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ABSTRACT
E�cient RDF, graph based queries are becoming more pertinent
based on the increased interest in data analytics and its intersection
with large, unstructured but connected data. Many commercial
systems have adopted distributed RDF graph systems in order to
handle increasing dataset sizes and complex queries. This paper
introduces a distribute graph approach to pre-processing linked
data. Instead of traversing the memory graph, our system indexes
pre-processed join elements that are organized in a graph structure.
We analyze the Dbpedia data-set (derived from the Wikipedia cor-
pus) and compare our access method to the graph traversal access
approach which we also devise. Results show from our experiments
that the distributed, pre-processed graph approach to accessing
linked data is faster than the traversal approach over a speci�c
range of linked queries.
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1 INTRODUCTION
RDF query retrieval systems have been used to extract informa-
tion from data ontologies over areas covering pharmaceutical, bio-
medicine, social media, and network security just to name a few.
With larger datasets and the range of query complexities, it is im-
portant for query systems to keep up with the demanding workload,
not only in system architecture but improvements in query retriev-
ing algorithms.

Much of the evolution of RDF systems have focused on the
improvement of fast data access over increasingly large datasets,
and complex queries. Vertical partitioning applied in [11], [25], [19],
[2] to access groups of stored triple data. Compression techniques
have been used in systems RDF-3X [19], [2]. RDF store systems [12]
[1] [21] allow fast access to triple stores by outsourcing to large scale
key-value based database systems. Data scalable systems [9] [28]
use the map-reduce algorithm to query to scale large RDF datasets.
Graph partitioning RDF systems [5] [8] utilize graph partitioning
algorithms in order to create highly coupled subgraphs for the
purpose of reducing node to node communication type. RDF graph
retrieval systems [16] [17] [23] utilize a distributed memory graph
and traverse through connected nodes in order to retrieve query
results. Path representation models [6] [14] provide techniques to
represent and access paths of linked data within an index form.

1.1 Resource Descriptive Framework
RDF [13] is a language/data model used in the Semantic Web com-
munity to extract contextual relational and hierarchical data. The
core data unit is composed of a three term (subject,predicate,object-
value). Each term is a resource and can represent a URL. A literal
can only be used within the the object term. Statements, also re-
ferred to as triples, are able to link to each other like Lego blocks
over matching terms: subject-subject (s-s), predicate-predicate (p-p),
(object-object) (o-o), subject-object (s-o), and object-subject (o-s).
From these connections a dataset of triples can be transformed into
an RDF-graph as shown in Figure 1.
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Figure 1: An RDF graph and its join connections.

1.2 Queries
A typical RDF query is a collection of query statements. A query
statement can represent a URL, value, variable ?var or blank term
?. URL is a unique resource name that represents a query term. A
blank term: ? can represent any value as long as there is a exist a
triple for it. A query statement that has least one variable or blank
term is referred to as a pattern, to signify that multiple triples can
belong to it. For example in Figure 1, a query pattern :John can-
speak ? (sp?) would include the triples: :John can-speak :Spanish and
:John can-speak :German. Queries containing blank terms are more
complex in terms of its low selectivity. The extraction net is bigger
meaning that query results sizes are larger, however it does not
necessarily mean the query extractions came from a broad range
of locations within the dataset. Longer queries with low selectivity
have another type of complexity where large groups of intermediate
data have to be joined. Our query generation is focused on these
two aspects of complexity where other query generation systems
such as LUBM [7] also take in account the quality and completeness
of knowledge base extractions, which is not the focus of this paper.

1.3 SPARQL
SPARQL [20], an RDF compliant query language o�ers expressions
to satisfy graphical based extractions from linked triples.SPARQL
allows the user to use variables to represent unknown triple com-
ponents, as a way to provide an intersecting point on overlap-
ping triple patterns. A SPARQL compliant query system should
handle graph extractions from like terms (subject-subject, predict-
predicate, object-object) links as well from linked terms, subject-
object (s-o) and object-subject (o-s) connections. The script below
shows an example query s-s linked query using the rdf-graph from
Figure 1.

Select ?workers

Where {

(? workers work at :UIC ).

(? workers teach :English ).

}

Results: :John

1.4 Our Contribution
This paper introduces Mantona, an RDF query processing system,
written in C++ using the Message Passing Interface (MPI). Mantona
is able to pre-processes conjunctive triple-triple connections, and
utilize these store joins to expedite query retrievals. Our contribu-
tion is the following.

subject-index

:John teaches :English

predicate-index

:John can-speak :Spanish
:John can-speak :German

Pattern: ps?

:John :John

teaches can-speak

Spanish German

:John can-speak :Spanish :John can-speak :German

Figure 2: PS? patterns stored within a PSO hierarchy.

(1) Our unique graph-generation algorithm, designed to pre-
processes conjunctive s-s, o-s, and s-o joins into a graph
structure.

(2) A graph-retrieval algorithm, designed to retrieve conjunc-
tive pattern based queries by indexing the join data from
the graph structure that match the query patterns.

(3) A graph traversal query matching algorithm to mimic the
query retrieval methods on RDF graph traversal access
based systems.

(4) A random query generator. This is used to generate random
pattern based queries of di�erent complexity (based on the
number of blank nodes).

We compare query retrieval performances with di�erent query
types using the Mantona graph-retrieval algorithm and the graph-
traversal algorithm. Results show faster retrieval times using the
Mantona graph-retrieval algorithm. We also compare build times
for graph construction and neighbor construction.

2 RELATED SYSTEMS
2.1 Vertical Partitioning
Vertical partitioning is used as a technique to facilitate data access
to a minimum of tables; grouping triple data from a common key(s).
If the key is based on a subject term for example, then all the triple
data from that index will be stored and sorted based on the subject
terms. RDF-3X [19], HexaStore [25], BitMat [2] and the key-store
DBMS based system [12] provide vertical access to triple stores
based on set of key(s) combinations over a query term(s). RDF-3X
and Hexastore use a B-tree index to access pattern data over 6 types
of hierarchies (SPO,SOP,OSP, OPS,PSO,POS).

2.2 Data Communication Tools
Hadoop [3] provides a communication e�cient, scalable environ-
ment where a user can develop their own RDF query system. Hadoop
allows users to tap into the map-reduce [4] algorithm in order to
create data-scalable jobs. Shard [22] and Scalable Sparql [9] incor-
porates the Hadoop map-reduce as the data-�ow framework in
order to process queries to scale big data. Spark [15], allows users
to transparently utilize memory components across processors, and
provides a graph engine and API: GraphX [26] that provide users
the capability to create their own data-graph. Mantona uses the
Message Passage Interface (MPI) for data communication. MPI is
a message communication systems for distributed systems, com-
monly used with supercomputers and highly coupled systems. It
provides function calls for node to node communication, 1 to many
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communication, many to many communication where each proces-
sor can receive data information from every other processor , and a
many (all) to many (all) communication where each process knows
what data every other processor has.

2.3 Graph Partitioning Systems
Cluster based RDF systems [24] [8] [5] use partitioning algorithms
to store regions of triples based on its community of neighbor
nodes. Partout [5] uses the partitioning tool METIS [10] to �nd
the k number of partitions that created the least amount of edges
among each other. Linked queries however can be unpredictable to
predict, unlikely triples can be found to be connected to each other
through a series of s-o,o-s connections. An overlapping strategy of
duplicating triple nodes over processors is used in [9]. These nodes
represent a shared link of connections across processors, but this
technique can only o�er a short range solution for pattern linked
queries.

2.4 Graph Access Systems
Distributed parallel RDF data systems: Trinity [23], Neo4J [16],
Cray Graph Engine [17] use their own tailored highly coupled com-
munication environment and e�ectively utilize memory storage to
reduce the data communication cost. Trinity has shown through
large scale experimentation using LUBM and DBpedia [18] gen-
erated datasets to outperform RDF-3X and BitMat. Trinity stores
its data in a memory graph where nodes are the individual triple
terms. Each node has an adjacency list of incoming and outgoing
neighbor nodes. The collection of graph nodes residing on an in-
dividual processor are grouped together based on a SPO or OPS
index.

2.5 Path Based Indices
The connection between path indices and pre-processed joins is
in the creation of an organizational structure to index paths of
connected data. Early research initially covered by Yamamotoa et
al. [27] created structures for generating path indices from XML
documents. Matono et al. [14] proposed a technique for translat-
ing RDF path expressions into su�x arrays using Directed Acyclic
graphs extracted from an RDF dataset and/or schema. In Groppe et
al. [6] joins were indexed in a hash-map over s-s,s-p,s-o,p-p,p-o and
o-o connections for one join , two triple patterns and multiple joins
over multiple triple patterns. With Grin [24] the RDF-graph is par-
titioned over center nodes, that adhere to a particular index. Using
a center indexing formula queries can be determined if component
lies within the radius of any center node.

3 MANTONA SYSTEM
Mantona name comes from the Sotho word meaning chiefs, where
a chief can be viewed as the implemented code within a processor.
Each chief governs their realm (graph) of linked RDF data. Mantona
pre-processes RDF data in the form of paths within the RDF-graph.
Mantona �rst processes an RDF-graph based on s-s,o-s,and s-o links
and partitions node assignments to each processor. Each of these
triples are referred to as a root-id. Each processor generates its own
set of sub-graphs we term root-graphs for each of its assigned root-
ids. A root-graph is composed of nodes termed path-nodes. Each

root node 3
:John teaches :English

path-node 2-1

:John teaches :English
:John works-at :UIC

signature: 3 2 0

path-node 4-1

:John teaches :English
:John can-speak :German

signature: 3 4 0

path-node 5-1

:John teaches :English
:John can-speak :Spanish

signature: 3 5 0

path-node 1-2

:John teaches :English
:John works-at :UIC
:UIC type :University
signature: 3 2 0 2 1 1

path-node 5-2

connection
type

triple Id tree level

parent Id child Id 
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5
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signature: 3 4 0 4 5 0

Figure 3: Root-graph from root-id 3, from Figure 1.

path-node contains a list of connected triples : triple-product that are
generated from the resulting join operations stemming from from
the path of intermediate path nodes up to the ending path-node
starting from the root node. Figure 3 shows a root-graph from root
pattern id :john teaches :English.

3.1 Path-signature
Each list of triple-products coming from a path node is labeled based
on its connection signature. A connection signature is composed of
a series of id that speci�es the triples that are being connected and
its type of link connection: <connected triple id> <in-coming triple
id> <connectionType>. A connection type : 0 speci�es a s-s con-
nection, 1, o-s connection and 2 s-o connection. The triple-product
under path-node 1-2 in Figure 3, has the connection signature 3 2 0
2 1 1. Root id 3 :john teaches :English connects with triple id 2:john
works at :UIC based on the subject-subject type speci�cation 0. The
next connection has id 1 UIC type University connecting with id 2
:john works at :UIC based on a object-subject speci�cation 1. Path
nodes are labeled by the ending connecting triple id and the graph
depth. Path-node 1-2 in Figure 3; the 2 speci�es the depth and 1
is the end connecting triple id. Every triple-product within that
path-node will have the last connection to be :UIC type :University.

3.2 Graph-Cache Generation Algorithm
Here we show the root-graph generation algorithm and explain the
variables and basic functions within the algorithm. Each processor
has a set of root-graphs (rootGraphList). For each depth of the
growing root-graph the total list (tripleList) of triple ids (to be
potentially connected to the graph) are checked at the leaf nodes
fringe-nodes. The isIn function determines if there are any s-s, o-s,
s-o connections between the incoming id and the ids within each
of the triple products residing within the fringe-node. If there is
a connection, a join (applyJoin) is made at that connecting triple
within the triple-product to create the new linked triple product
and is added (insertInPathNode) to a new path-node. This path-node
will become the newest addition to the root-graph and it contains
all the the linked triple products of the common ending id. All new
path-nodes are put on a temporary fringe list addToList. When all
the fringe nodes have been visited, the new path-nodes become the
fringe nodes swapNodes and the same procedure continues at the
next depth (Algorithm 1).
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procedure Graph-Cache Generator ;
for depth ← 1 tomaxDepth do
foreach rootGraph in rootGraphList do

foreach fringeNode in rootGraph do
foreach id in tripleList do

tId = IsIn(id, f rinдeNode) ;
if tId > 0 then

tp = applyJoin(tId, id) ;
insertInPathNode(tp);
addToGraph(pathNode);
addToList(pathNode);

end
end

end
swapNodes(pathNode, f rinдeNodes) ;

end
end

end procedure
Algorithm 1: Graph-Cache Generation Algorithm

Input Query: a? teaches :English a? works At ?b b? in state :Illinois

Pattern 1 Pattern 2 Pattern 3

Result  :john teaches :English: - john works at :UIC  - :UIC type :University

s-s o-s

Figure 4: A sample input string to a Mantona job.

3.3 Node-Traversal Algorithm
Mantona has a node traversal algorithm that traverses through
all the paths that are represented in a linked query and returns
the results only from the matched paths. This is a recursive algo-
rithm, starting at the root-id from MatchedGraphList, in which the
root-id matches the the �rst pattern within the query pattern. A
tripleProduct tp at depth 0 is created from root-id, is inserted in a
list of triple products tpList and sent to traversePath(depth,tpList).
At each call, the depth is checked to see if it is at maxDepth. If so
the resultant output (triple matches) is printed out, otherwise the
traversal algorithm continues to expand the set of triple products
(like newly grown branches of a tree ) newTpList that match with
the query pattern at the current depth. The list of neighbors are
retrieved from the last id of triple product which represents the
previous depth. The generatetps function generates a set of triple
products resulting from the join of the neighbor id to any of the ids
within the triple product (Algorithm 2).

3.4 Mantona Query Processing
Query processing starts with each processor taking from the Man-
tona random query generator, a linked query pattern string as
shown in Figure 4. Mantona parses this string to produce the list
of query patterns at each depth and determine the bounded and
unbounded terms in each of the patterns. Each process �nds if
their root-ids match the �rst query pattern. MatchedRootGraphs
represents all root-graphs that have the matching root-id.

procedure Node Traversal Algorithm ;
foreach root-id inmatchedGraphList do
tp = дenerate(root − id) ;
insert(tp, tpList ) ;
traversePath(1, tpList)
end

end procedure
procedure traversePath(depth, tpList) ;

if depth == queryDepth then
printResult(pathNodes) ;
return ;

end
instantiate(newtpList ) ;
foreach tp in tpList do
foreach neighbor from tp[depth − 1] do

дeneratetps(neiдhbor , tp,newtpList) ;
end

end
deletetpList ;
traversePath(depth+1,newtpList) ;

end procedure
Algorithm 2: Mantona Node Traversal Algorithm

The getNodes function retrieves all qualifying path-nodes at the
queryDepth level. So if the the input string consists of 5 linked
patterns , Mantona will check all the path-nodes at tree level 4 , and
will only accept the path-nodes where its ending connected triple
id matches the 5th pattern. Mantona iterates over all the triple-
products tp within the path-node(s) and compares each connecting
triple id and link type to the correlating pattern. If the triple product
matches all the patterns in the query in the right order, then its
results are printed out (Algorithm 3).

procedure Graph Retrieval ;
foreach rootGraph inMatchedRootGraphs do
pathNodeList = дetNodes(queryDepth) ;
foreach pathNode in pathNodeList do

foreach tp in pathNode do
matchingTp = true;
foreach id,type,index in tp do

if id,type not in pattern[index] then
matchingTriple = f alse ;

end
end
if matchingTp == true then

printOutput(tp);
end

end
end

end
end procedure

Algorithm 3: Mantona Graph-Cache Retrieval Algorithm
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(a) 1000000 Triples

(b) 500000 Triples
Figure 5: Query results a) 1M triples b) .5M triples. Index on legend
show result sizes.

4 RESULTS
4.1 Experimental Setup
We ran Mantona query jobs on the Argonne Supercomputer: Cetus
and Mira. Cetus was used as the preliminary test-bed. Cetus has
4096 nodes with 16 cores per node. Each core has a 1GB memory
capacity. Mira was used for larger scale experiments. Mira has
49,152 nodes with 16 cores per node. Each core has a 1GB memory
capacity. Both Cetus and Mira use PowerPC A2 1600 MHz processor
and are connected to the same GPFS �le system that has a 24 PB
�le storage capacity.

Our RDF data comes from the 2016 wiki-DBpedia datasets at
http://wiki.dbpedia.org at 5.8 GB. From this data-set we extracted 3
�les that produced 500,000 and 1,000,000 triples respectively. We
used Cetus to test the 500,000 triples and Mira, the 1,000000 triple
using 2048, 4096, and 8192 processors. For each job we recorded
graph build time ( for the graph-caching algorithm), neighbor build
time for the node traversing algorithm and query retrieval time for
both algorithms.

For each run we generated four types of queries based on ranges
of query selectivity. Q0: a two pattern two blank nodes query. Q1: a
two pattern, four blank nodes query. Q2: a three pattern, six blank
nodes query. Query Q3 used the Mantona graph cache algorithm

(a) Graph-store algorithm
Figure 6: Graph construction and neighbor times over 1M, .5M triple
dataset.

up to depth one, then used the node traversing algorithm for the
last depth.

Results show (Figure 5) from from both the 1M triple dataset
and the .5M triple dataset that the graph-cache algorithm has lower
retrieval times from every type of query. Query complexity did not
hold too much signi�cance in retrieval timings. This mainly has
to do with the result size from the query types being small. Q0
revealed 10 results,Q1 and Q2 produced 3 results as shown on the
legend. With very fast results for both algorithms, the increase in
processor times did not a�ect the query times in comparison to the
extra time generated from processor synchronization.

Neighbor construction times (Figure 6) were signi�cantly lower
than graph construction times. However graph construction times
scaled in direct proportion processor times.

5 CONCLUSIONS
The Mantona’s graph-cache retrieval achieves better query times
as compared to retrieving queries through path traversals within a
cached memory RDF-graph. There are limitations based on memory
size and triple count to how much depth of the graph can be pre-
processed, but the Q2 results show that there can be mix of the two
algorithms and still achieve better query times than the traversal
algorithm.

More experiments need to be done on a large scale triple level,
with varying processor sizes and query complexities to further
understand what types of query patterns give better retrieval results
for either algorithm. Even though the cache algorithm shows better
results from all the queries, the queries did not cover the breadth
and depth of the dataset. Queries that have OR cases and not just
the conjunctive AND should be considered in order to increase the
complexity level.

Further consideration of this work is to expand Mantona to
include query planning algorithms, based on dynamic programming
of triple binding sizes or frequency of terms, to determine what
query ordering produces a smaller amount of joins and thus reduce
query retrieval timings.
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