
CQSim+: Symbiotic Simulation for Multi-Resource Scheduling in
High-Performance Computing

Yash Kurkure
University of Illinois Chicago

Chicago, Illinois, USA
ykurku2@uic.edu

Shambhawi Sharma
University of Illinois Chicago

Chicago, Illinois, USA
sshar102@uic.edu

Xin Wang
Computer Science

University of Illinois Chicago
Chicago, Illinois, USA
xwang823@uic.edu

Michael E. Papka
University of Illinois Chicago

Chicago, Illinois, USA
Argonne National Laboratory

Lemont, Illinois, USA
papka@uic.edu

Zhiling Lan
University of Illinois Chicago

Chicago, Illinois, USA
Argonne National Laboratory

Lemont, Illinois, USA
zlan@uic.edu

Abstract
Efficient job scheduling is crucial in high-performance computing
(HPC), balancing user demands for quick job turnaround with fa-
cility goals for high resource utilization. Traditional scheduling
requires users to specify a system at job submission, which can lead
to inefficiencies. A unified scheduling approach, viewing the re-
sources within a computing facility as an integrated pool, promises
improved resource use and reduced job wait times. This paper
presents CQSim+, an open-source, discrete event-driven simulator
tailored for symbiotic multi-resource scheduling. CQSim+ supports
dynamic simulation by continuously integrating real-time data from
job schedulers, enabling adaptive scheduling based on the system’s
current state. Through extensive experimentation, we demonstrate
CQSim+’s ability to enhance resource utilization and decrease job
wait times in both homogeneous and heterogeneous HPC envi-
ronments. Additionally, we present a case study that coordinates
job scheduling between two production systems, illustrating how
CQSim+ can effectively optimize job scheduling across distinct
systems.

CCS Concepts
• Computing methodologies → Modeling methodologies;
Discrete-event simulation; Real-time simulation; Simulation
tools; • Social and professional topics → System management.

Keywords
Multi-resource scheduling, Simulation tool, Resource management
systems, High-performance computing

ACM Reference Format:
Yash Kurkure, Shambhawi Sharma, XinWang, Michael E. Papka, and Zhiling
Lan. 2025. CQSim+: Symbiotic Simulation for Multi-Resource Scheduling in
High-Performance Computing. In 39th ACM SIGSIM Conference on Principles

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGSIM-PADS ’25, Santa Fe, NM, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1591-4/25/06
https://doi.org/10.1145/3726301.3728404

of Advanced Discrete Simulation (SIGSIM-PADS ’25), June 23–26, 2025, Santa
Fe, NM, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3726301.3728404

1 Introduction
In high-performance computing (HPC), job scheduling is critical as
the intermediary between users and the resources of the computing
facility. It manages the influx of user jobs on available resources
to achieve rapid turnaround times for its users and high resource
utilization in line with the facility’s goals. Since resources are often
divided among various computing systems, users must specify a
particular system when submitting their jobs. This rigid approach
to system selection can result in inefficiencies. For instance, users
may request the most powerful system within a facility despite a
less powerful system with a shorter wait queue, potentially offering
much faster application turnaround times.

Transitioning from siloed single-system scheduling to a unified
multi-resource scheduling presents a promising solution to the prob-
lem. By viewing the entire computing facility as an integrated pool
of diverse resources, multi-resource scheduling can accommodate a
broad mix of applications with varying resource requirements. This
global and uniform access facilitates a more effective allocation of
resources across diverse applications, enabling the balancing and
optimization of resource utilization within the facility.

Multi-resource scheduling simulation is an indispensable tool
for designing and assessing multi-resource scheduling policies. It
allows researchers and practitioners to explore various scheduling
algorithms, resource allocation policies, and system configurations
in a controlled environment. In particular, the community is in
critical need of symbiotic simulation to support dynamic decision-
making at runtime. Such a symbiotic simulation framework must
leverage real-time data the job scheduler generates to update the
simulation model continuously. It must allow real-time adjustments
and optimization based on the system’s current state. By integrating
real-time data into the simulation process, symbiotic simulation
can bridge the gap between static modeling and the dynamic nature
of multi-resource scheduling environments, ultimately improving
resource allocation and job scheduling.

https://orcid.org/0009-0006-8809-2238
https://orcid.org/0009-0008-1542-4996
https://orcid.org/0000-0002-3692-2483
https://orcid.org/0000-0002-6418-5767
https://orcid.org/0000-0002-1047-8724
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3726301.3728404
https://doi.org/10.1145/3726301.3728404
https://doi.org/10.1145/3726301.3728404


SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Kurkure et al.

Despite its critical importance, the field lacks an open-source,
high-fidelity multi-resource scheduling simulation tool designed
for symbiotic simulation. It creates a significant gap for the com-
munity, limiting innovation in developing advanced multi-resource
scheduling techniques.

To bridge the gap, we present CQSim+, a multi-resource sched-
uling simulator designed for symbiotic simulation. CQSim+ is built
on CQSim, an open-source, discrete event-driven multi-resource
simulator[27]. Discrete event simulation is renowned for achieving
high-fidelity computer system simulations swiftly. CQSim+ extends
the capabilities of CQSim to support multi-resource scheduling. In
the development of CQSim+, we have addressed several techni-
cal challenges. The first is to transition from offline simulation to
symbiotic simulation. Although CQSim has been validated and uti-
lized by the community for over ten years, it is primarily designed
for offline trace analysis. To facilitate symbiotic simulation, our
design incorporates several techniques that enable real-time data
acquisition and streaming between CQSim+ and job schedulers. An-
other challenge is to accelerate the simulation to support real-time
decision-making processes. We adopt a multi-process architecture
for CQSim+, enabling it to perform rapid simulations necessary for
runtime optimizations. Specifically, this work makes the following
key contributions:

• We introduce CQSim+, an open-source simulator that sup-
ports high-fidelity symbiotic simulation for multi-resource
scheduling. Built upon a multi-process, discrete event-driven
simulation architecture, CQSim+ enables efficient modeling
of complex multi-resource environments, facilitating real-
time data acquisition and dynamic scheduling decisions.

• We conduct extensive experiments demonstrating the advan-
tages of using CQSim+ for multi-resource scheduling across
homogeneous and heterogeneous systems. These experi-
ments highlight CQSim+’s capability to optimize resource
utilization and reduce job wait times.

• We present a case study utilizing CQSim+ to coordinate the
scheduling of jobs across the Polaris and Theta supercom-
puters at Argonne Leadership Computing Facility (ALCF)
[10]. This case study illustrates how CQSim+ can effectively
manage and optimize workloads between distinct systems,
providing valuable insights into the practical use of multi-
resource scheduling in real-world HPC environments.

2 Related Work
A job scheduler, or batch scheduler, is a system-level scheduling
component that manages the allocation of jobs to computing re-
sources (e.g., compute nodes) based on site policies and current
resource availability.

Two widely used batch schedulers in HPC environments are
Slurm [32] and PBS [3], each offering distinct capabilities to manage
and optimize resource use in large-scale HPC systems. First Come
First Serve (FCFS) with EASY backfilling is the most widely used
heuristic, which sorts the jobs in the wait queue according to their
arrival times and executes jobs from the head of the queue[21].
If the available resources are insufficient for the first job in the
queue, the scheduler will reserve the resources for this job. Back-
filling is often used in conjunction with job reservation to enhance

system utilization. It allows subsequent jobs in the wait queue to
move ahead under the condition that they do not delay the existing
reservations.

Multi-resource scheduling methods have been extensively ex-
plored in various studies. In grid computing, “meta-scheduling” is
frequently used for scheduling applications among the distributed
resources belonging to different administrative domains [13]. Ex-
isting multi-resource scheduling methods can be broadly classified
as either heuristic or classical optimization approaches. Heuris-
tic methods, like best-fit and list scheduling, are commonly used
to make allocation decisions based on simple rules or strategies
[15, 28]. Other studies typically formulate the problem as a mixed-
integer linear problem (MILP) and apply dynamic programming or
greedy algorithms to solve it [8, 12].

Both Slurm and PBS offer basic interfaces for resource provision-
ing across multiple systems. In Slurm, a heuristic method called
federation scheduling is employed, which assigns jobs to the system
that offers the earliest start time subject to its queue of pending
and running jobs[32]. On the other hand, PBS adopts a different
heuristic method known as peer scheduling, which transfers jobs
from a busy system to an idle one[3]. These systems operate on the
similar principle of selecting the system for job execution using the
greedy method.

Simulation is an essential technique in scheduling and fault tol-
erance research, providing a controlled environment for testing and
evaluation. It is a well-utilized technique used to prove the benefits
of multi-resource scheduling in theory as the general k-resource
problem [18], as well as in practice such as HPC [19] and Cloud
[20]. Over the years, numerous simulators have been developed to
support research in grid, HPC, and cloud computing environments.
These simulators typically fall into one of three main categories.
The first category consists of simulators that employ real-life re-
source management systems (RMS) in the simulation mode. For
example, the ScSF[24] and Slurm simulator [26] emulate a real sys-
tem by using Slurm Workload Manager inside its core to mimic the
real RMS realistically. A similar “simulaton mode” is supported in
Moab[1] and PBS. These simulators provide highly realistic sched-
uling behaviors, closely replicating the RMS configurations used
in many large-scale HPC systems, though they are often limited
to specific environments. The second category includes simulators
that leverage an underlying simulation toolkit, such as SimGrid
[6], GridSim [17], and CloudSim [5]. Examples include Batsim [9],
ALEA [16], and WRENCH [7]. Batsim is a batch scheduling simu-
lator built on top of SimGrid, designed to support a wide variety
of event-based scheduling algorithms. Based on GridSim, ALEA
provides flexible environments for simulating job scheduling in
grid and HPC systems. WRENCH, an extension of SimGrid, in-
troduces higher-level abstractions to facilitate the simulation of
real-world CI (CyberInfrastructure) scenarios, including scientific
workflows across multi-resource environments. The third category
includes AccaSim [14], and QSim [30], which are built from scratch.
AccaSim is a flexible Python-based scheduling simulator designed
to test scheduling policies in diverse HPC workloads. Qsim is an
event-driven scheduling simulator supporting utility-based policies
to balance various scheduling requirements and priorities.

Although existing simulators are valuable for scheduling re-
search, none fully support symbiotic simulation, which integrates



CQSim+: Symbiotic Simulation for Multi-Resource Scheduling in High-Performance Computing SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA

Offline Simulation Symbiotic Simulation

Job Module

Job Trace

Policy Module

Backfil Module

File Read

CQSim CQSim+
Streaming Module

CQSim

CQSim

CQSim

Meta-
Scheduling

RPC Module

Node Structure Module

...

Simulation
Results

Decision

Multi Resource 
Computing Facility

Data Streaming

Figure 1: Transitioning from CQSim to CQSim+. (Left) tradi-
tional offline simulation CQSim, (Right) symbiotic simula-
tion CQSim+.

system modeling with real-time data analytics to improve opera-
tional decision-making. Onggo et al. introduce the symbiotic sim-
ulation system (SSS) [22], a digital twin of a physical system that
enables continuous interaction through simulation, data analytics,
optimization, and machine learning.

However, they highlight several challenges, such as synchroniz-
ing real-time data with model execution, managing hybrid models,
and adapting to rapidly changing physical conditions. Addressing
these issues requires advancements in model validation, real-time
decision-making optimization, and adaptive simulation frameworks.
This work seeks to fill this gap by extending existing simulators
with symbiotic simulation capabilities, allowing for real-time feed-
back and adaptation during the simulation.

3 Design of CQSim+
CQSim+ is a multi-resource scheduling simulator designed explic-
itly for symbiotic simulation. It enables the real-time interaction
between a physical system and its simulated model.

CQSim+ is built upon CQSim [27]. Originally developed for
IBM BlueGene/P systems in 2009, CQSim is an open-source,
discrete-event-driven job scheduling simulator with enhanced
functionalities[2, 30, 31]. CQSim processes job traces provided in
the Standard Workload Format (SWF), a widely used format for job
scheduling [29] simulations. It models job scheduling as a sequence
of events, and each event (e.g., job arrival, job start, job completion,
etc.) occurs at a specific time andmarks a state change in the system.
Based on these events, CQSim emulates job submission, scheduling,
allocation, and execution under a specific scheduling policy. The
simulation operates on a single thread, reading jobs sequentially

from a trace file, which ensures simplicity and transparency. Its
functionalities are distributed among its modules that keep track
of the state of specific components in the system as shown in Fig-
ure 1 for offline simulation. Using its modular interface, this work
extends CQSim to CQSim+, which enables the usage of its offline
simulation modules within the symbiotic simulation system.

CQSim+, as a symbiotic simulation system, can interact in real-
time with the resource management system of a multi-resource
computing facility (e.g., PBS). The physical system drives the simu-
lation using live data, allowing the simulation to provide predictions
and assist in decision-making. In this setup, the physical HPC job
scheduler manages job scheduling, while the original CQSim+ acts
as a digital simulator reflecting scheduling decisions and outcomes.
This integrated design allows CQSim+ to respond dynamically to
real-time changes within the physical system, optimizing schedul-
ing and resource allocation through a continuous feedback loop.

Figure 1 illustrates the differences between offline simulation
with CQSim and symbiotic simulation with CQSim+. CQSim+ con-
sists of three main components in this design: a streaming mod-
ule for data acquisition, a meta-scheduling module for simulation-
related components, and an RPC module to interact with the job
scheduler. The Streaming module enables high-speed transactions
of real-time job queue events and machine states from the systems
of the multi-resource computing facility, passing these data streams
to the meta-scheduler for processing. The meta-scheduler module
manages multiple instances of CQSim as shown by the blue in-
stances in Figure 1. It also allows the creation of multiple copies of
each instance and uses the copy to simulate the future of a particular
system. The future predictions from each instance’s copy are then
gathered as feedback to help the simulated meta-scheduler make
decisions for the real system. Finally, an RPC module is developed
using the jobs schedulers API that sends back the decision of the
CQSim+ to the facility’s job scheduler.

3.1 Data Acquisition and Streaming
Typically, the job scheduler is composed of various services running
on the system nodes. Consequently, events within the system can
originate from multiple locations. For example, PBS consists of
four main types of services: the server, scheduler, communication
service, and MoM server (Machine-oriented Mini Server)[4], each
running on separate nodes. The server is responsible for handling
jobs and PBS-related commands, the scheduler contains the logic
for scheduling jobs, the MoM handles the execution lifecycle of a
job on each compute node, and the communication service manages
communication between all PBS-related services.

Acquiring data from the job scheduler in real-time is necessary
for symbiotic simulation. Most job schedulers have an interface that
allows developers and users to add functionality. In the case of PBS,
a Python interface called PBS Hooks[4] is provided. PBS Hooks are
Python scripts triggered by particular events, such as job submit,
run, end, etc. Similarly, Slurm provides the plugin interface[25] to
its users and developers. These interfaces can be used to acquire
data in real-time.

As stated earlier, the nature of the events is distributed. In the
case of PBS, the Python hook scripts only run on the machine where
the event occurred. The manual for PBS [4] defines events that may



SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Kurkure et al.

1 # logging_hook.py

2 import pbs

3 import sys

4 import os

5 import time

6

7

8 e = pbs.event ()

9

10 # Get the timestamp at which the event occurs

11 timestamp = int(time.time() * 1000)

12

13 # Get the job id

14 job_id = str(e.job.id)

15

16 # Get the event type

17 event_type = pbs.event ().type

18

19 try:

20 # Check for the event that triggered this hook

21 if event_type is pbs.QUEUEJOB:

22 event_str = 'q'

23 elif event_type is pbs.EXECJOB_BEGIN:

24 event_str = 'mom_r '

25 elif event_type is pbs.EXECJOB_END:

26 event_str = 'mom_e '

27

28

29 # Create the log entry

30 log_string = f'{timestamp}, {job_id}, {event_str}'

31

32 # Write to some file for logging or data streaming

service

33 write_to_some_file(log_string)

34

35 # accept the event

36 e.accept ()

37

38 except SystemExit:

39 pass

40 except:

41 e.reject("Failed to set job priority")

Figure 2: An example of a PBS Hook. The hook is config-
ured to run at the queuejob, execjob_begin, and execjob_end
events within PBS. Each PBS Hook reads the event detail
from the event-object acquired on line 8. Then, as shown in
lines 20-26, the event can be identified. Line 33 is where the
hook writes the event data to a file. The file is created on the
machine where the hook runs.

occur at the server and the MoM. But the hooks configured to run at
server events will only run on the head node, and those configured
to run at MoM events run on the compute node. This requires us to
collect data from multiple nodes in the system and not just the node
where the scheduler runs. Figure 2 is an example of a simple hook
that runs for the queue, execjob_begin, and execjob_end events and
writes a log string to a file. The queue job is a server-side event;
hence, for the queue event, this script would run on the head node
where the PBS server runs. The execjob_begin and exejob_end
events are MoM-sided; hence, they will run on some compute node.
Due to this, the log files the hook would write would also be written

PBS
Server

Daemon

PBS
Scheduler
Daemon

PBS
Communication

Daemon

PBS Hook

PBS MoM
Daemon

PBS Hook

Redis

Event

Data Stream

CQSim+

Redis

Event

Data Stream

Head NodeCompute Node

Facility Resources

Decision

Data Stream

Figure 3: Data streaming between CQSim+ and PBS compo-
nents.

to different machines in the system. To address this problem, storing
these events in a database is necessary.

To address the issue of transferring event data between the sched-
uler and simulator and the issue of the origin of events being dis-
tributed in the system, Redis offers a fast in-memory distributed
database and publishes subscribe streams. Figure 3 provides an
overview of how Redis works with PBS to stream data to CQSim+.
The developer writes a PBS Hook using Redis’s Python client that
publishes events to a Redis stream.While the stream data is stored in
Redis’s distributed database, CQSIM+ subscribes to the stream and
consumes messages from the stream. Redis guarantees subscribers
get events in the order they were published in.

From the perspective of CQSIM+, its interactions with data
streaming services are handled by the streaming module. It is re-
sponsible for implementing the client interface of the streaming
service (Redis), listening to the stream of events, and propagating
the events to the meta scheduler.

3.2 Meta-Scheduling
Meta-scheduling involves distributing workloads across multiple
systems. CQSim+ extends CQSim by managing multiple instances,
each corresponding to an individual system of the facility. This
approach enables the running of predictive simulations on each
system before determining the optimal placement for a job.

The meta-scheduling module is responsible for maintaining mul-
tiple instances of CQSim. Figure 1 shows a list of CQSim instances
under the meta-scheduling module. Each CQSim instance repre-
sents a single system operating in a facility. It also contains the
logic for advancing simulators, keeping each simulated instance
in sync with the job scheduler and creating copies of instances to
predict the future.

Multi-process Architecture. Future states of individual CQSim
instances can be predicted by creating a copy of the instance and
then advancing its simulation based on new information. This is
achieved using the multi-processing package of Python, which
essentially forks the main process in which CQSim+ is running



CQSim+: Symbiotic Simulation for Multi-Resource Scheduling in High-Performance Computing SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA

Child Process Time

Master 
Process

Child 
Process

Read Job i

Cluster 1

Cluster 2 fork()

Cluster 1        cqsim(i)

Cluster 2        cqsim(i)

Cluster 2       skip(i)    fork()

Read Job j

Cluster 2        cqsim(j)

Cluster 1       cqsim(i) Cluster 1

Cluster 2

Read Job i 
to cluster 1,
skip for others

Simulation
Feedbacks

Master Process
Execution

Child Process
Execution

Master Process
Paused

CQSim 
Instance

Cluster 1        cqsim(j)

Simulation
Feedbacks

... ... ...

......

Master Process Time

M
et

a

Meta

Select
Cluster
for job i

Meta-Scheduling

M
et

a

M
et

a

Figure 4: A time diagram of CQSim+ performing meta-scheduling for multiple systems.

and creates a new process with a copy of CQSim+ having the same
exact copies of each CQSim instance.

The CQSim instances of the main process are kept in sync with
the job scheduler. When a new job arrives, the process is forked,
creating a child process with copies of each CQSim instance. Inside
the child process, each simulator reads this new job and advances
to completion. At the end of the simulation in the child process,
each simulator has a prediction. These predictions are sent back
to the main process as simulation feedbacks as shown in Figure 4.
The meta-scheduling component reads this feedback and selects
the optimal system in the main process. Only then is the simulator
of the optimal system advanced in the main process with the new
job. All other CQSim instances in the main process skip this job
since they were not chosen by the meta-scheduling component.
Then the main thread waits to read the next job from the stream.

Scalability. Without the help of multiprocessing, every time
a new job arrives, a new instance of CQSim would need to be
created. Additionally, this new instance would need to read all
previous jobs to be in sync with the job scheduler in real-time. This
incurs a significant computational overhead. As described before,
multiprocessing allows creating copies of CQSim instances that
have already processed past events. This saves us the computational
time of re-running an instance from the beginning. It is important
to note that we use multiprocessing instead of threading in Python
for scalability reasons. This is because the global interpreter lock
in Python does not allow parallelism between threads while using
a multi-core machine [23].

3.3 Decision Making via RPC
The results from CQSim+ are fed back into PBS to drive and guide
multi-resource scheduling in the facility’s physical systems. This

real-time decision feedback is achieved using Remote Procedure
Calls (RPC). In the case of PBS, it provides the Batch Interface
Library [4] written in C++. The routines exposed by the library
allow connecting to the PBS server daemon and issuing PBS com-
mands, including job-related commands such as submit, alter, run,
etc. The RPC module is responsible for providing wrappers for
these scheduler-specific routines, creating a layer of compatibility
between CQSim+ and any other resource management systems.

4 Experiments
To investigate multi-resource scheduling using CQSim+, we evalu-
ate a scheduling scenario where users submit their jobs to a com-
puting facility containing multiple computing systems. Without a
meta-scheduling simulator, a user might randomly select a system
that may not be optimal from a scheduling perspective.

Since a facility may contain multiple systems of the same or
different types, we study two cases. The first is the homogeneous
configuration, where a facility has multiple systems employing
the same hardware. The second is the heterogeneous configuration,
where the systems use different hardware.

The experiments are performed using the job logs from the Theta
system at ALCF [10], which contain 23,911 jobs after filtering out
debug-related jobs. The Theta system comprised 4,392 nodes, of
which 32 were reserved exclusively for debugging. For simulation
purposes, we removed debugging jobs and the nodes used for de-
bugging. Additionally, for the multi-system setup under simulation,
we ensure that the total number of nodes across all systems is equal
to the number of nodes in Theta. Using CQSim+, the experiments
are designed to meta-schedule jobs among two systems for both
the homogeneous and heterogeneous cases. This is done using two
instances of CQSim within CQSim+.



SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Kurkure et al.

(a) Resource utilization per week using Random (b) Resource utilization per week using SGS-T

(c) Jobs submitted per week using Random (d) Jobs submitted per week using SGS-T

Figure 5: Resource utilization and the number of jobs submitted per week in the homogeneous case: (left) Random, (right)
SGS-T.

Job Size Job Count
and %

Average Wait Time (min)

Random SGS-T % Improv.

(0-128] 12133 (55.9%) 214.6 131.4 38.8
(128,256] 4841 (22.3%) 558.1 416.3 25.4
(256,512] 1881 (8.7%) 879.6 691.6 21.4
(512,1024] 2438 (11.2%) 1748.9 1465.1 16.2
(1024,2180] 429 (2.0%) 1741.2 1301.6 25.2
Overall 21722 551.1 416.2 24.5

Table 1: Averagewait times binned by job size (Homogeneous)

4.1 Homogeneous
To illustrate a scenario where a user must choose between homoge-
neous systems, the setup consists of two systems, each with 2,180
processes. We selected 2,180 for two reasons:

(1) To test the scenario where the user does not have a clear
idea of which system to choose, as they are identical in size
and performance. Thus, the selection may be random.

(2) To maintain consistency with the amount of resources used
by the original job trace. This is achieved by ensuring that
the total number of nodes across both systems equals 4,360,
matching the number of nodes of the original system of the
job trace.

With these considerations in mind, we designed our experiment
using CQSim+ with the two systems, evaluating the following meta-
scheduling strategies:

(1) The job is assigned to either system with a 50% probability.
This approach represents the absence of simulation assis-
tance to the user. As described previously, the user’s choice
is random since both systems are identical in speed and
performance. We label this approach as Random.

(2) The job is assigned to the system with the best turnaround
time. This makes a case for the presence of simulation guid-
ance from CQSim+ to the user, where the user always sched-
ules the job on the system with the optimal turnaround time.
We refer to this strategy as SGS-T (Simulation Guided Sched-
uling based on Turnarounds).

We evaluate the simulation results using two keymetrics: average
wait time and system utilization.

AverageWait Time. Table 1 shows the averagewait times grouped by
the job size under the Random and SGS-T policies. SGS-T performs
24.5% better overall and in each job size category compared to
Random. Similarly, Table 2 shows the average wait times grouped
by wall time, where each job category benefits from SGS-T.

Average Utilization. The average utilization per day is calculated for
all systems under each meta-scheduling strategy. Figure 5(a) shows
the average utilization of both systems when Random is used for
meta-scheduling decisions, comparing this to figure 5(b), which



CQSim+: Symbiotic Simulation for Multi-Resource Scheduling in High-Performance Computing SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA

(a) Resource utilization per week using User(0.6) (b) Resource utilization per week using SGS-T

Figure 6: Resource utilization per week in the heterogeneous case: (left) User(0.6), (right) SGS-T.

Walltime (min) Job Count
and %

Average Wait Time (min)

Random SGS-T % Improv.

(10,30] 2344 (10.8%) 534.1 402.9 24.6
(30,60] 5344 (24.6%) 298.9 218.0 27.0
(60,120] 1662 (7.7%) 403.1 338.5 16.0
(120,250] 7918 (36.5%) 410.3 285.6 30.4
(250,500] 2865 (13.2%) 902.8 715.1 20.8
(500,1000] 992 (4.6%) 1528.4 1155.5 24.4
(1000,1500] 597 (2.7%) 1843.3 1527.6 17.1
Overall 21722 551.1 416.2 24.5

Table 2: Average wait times binned by walltime (Homoge-
neous)

Job Size Job Count
and %

Average Wait Time (min)

User(0.6) SGS-T % Improv.

(0-128] 12133 (55.9%) 344.0 218.6 36.4
(128,256] 4841 (22.3%) 952.2 676.2 29.0
(256,512] 1881 (8.7%) 1456.0 1185.8 18.6
(512,1024] 2438 (11.2%) 3006.6 2351.5 21.8
(1024,2180] 429 (2.0%) 3073.3 2142.2 30.3
Overall 21722 928.6 681.7 26.6

Table 3: Average wait times binned by job size (Heteroge-
neous)

shows the utilization under SGS-T. At a glance, it is observable
that the average utilization of both systems under SGS-T is almost
the same (load is balanced), whereas for Random there are many
instances where the utilization is less for one system than the other.

To investigate further, we look at Figures 5(c) and (d) that show
the job submission pattern per system for Random and SGS-T,
respectively. In the case of Random, jobs are equally distributed
among the systems, whereas for SGS-T, the jobs are not equally
distributed. This tells us that SGS-T balances the overall load of the

jobs equally among the systems, whereas Random only distributes
the jobs equally among the systems.

4.2 Heterogeneous
Heterogeneity breaks the uniformity in size and performance, intro-
ducing additional factors for consideration when scheduling user
jobs. In such cases, it may be appealing for users to choose the
faster and/or bigger system.

To evaluate the performance of simulation guidance in a hetero-
geneous environment, we make two key changes to the experimen-
tal design from the homogeneous case:

(1) Differing system performance. One system is slower than the
other. This is done by scaling the runtime from the original
job trace by a factor of 𝑦.

(2) User selection probability. Instead of comparing SGS-T to
Random, we introduce a new strategy that accounts for the
probability of a user selecting the faster system. The strategy
is denoted as User(𝑥), where 𝑥 represents the probability of
the user choosing the faster system.

The simulations are conducted with 𝑦 = 1.3 for system 2 and
𝑥 = 0.6, creating a scenario where system 2 runs 1.3 times slower
than system 1, and the user selects the faster system (system 1)
with a probability of 60%.

Walltime (min) Job Count
and %

Average Wait Time (min)

User(0.6) SGS-T % Improv.

(10,30] 1263 (5.8%) 1099.9 641.5 41.7
(30,60] 5012 (23.1%) 576.3 443.1 23.1
(60,120] 2512 (11.6%) 570.7 439.2 23.0
(120,250] 8272 (38.1%) 659.8 469.7 28.8
(250,500] 2925 (13.5%) 1446.1 1057.2 26.9
(500,1000] 1137 (5.2%) 2438.3 2021.1 17.1
(1000,1500] 365 (1.7%) 4267.4 2310.0 45.9
Overall 21722 928.6 681.7 26.6

Table 4: Average wait times binned by walltime (Heteroge-
neous)



SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Kurkure et al.

Average Wait Time. Table 3 shows the average wait times grouped
by job size under the User(0.6) and SGS-T meta-scheduling policies.
SGS-T performs 26.6% better overall and in each job size category
compared to User(0.6). Similarly, Table 2 shows the average wait
times grouped by wall time, where each job category benefits from
SGS-T.

Average Utilization. The average utilization per week is calculated
for all systems under each meta-scheduling strategy. Figure 6(a)
shows the average utilization of both systems when User(0.6) is
used for meta-scheduling decisions, comparing this to figure 6(b),
which shows the utilization under SGS-T. At a glance, it is observ-
able that the average utilization of both systems under SGS-T is
balanced, unlike for User(0.6) as seen earlier for the homogeneous
experiments. The job submission patten under User(0.6) shows
that more jobs are consistently scheduled on the faster system as
expected.

5 Case Study: Polaris and Theta
To further explore the effectiveness of CQSim+ for multi-resource
scheduling, we conducted a case study using CQSim+ to examine
the multi-resource scheduling of two systems, Theta and Polaris,
from ALCF. Originally, resources on Theta and Polaris were man-
aged independently by independent job schedulers. This is referred
to as Siloed scheduling, where systems are managed independently.
We formulate this simulation-based case study to show the benefits
of multi-resource scheduling for the ALCF systems and evaluate
CQSim+’s ability. Similar to the experiments performed earlier, we
simulate the two systems using CQSim+ and their logs sourced
from the ALCF public database [10]. The same time frame of 4
months, from September 1, 2023, at 00:00:00 to January 1, 2024, at
00:00:00, is utilized for the simulation.

Two instances of CQSim are run within CQSim+, the first for the
Theta system consisting of 4,360 nodes and the second for Polaris
with 552 nodes. Debug nodes are ignored from each system, these
were 32 for Theta and 8 for Polaris. A special case for Polaris is
considered where a debug job may span more than 8 nodes. Instead
of ignoring those jobs from the log, we subtract 8 from their required
node count. Other additional considerations include the hardware
and performance of the system. The hardware difference being the
GPU in Polaris and the performance difference between their CPUs.
Since Theta has no GPU, all GPU jobs are always scheduled on
Polaris. Where as for the CPU jobs, we scale the runtimes of the
jobs by a factor. Using the peak performance metrics of each system
(Polaris 44 FLOP/s and Theta 11 FLOP/s) a simple assumption is
made that Polaris is 4 times faster than Theta for executing the
CPU same job. CQSim+ considers this difference by scaling the
runtime of the job by the factor of 4 when a Polaris job is simulated
on Theta and a factor of 0.25 for the reverse.

A comparative analysis is conducted of the following resource
scheduling strategies:

• Siloed scheduling. Under siloed scheduling, Polaris and Theta
are simulated as individual instances of CQSim, simulating
each system independently. This isolated simulation provides
a baseline as being the original setup at ALCF.

• User(0.6) multi-resource scheduling. Jobs were scheduled to
either Polaris or Theta using the assumption that users pick
the faster system (Polaris) 60% of the time.

• SGS-T multi-resource scheduling. Under the SGS-T scheduling
policy, each job is assigned to the systemwith the lowest sim-
ulated turnaround time. Additionally, SGS-T utilizes CQSim+
to simulate each job’s expected performance on both systems
prior to allocation, optimizing job placement based on these
turnaround estimates.

The final dataset includes a total of 34,574 jobs, comprising 26,266
jobs from Polaris and 8,281 jobs from Theta. Using this data set, a
data stream is simulated by feeding the jobs to CQSim+ and then
recording the prediction time for each decision to measure the
performance of it’s design.

5.1 Results
The results are discussed by analyzing key scheduling metrics in-
cluding wait time, resource utilization and turnaround times. First
we look at these metrics at the system level comparing the per-
formance of each system. Then at the job level by considering job
characteristics.

5.1.1 System Level Analysis. We examine the average wait times of
Polaris and Theta jobs under siloed and multi-resrource scheduling.
In the siloed case, each system is simulated individually with only
its respective jobs, as gathered from the original logs. In the multi-
resource case, CQSim+ is used for simulation-guided scheduling,
where all jobs, including those from Polaris and Theta, are processed
together. Overall, Polaris jobs showed a 58.7% improvement in aver-
age wait time, while Theta jobs showed a 27.6% improvement. The
daily resource utilization is also analyzed for each system, showing
that SGS-T peforms on par with siloed. On the other hand User(0.6)
performs poorly by over utilizing the faster system (Polaris) as seen
before for the faster system under the heterogeneous experiments.

Original
System

System Se-
lected by
CQSim+

Number
of Jobs

Wait
Time (s)
(siloed)

Wait
Time (s)
(CQSim+)

% Impv.

Polaris Polaris 18,439 18,707 16,898 9.7%
Theta Polaris 4,943 10,363 5,439 47.5%
Polaris Theta 7,827 44,061 2,107 95.2%
Theta Theta 3,338 27,441 29,510 -7.5%

Table 5: Average wait time in seconds by original system and
system selected by CQSim+.

Table 5 compares the average wait time of jobs in the siloed
scheduling case to that in the multi-resource scheduling case using
CQSim+. It shows that 4,943 jobs originally executed on Theta were
processed by Polaris, and 7,827 jobs originally executed on Polaris
were processed by Theta. The largest improvement is observed for
Polaris jobs placed on Theta, with a 95.2% reduction in average
wait time, even with Theta processing them four times slower than
Polaris. This demonstrates the clear benefits of facility-wide meta-
scheduling. The results also shows that this improvement comes
with a 7.5% increase in the average wait time for jobs originally
assigned to Theta and processed on Theta by CQSim+.



CQSim+: Symbiotic Simulation for Multi-Resource Scheduling in High-Performance Computing SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA

(a) Average wait time (hrs) by job size for Polaris (b) Number of jobs processed by job size on Polaris

(c) Average wait time (hrs) by job size for Theta (d) Number of jobs processed by job size on Theta

Figure 7: Comparison of average wait time and number of jobs processed on Polaris (top) and Theta (bottom).

(a) Turnarounds Time (hrs) of Polaris jobs processed by Theta (b) Average Wait Time (hrs) of Polaris jobs processed by Theta

Figure 8: Comparison of turnaround times (left) and average wait times (right) for Polaris jobs processed by Theta.



SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA Kurkure et al.

5.1.2 Job Level Analysis. We further analyze average wait times by
comparing siloed scheduling with multi-resource scheduling using
CQSim+. Figure 7(a) and Figure 7(c) show the average wait time
grouped by job size, while Figure 7(b) and Figure 7(d) present the
number of jobs in each job size category.

By Figure 7(b) it can be seen Polaris processes fewer of the smaller
1-64 node jobs under meta-resource scheduling compared to Figure
7(d) where the amount of those same jobs increase for Theta.

As noted in the system-level analysis, the only jobs that experi-
enced delays were those originally belonged to Theta and processed
by Theta under meta-scheduling. This is further illustrated in Figure
7(b), where jobs requiring 512–4360 nodes have a longer average
wait time compared to before. However, as shown in Figure 7(d),
there are very few such jobs.

Since Polaris jobs run 4 times slower on Theta, analyzing the
turnaround times for this set of jobs is necessary. Figure 8(a) shows
the job counts grouped by their turnaround times for these jobs. It
is seen that more jobs have a lesser turnaround time compared to
when the jobs ran on Polaris, despite the 4x longer running time.
This indicates that most of the benefit comes from shorter wait
times as shown by Figure 8(b) for this same set of jobs.

5.1.3 Simulation Overhead. As a symbiotic scheduling simulator,
CQSim+ must maintain a low runtime overhead to ensure seamless
integration with the job scheduler. In our experiments and case
study, CQSim+ achieved an average simulation cost of just 67.334
ms per job. In practice, job scheduling typically requires making de-
cisions within 15-30 seconds [11]. Hence, this low overhead enables
CQSim+ to operate effectively in real-time environments, providing
timely insights for online deployment. All simulations were con-
ducted on a personal computer employing AMD Ryzen 9 5900HX
with 8 cores and 16 threads.

6 Conclusion and Future Work
This paper presents CQSim+, a symbiotic simulation framework
designed for multi-resource scheduling by integrating a simula-
tor with the physical job scheduler for dynamic, prediction-based
decision-making. Through extensive experiments, CQSim+ opti-
mizes job scheduling across homogeneous and heterogeneous sys-
tems. The results demonstrate that SGS-T by using CQSim+ consis-
tently achieves the best average wait times and balances the load
across systems. Additionally, a case study involving the Polaris and
Theta systems at Argonne demonstrates that multi-scheduling with
CQSim+ significantly reduces wait times — Polaris jobs processed
by Theta experience a 95.2% reduction compared to siloed schedul-
ing, and overall average wait times improve by 58.4% for Polaris
and 27.5% for Theta. The real-time symbiotic aspect of CQSim+ is
also tested using these experiments, which show that predictions
can be made on average under 70 milliseconds.

Future work will enhance CQSim+’s predictive capabilities and
expand its functionality in several directions. First, we plan to
develop an extended prediction horizon, enabling the simulator
to forecast beyond the immediate next job for more strategic and
proactive scheduling decisions. Second, we intend to implement
advanced what-if analysis by spawning a tree of processes, which
will enable the exploration of more complex scenarios and the
optimization of different objectives.

Acknowledgments
This work is supported in part by US National Science Founda-
tion grant OAC-2402901 and the U.S. Department of Energy under
Contract DE-SC0024271.

References
[1] Adaptive Computing Inc. 2024. PBS-BigBook. https://adaptivecomputing.com/

moab-hpc-suite/. Accessed: 8 November 2024.
[2] William Allcock, Paul Rich, Yuping Fan, and Zhiling Lan. 2017. Experience

and Practice of Batch Scheduling on Leadership Supercomputers at Argonne. In
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP).

[3] Altair Engineering Inc. [n. d.]. PBS Professional. https://altair.com/pbs-
professional

[4] Altair Engineering Inc. 2022. PBS-BigBook. https://help.altair.com/2022.1.0/PBS%
20Professional/PBS2022.1.pdf. Accessed: 8 November 2024.

[5] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. 2009. Modeling and
simulation of scalable Cloud computing environments and the CloudSim toolkit:
Challenges and opportunities. In 2009 international conference on high performance
computing & simulation. IEEE, 1–11.

[6] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric
Suter. 2014. Versatile, scalable, and accurate simulation of distributed applications
and platforms. J. Parallel and Distrib. Comput. 74, 10 (2014), 2899–2917.

[7] Henri Casanova, Suraj Pandey, James Oeth, Ryan Tanaka, Frédéric Suter, and
Rafael Ferreira Da Silva. 2018. Wrench: A framework for simulating workflow
management systems. In 2018 IEEE/ACM Workflows in Support of Large-Scale
Science (WORKS). IEEE, 74–85.

[8] Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stuart Martin, Warren
Smith, and Steven Tuecke. 1998. A resource management architecture for meta-
computing systems. In Job Scheduling Strategies for Parallel Processing, Dror G.
Feitelson and Larry Rudolph (Eds.). Springer Berlin Heidelberg.

[9] Pierre-François Dutot, Michael Mercier, Millian Poquet, and Olivier Richard.
2017. Batsim: a realistic language-independent resources and jobs management
systems simulator. In Job Scheduling Strategies for Parallel Processing: 19th and
20th International Workshops, JSSPP 2015, Hyderabad, India, May 26, 2015 and
JSSPP 2016, Chicago, IL, USA, May 27, 2016, Revised Selected Papers 19. Springer,
178–197.

[10] Argonne Leadership Computing Facility. [n. d.]. ACLF Public Data.
https://reports.alcf.anl.gov/data/index.html.

[11] Yuping Fan, Zhiling Lan, Taylor Childers, Paul Rich, William Allcock, and
Michael E. Papka. 2021. Deep Reinforcement Agent for Scheduling in HPC.
In 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
https://doi.org/10.1109/IPDPS49936.2021.00090

[12] Y. Fan, Z. Lan, P. Rich, W. E. Allcock, M. E. Papka, B. Austin, and D. Pau. 2019.
Scheduling Beyond CPUs for HPC. In Proceedings of the 28th International Sym-
posium on High-Performance Parallel and Distributed Computing. Phoenix, AZ,
USA, 97–108.

[13] Ian Foster and Carl Kesselman (Eds.). 1998. The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[14] Cristian Galleguillos, Zeynep Kiziltan, Alessio Netti, and Ricardo Soto. 2020.
AccaSim: a customizable workload management simulator for job dispatching
research in HPC systems. Cluster Computing 23, 1 (2020), 107–122.

[15] Michael R. Garey and Ronald L. Graham. 1975. Bounds for multiprocessor
scheduling with resource constraints. SIAM J. Comput. (1975).

[16] Dalibor Klusáček, Mehmet Soysal, and Frédéric Suter. 2020. Alea–complex job
scheduling simulator. In Parallel Processing and Applied Mathematics: 13th Inter-
national Conference, PPAM 2019, Bialystok, Poland, September 8–11, 2019, Revised
Selected Papers, Part II 13. Springer, 217–229.

[17] Arnaud Legrand, Loris Marchal, and Henri Casanova. 2003. Scheduling dis-
tributed applications: the simgrid simulation framework. In CCGrid 2003. 3rd
IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003.
Proceedings. IEEE, 138–145.

[18] William Leinberger, George Karypis, and Vipin Kumar. 1999. Job scheduling in the
presence of multiple resource requirements. In Proceedings of the 1999 ACM/IEEE
Conference on Supercomputing (Portland, Oregon, USA) (SC ’99). Association
for Computing Machinery, New York, NY, USA, 47–es. https://doi.org/10.1145/
331532.331579

[19] Boyang Li, Yuping Fan,MatthewDearing, Zhiling Lan, Paul Rich,WilliamAllcock,
and Michael Papka. 2022. MRSch: Multi-Resource Scheduling for HPC. In 2022
IEEE International Conference on Cluster Computing (CLUSTER). 47–57. https:
//doi.org/10.1109/CLUSTER51413.2022.00020

[20] Weiwei Lin, Siyao Xu, Ligang He, and Jin Li. 2017. Multi-resource scheduling
and power simulation for cloud computing. Information Sciences 397-398 (2017),
168–186. https://doi.org/10.1016/j.ins.2017.02.054

https://adaptivecomputing.com/moab-hpc-suite/
https://adaptivecomputing.com/moab-hpc-suite/
https://altair.com/pbs-professional
https://altair.com/pbs-professional
https://help.altair.com/2022.1.0/PBS%20Professional/PBS2022.1.pdf
https://help.altair.com/2022.1.0/PBS%20Professional/PBS2022.1.pdf
https://doi.org/10.1109/IPDPS49936.2021.00090
https://doi.org/10.1145/331532.331579
https://doi.org/10.1145/331532.331579
https://doi.org/10.1109/CLUSTER51413.2022.00020
https://doi.org/10.1109/CLUSTER51413.2022.00020
https://doi.org/10.1016/j.ins.2017.02.054


CQSim+: Symbiotic Simulation for Multi-Resource Scheduling in High-Performance Computing SIGSIM-PADS ’25, June 23–26, 2025, Santa Fe, NM, USA

[21] A. Mu’alem and D. Feitelson. 2001. Utilization, Predictability, Workloads, and
User Runtime Estimates in Scheduling the IBM SP2 with Backfilling. IEEE Trans
on Parallel and Distributed Systems (TPDS) (2001).

[22] Bhakti Stephan Onggo, Navonil Mustafee, Andi Smart, Angel A Juan, and Owen
Molloy. 2018. Symbiotic simulation system: Hybrid systems model meets big
data analytics. In 2018 Winter Simulation Conference (WSC). IEEE, 1358–1369.

[23] Python Software Foundation. 2024. Python Documentation v3.13. https://docs.
python.org/3/library/threading.html. Accessed: 8 November 2024.

[24] Gonzalo P Rodrigo, Erik Elmroth, Per-Olov Östberg, and Lavanya Ramakrishnan.
2018. Scsf: A scheduling simulation framework. In Job Scheduling Strategies for
Parallel Processing: 21st International Workshop, JSSPP 2017, Orlando, FL, USA,
June 2, 2017, Revised Selected Papers 21. Springer, 152–173.

[25] SchedMD LLC. 2022. Slurm Plugins Documentation. https://slurm.schedmd.com/
plugins.html. Accessed: 8 November 2024.

[26] Nikolay A Simakov, Martins D Innus, Matthew D Jones, Robert L DeLeon,
Joseph P White, Steven M Gallo, Abani K Patra, and Thomas R Furlani. 2018. A
slurm simulator: Implementation and parametric analysis. In High Performance
Computing Systems. Performance Modeling, Benchmarking, and Simulation: 8th In-
ternational Workshop, PMBS 2017, Denver, CO, USA, November 13, 2017, Proceedings

8. Springer, 197–217.
[27] SPEAR Lab. 2024. CQSim on GitHub. https://github.com/SPEAR-UIC/CQSim.

Accessed: 8 November 2024.
[28] Hongyang Sun, Redouane Elghazi, Ana Gainaru, Guillaume Aupy, and Padma

Raghavan. 2018. Scheduling parallel tasks under multiple resources: List sched-
uling vs. pack scheduling. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS).

[29] Talby, David, Feitelson, Dror, and Jones, James. 2024. The Standard Workload
Format. https://www.cs.huji.ac.il/labs/parallel/workload/swf.html. Accessed: 8
November 2024.

[30] Wei Tang, Zhiling Lan, Narayan Desai, and Daniel Buettner. 2009. Fault-Aware
Utility-Based Job Scheduling on Blue Gene/P Systems. In Processing of IEEE
Cluster.

[31] Xu Yang, Zhou Zhou, Sean Wallace, Zhiling Lan, Wei Tang, Susan Coghlan, and
Michael Papka. 2013. Integrating Dynamic Pricing of Electricity into Energy
Aware Scheduling for HPC Systems. In Proceedings of IEEE/ACM SC.

[32] Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux
utility for resource management. In Workshop on job scheduling strategies for
parallel processing. Springer, 44–60.

https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://slurm.schedmd.com/plugins.html
https://slurm.schedmd.com/plugins.html
https://github.com/SPEAR-UIC/CQSim
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html

	Abstract
	1 Introduction
	2 Related Work
	3 Design of CQSim+
	3.1 Data Acquisition and Streaming
	3.2 Meta-Scheduling
	3.3 Decision Making via RPC

	4 Experiments
	4.1 Homogeneous
	4.2 Heterogeneous

	5 Case Study: Polaris and Theta
	5.1 Results

	6 Conclusion and Future Work
	Acknowledgments
	References

