proceedings of the SIGCHI conference on
Human factors in computing systems, Ft. Lauderdale,
Florida, USA, 2003.

0

50

100

150

200

250

300

350

400

450

1.92M 3.84M 7.68M 15.36M

SA
G

E
 D

el
ay

 (m
ill

is
ec

on
d)

Image Size (pixel)

Display Node
Display Node (model)
Render Node
Render Node (model)

