
MNMGDatalog: A Scalable Multi-Node Multi-GPU Datalog Engine

Ahmedur Rahman Shovon (ashov@uic.edu)
Sidharth Kumar (sidharth@uic.edu)

University of Illinois Chicago

MNMGDatalog uses radix-hash partitioning and non-uniform 
all-to-all communication with GPU-aware hash tables for 
efficient tuple materialization 

MNMGDatalog Implementation Experiments

Challenges

Introduction

Declarative programming focuses on “WHAT” not on “HOW”

Iterative relational algebra on MNMG systems is 
challenging due to high communication overhead, 
synchronization cost, and repeated materialization.

Conclusion

Our contributions:
• First ever Datalog engine designed for multi-

node multi-GPU HPC systems, 
outperforming state-of-the-art shared-memory, 
distributed-memory, and GPU-based engines

• Introduces novel GPU-Aware communication 
and buffer preparation strategies for scalable 
recursive query evaluation

• Supports recursive aggregation for Datalog rules 
using high-throughput GPU kernels
(Accepted at ICS 2025)

UserID UserName UserEmail Country

101 Alice alice@example.com USA

102 Bob bob@example.com USA

103 Eve eve@example.com Canada

Users

SELECT UserID FROM Users WHERE Country=‘USA’;WHAT HOW

Advanced approach: Logic programming (Datalog)

Datalog rules to compute Transitive Closure (TC) of a relation

MNMGDatalog is the first MNMG Datalog engine 

Operationalized as a fixed-point iteration using FG

Datalog rules compiled down to iterative relational algebra 

TC(x, y) :- Edge(x, y).
TC(x, z) :- TC(x, y), Edge(y, z).

Data representation2

Efficient communication3 Tuple materialization4

Workload partitioning1

Iterations in Transitive Closure (TC) Computation

Hash 
Join 

Relation
With

Duplicate 
records

Tuple materialization in fixed point iteration

Radix-hash-based data partitioning

We evaluate MNMGDatalog against state-of-the-art single-
GPU, shared-memory, and distributed multi-node Datalog 
engines up to 32 NVIDIA A100 GPUs

Polaris supercomputer from Argonne National Lab

CPU: AMD EPYC 7543P processors with 32 cores 

GPU: 4 NVIDIA A100 GPUs per node interconnected by NVLink

Environment: CUDA (12), SLOG(32 threads), Soufflé (128 threads)

Experiment platform, application, and datasets

Strong scaling for iterative join (total 10M tuples)

Single-GPU evaluation for Transitive Closure (TC)

Multi-node evaluation for TC, SG, and CC

Acknowledgement

Multi-
threaded

Distributed
(Apache 
Spark)

Multi-node
Multi-

threaded
Single-GPU

Multi-node 
Multi-
GPUs 

(MNMG)

RDFox SLOG GPUJoin

GPULog

Soufflé

RadlogLogicBlox PRAM

Datalog Engine Categories

Configurable all-to-all communication strategy

Weak scaling for iterative join (10M tuples/GPU)

Single-GPU evaluation for Same Generation (SG)

Highest performant Datalog engine
Single-GPU: Up to 7× speedup over GPULog
Multi-threaded: Up to 33× over Soufflé
Distributed: Up to 31.9× speedup over SLOG

Requirements for MNMG Datalog Engine

Datasets: Stanford large network, SuiteSparse, Road network

Apps: Transitive Closure, Same Generation, Connected Component

4

3

1

2

Optimizing Datalog 
for the GPU

Towards iterative 
relational algebra 
on the {GPU}

Accelerating 
Datalog 
applications with 
cuDF

Multi-node multi-
GPU Datalog

Evolution from single-GPU to multi-node multi-GPU

Future plan
We are working on:
• Spatial and temporal load balancing
• GPU-Aware HIP and OneAPI implementations
• Application to Neurosymbolic programming


	Slide 1

