
Articulate: A Semi-automated Model for Translating
Natural Language Queries into Meaningful

Visualizations

Yiwen Sun, Jason Leigh, Andrew Johnson, and Sangyoon Lee

Electronic Visualization Laboratory, University of Illinois at Chicago
{ysun25,spiff,ajohnson,slee14}@uic.edu

Abstract. While many visualization tools exist that offer sophisticated functions
for charting complex data, they still expect users to possess a high degree of
expertise in wielding the tools to create an effective visualization. This paper
presents Articulate, an attempt at a semi-automated visual analytic model that
is guided by a conversational user interface to allow users to verbally describe
and then manipulate what they want to see. We use natural language processing
and machine learning methods to translate the imprecise sentences into explicit
expressions, and then apply a heuristic graph generation algorithm to create a
suitable visualization. The goal is to relieve the user of the burden of having to
learn a complex user-interface in order to craft a visualization.

Keywords: visual analytics, natural language processing, conversational inter-
face, automatic visualization.

1 Introduction

Much has been investigated on the design of sophisticated visual analytic tools in a
variety of disciplines. However, the effort end-users have to make to craft a meaningful
visualization using these tools has been mostly overlooked. The users of such tools are
usually domain experts with marginal knowledge of visualization techniques. When
exploring data, they typically know what questions they want to ask, but often do not
know, or do not have the time to learn, how to express these questions in a form that is
suitable for a given analysis tool, such as specifying a desired graph type for a given data
set, or assigning proper data fields to certain visual parameters. To facilitate the use of
advanced visualization tools by domain experts, we propose a semi-automated visual
analytic model: Articulate. The goal is to provide a streamlined experience to non-
expert users, allowing them to focus on using the visualizations effectively to generate
new findings.

Survey results according to search engines like Ask.com show that a third of search
queries are entered as natural language questions rather than keywords [1]. Furthermore,
a 2007 National Science Foundation workshop report on “Enabling Science Discoveries
through Visual Exploration” [2] noted that “there is a strong desire for conversational
interfaces that facilitate a more natural means of interacting with science.” Scientists
frankly do not have the time or patience to learn complex visualization tools. Zue [3]

R. Taylor et al. (Eds.): SG 2010, LNCS 6133, pp. 184–195, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Articulate: A Semi-automated Model 185

also pointed out that spoken language is attractive in interface design, because it is the
most natural, efficient, flexible, and inexpensive means of communication. It is also a
skill that humans have been using for over a hundred millennia as compared to comput-
ers which have only become widely available since the mid-80s. And while computing
software and user-interfaces will become obsolete over time, the use of spoken dialog
as the primary form of human communication is unlikely to become obsolete. This
inspired us to adopt a conversational interface in the semi-automated visual analytic
model. A model like this would allow an end-user to pose natural language inquiries,
and then let the system assume the burden of determining the appropriate graph, and
presenting the results. It is hoped that such a capability can potentially reduce the learn-
ing curve necessary for effective use of visual analytics tools, and thereby expanding
the population of users who can successfully conduct visual analyses.

In this paper, we propose a two-step process to translate a user’s verbal description to
a representative visualization: first, parse the imprecise queries into explicit commands
using natural language processing and machine learning methods; then, determine an
appropriate type of visualization based on the commands and data properties automat-
ically. In this initial work we limit the types of visualizations that can be generated to
standard 2D graphs and plots. However in the future we fully intend to extend this to ac-
commodate complex visual representations such as those commonly used in scientific
visualization (such as volumetric or streamline visualizations).

The primary contributions of this research include: 1) the incorporation of a conver-
sational interface and natural language parser to allow for natural language input rather
than grammar based commands; 2) the development of an algorithm to automatically
generate graphs based on the classification of visual analytic tasks; 3) the development
of a Simplified Visualization Language (SimVL) as an intermediate expression for a
user’s specification, which is precise, and easy to convert in a representative graph.

The remainder of the paper is organized as follows. We discuss related work in Sect.
2. In Sect. 3, we introduce the natural language parser and the proposed algorithm
for graph generation. The implementation details of the system are presented in Sect.
4. Then in Sect. 5, we present a preliminary user study and its findings. Finally, we
conclude in Sect. 6, where we outline directions for future work.

2 Related Work

In the last decade several approaches for automatic visualization have been proposed.
One of the first was Show Me [4], an integrated set of user interface commands and de-
faults that automatically generate visual presentations based on the VisQL specification
language. Users place data fields into columns and rows in the interface panel to spec-
ify VisQL commands. In order to generate insightful visualizations, an understanding
of the relationships between columns and rows is needed. Rezk-Salama et al. demon-
strated a semantic model for automatic transfer function editing in volume rendering
applications [5]. However the design of the semantic model is such that the presence of
computer scientists and domain experts are needed when selecting meaningful semantic
parameters and mapping parameters to low-level primitives.

186 Y. Sun et al.

Another interesting approach is VisMashup [6], which simplifies the creation of cus-
tomized visualization applications with a pipeline. Once the pipeline is constructed, the
application can be generated automatically. While this infrastructure enables an appli-
cation designer to assemble custom applications quickly, the designer still needs some
visualization background to build up the pipeline from components or templates. Al-
though Articulate shares some of these same goals, our approach goes a step further
by allowing the users to verbally articulate what they want to see with minimal apriori
knowledge of how to use the user-interface.

A number of speech-based interfaces have been developed that help users to access
information using a conversational paradigm. JUPITER [7] for example allows users
to obtain worldwide weather forecast information over the phone using spoken dialog.
It is a mixed initiative system [3] that requires zero user training, and accepts a large
range of user inputs. This approach has been extended to similar domains where the
vocabulary is sufficiently limited to support practical conversational interface, such as
travel planning [8], health information access [9]. But few of the systems we surveyed
targeted the problem of visual analytics.

Cox et. al.’s work [10] was the first to integrate a natural language interface into an
existing information visualization system. Cox’s work takes the natural language ques-
tion, determines the appropriate database query, and presents the results to the user.
Results from a pilot user study indicated a considerable need for natural language in-
terface to aid users in data analysis. However, the number of questions supported by
the system was small and mostly grammar dependent. More importantly, in the result
generation phase, they did not take the advantage of varied plot types based on the
characteristics of different analytic tasks, but instead only utilize tables and bar charts.

Though the idea of using a conversational interface to craft visualizations is not new,
our work addresses a growing trend toward in this area, as witnessed in the recent work
of Wolfram Research [11].

3 Design and Methodology

The purpose of the Articulate system is to process a user’s imprecise description and
generate a meaningful visualization that best answers their question. Figure 1 gives an
overview of our model.

To illustrate how the model works, let us look at an example. Suppose a user loads
in a dataset about hydrologic information, and makes a query: “How was conductivity
related with depth”. The data parser will first read the original data file collecting in-
formation such as attribute names, data types, and matching the words conductivity and
depth to existing attributes. Meanwhile, the input parser will interpret the sentence as a
request for a relationship graph with two attributes assigned as the x and y axes. This
interpretation is expressed as SimVL commands and entered into the graph generator,
where information about the data from the data parser and the intermediate commands
are funneled. Properties of various graph types are also funneled in via the graph spec-
ification. The reasoner uses this information to determine that the most appropriate
visualization will be a scatter plot.

Articulate: A Semi-automated Model 187

The essential parts of our framework are two steps: input parser and graph reasoner.
In Sect. 3.1 to 3.3 we describe how the imprecise query is interpreted, followed by the
algorithm for graph generation in Sect. 3.4.

Fig. 1. Overview of the Articulate System

3.1 Parsing

The translation of user’s imprecise specification is based on a natural language parser
imbued with machine learning algorithms that are able to make reasoned decisions au-
tomatically. User’s initial input to the system is a natural language query. The query
sentence is parsed into a sequence of words tagged with part-of-speech labels using
the Stanford Parser [12]. These labels mark the lexical category for each word, such as
noun, verb, adjective, adverb, preposition, and etc. based on both its definition, as well
as its context. For example, the sentence “How was conductivity related with depth”
will be tagged as:

how/WRB; was/VBD; conductivity/NN; related/VBN; with/IN; depth/NN

Using these tags, we can distinguish the functions of each word and apply different
rules based on that. In addition, the stem of each word, i.e. the root of the word, is also
extracted. The stemmed result for the previous example is shown below:

how be conductivity relate with depth

Compared with the original sentence, the difference is all about the tense of verbs:
“was” is stemmed as “be”, “related” is stemmed as “relate”. The stems avoid the mor-
phological ambiguity. For example, relate, relating, related all have the same root, and
should be recognized as the same keyword in the classification step.

3.2 Classification

Based on the parsing results, we map the query into a smaller feature space, and apply
a supervised learning method in this space to predict the class of the task.

188 Y. Sun et al.

The feature space is defined as a nine-dimensional space. Each dimension describes
one feature of the query, such as the existence of keywords for one class, or the number
of attribute names appearing in the query. Specifically, the features are:

– comparison keyword [true/false]
– relationship keyword [true/false]
– composition keyword [true/false]
– distribution keyword [true/false]
– statistics keyword [true/false]
– manipulation keyword [true/false]
– timeseries keyword [true/false]
– visual parameter keyword [true/false]
– number of attributes [0, 1, 2, 3]

The first eight features all have Boolean values: “true” if there is a word in the query
matching a keyword in the corresponding dictionary, “false” if not. The keywords in
each dictionary are selected according to empirical knowledge. For example, associate,
correlate, link, relate, relevant are often used in the queries intended for relationship
or connection between two or more variables, so they are entered into the relationship
dictionary. In addition, the entries in the dictionary are grouped by their lexical category,
i.e. noun, verb or adjective. The matching between the stemmed words and the entries
in a dictionary is done by a string comparison. Instead of simple word matching, the
algorithm first checks the lexical category in the dictionary compared with the part-
of-speech tag on the stemmed word, if they are similar then checks whether the two
strings are identical. This way certain lexical ambiguity caused by words with multiple
function categories can be avoided.

The last feature can have multiple values: 0 represents no attribute names appeared in
the query, 1 represents only one attribute, 2 represents two attributes, 3 represents more
than two. For calculation of this feature, the original words not the stems are evaluated
with existing attribute names. Because in this scenario, each attribute name is regarded
as a special property noun and usually appears as a column in the data file, it has to keep
its surface form, but stemming may change the form of a word, for example, “women”
will be stemmed as “woman”, which will bias the comparison result.

After extracting the feature vector, we use a decision tree learning method to classify
the query. Inspired by Abela’s chart chooser [13], we identify seven classes: compari-
son, relationship, composition, distribution, statistics, manipulation, and other. The first
six classes are chosen based on the characteristics of different visual analytics tasks.
For example, the relationship task focuses on discovering the correlation between two
or more attributes; the comparison task often aims at exploring the trend over time or
categories. The decision tree is built upon a set of rules obtained by applying labeled
training datasets. Upon receiving the feature vector, the tree will calculate the expected
values of competing alternatives. The one with the highest probability is the predicted
class of the query. If “other” is the predicted class, which means the current system does
not have a solution for that, or could not decide on which class the query falls in closely,
then a clarification message will be presented to the user. For example if the user asked
“which car should I buy?” the system will response with “I’m not sure how to answer
that. Can you try asking that in a different way?”

Articulate: A Semi-automated Model 189

3.3 SimVL Command Generation

To pass the classification results as well as the specified attributes to graph reasoner pre-
cisely, we propose a Simplified Visualization Language (SimVL). SimVL is specified
in a formal grammar, in which each command corresponds to a specific assignment.
The purpose of using SimVL is to provide a standard and simplified format for user’s
request in order to facilitate the graph reasoning. To accommodate the different pur-
poses of visual analytics, this language is divided into three major categories: sketch
command, analysis command and manipulation command.

Sketch commands are the ones that describe the semantics of some general visualiza-
tion task. The grammar of this command is presented below:

< sketch >� PLOT < class o f task >
| PLOT < class o f task > OVERT IME

As shown above, a statement is composed of an action with one or two parameters.
The first parameter indicates the classified visual analytic task type, including RE-
LATIONSHIP, COMPARISON, COMPOSITION and DISTRIBUTION. The sec-
ond parameter indicates whether time series data is required.

Analysis commands are normally used when the user is interested in the statistical
feature of data. For example, minimum, maximum, mean, median and etc. so the
commands are defined as an action followed by two parameters: one indicates the
feature, which can be MIN, MAX, MEAN, MEDIAN, RANGE; the other lists the
attribute names:

< analysis >� ANALYS E < f eature > OF < attribute list >

Manipulation commands are used to alter some common visual metaphors, such as
axis, size and color of data points.

< manipulation >� S ET X < attribute list >
| S ETY < attribute list >
| S ET S IZE OF POINT TO < attribute >
| S ET COLOR OF POINT TO < attribute >

Similar to the sketch commands, they are also defined as a list of statements. How-
ever, these commands do not enforce the generation of a new graph, but focus on
the mapping or assignment of visual metaphors.

3.4 Graph Reasoner

The final phase is the generation of the graph. Each plot type has its own advantages
and disadvantages for certain types of data. For example: bar charts are often used
for comparing values by category, whereas pie charts are good at illustrating relative
magnitudes or frequencies. Just as a visualization expert might weigh up the pros and
cons of different graphs in the determination of a desired plot type, the graph reasoner
works as a smart agent carrying out a similar reasoning process autonomously. The rules

190 Y. Sun et al.

of reasoning can be divided into three categories corresponding to the three SimVL
command types.

Analysis commands usually focus on the statistical features of data. So a box-and-
whisker chart [14] is a convenient way of graphically depicting these features: the ends
of the whisker represent the minimum and maximum of the data, the bottom and top of
the box are always the 25th and 75th percentile; while, the line in the center of the box
can be mean or median based on user’s request. The spaces between the different parts
of the box indicate the dispersion in the data. Figure 2 shows an example.

Fig. 2. Result for analysis commands translated from “what is the range of MPG”

Manipulation commands are typically follow-ups from a previous graph, such as
switch axes, change color of point based on values of another attribute. Hence, the
reasoner only needs to recognize the visual metaphor from the SimVL command, and
map the specified attribute onto that. Figure 3 gives an example.

The most complicated part is the sketch commands. Figure 4 illustrates the algorithm
of how the decision for the final graph is formed for these commands. There are gen-
erally four sub-algorithms for the four classes in sketch commands. Let us look at an
example, given a car dataset, a query “how has MPG changed over the years” will be
translated as SimVL commands:

PLOT COMPARISON OVERTIME
SETY MPG

The first command indicates the query is a comparison task, so we will follow the
comparison sub-algorithm. It then checks whether the independent variable is ordinal.
Since there is an OVERTIME parameter in the command, the independent variable will
be year, thus the answer for this test is “Yes”. Next step, it will look into the dataset to
find whether there is a unique MPG value on each year. Unfortunately it does not hold.
So the final graph will be a line chart with whisker (as shown in Fig. 5). Similar to the
box-and-whisker plot, the top and bottom ends of whiskers indicate the maximum and
minimum MPG values for each year.

Articulate: A Semi-automated Model 191

Fig. 3. Result for manipulation commands translated from “can you color by pH” following a
query “what is the correlation between depth and temperature”

Classes of Visual Analytic Tasks

Relationship Comparison Composition Distribution

Pairwise or overall?

of variables

2

Scatter plot

Bubble plot
Colored scatter plot

3
>3

Scatter plot matrix

Pairwise

of variables

Overall

Few

Multi Y-axis plot Many

Radar Plot
Parallel Coordinates

Is independent variable ordinal?
(e.g. time series)

Yes

No

of samples for each
independent variable value

1

Line chart

>1

Line chart
with whisker

of categories
few

Bar chart

many
of samples for
each category

>1

Bar chart
with whisker

1

of samples for
each category

1

Scatter plot

>1

Scatter plot
with whisker

of components
few

A few
Pie chart

Histogram with
each category

as a bin

of categories

Many

Histogram with
grouped categories

as bins

Fig. 4. Algorithm of the graph generation for sketch commands

192 Y. Sun et al.

Fig. 5. Result for sketch commands translated from “how has MPG changed over the years”

4 System Implementation

The Articulate system is developed in Java. Users can input their queries by speech
or text. To recognize speech we use Chant Speech Kit. Based on Microsoft SAPI, this
kit translates a spoken query into a plain-text sentence. The structure of the sentence
is parsed using the Stanford Parser and outputted as words with part-of-speech tags.
The techniques used for query classification are based on the C4.5 system [15], which
is a decision tree learning algorithm. The last component of the system is the graph
engine. We adopt JFreeChart, a free Java chart library that supports a wide range of chart
types. In the visualization panel, traditional mouse interaction is also supported, such
as zooming and brushing, tooltips on pointing, as a complement to natural language
interface for those types of tasks that are easy to perform with a GUI but cumbersome
to speak. In the input panel, there is a query history window which maintains all the
previous inquiries allowing users to verify if the system has correctly interpreted their
natural language input (Fig. 6).

5 Evaluation and Results

To explore the limits of the Articulate system, we conducted a preliminary user study
with eight graduate students. All of them are computer science majors and have some
experience with visualization tools. Each of them was presented with one or two of
the following datasets: a hydrologic dataset which contains 10 attributes and 4000 in-
stances; Cars dataset found from XmdvTool website, with 8 attributes for 406 different
cars; and Average U.S. Food Prices dataset which contains prices for eight different
kind of food over 11 years, published by U.S. Bureau of Labor Statistics.

In this study, users were asked to interact with the Articulate system by expressing
natural language queries to finish three tasks within 20 minutes:

– Find meaningful correlations among the data attributes.
– Find as many trends as possible about the data.
– Find other interesting features about the data.

Articulate: A Semi-automated Model 193

Fig. 6. Graphical user interface for the Articulate system. The bottom of the interface is where the
user’s spoken queries are displayed. The individual graphical windows depict the visualizations
created as a result of the queries.

After each query, users were asked to identify their purpose of their query based on six
categories: comparison, relationship, composition, distribution, analysis, manipulation.
A comparison of their choice and the resulting classification is shown in Table 1:

Table 1. Results for classification. Numbers for comparison, relationship, composition and dis-
tribution categories are merged into a sketch category.

Purpose Correctly Classified Incorrectly Classified

Sketch 50 (81%) 12 (19%)
Analysis 20 (87%) 3 (13%)
Manipulation 9 (90%) 1 (10%)

All subjects in our study were able to use the current system to find some data fea-
tures and trends. But as shown in the table, for each category of query there is an average
of 14% classification error. To discover the cause of this, we looked through each incor-
rectly classified query, and made a couple of interesting findings:

Finding 1: Support for refined or follow-up queries is needed
For example, “what are the other attributes around depth of 7.5”, “what is the heavi-
est American car”. These queries are usually follow-ups from sketch questions. In the
first example, a certain value or a value range is specified, like a filter in the database
operation. In the second example, the query contains superlative adjective heaviest re-
ferring to the attribute weight. To link the comparative or superlative adjective to a data
attribute properly, further knowledge about the data will be needed.

194 Y. Sun et al.

Our current conversational interface is more of a user-initiative system in which the
user has freedom in what they say to the system, while the system remains relatively
passive, asking only for clarification. As Zue et. al.[3] pointed out this may lead “the
user to feel uncertain as to what capabilities exist, and may, as a consequence, stray
quite far from the domain of competence of the system”. To avoid such situations, a
more active feedback from the system will be needed, for example suggesting related
queries as well as associated results to help the user find their solution.

Finding 2: Metadata is needed for providing context to parsing

Take “compare the price of meat” for example. Meat actually refers to beef and chicken
in the Average U.S. Food Prices dataset. Correct recognition of such terms requires
knowledge about synonyms or hypernyms of the attribute names. One solution might
be using WordNet[16] to find Synset for each attribute. This also suggests in the creation
of a database or table, each attribute accompanied with a meta-field briefly explaining
the term should be preferable.

Another field needed in the metadata will be the Units of the data. Unknown data
units can confuse the query classification. For example, “compare the price of apples
with tomatoes” versus “compare cylinders with horsepower”. In the first example, ap-
ples and tomatoes have the same data unit (price), so put their values both on the y axis
and use years as the x axis is more desirable than plotting them on x, y axes respec-
tively. But in the second example, the two attributes cylinders and horsepower have
unmatched units, user would expect them plotted as x and y axes separately.

Next, we repeated the study using Microsoft Excel. Eleven graduate students partic-
ipated in this study. All the subjects have used Excel before and are familiar with its
basic capabilities. Two of them were familiar with Excel’s graphing features, eight had
occasional experience with them, and one had no experience. Each of the subjects were
given six queries, which were picked from the correctly classified queries in the first
study. The subjects were asked to plot the results using Excel. After that we asked the
subjects for their opinions on the resulting Excel charts. We found that one user liked
Excel’s result, six of them felt the results were acceptable though not ideal, and four of
them found the charts completely inappropriate. Most subjects found the steps needed
to create a chart in Excel to be complex, and the means for selecting data ranges and
series, confusing. Furthermore, we found that at least half of the subjects that used Ex-
cel had to create more than one chart and call additional Excel functions (such as sort,
min, max) to describe a query that otherwise could have been expressed with a single
sentence in Articulate. Lastly, subjects on average took twelve times longer to describe
a query in Excel than in Articulate– which typically took less than a minute. These
initial results were encouraging, and we intend to conduct a larger study with domain
scientists in the future.

6 Conclusions and Future Work

In this paper, we presented Articulate, a novel visual analytic approach that utilizes a
natural language interface to translate imprecise verbal descriptions into meaningful vi-
sualizations. We integrated natural language processing and automated graph generation
algorithm to make the implicit sentence semantics explicit in the final representation.

Articulate: A Semi-automated Model 195

We believe this approach has the potential to help scientists as well as laypeople, in-
cluding educators and policymakers, to quickly produce effective visualizations without
extensive knowledge of visualization techniques and/or tools.

Future directions in this research will include more active reaction from the system,
such as suggestion of related queries in response to unclassified questions; support for
a wider range of manipulation commands, including sort, pick; and the evaluation of
the system using populations that are non-computer scientists. Furthermore we hope to
extend this approach to also encompass more advanced visualization techniques such
as those commonly used in scientific visualization (for example, the visualization of
volumetric data as isosurfaces, or vector data as streamlines).

Acknowledgments. This project was funded in part by National Science Foundation
grants CNS-0703916 and CNS-0420477.

References

1. Silicon Republic News, http://www.siliconrepublic.com/news/article/14758/
randd/googles-top-inventor-says-talking-computers-are-the-future

2. Ebert, D., Gaither, K., Gilpin, C.: Enabling science discoveries through visual exploration.
In: NSF Workshop report, Washington, D.C (2007)

3. Zue, V., Glass, J.R.: Conversational Interfaces: Advances and Challenges. Proceedings of the
IEEE, 1166–1180 (2000)

4. Mackinlay, J.D., Hanrahan, P., Stolte, C.: Show me: Automatic presentation for visual anal-
ysis. IEEE Trans. on Visualization and Computer Graphics 13, 1137–1144 (2007)

5. Salama, C.R., Keller, M., Kohlmann, P.: High-level user interfaces for transfer function de-
sign with semantics. IEEE Trans. on Visualization and Computer Graphics 12, 1021–1028
(2006)

6. Santos, E., Lins, L., Ahrens, J., Freire, J., Silva, C.: VisMashup: Streamlining the Creation
of Custom Visualization Applications. IEEE Trans. on Visualization and Computer Graph-
ics 15, 1539–1546 (2009)

7. Zue, V., Seneff, S., Glass, J.R., Polifroni, J., Pao, C., Hazen, T.J., Hetherington, L.: JUPlTER:
a telephone-based conversational interface for weather information. IEEE Trans. on Speech
and Audio Processing 8, 85–96 (2000)

8. Seneff, S., Polifroni, J.: Dialogue management in the Mercury flight reservation system. In:
ANLP/NAACL 2000 Workshop on Conversational systems, pp. 11–16 (2000)

9. Sherwani, J., Ali, N., Tongia, R., Rosenfeld, R., Memon, Y., Karim, M., Pappas, G.: Health-
Line: Towards Speech-based Access to Health Information by Semi-literate Users. In: Proc.
Speech in Mobile and Pervasive Environments, Singapore (2007)

10. Cox, K., Grinter, R.E., Hibino, S.L., Jagadeesan, L.J., Mantilla, D.: A Multi-Modal Natural
Language Interface to an Information Visualization Environment. J. of Speech Technology 4,
297–314 (2001)

11. Wolfram Research, http://www.wolframalpha.com
12. The Stanford Parser, http://nlp.stanford.edu/software/lex-parser.shtml
13. Abela, A.: Advanced Presentations by Design: Creating Communication that Drives Action.

Pfeiffer (2008)
14. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)
15. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco

(1993)
16. WordNet, http://wordnet.princeton.edu/

http://www.siliconrepublic.com/news/article/14758/randd/googles-top-inventor-says-talking-computers-are-the-future
http://www.siliconrepublic.com/news/article/14758/randd/googles-top-inventor-says-talking-computers-are-the-future
http://www.wolframalpha.com
http://nlp.stanford.edu/software/lex-parser.shtml
http://wordnet.princeton.edu/

	Introduction
	Related Work
	Design and Methodology
	Parsing
	Classification
	SimVL Command Generation
	Graph Reasoner

	System Implementation
	Evaluation and Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

