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Fig. 1. Scatterplots derived from the Subway data: Different transformations are applied on the horizontal axis revealing different data
patterns. In particular, the log and logit transformations reveal the existence of three distinct clusters. The leftmost cluster contains
multiple instances of zero on the horizontal variable; the plot warns us that care must be taken in statistical modeling of this variable.
These features are not evident in plots of the raw data.

Abstract— Scagnostics (Scatterplot Diagnostics) were developed by Wilkinson et al., based on an idea of Paul and John Tukey,
in order to discern meaningful patterns in large collections of scatterplots. The Tukeys’ original idea was intended to overcome the
impediments involved in examining large scatterplot matrices (multiplicity of plots and lack of detail). Wilkinson’s implementation
enabled for the first time scagnostics computations on many points as well as many plots. Unfortunately, scagnostics are sensitive
to scale transformations. We illustrate the extent of this sensitivity and show how it is possible to pair statistical transformations with
scagnostics to enable discovery of hidden structures in data that are not discernible in untransformed visualizations.
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1 INTRODUCTION

While interactive visualization systems have been said to be effec-
tive for conducting visual analytics on big data [28, 22], the scale of
many datasets precludes exploring visually every variable or relation-
ship among variables. Consequently, systems designed for big data
exploration need to filter irrelevant material and discriminate among
alternatives in order to present meaningful visualizations in response
to user queries. Among several approaches to this problem, Scagnos-
tics [43] were designed to help users navigate through large collections
of scatterplots in order to discern meaningful patterns. Figure 2 shows
an example.

Fig. 2. Scatterplots of barometric pressure vs. air temperature on days
43, 116, 273, and 315 in the Weather data.

The data in Figure 2 consist of hourly meteorological measurements
(24 data points in each scatterplot) in 2008 from the Gulf of Maine
[23]. There are 50,000 scatterplots derived from this dataset and our
query was to find scatterplots with a high degree of “stringy” behavior.
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Using scagnostics, which parsimoniously encode significant features
in the plots, we were able to locate these plots in real time.

Suppose, however, that a stringy feature is embedded in a dense re-
gion of a scatterplot so that it is obscured from normal view. In this
case, graph-theoretic scagnostics would be unable to detect this fea-
ture. If we were to enlarge the local subregion of the plot, however,
we might detect this feature with scagnostics after the transformation.
That conjecture is the subject of this paper. We propose to transform
scagnostics nonlinearly to reveal hidden features. We evaluate the
quality of transforms for a particular plot by measuring them against
individual scagnostics; the higher the scagnostic value, the more suit-
able a given transform is for revealing it.

The paper is structured as follows: We describe related work in the
following section. Then we introduce our testbed and illustrate it on
real datasets. We present test results in Performance. In our Con-
clusion, we argue that by going beyond classic statistical summaries
(means, standard deviations, correlations, etc.), our approach makes
it possible to uncover unusual distributions, mixtures of distributions,
and other important features hidden in real datasets.

2 RELATED WORK

We review in this section both feature-based characterizations of scat-
terplots and the use of transformations to reveal structure or improve
statistical inference.

2.1 Scagnostics
In 1989 at a workshop on Computational Statistics, Robustness, and
Diagnostics, Paul Tukey presented an idea for characterizing scatter-
plots [7]. He called it scagnostics in order to position it as a special
case of what John Tukey had called cognostics. The Tukeys intended
to characterize a collection of 2D scatterplots through a small number
of measures of the pattern of points in these plots. These measures
were designed to detect anomalies in density, shape, association, and
other features. The Tukeys never published a paper on this topic. Re-
searchers in the workshop were enthusiastic about the idea, although
implementing it for larger scatterplots was not practical at the time.

Some years later, Leland Wilkinson, who had been at the work-
shop, attended a session at the 2003 InfoVis conference and described



the Tukeys’ idea. Jinwook Seo and Ben Shneiderman enthusiastically
picked up on this comment and presented a paper the following year
called Rank by Feature [27]. This method relied on classical statis-
tics (means, medians, correlations, etc.) instead of the Tukeys’ non-
parametric shape descriptors (clumpy, monotonic, convex, etc.), but
their implementation supported the effectiveness of charactering scat-
terplots in order to navigate a large corpus. Subsequently, Wilkinson
decided to implement the original Tukey idea through nine Scagnos-
tics defined on planar proximity graphs [43].

Wilkinson’s scagnostics measures depend on proximity graphs that
are all subsets of the Delaunay triangulation: the minimum spanning
tree (MST), the alpha complex [16], and the convex hull [30]. The
scagnostics measures are named Outlying, Skewed, Clumpy, Dense,
Striated, Convex, Skinny, Stringy, and Monotonic. Figure 3 shows
some example scatterplots and their scagnostics. In particular, the
scatterplots with a low score on the associated scagnostic are on the
left while the scatterplots with a high score on the associated scagnos-
tic are on the right. The implementation of scagnostics are described
in detail in [44].

Fig. 3. Some example scatterplots and their scagnostics measures.

Following Wilkinson’s work, researchers developed scagnostics-
type measures for parallel coordinates [13], pixel displays [26], 3D
scatterplots [19], and other graphics [29, 34, 1].

2.2 Transformations
Transformations have been exploited for a number of purposes in sta-
tistical and visual analytics.

2.2.1 Statistical Transformations
The use of nonlinear transformations in statistics extends back more
than a century. There have been three principal motivations for using
these transformations prior to statistical analysis: stabilizing variance
(mitigating the dependency between the means and variances in a fam-
ily of distributions), normalizing or inducing symmetry (ameliorating
the biasing effects of skewness on Gaussian statistical methods), and
representing discrete data with a continuous model (e.g., logit and pro-
bit analysis).

The classic variance stabilizing transformations have been the arc-
sine (angular) for proportions and the square root for counts [3]. Ex-
amples of normalizing transformations have been Fisher’s z for corre-
lations [18] and the Tukey ladder of powers set of re-expressions [36].

The famous Box-Cox power transformation [6] is a restriction on the
Tukey ladder of powers designed for normally distributed variables
(a rare circumstance with real data, despite its popularity in practice).
The logit and probit transformations [5] are used as link functions to
enable the fitting of continuous models to discrete data generated by
distributions such as the Binomial.

2.2.2 Interactive Graphical Transformations
Statistical software packages were the first to incorporate nonlinear
transformations into interactive graphical displays [38, 35, 11, 41].
They chose the Tukey ladder of powers function. Tukey’s function
is of the form x∗ = xp; the parameter p governs the members of the
family. These packages use a slider control that maps to this parame-
ter to enable real-time transformations of histograms.

2.2.3 Lensing
Furnas [20] introduced a method for exploring local detail in visualiza-
tions (tables, scatterplots, etc.) that employed a lens model to magnify
local detail. His method is general because it allows a lens to take a va-
riety of shapes (circle, square, etc.) depending on the distance function
chosen for specifying the geometry of the lens. Based on Furnas’ idea,
researchers have developed specialized lenses for handling very large
trees, maps, tables, and documents [10]. The transitions between focus
and context of these techniques are achieved through a single dimen-
sion (space). Sigma Lens [24] combines other dimensions (translu-
cence and time) to achieve more efficient transitions. Pietriga et al.
[25] extends Sigma Lenses framework to provide a unified model that
makes it possible to define new focus+context interaction techniques
as independent as possible of the representation and graphics library
employed.

2.2.4 Aspect Ratio Selection
Changing the aspect ratio of a plot is a linear transformation. In 1988,
the problem of selecting the aspect ratio of a line chart was first dis-
cussed rigorously by Cleveland et al. [9]. The authors demonstrated
how the choice of a line chart’s aspect ratio can impact graphical per-
ception of trends in time series data. They then proposed a technique
called banking. The basic idea underlying this technique is that the
slopes in a line chart are most readable when the average orientation
of all line segments in a chart is 45◦. This suggests that the aspect
ratio of plots could be determined by setting the median slope of all
line segments to 1. They call this approach median absolute slope [9].
Cleveland later suggested a weighted version of this method, length-
weighted average orientation [8]. In this new version, the length-
weighted mean of the absolute orientations of the line segments is set
to 45 degrees.

Heer and Agrawala [21] extended Cleveland’s work in two ways.
First, the authors described 12 different banking algorithms that repre-
sent alternate optimization criteria for Cleveland’s banking procedure.
These criteria are designed to find an aspect ratio that further improves
the visual perception of line segment orientations. Second, they devel-
oped multi-scale banking, a technique that combined spectral analy-
sis and banking to 45◦ to automate the selection of aspect ratios for
different levels of granularity. This technique automatically identifies
trends at various frequencies that may be of interest and then generates
a banked chart for each of these scales.

The above approaches for automatically selecting the aspect ratio
of a line chart have several shortcomings. First, the way a curve
is approximated by line segments can dramatically change the se-
lected aspect ratio. Second, they don’t preserve semantically sym-
metric shapes. To address these problems, Talbot et al. [33] offered
a method for selecting the aspect ratio for line charts that minimizes
the arc length of the plotted curve while keeping the area of the plot
constant. This approach is parameterization invariant (redundant line
vertices do not influence the result), robust to a wide range of inputs,
and responsive to visual symmetries in the data.

Recently, Fink et al. [17] extended Cleveland’s aspect ratio argu-
ment to general scatterplots. The basic idea behind this method is
to select an aspect ratio such that the resulting scatter plot optimizes



a feature of a Delaunay triangulation on the points in the plot. The
authors defined six different measures on the Delaunay triangulation.
They chose the Delaunay triangulation because they believed it to be a
conceptually meaningful structure for representing human perceptual
grouping [14]. However, while the scagnostics features were based
on the types of configurations statisticians and analysts attend to, and
while the Cleveland paradigm was based on the accuracy of slope
judgments, the measures used in this study were based on subjective
judgments, by relative novices, of the “meaningfulness” of given plots
under various aspect-ratio transformations. It is not clear how their
methods could be appropriately applied to the wide range of configu-
rations encountered in an exploratory data analysis environment.

3 SCAGNOSTIC TRANSFORMATIONS

Transforming variables affects densities, relative distances, and orien-
tations of points within a scatterplot. Consequently, it has a significant
impact on our ability to perceive patterns in the data. Figure 4 shows
examples of the proximity graphs of square root and log transforma-
tions applied on the same set of data points in the New York City
subway dataset [40]. The plotted variables are station versus ridership
in 1918. Different proximity graphs produce different sets of scagnos-
tics.

Fig. 4. Visualization of the Subway data: Transforming a point set
changes its Delaunay triangulation and the three geometric graphs. The
top left frame is the unaltered scatterplot of station and subway ridership
in New York City in 1918. The next two scatterplots are the results of
applying square root and log transformations on X-axis.

3.1 Choice of Transformation
Choosing appropriate transformations must be guided by some justi-
fiable principles. First of all, the classical statistical transformations
arose out of experiences applying models based on theoretical distri-
butions to real data; we should give them serious consideration. Sec-
ond, the transformations we choose ought to cover the full range of
negative to positive skewness as well as mixtures of distributions that
are relatively symmetric. Third, we should take care to make our port-
folio of transformations approximately mirror-symmetric; in a plot of
x∗ against x, where x∗ is the transformed value of x, they should reflect
around a diagonal representing the identity transformation.

The transformations we chose are shown in Figure 5.

• none: x∗ = x (leaves points unchanged)

• half : x∗ = x/2 (squeezes all points together)

• square: x∗ = x2 (pulls points toward left of frame)

• square root: x∗ =
√

x (mildly pulls points toward right of frame)

• log: x∗ = log(x) (strongly pulls points toward right of frame)

• inverse: x∗ = 1/x (reverses scale and squeezes points into left of
frame)

• logit: x∗ = (log(x/(1− x)) + 10)/20 (squeezes points toward
middle of frame)

• sigmoid: x∗ = 1/(1 + exp(−20x + 10)) (expands points away
from middle of frame)

The half transformation implements an aspect ratio of 1:2 when ap-
plied to Y and 2:1 when applied to X. The parameters for the logit and
sigmoid functions govern their curvature; they were designed to make
the curves mirror-symmetric and the slopes sufficient to cover areas
not spanned by the other functions.

We apply these 8 transformations independently on both X and Y
axes. Therefore, we have 64 different combinations to consider when
we compute scagnostics. Before transformation, the values are nor-
malized to the unit interval (as in the original scagnostics paper [43]).
After transformation, the values are renormalized to the unit interval.

Fig. 5. Transformation functions.

3.2 Datasets
We will illustrate the effects of these transformations mainly through
real data examples. We use datasets retrieved from the UCI Repository
[4] and other sources to demonstrate the performance of our approach.
Table 1 summarizes prominent aspects of these datasets ordered by the
number of attributes.



Table 1. Characteristics of datasets used for testings and demonstra-
tions in the following sections.

Datasets #Instances #Variables #Scatterplots
Sleep 62 10 45
Page Blocks 5,473 10 45
Segment 2,309 20 190
Web Statistics 300 22 231
Water Treatment 527 38 703
Subway 423 104 5,356
Communities 1,994 128 8,128
Gas Sensor 3,600 128 8,128
Musk 476 167 13,861
Isolet 1,559 167 13,861
Madelon 1,042 500 124,750

3.3 Examples
In this section, we demonstrate the application on real datasets using
a simple testbed. A user first selects a scagnostic measure such as
Clumpy. The program then applies the combinations of transforma-
tions on the X and Y axes and computes the selected measure on each
combination.

3.3.1 Striated
Figure 6(a) shows an example of computing the Striated measure on
the Madelon data [4]. We have selected variable 41 vs. variable 48 to
illustrate how transformations can reveal striations that are not evident
in the raw plot. The gray color scale is adopted to highlight the Striated
measure (dark plots are high Striated, white plots are low Striated).
Because there are 1,042 data points highly concentrated in the middle
of the scatterplot, we do not notice the striation; in fact, our impression
is that the raw plot in the upper left is spherical Gaussian. Only after
applying the sigmoid transformation do we discern the regular stripes
in the middle. This plot is not based on Gaussians.

Figure 6(b) shows another example of computing the Striated mea-
sure on the Water Treatment data [4]. We have selected conductivity
vs. suspended solids to primary settler. In this example, the striation
is revealed when applying inverse on the X-axis.

3.3.2 Clumpy
Figure 7 shows an example of the Clumpy measure on the Web Statis-
tics data1. We have selected a pair of variables (mean of connecting
time vs. standard deviation of connecting time) to illustrate the poten-
tial for discerning clusters after transformation. The gray color scale is
adopted to highlight the Clumpy measure (dark backgrounds are high
Clumpy, white backgrounds are low Clumpy). When we examine the
inverse/inverse (or log/inverse) plot, the two clusters are most visible.

The sigmoid tends to draw points apart, but it will not produce clus-
ters when they do not exist in the data. Unless there is a margin at the
center separating points, a gap will not appear under these transforma-
tions. This observation applies to nonlinear transformations used in
SVMs as well. Figure 8 shows an example where sigmoid transfor-
mation reveals the three clusters which are not apparent in the regular
scatterplot due to the high concentration of data points in the center of
Y-axis.

3.3.3 Dense
Figure 9 shows an example of the Dense measure applied to the Page
Blocks data. We have selected a pair of variables to highlight this
feature (eccentricity of the block (length / height) vs. total number of
black pixels in the original bitmap of the block). As usual, the gray
color scale is adopted to highlight the measure (black plots are high
Dense, white plots are low Dense). The data points are colored by
their classes. We note that the inverse/inverse transformation reveals
class separation not evident in the regular scatterplot.

1http://davis.wpi.edu/xmdv/datasets/webstats.html

Fig. 6. Inspecting Striated measure on: a) The Madelon data: The se-
lected variables are variable 41 vs. variable 48 b) The Water Treatment
data: The selected variables are output conductivity vs. performance
input suspended solids to primary settler.

http://davis.wpi.edu/xmdv/datasets/webstats.html


Fig. 7. Inspecting the Clumpy measure on the Web Statistics data: The
selected variables are mean of connecting time vs. standard deviation of
connecting time. The two clusters are most visible in the inverse/inverse
(or log/inverse) plot.

Fig. 8. Inspecting the Clumpy measure on the World Bank data: The
plotted variables are energy use vs. CO2 emissions from liquid fuel
consumption. Each data point is a country.

This is an especially interesting example because it illustrates the
importance of transformation prior to classification when there are
nonlinear boundaries separating classes. Support Vector Machines,
for example, exploit nonlinear transformations in reproducing kernel
Hilbert space in order to handle nonlinear margins between classes
[37]. We ran a canonical discriminant analysis on these variables in
SYSTAT [42]. The error rate on the untransformed variables was 61
percent (worse than chance)! The error rate on the inverse transformed
variables was 28 percent.

A denser scatterplot does not suggest class separation, but there is
a better chance to separate classes when data points are spread out.
We can also define a new feature, says class separation feature, which
measures the overlapped area among alpha shapes of different classes
[39]. That is, the use of our proposed approach is not limited to the
nine scagnostics. We might define other measures specialized for an
application domain and use the proposed approach to find the trans-
formation maximizing/minimizing these features. Moreover, we can
combine multiple features to highlight a pattern. For example, max-
imizing the Dense feature before minimizing overlapped area among
alpha shapes of different classes results in better chances of finding
class separation in a scatterplot.

Fig. 9. Inspecting the Dense measure in the Page Blocks data: The
selected variables are eccentricity of the block (length / height) vs. total
number of black pixels in the original bitmap of the block. The data
points are colored by their classes as depicted at the bottom.

3.3.4 Outlying

Figure 10 shows an example of the Outlying measure applied to the
Sleep data [2]. We have selected the body weight and brain weight
variables. This example gives us the opportunity to invert our usual
process. In this case we want to find a transformation that minimizes
outliers. Thus, we want to look at the frames with the lightest back-
ground. The log/log transformation is consistent with the appropriate
statistical analysis of these two variables in the original paper and is
indeed among the lightest of the frames. Note that this log/log plot



linearizes the relationship as well. The so-called outliers in the raw
plot (upper left) are not outliers after proper transformation.

Since most transformations, such as square root, log, and inverse
squeeze points together, most outliers are artifacts when these trans-
formations are applied. We don’t suggest to apply transformations to
find outliers.

Fig. 10. Inspecting the Outlying measure on the Sleep data: The
selected variables are body weight vs. brain weight.

3.3.5 Monotonic

Figure 11 shows an example of the Monotonic measure applied to the
World Bank data2. We have selected rural population vs. urban pop-
ulation. The Monotonic is our only coefficient not based on a subset
of the Delaunay graph. However similar to other visual features, a few
outliers are sufficient to distort this property as depicted in the regular
scatterplot (top left). The outliers in this case are China and India. In
this example, the strong correlation of the two variables is revealed
when we squeeze together initially high values (this helps to reduce
the impact of outliers).

4 PERFORMANCE

In this section we focus on evaluating the performance of scagnostics
transformations. We investigated the performance of our approach on
large data in terms of n (number of observations) and p (number of
scatterplots). All tests were performed on a 2.3 GHz Intel Core i5,
Mac OS X Version 10.7.5, 4 GB RAM running Java 1.6 and Processing
1.5.1.

4.1 Overall Running Times

The graphs in Figure 12 show computation time broken down into
the time to read and transform data, the time to bin the data points,
and the time to compute scagnostics. Transformations are applied on
one dimension at a time. Here are some observations from empirical
analysis:

2http://data.worldbank.org/indicator

Fig. 11. Inspecting the Monotonic measure on the World Bank data:
The selected variables are rural population vs. urban population in
2010. Each data point is a country.

• The bottleneck of our approach is at the stage of computing
scagnostics. However, this stage is completely parallelizable.

• The time for binning is linearly dependent on n. In contrast, the
time for computing scagnostics is almost independent on n since
the three proximity graphs are computed on binned data, not the
original data points.

• The scagnostics computation time for each dataset is linearly de-
pendent on p. In Figure 12, the two datasets at the bottom (Com-
munities and Gas Sensor) contain the same number of variables
(128 variables or 8,128 scatterplots), and contain respectively
1,994 and 3,600 observations. The two datasets on the top (Musk
and Isolet) contain the same number of variables (167 variables
or 13,861 scatterplots), and contain respectively 476 and 1,559
observations. On average, the scagnostics computation time for
the Musk and Isolet datasets is nearly twice of the computation
time for the Communities and the Gas Sensor datasets.

4.2 Scagnostics computation times of different transfor-
mation combinations

We now inspect the Scagnostics computation times of different trans-
formation combinations. The four datasets used in Section 4.1 are
reused for this purpose. However, we use only the first 100 variables
and the first 400 instances in each dataset so that we can compare the
Scagnostics computation times across the four datasets.

Figure 13 shows the test results. In particular, the matrices on the
right show the Scagnostics computation times of 64 combinations. The
layouts on the left summarize 4950 scatterplots (100 variables) in each
dataset [12]. In other words, the layouts display 10 to 15 exemplar
scatterplots (for each dataset) which represent 4950 scatterplots. The
size of an exemplar scatterplot denotes the size of its cluster.

Here are some observations from empirical analysis:

http://data.worldbank.org/indicator


Fig. 12. Computation times (in minutes) for datasets retrieved from the
UCI Repository: n is the number of observations and p is the number of
scatterplots.

• On average of the four datasets, the inverse/inverse transforma-
tion is the lowest computation time because this transformation
combination tries to pull the data points into one corner of a scat-
terplot. This effect is prominent on the Isolet dataset.

• With the same number observations (n=400), denser scatterplots
require more time to compute scagnostics. In the left layouts of
Figure 13, the Isolet dataset contains much denser scatterplots
compared to the Gas Sensor dataset.

4.3 Demonstrative case study

This section presents a demonstration of our approach being meaning-
fully deployed in practice. We use the World Bank data. In particular,
we inspect 100 variables in the Economy and Growth section, such as
exports of goods and services, gross capital formation, and GDP per
capita. We first obtain scagnostics of all scatterplots and their trans-
formations. Then we compute the average for each transformation as
depicted in Figure 14. The plotted measure is Monotonic. The most
significant gain on Monotonic is log/log transformation. This suggests
that the data can benefit from the log/log transformation when we look
for trends.

In Figure 15, we plot the first twelve variables in the data. The
lower triangle shows the regular scatterplot matrix. The upper trian-
gle shows their log/log transformation. The gray color scale is used

Fig. 13. Computation times of different transformation combinations for
four datasets retrieved from the UCI Repository.

Fig. 14. Average Monotonic for 100 variables in the Economy and
Growth section of the World Bank data.



to highlight the Monotonic measure. The strong correlation of dif-
ferent economical sectors is distorted in the regular scatterplot matrix
because of outliers (strong countries such as the US and China).

Fig. 15. Inspecting the Monotonic measure of 12 variables in the Econ-
omy and Growth section of the World Bank data. The lower triangle
shows the regular scatterplot matrix. The upper triangle shows their
log/log transformation.

5 CONCLUSION

We have presented a method for selecting the best transformation to
reveal scagnostics hidden in a scatterplot. The basic idea behind our
method is to use scagnostics as the measure of goodness for select-
ing a transformation. We illustrated our approach on real datasets in
Section 3 and evaluated it in Section 4.

While we developed a testbed for illustrating scagnostics transforms
in this paper, we do not regard it as an end-user application. Instead,
we believe that the algorithms outlined in this paper could be used to
embed transformed scagnostics analytics in visual analytics platforms
such as Jigsaw [31], Tableau [32], or Xmdv [15].

Figure 16 shows one possible interface that provides filtering,
brushing and linking for exploratory scagnostics transformations. This
figure is based on the Segment dataset from the UCI Repository [4].
In particular, Figure 16(a) shows the scatterplot matrix of 20 variables
in the Segment dataset. Each scatterplot is colored by its Dense score.
In Figure 16(b), we filter and display only the scatterplots which gain
at least 0.3 on the Dense feature when applying transformations. The
brushed cell is bordered in red. The transformation matrix plot in Fig-
ure 16(c) instantly shows the selected scatterplot under all pairs of
transformations. We say instantly, because the scagnostic plots are
buffered as thumbnail bitmaps at this stage of processing. Preprocess-
ing involves computing all the scagnostics under all the transforma-
tions, which takes more time (see Figure 12). This preprocessing step
must be done only once for a given set of data, however. In Figure
16(c), we also request to show the Dense scores on top of each trans-
formed scatterplot. Data points are colored by their class attribute.

One might ask what the difference is between our approach and
the use of transformations in classical statistics or machine learning.
First of all, any transformation used in an analytic must be evaluated
in terms of a figure of merit. For classical statistical analyses, the
figure of merit is the closeness of the distribution of residuals to a
specified distribution (normal, exponential, etc.). In the case of the
popular Box-Cox method for analysis of variance [6], this figure is
arrived at through maximum likelihood. In other cases, as in the Tukey
ladder of powers, it is inspected through plots. Alternative evaluation

Fig. 16. Possible application allowing filtering, brushing and linking.
This figure is based on the Segment dataset from the UCI Repository.



criteria for classical or exploratory methods include linearity of the
model, homoscedasticity, or independence of residuals.

Scagnostics transformations involve a different figure of merit for
each scagnostic, and none of these, to the best of our knowledge, is
found in the analytic transformation literature. We have seen in some
cases (e.g., the Dense measure) that a scagnostic transformation might
be of use in standard parametric or nonparametric analyses. The pri-
mary goal of these transformations, however, is to serve a visual ana-
lytics strategy that usually precedes formal modeling. Visual analytics
can be useful not only for guiding us to supportable conclusions, but
also for guiding us to proper models.
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